DSSAT MODEL AS A TOOL FOR WATER AND NITROGEN MANAGEMENT IN INTENSIVE IRRIGATED AREAS: I- CALIBRATION AND VALIDATION

WAFA MALIK 1 – FARIDA DECHMI – RAMON ISLA

Introduction

The DSSAT model has been used worldwide to simulate crop biomass and yield, and soil N dynamics under different management practices and various climatic conditions (Li et al., 2015). There is a continuous need to test and update the models under a wide range of environments and cropping practices (López-Cedrón et al., 2008). This study was focused on the evaluation of the performance of CERES-Maize to study the response (total biomass, grain yield and N uptake) of irrigated maize to different soil nitrogen availability under semi-arid condition.

Materials and Methods

Three maize field experiments using Pioneer 'PR34N43' were performed in Montañana 2010 (Mon10), Almudévar 2011 and 2012 (Alm11 and Alm12) (Spain) under sprinkler irrigation system. Five rate of N fertilizer (0 to 400 kg N ha⁻¹) were applied at each field that included four replications. The DSSAT (V4.5) was calibrated using plots managed under optimum N conditions and validated using other plots managed under different soil N available (from 60 to 871 kg N ha⁻¹, preplant soil N+ N fertilizer). To assess the performance of DSSAT, Bias, RMSE and R² were used.

Results and Discussion

The best RMSE of grain yield achieved during the calibration process was about 844 kg ha-1. The DSSAT validation process indicates an overestimation of grain yield, biomass and crop N uptake (Table 1). The best result was obtained in Alm12 site with a RMSE of 1023 kg ha⁻¹ for grain yield and 2516 kg ha⁻¹ for total biomass. The model underestimated the residual soil N in the upper part of the soil profile while overestimated soil N in deeper layers (Table 2).

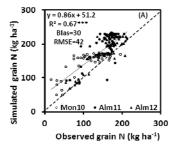

Table 1. Performance (validation) of DSSAT model (Bias, RMSE and R²) to simulate grain yield and total biomass of

Table 2. Performance (validation) of DSSAT model (RMSE and Bias) to simulate the residual soil N in Alm12.

	Gra	in yield	(kgha ⁻¹)	Total biomass (kgha ⁻¹)			Prof (m)	BIAS (kgha ⁻¹)	RMSE (kgha ⁻¹)
Field	BIAS	RMSE	R ²	BIAS	RMSE	R ²	0.0-0.3	-31	49
Mon10	883	2031	0.55***	2516	3656	0.58***	0.3-0.6	8	17
Alm11	271	1340	0.54***	1033	2874	0.46***	0.6-0.9	11	15
Alm12	388	1023	0.83***	1231	2516	0.67***	0.9-1.2	9	13

¹ Soil and Irrigation Department (EEAD-CSIC Associated Unit), Agrifood Research and Technology Centre of Aragon, Avda. Montañana 930, 50059 Zaragoza, Spain, wmalik@cita-aragon.es

DSSAT model tended to overestimate the total nitrogen content in grain and plant (Figure 1). The obtained RMSE were 51 and 42 kg N ha⁻¹ for plant and grain N uptake respectively. An additional calibration modifying the CTCNP2 parameter value allowed an improvement of grain N and total crop N uptake RMSE by 22% and 14%, respectively. A good agreement was obtained between observed and simulated grain yield and a moderate agreement for total plant N uptake comparing with other studies (Liu et al., 2012; Salmerón et al., 2014).



Figure 1. Relationship between simulated and observed of (A) grain N and (B) plant N uptake (kg N ha⁻¹) in the three experiments (Mon10, Alm11 and Alm12; n =158). The dashed line represents the 1:1 relationship.

Conclusions

The model evaluation could be considered acceptable comparing with other published works. However, the model calibration and validation needs to be improved with further data. A better CTCNP2 parameter adjustment to specific field conditions is important to obtain more accurate maize N uptake estimation. The application of calibrated model could be helpful to assess management practices for reducing N leaching in intensive irrigated area.

Acknowledgments

This work has been financed by the Spanish National Research Plan I+D+i (AGL2009-12897-C02-02 and AGL2013-48728-C2-2R). We thank the IAMZ-CIHEAM and the Spanish National Research Plan for awarding to Wafa Malik a Master and predoctoral fellowships, respectively.

References

- Li, Z.T., J.Y. Yang., C.F. Drury et al. (2015). Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agricultural Systems, 135: 90-104.
- Liu, H.-I., Y. Jing-yi, H. Ping et al. (2012). Optimizing Parameters of CSM-CERES-Maize Model to Improve Simulation Performance of Maiz Growth and Nitrogen Uptake in Northeast China. Journal of Integrative Agriculture, 11(11): 1898-1913.
- López-Cedrón X.F., K.J. Boote, J. Piñeiro, et al. (2008). Improving the CERES-Maize Model Ability to Simulate Water deficit Impact on Maize Production and Yield Components. Agronomy Journal, 100: 296-307.
- Salmerón, M., Cavero J., Isla R., et al. (2014). DSSAT Nitrogen Cycle Simulation of Cover Crop-Maize Rotations under Irrigated Mediterranean Conditions, Agronomy Journal, 106(4): 1283-1296.