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THE ALMOND sf ALLELE:            
AN ALLELE IN QUESTION

INTRODUCTION
Once self-compatibility in almond was re­
discovered in the 1970s, its importance in 
almond growing was clearly stressed and 
its relevance in almond breeding was fully 
understood (Socias i Company, 1978). 
The horticultural importance of almond 
self-compatibility is obtaining commercial 
yields after an acceptable fruit set (Socias 
i Company et al., 2009). Therefore, one of 
the major challenges in the breeding pro­
cess has been the evaluation of self-com­
patibility (Socias i Company et al., 2010). 
The first approaches included fruit set 
(Almeida, 1945) and pollen tube growth 
(Socias i Company et al., 1976), but this 
evaluation was focused on the expres­
sion of self-compatibility, not in its genetic 
identification. These approaches involved 
both field and laboratory tests, usually la­
borious and time-consuming, subject to 
several external contingencies, such as 
climatic conditions handling procedures, 
because working with fruit trees implies 
more work, more space and more time 
than in annual species (Socias i Company, 
1998).

The first results suggested that, as in other 
Rosaceous species, almond showed a 
mono-allelic gametophytic self-incom­
patibility system (Socias i Company et 
al., 1976). As a consequence, self-com­
patibility could be due to the presence of 
an Sf allele, as it happened in other close 
species. First of all, transmission to the 
offspring was quickly confirmed (Socias 
i Company and Felipe, 1977), and trans­
mission data indicated that Sf was domi­
nant over the S alleles of self-incompati­
bility (Socias i Company, 1984). The es­
tablishment of its heritability following a 
Mendelian pattern (Socias i Company and 
Felipe, 1988), allowed a better definition 
of crosses in the breeding process (So­
cias i Company, 1990). However, all these 
approaches were based on the phenotyp­
ic expression of self-compatibility or -in­

compatibility in the parents and the off­
spring of the almond crosses.

ALLELE IDENTIFICATION
Identification of S alleles was first at­
tempted in order to establish cross-in­
compatibility groups by test pollination 
crosses (Kester et al., 1994). However, 
this approach also involved laborious field 
tests and could not allow the identification 
of the Sf allele. Only after Bošković et al. 
(1999) found no RNase activity for the Sf 
allele, an efficient identification of this al­
lele could be initiated, although limited by 
the assumption that lack of RNase activity 
was due to the presence of the Sf allele. 
However, the presence of one band is not 
enough to assess the presence of the Sf 
allele. The absence of RNase activity may 
not only be due to the lack of transcription 
of the S-RNase in the pistil, but also to the 
very low level of this transcription, as re­
ported in Japanese plum (Prunus salicina 
Lindl.) by Watari et al. (2007). Inbreeding 
may also produce an incompatible ex­
pression of self-compatible genotypes 
with a single RNase band (Alonso and 
Socias i Company, 2005a). Two different 
RNase bands may coincide after electro­
phoresis separation, thus giving a wrong 
“one band” result when a real superposi­
tion of two bands is occurring.

The more recent advances in genetic 
analysis at the gene level have allowed 
a closer approach to the Sf allele in al­
mond. First, S alleles, including Sf, were 
identified by PCR analysis using conser­
ved and allele-specific primers (Chan­
nuntapipat et al., 2001; Ma and Oliveira, 
2001). Various consensus primer sets 
have been designed to determinate S-
genotypes in almond. They were designed 
from conserved regions of S-genes to am­
plify across the second intron (Channun­
tapipat et al., 2003; Tamura et al., 2000), 
the first intron (Ortega et al., 2005), or 
both (Sutherland et al., 2004). However, 
PCR primers designed from conserved re­
gions do not always distinguish between 
alleles with a similar number of nucleo­

tides (López et al., 2004). In addition, the 
detection of some alleles is masked by 
the presence of another allele, thus gi­
ving a wrong single band. This confusion 
was first detected by Channuntapipat et 
al. (2003) when the presence of either S1 
or S7 masked the amplification of S8 by 
PCR when using conserved primers. The 
same masking has also been observed 
with other alleles (Alonso and Socias i 
Company, 2005b; Fernández i Martí et 
al., 2009).

As a consequence, other primer sets have 
been designed specifically to amplify Sf 
(Channuntapipat et al., 2001; Ma and 
Oliveira, 2001). Screening efficiency and 
flexibility have been also greatly increased 
with the development of successful mul­
tiplex PCR techniques by Sánchez Pérez 
et al. (2004). This technique avoids the 
problem of the masked presence of an al­
lele by the expression of another. Once 
the Sf allele could be identified, the amino 
acid sequence of its RNase could be de­
termined. However, since the beginning, 
several amino acid sequences for the Sf-
RNase have been deposited in the data­
bases by different authors.

ALLELE SEQUENCING
When the different sequences of the Sf-
RNases deposited in the databases were 
compared, several differences could be 
observed between them. This diversity 
was closely examined by Hanada et al. 
(2009) in order to solve previous confu­
sions on their identity. As a result of this 
examination, the sequences could be 
contrasted because most of them had 
been determined in ‘Tuono’ and geno­
types derived from it, consequently for the 
same Sf-RNase. This identity allowed dif­
ferent sources of self-compatibility for the 
genotypes studied to be discarded. The 
first sequences by Channuntapipat et al. 
(2001) and Ma and Oliveira (2001) were 
already different. Further sequencings 
suggest that the sequence by Channun­
tapipat et al. (2001) was the correct and 
must be taken as the consensus se­
quence.

Figure 1. Multiple alignment of the deduced amino acid sequence of different S almond alleles. 
Accession numbers are referred in Table 1.
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suggested for the active Sf allele show­
ing a self-incompatible expression (Kodad 
et al, 2009a), whereas the denomination 
Sfi was suggested for the inactive Sf al­
lele showing a self-compatible expression 
(Fernández i Martí et al., 2009). As already 
mentioned, these two forms of the Sf al­
lele are equally identified by specific prim­
ers and show an identical allele sequence 
(Fernández i Martí et al., 2009; Kodad et 
al, 2009). Thus, the only difference be­
tween them is their expression, not their 
genetic identity.

As the priority sequence was the se­
quence published by Channuntapipat et 
al. (2001), and being considered the con­
sensus sequence, any change in allele 
terminology must take into account this 
priority and cannot be based in erroneous 
results.
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pany et al., 2011). These two forms of the 
Sf allele are equally identified by specific 
primers and show an identical allele se­
quence (Fernández i Martí et al., 2009; 
Kodad et al, 2009).This double expres­
sion suggests that the coding region of 
the Sf gene may not be the exclusive ori­
gin of self-compatibility in almond (Kodad 
et al., 2009a) and that some genetic modi­
fication outside this coding region must 
be affecting that expression (Fernández 
i Martí et al., 2009), taking into account 
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from their sequences (Fig. 1), but also to 
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as shown by the construction of a fosmid 
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All the almond self-compatible genotypes 
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ALLELE TERMINOLOGY
The mistakes in allele sequences ob­
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et al., 2009a). This new name may cre­
ate new confusions in almond S allele re­
search because the identity of any allele 
must be preserved, once correctly de­
fined by its sequence, in spite of showing 
a different phenotypic expression. As a 
consequence, the denomination Sfa was 

Table 1. Similarity of different almond S-RNases with the consensus Sf -RNase.

Allele	 Genotype	 Database 	 Coincidence 	 Reference 		
		  code	 with the Sf 					  

			   consensus 					  
			   allele (%)

Sf consensus	 ‘Lauranne’	 AY291117	 100	 Channuntapipat
	 selection 			   et al. (2001)			 
	 IRTA12-2						    
Sf	 ‘Tuono’	 AF157009	 98	 Ma and Oliveira (2001)
Sf	 ‘Tuono’	 DQ156217	 64	 Barckley et al. (2006)
Sf	 ‘Tuono’	 AM690356	 99.3	  et al. (2007)
Sf	 ‘Cambra’	 EU684318	 100	 Kodad et al. (2009a)
Sfa	 ‘Ponç’	 EU293146	 100	 Kodad et al. (2009a)
Sfa	 ‘Alzina’	 FJ887784	 100	 Kodad et al. (2010)
Sfa	 ‘Garondès’	 FJ887783	 100	 Kodad et al. (2010)
Sfa	 ‘Vivot’	 AB467370.1	 100	 Fernández i Martí 		
				    et al. (2010a)
S30	 ‘Fra Giulio Grande’	 AM690361	 100	  et al. (2007)
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‘MARDÍA’, AN EXTRA-LATE 
BLOOMING ALMOND CULTIVAR

INTRODUCTION
The almond (Prunus amygdalus Batsch) 
breeding program of the CITA of Aragón 
aims to develop new self-compatible and 
late-blooming cultivars to solve the main 
problem detected in Spanish almond 
growing, its low productivity, due to the 
occurrence of frosts at blooming time or 
later and to a deficient pollination (Felipe, 
2000). The first three cultivars released 
from this breeding program were ‘Aylés’, 
‘Guara’ and ‘Moncayo’ (Felipe and Socias 
i Company, 1987), ‘Guara’ having repre­
sented more than 50% of the new almond 
orchards in the last years (MAPA, 2002). 
Later three more cultivars were registered 
in 1998, ‘Blanquerna’, ‘Cambra’ and ‘Feli­
sia’ (Socias i Company and Felipe, 1999), 
‘Blanquerna’ being of very good produc­
tivity and kernel quality, and ‘Felisia’ of 
very late blooming time (Fig. 1). Two more 
cultivars ‘Belona’ and ‘Soleta’ were regis­
tered in 2005 (Socias i Company and Feli­
pe, 2007), characterized by their high ker­
nel quality and considered possible com­
mercial substitutes for the two preferred 
cultivars in the Spanish market, ‘Marcona’ 
and ‘Desmayo Largueta’. The last release 
from this breeding program is ‘Mardía’, re­
cently registered because of its good hor­
ticultural and commercial traits.

ORIGIN
‘Mardía’ (selection G-2-25, clone 541) 
comes from the cross of ‘Felisia’, a self-
compatible and late-blooming release of 
the Zaragoza breeding program of small 
kernel size (Socias i Company and Felipe, 
1999), and ‘Bertina’, a late-blooming lo­
cal selection of large kernel size (Felipe, 
2000). This cross was made with the aim 
of utilizing two late blooming almond culti­
vars, one of them carrying the late-bloom 
allele Lb (Socias i Company et al., 1999), 
of very different kernel size and geneti­
cally very distant, in order to avoid the 
problems related to inbreeding depression 
(Alonso and Socias i Company, 2007).

BLOOMING TIME
Blooming time has been a very important 
evaluation trait. As an average, its bloom­
ing time is 25 days later than ‘Nonpareil’, 
20 days after ‘Guara’ and 13 days after 
‘Felisia’, the latest blooming cultivar re­
leased so far (Fig. 1). The consistent late 
blooming time is due to very high chil­
ling and heat requirements (Alonso et 
al., 2005; Alonso and Socias i Company, 
2009), much higher than in any other al­
mond genotype (Table 1). Flowers are of 
small size, white, with epistigmatic pistil, 
both on spurs and on one-year shoots. 
Bloom density is regular and high (Kodad 
and Socias i Company, 2008b).


