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THE ALMOND sf ALLELE:            
AN ALLELE IN QUESTION

INTRODUCTION
Once selfcompatibility in almond was re
discovered in the 1970s, its importance in 
almond growing was clearly stressed and 
its relevance in almond breeding was fully  
understood (Socias i Company, 1978). 
The horticultural importance of almond 
selfcompatibility is obtaining commercial 
yields after an acceptable fruit set (Socias 
i Company et al., 2009). Therefore, one of 
the major challenges in the breeding pro
cess has been the evaluation of selfcom
patibility (Socias i Company et al., 2010). 
The first approaches included fruit set 
(Almeida, 1945) and pollen tube growth 
(Socias i Company et al., 1976), but this 
evalua tion was focused on the expres
sion of selfcompatibility, not in its genetic 
identification. These approaches involved 
both field and laboratory tests, usually la
borious and timeconsuming, subject to 
several external contingencies, such as 
climatic conditions handling procedures, 
because working with fruit trees implies 
more work, more space and more time 
than in annual species (Socias i Company, 
1998).

The first results suggested that, as in othe r 
Rosaceous species, almond showed a 
monoallelic gametophytic selfincom
patibility system (Socias i Company et 
al., 1976). As a consequence, selfcom
patibility could be due to the presence of 
an Sf allele, as it happened in other close 
species. First of all, transmission to the 
offspring was quickly confirmed (Socias 
i Company and Felipe, 1977), and trans
mission data indicated that Sf was domi
nant over the S alleles of selfincompati
bility (Socias i Company, 1984). The es
tablishment of its heritability following a 
Mendelian pattern (Socias i Company and 
Felipe, 1988), allowed a better definition 
of crosses in the breeding process (So
cias i Company, 1990). However, all these 
approaches were based on the phenotyp
ic expression of selfcompatibility or in

compatibility in the parents and the off
spring of the almond crosses.

ALLELE IDENTIFICATION
Identification of S alleles was first at
tempted in order to establish crossin
compatibility groups by test pollination 
crosses (Kester et al., 1994). However, 
this approach also involved laborious field 
tests and could not allow the identification 
of the Sf allele. Only after Bošković et al. 
(1999) found no RNase activity for the Sf 
allele, an efficient identification of this al
lele could be initiated, although limited by 
the assumption that lack of RNase activity 
was due to the presence of the Sf allele. 
However, the presence of one band is not 
enough to assess the presence of the Sf 
allele. The absence of RNase activity may 
not only be due to the lack of transcription 
of the SRNase in the pistil, but also to the 
very low level of this transcription, as re
ported in Japanese plum (Prunus salicina 
Lindl.) by Watari et al. (2007). Inbreeding 
may also produce an incompatible ex
pression of selfcompatible genotypes 
with a single RNase band (Alonso and 
Socias i Company, 2005a). Two different 
RNase bands may coincide after electro
phoresis separation, thus giving a wrong 
“one band” result when a real superposi
tion of two bands is occurring.

The more recent advances in genetic 
analysis at the gene level have allowed 
a closer approach to the Sf allele in al
mond. First, S alleles, including Sf, were 
identified by PCR analysis using conser
ved and allelespecific primers (Chan
nuntapipat et al., 2001; Ma and Oliveira,  
2001). Various consensus primer sets 
have been designed to determinate S
genotypes in almond. They were designed 
from conserved regions of Sgenes to am
plify across the second intron (Channun
tapipat et al., 2003; Tamura et al., 2000), 
the first intron (Ortega et al., 2005), or 
both (Sutherland et al., 2004). However, 
PCR primers designed from conserved re
gions do not always distinguish between 
alleles with a similar number of nucleo

tides (López et al., 2004). In addition, the 
detection of some alleles is masked by 
the presence of another allele, thus gi
ving a wrong single band. This confusion 
was first detected by Channuntapipat et 
al. (2003) when the presence of either S1 
or S7 masked the amplification of S8 by 
PCR when using conserved primers. The 
same masking has also been observed 
with other alleles (Alonso and Socias i 
Company, 2005b; Fernández i Martí et 
al., 2009).

As a consequence, other primer sets have 
been designed specifically to amplify Sf 
(Channuntapipat et al., 2001; Ma and 
Oliveira, 2001). Screening efficiency and 
flexibility have been also greatly increased 
with the development of successful  mul
tiplex PCR techniques by Sánchez Pérez 
et al. (2004). This technique avoids the 
problem of the masked presence of an al
lele by the expression of another. Once 
the Sf allele could be identified, the amino 
acid sequence of its RNase could be de
termined. However, since the beginning, 
several amino acid sequences for the Sf
RNase have been deposited in the data
bases by different authors.

ALLELE SEQUENCING
When the different sequences of the Sf
RNases deposited in the databases were 
compared, several differences could be 
observed between them. This diversity 
was closely examined by Hanada et al. 
(2009) in order to solve previous confu
sions on their identity. As a result of this 
examination, the sequences could be 
contrasted because most of them had 
been determined in ‘Tuono’ and geno
types derived from it, consequently for the 
same SfRNase. This identity allowed dif
ferent sources of selfcompatibility for the 
genotypes studied to be discarded. The 
first sequences by Channuntapipat et al. 
(2001) and Ma and Oliveira (2001) were 
already different. Further sequencings  
suggest that the sequence by Channun
tapipat et al. (2001) was the correct and 
must be taken as the consensus se
quence.

Figure 1. Multiple alignment of the deduced amino acid sequence of different S almond alleles. 
Accession numbers are referred in Table 1.
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suggested for the active Sf allele show
ing a selfincompatible expression (Kodad 
et al, 2009a), whereas the denomination 
Sfi was suggested for the inactive Sf al
lele showing a selfcompatible expression 
(Fernández i Martí et al., 2009). As already 
mentioned, these two forms of the Sf al
lele are equally identified by specific prim
ers and show an identical allele sequence 
(Fernández i Martí et al., 2009; Kodad et 
al, 2009). Thus, the only difference be
tween them is their expression, not their 
genetic identity.

As the priority sequence was the se
quence published by Channuntapipat et 
al. (2001), and being considered the con
sensus sequence, any change in allele 
terminology must take into account this 
priority and cannot be based in erroneous 
results.
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Table 1. Similarity of different almond S-RNases with the consensus Sf -RNase.

Allele Genotype Database  Coincidence  Reference   
  code with the Sf      

   consensus      
   allele (%)

Sf consensus ‘Lauranne’ AY291117 100 Channuntapipat
 selection    et al. (2001)   
 IRTA12-2      
Sf ‘Tuono’ AF157009 98 Ma and Oliveira (2001)
Sf ‘Tuono’ DQ156217 64 Barckley et al. (2006)
Sf ‘Tuono’ AM690356 99.3  et al. (2007)
Sf ‘Cambra’ EU684318 100 Kodad et al. (2009a)
Sfa ‘Ponç’ EU293146 100 Kodad et al. (2009a)
Sfa ‘Alzina’ FJ887784 100 Kodad et al. (2010)
Sfa ‘Garondès’ FJ887783 100 Kodad et al. (2010)
Sfa ‘Vivot’ AB467370.1 100 Fernández i Martí   
    et al. (2010a)
S30 ‘Fra Giulio Grande’ AM690361 100  et al. (2007)
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‘MARDÍA’, AN EXTRA-LATE 
BLOOMING ALMOND CULTIvAR

INTRODUCTION
The almond (Prunus amygdalus Batsch) 
breeding program of the CITA of Aragón 
aims to develop new selfcompatible and 
lateblooming cultivars to solve the main 
problem detected in Spanish almond 
growing, its low productivity, due to the 
occurrence of frosts at blooming time or 
later and to a deficient pollination (Felipe, 
2000). The first three cultivars released 
from this breeding program were ‘Aylés’, 
‘Guara’ and ‘Moncayo’ (Felipe and Socias 
i Company, 1987), ‘Guara’ having repre
sented more than 50% of the new almond 
orchards in the last years (MAPA, 2002). 
Later three more cultivars were registered 
in 1998, ‘Blanquerna’, ‘Cambra’ and ‘Feli
sia’ (Socias i Company and Felipe, 1999), 
‘Blanquerna’ being of very good produc
tivity and kernel quality, and ‘Felisia’ of 
very late blooming time (Fig. 1). Two more 
cultivars ‘Belona’ and ‘Soleta’ were regis
tered in 2005 (Socias i Company and Feli
pe, 2007), characterized by their high ker
nel quality and considered possible com
mercial substitutes for the two preferred 
cultivars in the Spanish market, ‘Marcona’ 
and ‘Desmayo Largueta’. The last release 
from this breeding program is ‘Mardía’, re
cently registered because of its good hor
ticultural and commercial traits.

ORIGIN
‘Mardía’ (selection G225, clone 541) 
comes from the cross of ‘Felisia’, a self
compatible and lateblooming release of 
the Zaragoza breeding program of small 
kernel size (Socias i Company and Felipe , 
1999), and ‘Bertina’, a lateblooming lo
cal selection of large kernel size (Felipe, 
2000). This cross was made with the aim 
of utilizing two late blooming almond culti
vars, one of them carrying the latebloom 
allele Lb (Socias i Company et al., 1999), 
of very different kernel size and geneti
cally very distant, in order to avoid the 
problems  related to inbreeding depression 
(Alonso and Socias i Company, 2007).

BLOOMING TIME
Blooming time has been a very important 
evaluation trait. As an average, its bloom
ing time is 25 days later than ‘Nonpareil’, 
20 days after ‘Guara’ and 13 days after 
‘Felisia’, the latest blooming cultivar re
leased so far (Fig. 1). The consistent late 
blooming time is due to very high chil
ling and heat requirements (Alonso et 
al., 2005; Alonso and Socias i Company, 
2009), much higher than in any other al
mond genotype (Table 1). Flowers are of 
small size, white, with epistigmatic pistil, 
both on spurs and on oneyear shoots. 
Bloom density is regular and high (Kodad 
and Socias i Company, 2008b).


