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Chapter 1

Introduction

1.1 Context

Control theory is an interdisciplinary area of engineering and mathematics that seeks
to model and manipulate the behavior of dynamical systems. Depending on the vari-
ables involved, dynamical systems can be classified as continuous, discrete or hybrid
(involving continuous and discrete dynamics), and therefore it must be controlled using
appropriate techniques to the corresponding domain.

The main characteristics used to describe the dynamics of a system are stability, ob-
servability, controllability and linearity. The latter refers to if the system response is
linear around a given operating point and it is the main criterion for simplification of
the proposed models.

The successful design of linear control systems can be attributed in part to the ease of
implementation of linear controllers and the associated mathematical formulation of the
theory of linear systems. However, due to the nonlinearity of real systems, most linear
controllers must be designed around a specific operating point. As it must be ensured
that the system is successfully controlled throughout its operating range, it is more
common to design a linear controller, each in a different operating point and switch
among them. Therefore, it is necessary to implement strategies to control systems at
several operating points automatically.

1
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The hybrid dynamical systems, especially switched dynamical systems are an alter-
native for solving control problems with multiple operating points, since by combining
continuous and discrete dynamics, one can characterize the behavior of the system’s
discrete state changes as necessary for the switching between the controllers of contin-
uous dynamics, and increase the operating range of the control system design.

However, while this strategy avoids the design of more complex (nonlinear) controllers,
when switching between a finite set of controllers, the control signal may have unde-
sirable transients or discontinuities when the active controller (online) and the new
controller (offline, which will switch) have different outputs at the switching instant, so
that the switching process introduces a nonlinearity in the loop causing transients and
discontinuities which could eventually affect adversely the system response [1]. The
removal of these transients is known as “Bumpless Transfer”.

Figure 1.1: Switched Control System. [2]

At present, there are several applications of the switched control systems, such as
temperature control systems, automobiles, regulated sources and level control systems.
However, in most industrial applications, there are saturations when performing the
switching between controllers because the limits of the actuators do not accept these
discontinuities, which leads to the modification of the dynamic performance of the
system and it is not possible to ensure its stability [5]. Therefore, it is necessary to
eliminate unwanted behaviors in the control signal and to ensure bumpless transfer
when switching between controllers.
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1.2 Motivation

The web winding system, shown in figure 1.2, is an example of a plant that requires
the transportation of material at a desired voltage and speed, ensuring that the tape
does not break or deteriorate. This system is structured with the following components:
two DC motors with optical encoders (w1, w2), connected to each one of the reels, an
optical encoder coupled to one of the pulleys or axes (w3), a dancer arm system, whose
rotation axis is fixed to a linear potentiometer (θ), a radius measuring system of one of
the reels, estimating the radius from the voltage of a potentiometer (r) which is coupled
to a nylon rod, and is located on the belt, and finally, a set of mechanical parts essential
to the operation of the web winding system [7].

Figure 1.2: Web Winding System. [7]

For this system, three MIMO LTI models of fourth order were estimated for different
intervals of the radius: for the first model, the data were taken for a radius between
0.025m > r > 0.0167m (R1) for the second model, 0.0167m > r > 0.0084m (R2) and
for the third model, 0.0084m > r > 0.0001m (R3) [7].

Currently, a LPV technique is used on the web winding system [7], which is responsible
for performing a balancing of the three controllers (one for each model) by estimat-
ing the radious. However, if it is desired to switch controllers, the discontinuities and
bumps obtained in the control signal adversely alter the system, and they can deterio-
rate or damage the tapes. Therefore, it is required to implement a strategy to achieve
bumpless transfer when switching among the three models with their corresponding
H∞ controllers which were designed to reduce the effect of external disturbances.
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1.3 Problem Overview

To achieve bumpless transfer on switched systems, it must be ensured that there are
not discontinuities or transients in the control signal when switching between different
controllers designed with respect to a specified operating point.

When the outputs of the controllers are different, the control signal can present per-
turbations in a time near the switching instant. The aim is to ensure continuity in the
control signal and to smooth transitions in the time immediately after the switching
time.

It is desired to find a technique that allows bumpless transfer, and that ensures an
optimality criterion and stability, with respect to the initialization of the offline con-
troller states to those of the online controller. Therefore, it is wanted to find a method
that eliminates discontinuities in the control signal based on the techniques used in [1],
[2], [3] and apply it by simulation on the web winding system of the control laboratory.

The following activities were performed in this work:

• Control law as an algorithm to avoid bumps and discontinuities.

• Simulation of the control law on the web winding system of the control laboratory.

• Stability analysis of the switched system with the control law.

In this project, it is given a brief description of the bumpless transfer on the web
winding system of the control laboratory and H∞ controllers are designed via LMI’s
for the system, using the theorems given in [6]. Then, the simulations are subsequently
displayed and finally some conclusions about the work obtained and future work are
given.

1.4 Bibliography Review

A description of the most popular strategies to achieve bumpless transfer are found in
[1], [2], [3] and [5]. In this work we use the techniques described in [1] , [2] , [3].
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Among the most popular strategies to achieve bumpless transfer, are:

The high gain approach [17], attempts to force the offline control signal to be iden-
tical to the online control signal through a large gain that is placed in a feedback loop
around the online controller. However, if the system has right half plane zeros, includ-
ing zeros at infinity, the gain in the loop can not be increased indefinitely. This could
make this approach ineffective.

The Hanus conditioning scheme [18], attempts to initialize the offline controller states
to those of the online controller to partially inverting the offline controller to synthesize
a realizable reference, but can not be generalized, as many controllers lack a direct
feedback term.

The LQ (linear-quadratic) bumpless transfer scheme [1], minimizes a cost function
in a linear quadratic context, which involve two weighting matrices to add flexibility
to the design. A static feedback gain is synthesized to drive the offline controller in
such a way that, at the time of transfer between the online and offline controllers, the
transients produced by this switching are minimal.

The steady-state bumpless transfer under controller uncertainty using the state/output
feedback topology [3] is a method that retains the convenience of the Turner and Walker
design [1]. It introduces a novel state/output feedback bumpless transfer topology that
employs the nominal state of the offline controller and, through the use of an additional
controller/model mismatch compensator, also the offline controller output.

The bumpless transfer for switching adaptive controllers [2], is a method based on
the decomposition of a controller in slow and fast dynamics that is inspired by an
adaptive PID control (fast mode: derivative, slow mode: integrator). It can be per-
formed without precise knowledge of the plant at the switching instants. By restarting
the states of fast and slow modes at the switching instants, continuity in the control
signal is ensured and transients after switching are avoided.

The bumpless transfer for discrete time switched systems [5], proposes an additional
controller which is activated at the switching instant to reduce the discontinuity of the
control signal, guaranteeing the performance of the output of the plant.
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However, although some solutions have been raised in specific cases, it has not been
formulated yet a strategy to solve the general problem of bumpless transfer on switched
systems. We need to find a control law that minimizes the discontinuities and bumps,
and that ensures internal stability.

1.5 Objectives

This project has the following general and specific objectives:

1.5.1 General objective

Find a strategy to solve the problem of bumpless transfer for switched systems, by
eliminating discontinuities in the control signals.

1.5.2 Specific objectives

• Implement and evaluate methods to achieve bumpless transfer in switched sys-
tems.

• Find an algorithm that allows bumpless transfer, based on optimal control theory.

• Implement the proposed strategy by simulation on the web winding system of the
control laboratory.

• Compare the performance with that obtained with the LPV control technique
used on the web winding system of the control laboratory, by simulation.

1.6 Contribution and Organization

The contribution of this work is an application of bumpless transfer techniques in
switched systems, minimizing discontinuities on the control signal. Also, H∞ controllers
of a low order were designed. One of the main interest of this thesis is that stability
was evaluated for different bumpless methods and an example of an unstable bumpless
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transfer method was found. The document is organized in 6 chapters and is structured
as follows:

Chapter 1

Chapter 1 is an introduction to bumpless transfer. A review of the problem and the
bibliography is presented. Some of the main problems that are important are also
described here.

Chapter 2

Chapter 2 presents an introduction of the basic principles used in this thesis. The formal
definitions and representations of bumpless transfer, H∞ controllers and stability are
presented. Also, the web winding system model is presented.

Chapter 3

Chapter 3 presents the linear quadratic bumpless transfer, bumpless transfer for adap-
tive switching controls and the steady-state bumpless transfer under controller uncer-
tainty using the state/output feedback topology strategies on discrete time systems.
Also, an one step predictive controller is developed.

Chapter 4

Chapter 4 presents the system’s stability analysis. The system’s closed loop matrices
were found when applying some bumpless transfer methods and stability was evaluated
using multiple Lyapunov functions. Also, an example of an unstable method is exposed.

Chapter 5

Chapter 5 presents the application, simulation and results of the bumpless transfer
strategies applied on the web winding system, the elimination of the discontinuities on
the control signals and the principal results on stability. At the end of the chapter some
analysis of the obtained results are presented.



CHAPTER 1. INTRODUCTION 8

Chapter 6

Chapter 6 presents the conclusions of the work, some new perspectives and open prob-
lems to be treated and a few problems encountered during the performance of the
work.



Chapter 2

Basic Principles

Bumpless transfer arises in many cases of practical interest as switching between dy-
namic controllers that does not induce bumps in the plant output. One such case is
switching between several linear controllers, each one of them designed to provide the
desired closed-loop performance in the neighborhood of its operating point, to cover the
entire operating range of a nonlinear plant [4]. An example of this is the web winding
system of the control laboratory that does not function correctly when switching and
therefore, it is required to implement a strategy to achieve bumpless transfer.

On the other hand, bumpless transfer techniques may lead to stability problems. If
it is assumed that the online and offline controllers are stabilizing for the plant, around
a certain operating point, the stability of the closed-loop system around this operating
point, without switching occurring, is guaranteed. However, nothing can be concluded
in general about the stability of the overall system when arbitrary switching occurs [1].

In this chapter, an introduction of the bumpless transfer techniques applied on the
web winding system is given. In addition, a H∞ controller design procedure via LMIs
is presented. This was used to implement faster and simpler controllers than the ones
design in [7] for this system. Finally, it is given an introduction on stability of switched
systems and a stability condition through multiple Lyapunov functions.

9
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2.1 Bumpless Transfer

In this section, the bumpless transfer techniques ([1], [2] and [3]) applied on the web
winding system are introduced.

2.1.1 Linear Quadratic Bumpless Transfer

Assume that the state vector is x ∈ Rn, the control signal is u ∈ Rm, the error vector
(the difference between the reference and the plant output) is ẽ ∈ Rp, the output of the
plant is y ∈ Rp, and the reference signal is r ∈ Rp. All other vectors and matrices shall
be assumed to be of compatible dimensions.

A static feedback matrix F is derived in order to drive the offline controller in such a
way that, at the time of transfer between online and offline controllers the transients
produced by this switching are minimal. This scheme is shown in Fig. 2.1.

Figure 2.1: Bumpless Transfer Scheme. [1]

To achieve a ’minimal’ amount of transient behavior during switching we shall min-
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imize a quadratic cost function. Firstly, at the time of switching, it is desirable that the
online and offline controllers produce control signals which are as close to each other
as possible, in order to reduce the magnitude of the discontinuity which occurs during
transfer. Secondly, we must also take into account the signals driving the controllers.
It is desirable to avoid a large difference between these signals because, in order to
maintain good tracking, the signal driving the offline controller will be switched to the
error signal. That is, after switching the offline controller becomes the current online
controller [1]. This situation is described diagrammatically in Fig. (2.1).

This technique provides a convenient computational setting for bumpless transfer in-
volving high order linear finite dimensional time invariant controllers. However, in
several important MIMO industrial applications, this technique is found to provide
an incomplete convergence of the output of the offline controller to that of the online
controller and produce a pronounced nonvanishing error between the outputs of these
controllers [3].

A closer examination of the possible causes of this offline/online controller output error
reveals that it arises due to the following reason: the design in [1] assumes that the
bumpless transfer operator is provided with the true state of the offline controller and
the input to it, and that these two quantities fully characterize the offline controller
output.

Under this assumption, the availability of the offline controller output, when its in-
put and state are used, is completely redundant and has nothing to contribute to the
bumpless transfer, therefore these designs consciously discard the offline controller out-
put data in the full state configurations.
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2.1.2 The steady-state bumpless transfer under controller un-
certainty

The linear quadratic bumpless transfer technique that was just introduced can be ex-
tendable to synthesize the matrix F in the state/output feedback topology of Fig. 2.2.

Figure 2.2: State/Output feedback bumpless transfer scheme. [3]

Redefining ze(t) and zu(t) as ze(t) = α(t)−β(t) and zu(t) = u(t)−u′(t) respectively,
the performance criterion becomes applicable to the topology of Fig. 2.2 and the feed-
back matrix can be calculated [3].

The topology of the design in [1] uses the online controller input and output feed-
back and, the offline controller state feedback. In reference to the latter, it is called
the state feedback topology. The topology presented in Fig. 2.2 is characterized by the
simultaneous utilization of the state and the output of the offline controller, and it is
called the output feedback topology.

The transfer operator in this topology combines essentially two distinct groups of con-
trollers, the state feedback and the output feedback ones. This nested architecture
allows to retain the steady-state LQ design of [1] for the inner loop, while employing a
simple integral control law for the outer loop [3].
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2.1.3 Bumpless Transfer for Adaptive Switching Controls

Consider the switching control system as shown in Fig. 2.3. The system includes a
plant and a set of controllers

K = {K1, ..., Ki, ..., Kn} (i = 1, 2, ..., n) (2.1)

Figure 2.3: Switching control system. [2]

When controller Ki is in the feedback loop, then this controller is said to be online,
and the other controllers are said to be offline.

Bumpless Transfer method based on slow-fast decomposition of the controller is in-
spired by an adaptive PID controller. It is a special case of the controller which has
fast modes (the differentiator) and slow modes (the integrator). Generalizing the PID
controller case, the method decomposes the original controllers into the fast modes con-
trollers and the slow modes controllers.

By appropriately re-initializing the states of the slow and fast modes at switching times,
it can be ensured that not only will the controller output be continuous, but also that
it avoid fast transient bumps after switching [2].

The disadvantage with this method is that the re-initialization of the states of the
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slow and fast modes only assures (in some case) no jumps at the switching instant,
which do not guarantee there will be no transient problems with infinite combinations
of the controller states (no matter on the value of the control signal). This is the dif-
ference between a method that only acts at the switching time [2] and a method that
acts on the long term and that really tries to condition the controller state for having
the best behavior [1].

2.2 H∞ Controllers

In this section, an introduction to H∞ control and dynamic H∞ controller design for
discrete time systems via LMIs is given.

This procedure was implemented on the web winding system in order to obtain faster
and simpler controllers (4 states) that the ones designed in [9] (10 states).

2.2.1 H∞ Control

Consider the system described by the block diagram where the plant G and controller K

Figure 2.4: System [16]

are assumed to be real rational and proper. It will be assumed that state-space models
of G and K are available and that their realizations are assumed to be stabilizable
and detectable. Recall again that a controller is said to be admissible if it internally
stabilizes the system. Clearly, stability is the most basic requirement for a practical
system to work. Hence any sensible controller has to be admissible [16].
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Optimal H∞ Control

Find all admissible controllers K(s) such that ||Tzw||∞ is minimized.

Subptimal H∞ Control

Given γ > 0, find all admissible controllersK(s), if there are any, such that ||Tzw||∞ < γ.

For more information, see appendix A.

2.2.2 H∞ Controller Design for Discrete Time Systems

Consider the following discrete time linear system

x(k + 1) = Ax(k) +Bww(x) +Buu(k) (2.2)

z(k) = Czx(k) +Dzww(k) +Dzuu(k) (2.3)

y(k) = Cyx(k) +Dyww(k) (2.4)

Twz(ζ) denotes the transfer function from the input w to the output z.

For a dynamic output feedback problem with respect to the full order linear dynamic
controller given by

xc(k + 1) = Acxc(k) +Bcy(k) (2.5)

u(k) = Ccxc(k) +Dcy(k) (2.6)

Where the controller state is xc ∈ Rn
c , and connecting the controller with the system,

the closed loop state space representation is given by

x̃(k + 1) = Ãx̃(k) + B̃w(k) (2.7)

z(k) = C̃x̃(k) + D̃w(k) (2.8)
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with the following closed loop matrices

Ã =

[
A+BuDcCy BuCc

BcCy Ac

]
(2.9)

B̃ =

[
Bw +BuDcDyw

BcDyw

]
(2.10)

C̃ =
[
Cz +DzuDcCy DzuCc

]
(2.11)

D̃ =
[
Dzw +DzuDcDyw

]
(2.12)

H∞ controllers of the same number of states of the system can be found using the
results shown on theorem 2.2.1.

Theorem 2.2.1. (output feedback H∞) All controllers in the form (2.5)-(2.6) such
that the inequality ‖Twz‖2

∞ < µ holds are parametrized by the LMI



PH JH AXH + BuLH A + BuRHCy Bw + BuRHDyw 0
J′
H HH QH YHA + FHCy YHBw + FHDyw 0

(AXH + BuLH )′ Q′
H XH +X′

H − PH I + S′
H − JH 0 X′

HC
′
z + L′

HD
′
zu

(A + BuRHCy)
′ (YHA + FHCy)

′ (I + S′
H − JH )′ YH + Y ′

H −HH 0 C′
z + C′

yR
′
HD

′
zu

(Bw + BuRHDyw)′ (YHBw + FHDyw)′ 0 0 I D′
zw +D′

ywR
′
HD

′
zu

0 0 (X′
HC

′
z + L′

HD
′
zu)′ (C′

z + C′
yR

′
HD

′
zu)′ (D′

zw +D′
ywR

′
HD

′
zu)′ µI

 > 0

(2.13)

Where the matrices XH , LH , YH , FH , QH , RH , SH , JH and the symmetric matrices
PH and HH are the variables and (′) indicates transposition.

The proof of this theorem can be found in [6].

Given matrices XH , LH , YH , FH , QH , RH , SH , JH from this theorem, a feasible
controller H∞ is obtained by choosing UH and VH nonsingular such that VHUH =
SH − YHXH . In this case, UH was taken as the identity and VH = SH − YHXH . And
calculating [6]:

Dc =RH (2.14)

Cc =(LH −RHCyXH)U−1
H (2.15)

Bc =V −1
H (FH − YHBuRH) (2.16)

Ac =V −1
H [QH − YH(A+BuDcCy)XH − VHBcCyXH − YHBuCcUH ]U−1

H (2.17)

This LMI can be solved using Sedumi-Yalmip [10] or the linear matrix inequalities
toolbox in Matlab.
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2.3 Stability of Switched Systems

An important problem related to switched systems is the stability criteria. As men-
tioned before, bumpless transfer techniques may lead to stability problems because by
implementing these techniques nothing can be concluded in general about the stability
of the overall system when arbitrary switching occurs.

The concept of stability remains from the linear systems. It is a property assigned
to a system and describes the quality to return to it is equilibrium point when the
system is disturbed [12], [13]. In this section, a few background of stability of switched
systems is presented.

2.3.1 Stability of Hybrid Systems

The main problems around stability of switched systems are:

• Find stability conditions such that hybrid system is stable.

• Given the switching law, determinate if the hybrid system is stable.

• Create a switching law that makes the hybrid system stable.

A switched system is global uniform asymptotically stable GUAS (see (2.5)(a)). if
there exists a positive constant δ and β function such that for the sequence s (where s
is the switching law) with x(0) ≤ δ it follows

|x(t)| ≤ β(‖x(0)‖ , t)∀t ≥ 0 (2.18)

If the β function is of the form β(r, s) = creλs, for some c, λ > 0, and equation (2.18)
is satisfied, the system is called global uniform exponentially stable GUES [14] (see
Fig. 2.5(b)). Stability for a hybrid system can be studied from two perspectives.
Independent from the switching signal s so in this case the common Lyapunov function
is an useful alternative, or dependent of the switching signal s and for this case a
piecewise Lyapunov function is more convenient.
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Figure 2.5: Stability for hybrid systems. [11]

The Lyapunov approach has a formal definition for non-linear systems shown in
[13], [14]. An hybrid system of the following form:

ẋ(t) = Aix(t), i = 1, 2, ..., q (2.19)

Where Ai ∈ Rn×n, describes the dynamic of the system. The stability of the hybrid
system can be analyzed with the help of a function V (x).

2.3.2 Multiple Lyapunov Function

Stability for a system can also be obtained by making the Lyapunov function a piece-
wise affine function with certain features. These are families of piecewise continuous
functions that concatenated produce a single Lyapunov function. For a linear time
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invariant system, it is suggested a set of Lyapunov functions as it follows.

V (x) = {Vi(x) = xTPix, i ∈ Q} (2.20)

Equation (2.20) must satisfy the following conditions:

• Vi(x) = xTPix is a positive definite function ∀x 6= 0 and V (0) = 0.

• dVi(x)
dt
≤ 0,∀i ∈ Q

Figure 2.6: Multiple Lyapunov Function. [15]

Figure 2.6 shows an stable hybrid dynamical system. The stability of the system is
based on the decay of the Lyapunov function (2.20) at any successive times, the system
is switched according to a sequence s [13]. In the case of linear time invariant systems,
suppose a Lyapunov function like (2.20). The following result can be obtained [14],
[15]:

Theorem 2.3.1. A switched linear system (2.18) is GUES for an arbitrary sequence
s if and only if the following linear matrix inequalities hold for some positive definite
matrix Q:
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ATi Pi + PjAi < −Q, ∀i, j = 1, 2, ..., q (2.21)

(i, j) ∈ Q×Q (2.22)

Remark 2.3.1. (Discrete Time) In case of a discrete time system the linear matrix
inequality to hold is:

ATi PjAi − Pi < −Q,∀i, j ∈ Q×Q (2.23)

One of the main advantages of the multiple Lyapunov function is that it is a less
conservative principle based on finding different functions for each mode of the hybrid
dynamical system [14], [15].



Chapter 3

Bumpless Transfer

In this chapter, the bumpless transfer strategies applied on the web winding system are
presented: linear quadratic bumpless transfer, bumpless transfer for adaptive switching
controls and the steady-state bumpless transfer under controller uncertainty using the
state/output feedback topology. Also, an one step predictive controller is developed in
order to predict the behavior of the output signals (found by applying the bumpless
transfer strategies) at the switching instants, and to choose the better control according
to an optimality condition.

3.1 Linear Quadratic Bumpless Transfer on Discrete

Time Systems

Suppose that the system has 2 controllers and that the first controller is online and it
is described by the difference equations:

xc(k + 1) = Acx(k) +Bcẽ(k) (3.1)

ũ(k) = Ccx(k) +Dcẽ(k) (3.2)

and that the offline controller is described by the difference equations:

x2
c(k + 1) = A2

cx(k) +B2
cα(k) (3.3)

u(k) = C2
cx(k) +D2

cα(k) (3.4)

21
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Figure 3.1: Bumpless Transfer Scheme. [1]

In order to minimize the difference between the online and offline control signals and
also the difference between the signals driving the controllers: α, the signal produced
by the ’subcontroller’ F , and the control error ẽ in the LQ context, we have to minimize
J , [1].

J =
1

2

T−1∑
0

[zu(k)′Wuzu(k) + ze(k)′Weze(k)] +
1

2
zu(T )′PT zu(T ) (3.5)

where

zu(k) = u(k)− ũ(k) (3.6)

ze(k) = α(k)− ẽ(k) (3.7)

zu(T ) = u(T )− ũ(T ) (3.8)

and where (′) indicates transposition, ũ(k) and ẽ(k) are the online control signal and
error signal, respectively; u(k) is the offline control signal; α(k) is the signal produced
by the feedback gain which drives the offline controller. Wu and We are constant
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positive-definite weighting matrices of appropriate dimensions which are used to adapt
the design as required. zu(k) and ze(k) are the error signals between the control signals
and the signals driving the controllers, respectively.

Finally, zu(T ) = u(T ) − ũ(T ) is the difference between the two control signals at
the terminal time T , (which will most commonly be taken as infinity), and PT is the
positive semi-definite terminal weighting matrix.

Substituting (3.4) in (3.5) we can write

J =
1

2

T−1∑
0

[
(C2

cx
2
c(k) +D2

cα(k)− ˜u(k))′Wu(C
2
cx

2
c(k) +D2

cα(k)− ũ(k))+
]

[+(α(k)− ẽ(k))′We(α(k)− ẽ(k))] +
1

2
zu(T )′PT zu(T )

Applying a Lagrange multiplier, λ(k) ∈ Rn, we have

J̃ =
1

2

T−1∑
0

H(k)− λ′(k + 1)x2
c(k + 1) + Φ(T ) (3.9)

where Φ(T ) = 1
2
zu(T )′PT zu(T ) and the Hamiltonian is defined as

H =
1

2
{(C2

cx
2
c(k) +D2

cα(k)− ũ(k))′Wu(C
2
cx

2
c(k) +D2

cα(k)− ũ(k))+

(α(k)− ẽ(k))′We(α(k)− ẽ(k))}+ λ′(k + 1)(A2
cx

2
c(k) +B2

cα(k))

The first order necessary conditions for a minimum are given as

x2
c(k + 1) =

∂H(k)

∂λ(k + 1)
(3.10)

λ(k + 1) =
∂H(k)

x2
c(k)

(3.11)

0 =
∂H(k)

∂α(k)
(3.12)

λ(N) =
∂Φ

∂x2
c(N)

(3.13)
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Where (3.10) and (3.11) constitute the state x2
c and co-state λ equations respectively,

where the co-state equation is a differential equation that has to be solved from the
terminal condition, (3.13). Equation (3.12) is often referred as the stationary condition.

Solving these equations, it yields the following expression for F , [1]

α(k) = ∆


(D2′

c WuC
2
c )′

B2
c

−(D2′
c Wu)

′

−We




x2
c(k)

λ(k + 1)
ũ(k)
ẽ(k)

 (3.14)

where the adjoint equation is given by

λ(k + 1) = Π(k + 1)x2
c(k + 1)− g(k + 1) (3.15)

Π(k + 1) is the solution to the discrete-time Ricatti equation given by

Â′(I − Π(k + 1)B̂)−1Π(k + 1)Â− Π(k) + Ĉ = 0 (3.16)

and g(k + 1) is the solution to the difference equation

g(k) =− Â′(I − Π(k + 1)B̂)−1g(k + 1) (3.17)

which are solved subject to the boundary conditions

Π(T ) =(I − C2′

c PTD
2
c∆B

2′

c )−1(C2′

c PTC
2
c + C2

c
′PTD

2
c∆D

2′

c WuC
2
c ) (3.18)

g(T ) =(I − C2′

c PTD
2
c∆B

2′

c )−1

[
−(C2′

c PTD
2
c∆D

2′
c Wu + C2′

c PT )
′

−(C2′
c PTD

2
c∆We)

] [
ũ(T )
ẽ(T )

]
(3.19)

If Â, B̂ and
√
Ĉ are stablisable and detectable, and Π(T ) ≥ 0, then the solution of the

Riccati equation converges to a constant value in the infinite horizon: a value identical
to the solution of the discrete algebraic Ricatti equation. (the proof can be found in
[1]). Thus in the infinite horizon, F is given by

α(k) = F

x2
c(k)
ũ(k)
ẽ(k)

 (3.20)
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F =

FxFu
Fe

 (3.21)

=(I −∆B2′

c ΠB2
c )
−1∆

 (D2
c
′WuC

2
c +B2

c
′ΠA2

c)
′

−(D2
c
′Wu +B2

c
′(I −M)−1Û)′

−(We +B2
c
′(I −M)−1Ê)′

 (3.22)

Where

∆ =− (D2
c
′WuD

2
c +We)

−1 (3.23)

Â =A2
c +B2

c∆D
2
c
′WuC

2
c (3.24)

B̃ =B2
c∆B

2
c
′ (3.25)

C̃ =C2
c
′WuC

2
c + C2

c
′WuD

2
c∆D

2
c
′WuC

2
c (3.26)

M =Â′(I − ΠB̂)−1 (3.27)

Û =MΠB2
c∆D

2
c
′Wu + C ′c

2Wu + C2
c
′WuD

2
c∆D

2
c
′Wu (3.28)

Ê =MΠB2
c∆We + C2

c
′WuD

2
c∆We (3.29)

and Π is the stabilizing solution to the discrete-time algebraic Riccati equation:

Â′(I − ΠB̂)−1ΠÂ− Π + Ĉ = 0 (3.30)

which can also be written as

−Π + Â′ΠÂ− Â′ΠB2
c (B

′
c
2ΠB2

c + ∆−1)−1B2
c
′ΠÂ+ Ĉ = 0 (3.31)

The solution to this Riccati equation corresponds to the stationary solution and can be
found using the function ’Dare’ in matlab.
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3.2 Steady-State Bumpless Transfer Under Controller

Uncertainty Using the State/Output Feedback

Topology

The linear quadratic bumpless transfer technique that was just introduced, can be
extendable to synthesize the matrix F in the state/output feedback topology of Fig.
3.2

Figure 3.2: State/Output feedback bumpless transfer scheme. [3]

The transfer operator in this topology is seen to combine two distinct transfer op-
erators in a nested configuration: the inner one, F , and the outer one, the mismatch
compensator, forming the state and the output feedback loops, respectively. The inner
operator F is designed to stabilize the offline controller and the outer mismatch com-
pensator then drives the offline controller output to converge to the online controller
output ũ . After the attainment of the latter, the switch at the input side of the offline
controller turns to connect signal β to the offline controller. At the same time, the
switch at the offline controller output side turns to disconnect online controller output
ũ from the plant input and connect the offline controller output u to the plant input,
completing the bumpless transfer. This configuration permits retaining the infinite
horizon LQ design of [1] for the inner loop, while employing, under certain conditions,
a simple integral control law for the outer loop [4].
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Mismatch Compensator Structure

The mismatch compensator design is carried out using the offline controller model.
Assuming stable online controller operation, signals ũ and β in Fig. 3.2 can be treated
as bounded external inputs to the subsystem that generates signal α driving the offline
controller output u. Based on this observation, the subsystem with no offline controller
uncertainty can be represented by a nested loop configuration shown in Fig. 3.3. In
this figure K and G denote the matrix transfer functions of the boxed subsystems.

Figure 3.3: Nominal offline controller subsystem. [3]

The bumpless transfer performance requirement for the design of the mismatch com-
pensator Kmc s to ensure that the closed loop provides convergence of u onto constant
reference input, ũ, sufficiently fast for the application of interest, under constant output
disturbance. Therefore, Kmc is simply selected as a bank of integral (I) controllers [3],
as shown in Fig. 3.4, where kinti,i=1,...,m, are the tuning knobs and m is the dimension
of the controller output vector, which is the number of control signals.
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Figure 3.4: Internal model based controller/model mismatch compensator

3.3 Bumpless Transfer for Adaptive Switching Con-

trols

As shown in Fig. 3.5, the input of the plant is u(k) and the output is y(k). Controller
input is e(k) = r(k)− y(k) where r(k) is a reference signal.

Figure 3.5: Switching control system. [2]
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Switching Control System

Assuming that the i-th controller Ki is online, it has the state-space realization

xc(k + 1) = Aicxi(k) +Bi
ce(k) (3.32)

yKi(k) = Ci
cxi(k) +Di

ce(k) (3.33)

where e is the controller input and yKi is the output.

Ki(s) =

[
Aic|Bi

c

Ci
c|Di

c

]
(3.34)

We are interested in the situation in which the online controller is switched from
Ki to Kj at the instant k, so that{

yKi for k < k∗

yKj for k ≥ k∗
(3.35)

Since the controller output yKi is replaced by yKj at the switching instant k∗, the con-
trol signal u can have bumps if yKi and yKj have different values [2].

The objective of bumpless transfer is to ensure continuity in the control signal and
to smooth bumpy transients at, and immediately following, the switching instant.

Slow-fast decomposition

Consider that the controllers Ki (i = 1, 2, ..., n) can be additively decomposed into slow
and fast parts as follows:

Ki(s) = Kislow(s) +Kifast(s) (3.36)

with respective minimal realizations

Kislow(s) =

[
Aics|Bi

cs

Ci
cs|Di

cs

]
(3.37)

Kifast(s) =

[
Aicf |Bi

cf

Ci
cf |Di

cf

]
(3.38)
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The poles of Kslow(s) are of smaller magnitude than the poles of Kfast(s)

|λi(Acs)| ≤ |λj(Acf )| ∀i, j (3.39)

Then, the state-space realization of the i-th controller Ki is

xic(k + 1) = Aicsx
i
cs(k) + Aicfx

i
cf (k) + (Bi

cs +Bi
cf )e(k) (3.40)

yKi(k) = Ci
csx

i
cs(k) + Ci

cfx
i
cf (k) + (Di

cs +Di
cf )e(k) (3.41)

A switching controller with slow-fast decomposition (3.36) is said to perform a
bumpless transfer if, whenever controller is switched, the new controller state is reset
so as to satisfy both of the following two conditions [2]:

1. The control input signal u(k) is continuous at k∗ whenever r(t) ∈ C0.

2. The state of fast part of controller Kfast(s) is reset to zero at k∗.

Assumption 1. For each candidate controller Ki, the slow part Kislow in (3.37) and
(3.38) has at least m = dim(u) states.

The Assumption 1 is sufficient to allow the state of the slow controller Kislow(s) to
be reset at switching times to ensure both continuity and smoothness of the control
signal u(k) [2].

Theorem 3.3.1. Suppose that each of the candidate controllers have slow-fast decom-
position (3.37), (3.38) satisfying Assumption 1 and suppose that at time k∗ the online
controller is switched from controller Ki to controller Kj. At k∗, let the states of the
slow and fast controllers be reset as follows

xcft(k
∗) = 0 (3.42)

xcs(k
∗) = Cj+

cs [u(k∗ − 1)− (Dj
cs +Dj

cfe(k
∗ − 1))] + ζ (3.43)

where Cj+
cs is the pseudoinverse matrix of Cj

cs and ζ is any element of the null space of
Cj
cs;

Cj
csζ = 0 (3.44)

Then, bumpless transfer is achieved at the switching time k∗ [2].
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The goal of bumpless transfer is to avoid both discontinuity and fast transients
induced by switching. In this strategy, it is achieved by initializing the state of the slow
part of the new controller Kjslow(s) after each switch to a value computed to assure
continuity, and setting the state of the fast part Kjfast(s) to zero.

3.4 Bumpless Transfer Based on Predictive Control

Taking into account the bumpless transfer strategies from the previous sections, an one
step predictive controller was design solving an optimal control problem in order to
choose the best control and output signals that were obtained by applying each one of
the strategies. This is one of the main results of this work.

Figure 3.6: Control Signal Evolution with Bumpless Transfer Based on Predictive Con-
trol

Suppose that the i-th controller is online at time k − 1 and that at time k the i-th
controller is online. This means that k is the switching time. This algorithm, through
the predictive controller, seeks to predict the optimal control and output signals by
evaluating the difference between these signals in the times k and k− 1 for each bump-
less transfer strategy and choosing the one that minimizes an objective function.
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For example, in figure 3.6, the optimal control signal is in black and at the switching
instant, this algorithm evaluates each control signal previously obtained and chooses
the one that exhibits a less bumpy behavior (in this case, the pink one).

3.4.1 Predictive Controller

To finally achieve bumpless transfer, optimal control signals are found minimizing equa-
tion (3.45) with respect to the control signal ũ at the switching instants.

∆ũ′S∆ũ+ ∆y′R∆y (3.45)

Where

∆ũ = u(k)− u(k − 1) (3.46)

∆y = y(k)− y(k − 1) (3.47)

And S, R are constant positive definite weighting matrices of the appropriate dimen-
sions that can be modified to change the contribution of the online controller control
signals and the plant outputs in the one step ahead prediction.

Figure 3.7: Bumpless Transfer Based on Predictive Control Scheme

At the switching instants, the optimal control signals take the value of the control
signals found with the bumpless transfer methods previously discussed that minimize
equation (3.45). And in the other times, the optimal control signals take the value of
the control signals found switching the systems.
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Suppose that, as mentioned before, the switching instant is k. Therefore,

u(k) ∈ {U1, U2, U3} (3.48)

where U1 is the control space of the linear quadratic bumpless strategy, U2 is the con-
trol space of the steady-state bumpless transfer under controller uncertainty using the
state/output feedback topology strategy and U3 is the control space of the bumpless
transfer for adaptative switching controls strategy.

The optimal control signals at the switching instant are found evaluating the set of
control and output signals in Ui, i ∈ {1, 2, 3} in (3.45) choosing the control signals that
minimize (3.45). This is shown in Fig. 3.7.



Chapter 4

Stability

Bumpless transfer techniques may lead to stability problems. If it is assumed that
the online and offline controllers are stabilizing for the plant, around a certain operat-
ing point, the stability of the closed-loop system around this operating point, without
switching occurring, is guaranteed. However, nothing can be concluded in general about
the stability of the overall system when arbitrary switching occurs [1].

If the overall system is unstable for a determined bumpless transfer strategy, it is
possible that the control signal do not behave as desired and the actuators saturate.
The idea is to find a bumpless transfer strategy that guaranties the overall system’s
stability and that minimizes the discontinuities and bumps on the control signal.

Multiple Lyapunov functions are used to find the conditions such that the switched
system is stable under any switching law s, using the closed loop system matrix and
evaluating some linear matrices inequalities for all the switching cases available.

In this chapter, two theorems about stability for two bumpless transfer strategies and
their respective demonstration are presented.

34
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Assuming nk controllers, if the i-th is the online controller and is desirable to switch
to the j-th controller, the following conditions must be satisfied

A′iPjAi − Pi < 0∀(i, j) ∈ QxQ (4.1)

Pi > 0 (4.2)

where Ai corresponds to the closed loop system matrix when the i-th controller is online
and Pi, Pj are positive-definite matrices which are found solving the LMI with Sedumi-
Yalmip. This is the theorem that guarantees GUES with multiple Lyapunov functions
for discrete time.

4.1 Stability with Linear Quadratic Bumpless Trans-

fer

Applying the linear quadratic bumpless transfer strategy on a system, stability for the
overall system can be guaranteed if there exists a matrix F given by

F =(I −∆B2′

c ΠB2
c )
−1∆

 (D2
c
′WuC

2
c +B2

c
′ΠA2

c)
′

−(D2
c
′Wu +B2

c
′(I −M)−1Û)′

−(We +B2
c
′(I −M)−1Ê)′

 (4.3)

And that satisfies theorem (4.1.1)

Theorem 4.1.1. (Stability LQBT) Suppose a system with nk controllers, and as-
sume that the i-th controller is online. If the linear quadratic bumpless transfer strategy
is applied, the system is stable if there exists a matrix F such that equation (4.1) is
satisfied ∀(i, j) ∈ Q×Q, where

Ai =



Ai +BiDicC
i · · · 0 BiCic 0 · · · 0

...
. . .

...
...

...
...

...

Bi−1
c (F i−1

u DicF
i−1
e )Ci · · · Ai−1

c +Bi−1
c F i−1

x Bi−1
c F i−1

u Cic 0 · · · 0
BicC

i · · · 0 Aic 0 · · · 0

Bi+1
c (F i+1

u Dic − F
i+1
e )Ci · · · 0 Bi+1

c F i+1
u Cic Ai+1

c +Bi+1
c F i+1

x · · · 0
...

...
...

...
...

...
...

B
nk
c (F

nk
u Dic − F

nk
e )Ci · · · 0 B

nk
c F

nk
u Cic 0 · · · A

nk
c +B

nk
c F

nk
x


(4.4)
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Where Ai, Bi, Ci, Di are the state space equations of the plant Gi, (taken as A,
B, C, D for i = 1). Aic, B

i
c, C

i
c, D

i
c are the state space equations of the controller Ki,

(taken as Ac, Bc, Cc, Dc for i = 1). And F j
x , F j

u , F j
x are the components of the matrix

F found when the j-th controller is offline (taken as Fx, Fu, Fe for i = 1).

And, the matrix Ai has dimensions n+ncnk, n+ncnk where n is the number of states of
the plant, nc is the number of states of the controller and nk is the number of controllers.

Proof. Assuming that there are two controllers for the system, we proceed to find the
closed loop system matrix.

Assuming that the controller 1 is online, we have

x(k + 1) =Ax(k) +Bũ(k) (4.5)

y(k) =Cx(k) (4.6)

xc(k + 1) =Acxc(k) +Bcy(k) (4.7)

ũ(k) =Ccxc(k) +Dcy(k) (4.8)

Then

x(k + 1) =Ax(k) +B(Ccxc(k) +Dcy(k)) (4.9)

=Ax(k) +B(Ccxc(k) +DcCx(k)) (4.10)

=Ax(k) +BCcxc(k) +BDcCx(k) (4.11)

=(A+BDcC)x(k) +BCcxc(k) (4.12)

xc(k + 1) =BcCx(k) + Acxc(k) (4.13)[
x(k + 1)
xc(k + 1)

]
=

[
A+BDcC BCc

BcC Ac

] [
x(k)
xc(k)

]
(4.14)

For the offline controller (2), we have

x2
c(k + 1) =A2

cx
2
c(k) +B2

cα(k) (4.15)

u(k) =C2
cx

2
c(k) +D2

cα(k) (4.16)
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α(k) =F
[
x2
c(k) ũ(k) e(k)

]
(4.17)

=F 2
xx

2
c(k) + F 2

u ũ(k) + F 2
e e(k) (4.18)

with

Fuũ(k) =F 2
u (Ccxc(k) +Dcy(k)) (4.19)

=F 2
u (Ccxc(k) +DcCx(k)) (4.20)

=F 2
uDcCx(k) + F 2

uCcxc(k) (4.21)

F 2
e e(k) =− F 2

eCx(k) (4.22)

Then

α(k) =F 2
xx

2
c(k) + F 2

uDcCx(k) + F 2
uCcxc(k)− F 2

eCx(k) (4.23)

=(F 2
uDcC − F 2

eC)x(k) + F 2
uCcxc(k) + F 2

xx
2
c(k) (4.24)

and

x2c(k + 1) =A2
cx

2
c(k) +B2

c ((F
2
uDcC − F 2

eC)x(k) + F 2
uCcxc(k) + F 2

xx
2
c(k)) (4.25)

=A2
cx

2
c(k) + (B2

cF
2
uDcC −B2

cF
2
eC)x(k) +B2

cF
2
uCcxc(k) +B2

cF
2
xx

2
c(k)) (4.26)

=(B2
cF

2
uDcC −B2

cF
2
eC)x(k) +B2

cF
2
uCcxc(k) + (A2

c +B2
cF

2
x )x

2
c(k) (4.27)

 x(k + 1)
xc(k + 1)
x2c(k + 1)

 =

 A+BDcC BCc 0
BcC Ac 0

B2
cF

2
uDcC −B2

cF
2
eC B2

cF
2
uCc A2

c +B2
cF

2
x

 x(k)xc(k)
x2c(k)

 (4.28)

To derive the equation for the general case, with n controllers, we assume that the i-th
controller is online and we obtain

Ai =



Ai +BiDicC
i · · · 0 BiCic 0 · · · 0

...
. . .

...
...

...
...

...

Bi−1
c (F i−1

u DicF
i−1
e )Ci · · · Ai−1

c +Bi−1
c F i−1

x Bi−1
c F i−1

u Cic 0 · · · 0
BicC

i · · · 0 Aic 0 · · · 0

Bi+1
c (F i+1

u Dic − F
i+1
e )Ci · · · 0 Bi+1

c F i+1
u Cic Ai+1

c +Bi+1
c F i+1

x · · · 0
...

...
...

...
...

...
...

B
nk
c (F

nk
u Dic − F

nk
e )Ci · · · 0 B

nk
c F

nk
u Cic 0 · · · A

nk
c +B

nk
c F

nk
x


(4.29)

This theorem gives the necessary conditions to choose the weighting matricesWu and
We of the difference between the control signals and the signals driving the controllers,
respectively; in order to stabilize the overall system.
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4.2 Stability with Steady-State Bumpless Transfer

Under Controller Uncertainty Using the State/Output

Feedback Topology

Applying the steady-state bumpless transfer under controller uncertainty using the
state-output feedback topology strategy on a system, stability for the overall system
can be guaranteed if there exists a matrix F given by

F =(I −∆B2′

c ΠB2
c )
−1∆

 (D2
c
′WuC

2
c +B2

c
′ΠA2

c)
′

−(D2
c
′Wu +B2

c
′(I −M)−1Û)′

−(We +B2
c
′(I −M)−1Ê)′

 (4.30)

And a mismatch compensator KMC with integral constants kint that satisfies theorem
(4.2.1)

Theorem 4.2.1. (Stability MC) Suppose a system with 2 controllers, and assume
that the first controller is online. If the steady-state bumpless transfer under controller
uncertainty using the state/output feedback topology strategy is applied, the system is
stable if there exists a matrix F and there are constants kint such that matrices Â1, Â2

satisfy equation (4.1). Where,

Â1 =


A+BDcC BCc 0 0 0

BcC Ac 0 0 0
−B2

c (F 2
e + F 2

uδX
2(Dc + ∆2

1))C B2
cF

2
uδX

2Cc A2
c +B2

cF
2
x +B2

cF
2
uδ∆

2
2 B2

cF
2
u(I + δ∆2

3) B2
cF

2
u(I + δ∆2

4)
∆1 X2Cc ∆2

2 ∆2
3 ∆2

4
δ∆2

1 δX2Cc δ∆2
2 I + δ∆2

3 I + δ∆2
4


(4.31)

Â2 =


A2 +B2D2

cC
2 0 B2C2

c 0 0
−Bc(Fe + FuδX1(Dc + ∆1

1))C2 Ac +BcFx +BcFuδ∆1
2 BcFuδX1C2

c BcFu(I + δ∆1
3) BcFu(I + δ∆1

4)
B2
cC

2 0 A2
c 0 0

∆1
1 ∆1

2 X1C2
c ∆1

3 ∆1
4

δ∆1
1 δ∆2 δX1C2

c I + δ∆1
3 I + δ∆1

4


(4.32)
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With

δ =
Ts
2
kint (4.33)

X i = (I +Di
cF

i
uδ)
−1 (4.34)

∆i
1 = XDi

cF
i
e (4.35)

∆i
2 = −X(Ci

c +Di
cF

i
x) (4.36)

∆3i = −XδDi
cF

i
u (4.37)

∆4i = −XkintDi
cF

i
u (4.38)

Where Ai, Bi, Ci, Di are the state space equations of the plant Gi, (taken as A, B, C,
D for i = 1). Aic, B

i
c, C

i
c, D

i
c are the state space equations of the controller Ki, (taken

as Ac, Bc, Cc, Dc for i = 1). And F j
x , F j

u , F j
x are the components of the matrix F found

when the j-th controller is offline (taken as Fx, Fu, Fe for i = 1).

Proof. Assuming that there are two controllers for the system, we proceed to find the
closed loop system matrix.

Assuming that the controller 1 is online, we have

x(k + 1) =Ax(k) +Bũ(k) (4.39)

y(k) =Cx(k) (4.40)

xc(k + 1) =Acxc(k) +Bcy(k) (4.41)

ũ(k) =Ccxc(k) +Dcy(k) (4.42)

Then [
x(k + 1)
xc(k + 1)

]
=

[
A+BDcC BCc

BcC Ac

] [
x(k)
xc(k)

]
(4.43)

For the offline controller (2), we have

x2
c(k + 1) =A2

cx
2
c(k) +B2

cα(k) (4.44)

u(k) =C2
cx

2
c(k) +D2

cα(k) (4.45)
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α(k) =F
[
x2
c(k) e0(k) e(k)

]
(4.46)

=F 2
xx

2
c(k) + F 2

ue0(k) + F 2
e e(k) (4.47)

with

F 2
e e(k) =− F 2

eCx(k) (4.48)

(4.49)

Then

x2
c(k + 1) =A2

cx
2
c(k) +B2

c (F
2
xx

2
c(k) + F 2

ue0(k)− F 2
eCx(k)) (4.50)

=A2
cx

2
c(k) +B2

cF
2
xx

2
c(k) +B2

cF
2
ue0(k)−B2

cF
2
eCx(k) (4.51)

=−B2
cF

2
eCx(k) + (A2

c +B2
cF

2
x )x2

c(k) +B2
cF

2
ue0(k) (4.52)

Where e0(k) is the output signal of the mismatch compensator and is given by

e0(k) = kint[e0(k − 1) +
Ts
2

(ũ(k)− u(k) + ũ(k − 1)− u(k − 1))] (4.53)

kint is the vector integral constant and Ts is the sampling time. Taking e1(k) = e0(k−1)
and u0(k) = ũ(k − 1)− u(k − 1), we have

e1(k + 1) = e0(k) (4.54)

= kint

[
e1(k) +

Ts
2

(u0(k) + u0(k + 1))

]
(4.55)

u0(k + 1) = ũ(k)− u(k) (4.56)

(4.57)

Combining the previous equations, we have

u0(k + 1) = ũ(k)− u(k) (4.58)

= Ccxc(k) +DcCx(k)− C2
cx

2
c(k)−D2

cα(k) (4.59)

= Ccxc(k) +DcCx(k)− C2
cx

2
c(k)−D2

cF
2
xx

2
c(k)−D2

cF
2
ue0(k) +D2

cF
2
eCx(k) (4.60)

= (Dc +D2
cF

2
e )Cx(k) + Ccxc(k)− (C2

c +D2
cF

2
x )x

2
c(k)−D2

cF
2
ue0(k) (4.61)

Taking δ = kint
Ts
2

,
e0(k) = kinte1(k) + δu0(k) + δu0(k + 1) (4.62)
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And

u0(k + 1) =(Dc +D2
cF

2
e )Cx(k) + Ccxc(k)− (C2

c +D2
cF

2
x )x

2
c(k)− (4.63)

D2
cF

2
u(kinte1(k) + δu0(k) + δu0(k + 1)) (4.64)

(I +D2
cF

2
uδ)u0(k + 1) =(Dc +D2

cF
2
e )Cx(k) + Ccxc(k)− (4.65)

(C2
c +D2

cF
2
x )x

2
c(k)−D2

cF
2
u(kinte1(k) + δu0(k)) (4.66)

u0(k + 1) =(I +D2
cF

2
uδ)

−1[(Dc +D2
cF

2
e )Cx(k) + Ccxc(k)− (4.67)

(C2
c +D2

cF
2
x )x

2
c(k)−D2

cF
2
u(kinte1(k) + δu0(k))] (4.68)

Taking X = (I +D2
cFuδ)

−1

u0(k+1) = X[(Dc+D
2
cF

2
e )Cx(k)+Ccxc(k)− (C2

c +D
2
cF

2
x )x

2
c(k)−D2

cF
2
u(δu0(k)+kinte1(k))] (4.69)

Then

e0(k) =kinte1(k) + δu0(k) + δX[(Dc +D2
cF

2
e )Cx(k) + Ccxc(k)− (4.70)

(C2
c +D2

cF
2
x )x

2
c(k)−D2

cF
2
u(δu0(k) + kinte1(k))] (4.71)

=δX[(Dc +D2
cF

2
e )Cx(k) + Ccxc(k)− (C2

c +D2
cF

2
x )x

2
c(k)] (4.72)

+ (1− δXD2
cF

2
u)(kinte1(k) + δu0(k)) (4.73)

And,

x2c(k + 1) =−B2
cF

2
eCx(k) + (A2

c +B2
cF

2
x )x

2
c(k) + δB2

cF
2
uX[(Dc +D2

cFe)Cx(k) (4.74)

+ Ccxc(k)− (C2
c +D2

cF
2
x )x

2
c(k)] + (1− δXD2

cF
2
u)(kinte1(k) + δu0(k)) (4.75)

=(−B2
cF

2
e + δB2

cF
2
u(Dc +D2

cF
2
e ))Cx(k) + δB2

cF
2
uCcxc(k)+ (4.76)

(A2
c +B2

cF
2
x − δB2

cF
2
uX(C2

c +D2
cF

2
x ))x

2
c(k) (4.77)

+B2
cF

2
u(1− δXD2

cF
2
u)(kinte1(k) + δu0(k)) (4.78)

The state space equations are

x(k + 1) =(A+BDcC)x(k) +BCcxc(k) (4.79)

xc(k + 1) =BcCx(k) +Acxc(k) (4.80)

x2c(k + 1) =(−B2
cF

2
e + δB2

cF
2
u(Dc +D2

cF
2
e )Cx(k) + δB2

cF
2
uCcxc(k)+ (4.81)

(A2
c +B2

cF
2
x − δB2

cF
2
uX(C2

c +D2
cF

2
x ))x

2
c(k) (4.82)

+B2
cF

2
u(1− δXD2

cF
2
u)(kinte1(k) + δu0(k)) (4.83)

u0(k + 1) =X[(Dc +D2
cF

2
e )Cx(k) + Ccxc(k)− (C2

c +D2
cF

2
x )x

2
c(k) (4.84)

−D2
cF

2
u(δu0(k) + kinte1(k))] (4.85)

e1(k + 1) =δX[(Dc +D2
cF

2
e )Cx(k) + Ccxc(k)− (C2

c +D2
cF

2
x )x

2
c(k)] (4.86)

+ (1− δXD2
cF

2
u)(kinte1(k) + δu0(k)) (4.87)
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∆i
1 = XDi

cF
i
e (4.88)

∆i
2 = −X(Ci

c +Di
cF

i
x) (4.89)

∆3i = −XδDi
cF

i
u (4.90)

∆4i = −XkintDi
cF

i
u (4.91)

We have

Â1 =


A+BDcC BCc 0 0 0

BcC Ac 0 0 0
−B2

c (F 2
e + F 2

uδX
2(Dc + ∆2

1))C B2
cF

2
uδX

2Cc A2
c +B2

cF
2
x +B2

cF
2
uδ∆

2
2 B2

cF
2
u(I + δ∆2

3) B2
cF

2
u(I + δ∆2

4)
∆1 X2Cc ∆2

2 ∆2
3 ∆2

4
δ∆2

1 δX2Cc δ∆2
2 I + δ∆2

3 I + δ∆2
4


(4.92)

Â2 =


A2 +B2D2

cC
2 0 B2C2

c 0 0
−Bc(Fe + FuδX1(Dc + ∆1

1))C2 Ac +BcFx +BcFuδ∆1
2 BcFuδX1C2

c BcFu(I + δ∆1
3) BcFu(I + δ∆1

4)
B2
cC

2 0 A2
c 0 0

∆1
1 ∆1

2 X1C2
c ∆1

3 ∆1
4

δ∆1
1 δ∆2 δX1C2

c I + δ∆1
3 I + δ∆1

4


(4.93)

This theorem gives the necessary conditions to choose the weighting matrices Wu

and We of the difference between the control signals and the signals driving the con-
trollers, respectively; and the integral constants of the mismatch compensator KMC in
order to stabilize the overall system.

With respect to the constant integrals, a stability interval can be found for each kinti ,
i ∈ {1, 2, ...p}.



Chapter 5

Results

The bumpless transfer strategies and stability theorems were applied on the web wind-
ing system of the control laboratory. In this chapter are presented the results obtained
by applying each one of the bumpless transfer strategies and the comparison between
them. Also, some analysis are given for each one.

In addition, the stability theorems found in the previous section are used and an exam-
ple of an unstable case with the mismatch compensator is given. Finally, it is presented
a comparison on the performance of the bumpless transfer algorithm obtained and the
LPV control technique used on the web winding system of the control laboratory.

5.1 Simulation

The web winding system of the control laboratory has three models given by [9]:

x(k) =Aix(k) +Biũ(k) (5.1)

y(k) =Cix(k) +Diũ(k) (5.2)

43
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• i = 1

A1 =


0.97083 −0.059253 −0.00061709 0.11824
0.080598 0.90838 0.015871 0.45606
−0.012797 0.064948 0.99256 −0.038484
−0.095656 0.11558 −0.068102 −0.0027797

 (5.3)

B1 =


−0.38033 0.098706
−1.0017 0.25606
0.1321 −0.077344
2.2645 −0.51136

 (5.4)

C1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.5)

D1 =

[
0 0 0 0
0 0 0 0

]
(5.6)

• i = 2

A2 =


0.98359 −0.07594 0.25068 0.03082
0.016798 0.95052 −0.038408 0.025226
−0.040198 0.017543 −0.029979 −0.03078
−0.0061372 −0.063698 −0.40673 1.0008

 (5.7)

B2 =


0.09914 −0.98783

0.0057923 0.10865
−0.16257 3.7196
−0.033691 1.4289

 (5.8)

C2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.9)

D2 =

[
0 0 0 0
0 0 0 0

]
(5.10)
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• i = 3

A3 =


0.97391 −0.11548 −0.076609 −0.17306

0.0039941 0.91826 −0.017033 −0.21528
0.041221 −0.15677 0.83912 −0.04879
−0.020094 −0.083877 0.077934 0.20791

 (5.11)

B3 =


6.9966 −4.8607
7.8533 −5.0766
2.8608 −2.6272

27 −16.717

 (5.12)

C3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.13)

D3 =

[
0 0 0 0
0 0 0 0

]
(5.14)

Where the switching time is Ts = 0.01s

The procedure used to simulate this system with the bumpless transfer strategies was:

1. The disturbance matrices were added on each one of these models and the H∞
controllers were design based on the results obtain from theorem 2.2.1 and solving the
LMI with Sedumi-Yalmip.

2. The bumpless transfer strategies were implemented as shown in chapter 3 and with
the characteristics presented in this chapter for each one. The system was simulated
with initial condition x(1) = [2 2 1 1] and a reference signal equal to zero.

3. The stability theorems were implemented and proven, and an unstable case was
found for the mismatch compensator.

4. Different control laws were used to simulate the system and to observe the con-
trol signals and the system outputs. The control law used on the results figures is
s = [1 2 3], switching every 10 seconds.
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5.2 H∞ controller

The H∞ controllers design for each one of the models, are given by:

x(k) =Aicx(k) +Bi
cy(k) (5.15)

y(k) =Ci
cx(k) +Di

cy(k) (5.16)

• i = 1

A1
c =


−0.0313 −0.0049 −0.0066 0.0124
0.0411 −0.0617 −0.1685 0.1794
−0.0026 −0.0053 −0.0049 0.0072
0.0219 −0.0167− 0.0441 0.0400

 (5.17)

B1
c =


1.3359 −0.3539 0.1491 0.0191
−0.2882 0.8784 0.4760 0.3176
0.1750 0.4649 0.3279 0.2159
0.0851 0.2990 0.2149 0.1319

 (5.18)

C1
c =

[
0.1918 −0.2650 −0.7130 0.7290
0.8010 −1.1664 −3.1621 3.2701

]
(5.19)

D1
c =

[
1.1162 −6.7048 1.0308 −3.0086
3.0474 −28.8969 4.2851 −13.3017

]
(5.20)
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• i = 2

A2
c =


−0.1184 −0.0236 0.0444 −0.0578
−0.1489 −0.0601 0.0315 −0.0850
−0.0081 −0.0088 0.0082 −0.0158
0.0055 0.0060 −0.0288 0.0198

 (5.21)

B2
c =


0.3965 −0.2462 0.3839 −0.7058
−0.2592 2.9018 0.0149 −0.4502
0.3754 0.0817 0.3984 −0.7804
−0.6930 −0.5773 −0.7660 1.5682

 (5.22)

C2 =

[
−3.9048 −0.8538 0.9101 −1.6770
−0.1671 −0.0393 0.0342 −0.0733

]
(5.23)

D2
c =

[
−14.2430 −11.8258 −2.0227 −2.8223
−0.5412 −0.7117 −0.0214 −0.1982

]
(5.24)

• i = 3

A3
c =


−0.0186 0.0205 −0.0052 0.1572
−0.1019 −0.1370 −0.1334 −0.5780
−0.0040 0.0024 0.0037 0.0279
0.0203 0.0230 0.0258 0.0807

 (5.25)

B3=


1.9260 −3.2076 −0.3946 0.4008
−3.2126 9.6039 −0.4332 −1.6523
−0.3801 −0.4075 0.3461 0.1680
0.4666 −1.9119 0.1891 0.3749

 (5.26)

C3=

[
0.0444 0.0207 0.0329 0.0092
0.0718 0.0333 0.0531 0.0168

]
(5.27)

D3=

[
0.6771 −0.2943 0.2335 −0.1366
1.0688 −0.3310 0.3600 −0.2431

]
(5.28)

It is worth mentioning that the H∞ controllers designed in these project have
four states, six orders less than the controllers design in [9] for this system and
are much faster.
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5.3 Linear Quadratic Bumpless Transfer

The procedure shown in section 3.1 was applied to achieve linear quadratic bump-
less transfer, varying the weighting matrices Wu and We in such a way that the
Ricatti equation could be solved and that the closed loop system was stable (by
looking at the eigenvalues of the closed loop system A matrix).

The following weighting matrices were used for each one of the subsystems, where
the signals driving the controllers are given more importance than the control
signals of these controllers (this is clear on the choose of the factor that precedes
the identity matrices) .

Wu = 0.01

[
1 0
0 1

]
(5.29)

We = 100


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.30)

Switching every 10 seconds, the following results were found for the previously
described simulations, linear quadratic bumpless transfer strategy in blue and
without applying it in red.

In the figure 5.5, it is shown that the linear quadratic bumpless transfer strategy
minimizes the discontinuities on the control signals at the switching instants and
the signals are much more softer when little bumps take place.

In the output signals can be observed a huge improvement by applying the linear
quadratic bumpless transfer strategy.

For the first control signal, it can be appreciated that at the first switching in-
stant k = 10, the transfer produces a bump (red) and the strategy reduces it in a
considerable way (blue). For this reason, in the first output signal, the strategy
produces a softer signal (blue) and the bump (red) disappears. At the second
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switching instant k = 20, the strategy presents little reductions on the bumps
form both, the first control and first output signals.

For the second control signal, it can be appreciated a softer behavior and the
strategy reduces the bumps in a small percentage for both switchings. Therefore,
the analog situation can be observed in the second output signal.

Figure 5.1: First Control Signal.

Figure 5.2: First System Output.

Figure 5.3: Second Control Signal.

Figure 5.4: Second System Output.

Figure 5.5: Linear Quadratic Bumpless Transfer in Blue and Without in Red. Switching
Law s=[1,2,3]
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5.4 Steady-State Bumpless Transfer Under Con-

troller Uncertainty Using the State/Output Feed-

back Topology

The procedure shown section 3.2 was applied to achieve bumpless transfer, using
discrete integrators: An integrator has a transfer function given by

kint
s

(5.31)

The discrete transfer function using ’Tustin’ is

kint

Ts
2
z + Ts

2

z − 1
(5.32)

Where Ts is the sampling time (in this case, Ts = 0.01), and kint is the integral
constant. The associated difference equation is

y(k) = kint

(
y(k − 1) +

Ts
2

(u(k) + u(k − 1))

)
(5.33)

which was implemented in Matlab. As there are two control signals, kint =
{kint1 , kint2}

Switching every 10 seconds, the following results were found for the previously de-
scribed simulations, applying the steady-state bumpless transfer under controller
uncertainty using the state/output feedback topology strategy in black and with-
out applying it in red. With kint1 = 0.4 and kint2 = 0.2.

In the figure 5.10, it is shown that the steady-state bumpless transfer under con-
troller uncertainty using the state/output feedback topology strategy minimizes
the discontinuities on the control signals at the switching instants and the signals
are much more softer when little bumps take place.

In the output signals can be observed a huge improvement by applying the steady-
state bumpless transfer under controller uncertainty using the state/output feed-
back topology strategy.
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For the first control signal, it can be appreciated that at the first switching in-
stant k = 10, the transfer produces a bump (red) and the strategy reduces it in a
considerable way (blue). For this reason, in the first output signal, the strategy
produces a softer signal (blue) and the bump (red) disappears. At the second
switching instant k = 20, the strategy presents little reductions on the bumps
form both, the first control and first output signals.

For the second control signal, it can be appreciated a softer behavior and the
strategy reduces the bumps in a small percentage for both switchings. Therefore,
the analog situation can be observed in the second output signal.

Figure 5.6: First Control Signal.

Figure 5.7: First System Output.

Figure 5.8: Second Control Signal.

Figure 5.9: Second System Output.

Figure 5.10: Steady-State Bumpless Transfer Under Controller Uncertainty Using
the State/Output Feedback Topology in Black and Without in Red. Switching Law
s=[1,2,3]
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5.5 Bumpless Transfer for Adaptive Switching

Controls

The procedure shown in section 3.3 was applied to achieve bumpless transfer
for adaptive switching controls, using the slowfast algorithm in Matlab [19] and
reseting the slow and fast states of the controllers as shown in theorem 3.3.1.

Figure 5.11: First Control Signal.

Figure 5.12: First System Output.

Figure 5.13: Second Control Signal.

Figure 5.14: Second System Output.

Figure 5.15: Bumpless Transfer for Adaptive Switching Controls in Green and Without
in Red. Switching Law s=[1,2,3]
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Switching every 10 seconds, the following results were found for the previously
described simulations, applying the bumpless transfer for adaptive switching con-
trols strategy in green and without applying it in red.

In the figure 5.15, it is shown that the bumpless transfer for adaptive switch-
ing controls strategy minimizes the bumps at the first switching instant but does
not minimize the discontinuities on the control signals at the second switching in-
stant and instead, these signals present even bigger bumps. In the output signals
the same behavior is evidenced.

For the first control signal, it can be appreciated that at the first switching in-
stant k = 10, the transfer produces a bump (red) and the strategy reduces it in a
considerable way (green). For this reason, in the first output signal, the strategy
produces a softer signal (green) and the bump (red) disappears.

For the first control signals, it is observed that at the second switching instant
k = 20, the strategy produces a bigger bump (green) that the one obtained when
switching (red) and hence, the second output signal presents a bumpy behavior
(green).

For the second control and output signal, an analog behavior is presented. At the
first switching time k = 10, the bump (red) is reduced but at the second switching
time k = 20, the strategy produces a bigger bump (green).

From the results, it can be concluded that this is not a reliable strategy because
it produces undesired behaviors and due to the re-initialization of the states of
the low and fast modes, it only assures (in some case) no bumps at the switching
instant, which do not guarantee there will be no transient problems with infinite
combinations of the controller states (no matter on the value of the control signal).
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5.6 Bumpless Transfer Based on Predictive Con-

trol

The procedure shown in section 3.4 was applied to achieve bumpless transfer
based on predictive control, where matrices S and R were chosen as

S = 0.3

[
1 0
0 1

]
(5.34)

R = 0.7

[
1 0
0 1

]
(5.35)

In this way, more importance was given to the output signals.

Switching every 10 seconds, the following results were found for the previously
described simulations, applying the bumpless transfer based on predictive control
strategy in yellow and without applying it in red.

In the figure 5.20, it is shown that the bumpless transfer based on predictive
control strategy minimizes the discontinuities on the control and output signals
at the switching instants and the signals are much more softer when little bumps
take place.

For the first control signal, it can be appreciated that at the first switching in-
stant k = 10, the transfer produces a bump (red) and the strategy reduces it in a
considerable way (yellow). For this reason, in the first output signal, the strategy
produces a softer signal (yellow) and the bump (red) disappears. At the second
switching instant k = 20, the strategy presents little reductions on the bumps
form both, the first control and first output signals.

For the second control signal, it can be appreciated a softer behavior and the
strategy reduces the bumps in a small percentage for both switchings. Therefore,
the analog situation can be observed in the second output signal.
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Figure 5.16: First Control Signal.

Figure 5.17: First System Output.

Figure 5.18: Second Control Signal.

Figure 5.19: Second System Output.

Figure 5.20: Bumpless Transfer Based on Predictive Control in Yellow and Without in
Red. Switching Law s=[1,2,3]
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5.7 Comparison Between the Bumpless Transfer

Strategies Used

Switching every 10 seconds, the following results were found for the previously
described simulations, applying the linear quadratic bumpless transfer strategy
in blue, the bumpless transfer for adaptive switching controls strategy in green, the
steady-state bumpless transfer under controller uncertainty using the state/output
feedback topology strategy in black, the bumpless transfer based on predictive
control strategy in yellow and without applying them in red.

It can be appreciated that the linear quadratic bumpless strategy presented a
very good behavior by minimizing the bumps in both, the control and output
signals. However, these discontinuities could not be totally removed.

For the steady-state bumpless transfer under controller uncertainty using the
state/output feedback topology strategy, the mismatch compensator did not im-
proved the behavior reached by the linear quadratic bumpless strategy, but, the
choice of the integrator constant values allowed to find the unstable case (as will
be seen in the proceeding section).

The bumpless transfer for adaptive switching controls strategy presented the worst
behavior because at the second switching instant increased the bumps in the con-
trol and output signals. And even though this strategy minimized the disconti-
nuities in the signals at the first switching instants, the bumps were greater than
the ones produced by the linear quadratic bumpless strategy.

The bumpless transfer based on predictive control strategy produced the best
control signals by presenting the smallest bumps. Also, the output signals follow
the ones found with the linear quadratic bumpless trasnfer strategy because these
ones presented the best behavior.
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Figure 5.21: First Control Signal.

Figure 5.22: First System Output.

Figure 5.23: Second Control Signal.

Figure 5.24: Second System Output.

Figure 5.25: Comparison among the Bumpless Transfer strategies used with Switching
Law s=[1,2,3]. Linear Quadratic Bumpless Transfer in Blue, Steady-State Bumpless
Transfer Under Controller Uncertainty Using the State/Output Feedback Topology
Black, Bumpless Transfer for Adaptive Switching Controls in Green, Bumpless Transfer
Based on Predictive Control in Yellow and Without in Red.



CHAPTER 5. RESULTS 58

5.8 Stability

5.8.1 Stability with Linear Quadratic Bumpless Transfer

Varying the weighting matrices Wu and We the stability condition given by the-
orem (4.1.1) was verified and two cases were obtained.

– If Wu << We, The LMI that allows to find the matriz F is solved and the
system is stable.

– IF We << Wu, it is not possible to solve the Ricatti equation that leads to
the solution of the LMI.

5.8.2 Stability with Steady-State Bumpless Transfer Un-
der Controller Uncertainty Using the State/Output Feed-
back Topology

When implementing the mismatch compensator, if the integral constants are
greater than one, the stability condition given by equation theorem (4.2.1) is
not verified and the system is unstable.

For example, for kint = 4, the control and output signals are
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Figure 5.26: First Control Signal.

Figure 5.27: First System Output.

Figure 5.28: Second Control Signal.

Figure 5.29: Second System Output.

Figure 5.30: Unstable Case kint = 4 with Switching Law s=[1,2,3]

The unstable behavior can be observed in the control and output signals.
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5.9 Comparison with the LPV Technique

Switching every 10 seconds, the following results were found for the LPV tech-
nique in blue.

Figure 5.31: First Control Signal.

Figure 5.32: First System Output.

Figure 5.33: Second Control Signal.

Figure 5.34: Second System Output.

Figure 5.35: Unstable Case kint = 4 with Switching Law s=[1,2]
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In the figure (5.35), it is shown that the LPV technique is not appropriated when
switching systems. For the first control signal, Fig. (5.31), can be observed an
offset but not bumps are present. In the second control signal, Fig. (5.33), a
ripple appears after the switching time and this leads to an unstable behavior.
As the control signals are no ideal, it is logical that the output signals do not
present the desired behavior as is evidenced in Fig. (5.32) and Fig. (5.34).

For times greater or equal than 30, the four signals become unstable and if im-
plemented in practice, with the LPV technique, the tape would probably break.
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Conclusions and Final Remarks

The linear quadratic bumpless transfer strategy [1] minimized the discontinuities
and bumps in the control signals applied to the simulation on the web winding
system of the control laboratory. For this reason, in the output signals could
be observed a huge improvement by presenting little bumps when the switching
instants took place.

The bumpless transfer for adaptive switching controls strategy did not work as
hoped because at the switching instants, the control signals can present little or
even bigger bumps and this behavior is not reliable in any application. That was
evidenced in the output signals because the bumps increased significantly.

In the steady-state bumpless transfer under controller uncertainty using the state/output
feedback topology strategy, the mismatch compensator exhibited the same behav-
ior reached by the linear quadratic bumpless strategy. However, as the mismatch
compensator is found to be a bank of integral controllers, the choice of the inte-
grator constant values allowed to find the unstable case when they were greater
than one through multiple Lyapunov functions and finding the closed loop system
matrices.

The bumpless transfer based on predictive control strategy consisted on an op-
timal control problem used to find the best control/output signals for the web

62
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winding system. These strategy presented the best results and can be imple-
mented for bumpless transfer on switched systems.

For the linear quadratic bumpless transfer strategy, besides minimizing the dis-
continuities and bumps, stability was guaranteed on the overall system when
arbitrary switching occurs through multiple Lyapunov functions. Therefore, this
strategy is valid when dealing with switched systems.

The constants of the bank of integrators given by the mismatch compensator
affect the stability of the overall system and when these constants are greater
than one, the system is unstable. This shows that the bumpless transfer tech-
niques lead to stability problems of the overall system when arbitrary switching
occurs.

The LPV technique should not be implemented on switched systems with am-
biguous switching laws because the system becomes unstable and in practice it
would probably damage the plant.
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Appendix A

7.1 H∞ Norms

Most of the analysis and synthesis will be done on a unified linear fractional
transformation (LFT) framework as shown in figure 7.1. Where P is the inter-
connection matrix, K is the controller, ∆ is the set of all possible uncertainty,
w is a vector signal including noises, disturbances, and reference signals, z is a
vector signal including all controlled signals and tracking errors, u is the control
signal, and y is the measurement. [16]

The block diagram in figure 7.1 represents the following equations:vz
y

 = P

ηw
u

 (7.1)

η = ∆v (7.2)

u = Ky (7.3)

Let the transfer matrix from w to z be denoted by Tzw and assume that the ad-
missible uncertainty ∆ satisfies ||∆||∞ < 1/γu for some γu > 0. Then our analysis
problem is to answer if the closed-loop system is stable for all admissible ∆ and
||Tzw||∞ ≤ γp for some pre specified γp > 0, where ||Tzw||∞ is theH∞ norm defined

64
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Figure 7.1: General LFT Framework. [16]

as ||Tzw||∞ = supw σ̄(Tzw(jw)). The synthesis problem is to design a controller
K so that the afore mentioned robust stability and performance conditions are
satisfied.

In the simplest form, we have either ∆ = 0 or w = 0. The former becomes
the well-known H∞ control problem and the later becomes the robust stability
problem. The two problems are equivalent when ∆ is a single-block unstructured
uncertainty through the application of the small gain theorem. This robust sta-
bility consequence was probably the main motivation for the development of H∞
methods. The analysis and synthesis for systems with multiple-block ∆ can be
reduced in most cases to an equivalent H∞ problem with suitable scalings [16].

7.1.1 H∞ Space

L∞ (jR) Space

L∞ (jR) or simply L∞ is a Banach space of matrix valued (or scalar-valued)
functions that are (essentially) bounded on jR), with norm [16]

||F |||∞ := ess sup
w∈R

σ̄[F (jw)] (7.4)
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The rational subspace of L∞, denoted by RL∞(jR) or simply RL∞, consists of
all proper and real rational transfer matrices with no poles on the imaginary axis.

H∞ Space

H∞ is a (closed) subspace of H∞ with functions that are analytic and bounded
in the open right-half plane. The H∞ norm is defined as [16]

||F |||∞ := sup
Re(s)>0

σ̄[F (s)] = sup
w∈R

σ̄[F (jw)] (7.5)

The second equality can be regarded as a generalization of the maximum modulus
theorem for matrix functions. The real rational subspace of H∞ is denoted by
RH∞, which consists of all proper and real rational stable transfer matrices.

Let G(s) ∈ RL∞ and recall that the L∞ norm of a matrix rational transfer
function G is defined as [16]

||G|||∞ := sup
w
σ̄[G(jw)] (7.6)

The computation of the L∞ norm of G is complicated and requires a search. A
control engineering interpretation of the infinity norm of a scalar transfer function
G is the distance in the complex plane from the origin to the farthest point on the
Nyquist plot of G, and it also appears as the peak value on the Bode magnitude
plot of |G(jw)|. Hence the ∞ norm of a transfer function can, in principle, be
obtained graphically. To get an estimate, set up a fine grid of frequency points:

{w1, ..., wN} (7.7)

Then, an estimate for ||G||∞ is

max
1≤k≤N

σ̄{G(jwk)} (7.8)

This value is usually read directly from a Bode singular value plot.
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