brought to you by 🔏 CORE

Determinación de la dosis optima de lodos aluminosos para ser utilizada en el proceso de coagulación en aguas residuales provenientes del sector sur de la comuna del café - Parque industrial

Cristian Marín Gil

1088254305

TRABAJO DE GRADO

Requisito parcial para optar por el titulo de Tecnólogo Químico

UNIVERSIDAD TECNOLOGICA DE PEREIRA

FACULTAD DE TECNOLOGIAS

ESCUELA DE QUIMICA

PEREIRA, 2011

TITULO DEL PROYECTO

Determinación de la dosis optima de lodos aluminosos para ser utilizada en el proceso de coagulación en aguas residuales provenientes del sector sur de la comuna del café - Parque industrial.

CONTENIDO

	Pág.
1. JUSTIFICACIÓN	9
2. OBJETIVOS	10
2.1 OBJETIVO GENERAL:	10
2.2 OBJETIVOS ESPECÍFICOS:	10
3. MARCO TEORICO	11
3.1 LODO ALUMINOSO	11
3.2 FUENTES DE LAS AGUAS RESIDUALES:	12
3.2.1 CARACTERISTICAS IMPORTANTES DE LAS AGUAS RESIDUALES:	12
3.2.2 MUESTRA SIMPLE O PUNTUAL	13
3.2.3 PROCESO DE POTABILIZACION DE AGUA:	14
3.2.3.1 COAGULACIÓN	14
3.2.3.1.2 COAGULACIÓN	14
3.2.3.1.2.1 COAGULACIÓN POR NEUTRALIZACIÓN DE A CARGA	15
3.2.3.1.2.2 COAGULACIÓN POR PUENTE QUÍMICO	15
3.2.3.1.2.3 COAGULACIÓN POR INCORPORACIÓN O DE BARRIDO	15
3.2.3.1.3 CLASES DE COAGULANTES:	15
3.2.3.1.3.1 SULFATO DE ALUMINIO	15
3.2.3.1.3.1.1 REACCIONES CON EL ALUMBRE	16
3.2.3.2 FLOCULACION	17
3.2.3.3 SEDIMENTACIÓN	17
3.2.3.4 FILTRACIÓN	17
3.2.3.5 ENSAYOS DE CONTROL	18
3.2.3.5.1 pH	18
3.2.3.5.2 PRUEBA DE JARRAS	18
3.2.3.5.3 DEMANDA QUÍMICA DE OXÍGENO (DQO)	19
3.2.3.5.4 TURBIEDAD	19
3.2.3.5.5 SÓLIDOS SUSPENDIDOS TOTALES (SST)	19
4. METODOLOGÍA	20
4.1 TRATAMIENTO PRIMARIO	20
4.1.1 AGUA RESIDUAL	20
4.1.2 LODOS ALUMINOSOS	20
4.1.2.1 MANEJO DE LODOS	21
4.1.2.1.1 MANEJO DE DATOS	21

4.2 ENSAYO PRUEBA DE JARRAS:	22
4.3 MÉTODOS ANALÍTICOS	23
5. RESULTADOS Y ANALISIS	24
5.1 DEMANDA QUIMICA DE OXIGENO (DQO)	25
5.2 TURBIEDAD	31
5.3 SOLIDOS SUSPENDIDOS TOTALES	37
6. CONCLUSIONES	46
7. RECOMENDACIONES	47
8. BIBLIOGRAFIA	48
9. ANEXOS	50

INDICE DE TABLAS

		Pág.
Tabla 1.	Característica de agua residual	12
Tabla 2.	Composición de aguas residuales	13
Tabla 3.	Cantidad de aluminio en cada dosis	22
Tabla 4.	Métodos analíticos	23
Tabla 5.	Resultados DQO para pH 5.5 después de añadido el Lodo aluminoso	24
Tabla 6.	Resultados DQO para pH 6.5 después de añadido el Lodo aluminoso	25
Tabla 7.	Resultados DQO para pH 7.5 después de añadido el Lodo aluminoso	26
Tabla 8.	Resultados DQO para pH 8.5 después de añadido el Lodo aluminoso	27
Tabla 9.	Resultados DQO para pH 9.5 después de añadido el Lodo aluminoso	28
Tabla 10.	Resultados DQO para pH 10 después de añadido el Lodo aluminoso	29
Tabla 11.	Evaluación de la remoción de DQO	30
Tabla 12.	Resultados de turbiedad para pH 5.5 después de añadido el Lodo aluminoso	31
Tabla 13.	Resultados de turbiedad para pH 6.5 después de añadido el Lodo aluminoso	32
Tabla 14.	Resultados de turbiedad para pH 7.5 después de añadido el Lodo aluminoso	33
Tabla 15.	Resultados de turbiedad para pH 8.5 después de añadido el Lodo aluminoso	34
Tabla 16.	Resultados de turbiedad para pH 9.5 después de añadido el Lodo aluminoso	35
Tabla 17.	Evaluación de le remoción de turbiedad	36
Tabla 18.	Resultados de SST para pH 5.5 después de añadido el Lodo aluminoso	37
Tabla 19.	Resultados de SST para pH 6.5 después de añadido el Lodo aluminoso	38
Tabla 20.	Resultados de SST para pH 7.5 después de añadido el Lodo aluminoso	39
Tabla 21.	Resultados de SST para pH 8.5 después de añadido el Lodo aluminoso	40
Tabla 22.	Resultados de SST para pH 9.5 después de añadido el Lodo aluminoso	41
Tabla 23.	Resultados de SST para pH 10 después de añadido el Lodo aluminoso	43
Tabla 24.	Evaluación de le remoción en SST	44
Tabla 25.	Resumen de datos máximos	45
Tabla 26 - 1.	Resultados DQO a dosis de 50 ml	51
Tabla 26 - 2.	Resultados DQO a dosis de 50 ml	52
Tabla 26 - 3.	Resultados DQO a dosis de 50 ml	53
Tabla 26 - 4.	Resultados DQO a dosis de 50 ml	54
Tabla 26 - 5	Resultados DQO a dosis de 50 ml	55
Tabla 27 - 1.	Resultados DQO a dosis de 100 ml	56
Tabla 27 - 2.	Resultados DQO a dosis de 100 ml	57
Tabla 27 - 3.	Resultados DQO a dosis de 100 ml	58

Tabla 27 - 4.	Resultados DQO a dosis de 100 ml	59				
Tabla 27 - 5.	Resultados DQO a dosis de 100 ml					
Tabla 28 - 1.	28 - 1. Resultados DQO a dosis de 200 ml					
Tabla 28 - 2.	Resultados DQO a dosis de 200 ml	62				
Tabla 28 - 3.	Resultados DQO a dosis de 200 ml	63				
Tabla 28 - 4.	Resultados DQO a dosis de 200 ml	64				
Tabla 28 - 5.	Resultados DQO a dosis de 200 ml	65				
Tabla 29 - 1.	Resultados DQO a dosis de 250 ml	66				
Tabla 29 - 2.	Resultados DQO a dosis de 250 ml	67				
Tabla 29 - 3.	Resultados DQO a dosis de 250 ml	68				
Tabla 29 - 4.	Resultados DQO a dosis de 250 ml	69				
Tabla 29 - 5.	Resultados DQO a dosis de 250 ml	70				
Tabla 30 - 1.	Resultados DQO a dosis de 300 ml	71				
Tabla 30 - 2.	Tabla 30 - 2. Resultados DQO a dosis de 300 ml					
Tabla 30 - 3.	Tabla 30 - 3. Resultados DQO a dosis de 300 ml					
Tabla 30 - 4.	Resultados DQO a dosis de 300 ml	74				
Tabla 30 - 5.	Resultados DQO a dosis de 300 ml	75				
Tabla 31 - 1.	Resultados DQO a dosis de 350 ml	76				
Tabla 31 - 2.	Resultados DQO a dosis de 350 ml	76				
Tabla 31 - 3.	Resultados DQO a dosis de 350 ml	78				
Tabla 31 - 4.	Resultados DQO a dosis de 350 ml	79				
Tabla 32	Resultados SST PH 5.5	81				
Tabla 33	Resultados SST PH 6.5	82				
Tabla 34	Resultados SST PH 7.5	83				
Tabla 35	Resultados SST PH 8.5	84				
Tabla 36	Resultados SST PH 9.5	85				
Tabla 37	Resultados SST PH 10	86				

ÍNDICE DE FIGURAS

		Pág.
Figura 1.	Proceso de potabilización del agua	14
Figura 2.	2 Diagrama de flujo Prueba de jarras	22

PLANTEAMIENTO DEL PROBLEMA

En la ciudad de Pereira se potabilizan el agua para consumo humano mediante un esquema de tratamiento convencional, en el que se utilizan altas cantidades de coagulante Al_2 (SO_4) $_3$ sulfato de aluminio. (Proceso de potabilización)

Como resultado de este esquema de tratamiento se obtienen además de agua potable para la ciudadanía, grandes cantidades de un residuo en forma de lodos, que contienen concentraciones de aluminio que van de 7000 – 13000 mg Al/ Kg en base húmeda, aun aprovechable. Estos lodos actualmente son descargados aguas abajo de la planta de potabilización Aguas y Aguas de la ciudad de Pereira a la quebrada El Calvario que posteriormente desemboca en el río Otún, incrementando los problemas de contaminación a esta fuente hídrica.

La reutilización de estos lodos mediante la aplicación de TPA (Tratamiento primario avanzado) podría traer beneficios a la sociedad y a las empresas prestadoras de servicios públicos.

Para evaluar la factibilidad de este proceso de reutilización se requiere determinar los rangos óptimos de respuesta (remoción de DQO, turbiedad y SST) en función de dosis de lodo y pH de aplicación.

INTRODUCCIÓN

La contaminación del medio ambiente constituye uno de los problemas más críticos en el mundo, las fuentes hídricas son afectadas en un gran porcentaje por derrames de sustancias químicas, basuras, vertimiento de aguas residuales de las zonas urbanas, entre otras, las cuales conllevan a la extinción de la vida animal y vegetal.(Zig-Zag, 1995)

Los sistemas convencionales para potabilización de aguas, utilizan métodos mecánicos y químicos en los cuales se utilizan coagulantes (sales de metales) que son suministrados en este caso como sulfato de Aluminio (Al₂ (SO₄)₃), a fin de lograr la desestabilización y posterior sedimentación de las partículas suspendidas, generando un agua menos contaminada la cual, por medio de técnicas de desinfección dan como resultado agua para consumo humano.

El uso de este tipo de productos presenta ciertos problemas, uno de los más graves es la producción de lodos Aluminosos como residuo, los cuales oscilan entre un 0.3 y el 1%. (Pérez, 2002), estos son descargados aguas abajo de la misma fuente hídrica generando una contaminación mucho mayor, sumado a los desperdicios de las zonas urbanas las cuales desmejoran las condiciones ambientales de esta fuente, dando como resultado poca supervivencia de peces y vida vegetal.

Se realizaron estudios por medio de métodos químicos al agua residual: DQO, SST y turbiedad, para así observar el comportamiento de esta al aplicar el lodo aluminoso previamente caracterizado por el Laboratorio de Química Ambiental de la Universidad Tecnológica de Pereira.

La idea central de este trabajo investigativo es hallar la dosis óptima de lodo Aluminoso y su potencial para ser reutilizados como coagulante, para el tratamiento fisicoquímico de aguas residuales, por técnicas convencionales que se valen de los mismos principios de funcionamiento que el TPA (Tratamiento Primario Avanzado), utilizando como factor principal un lodo aluminoso obtenido de la planta potabilizadora: Aguas y Aguas de la ciudad de Pereira con características establecidas, por el Laboratorio de Química Ambiental de la Universidad Tecnológica de Pereira.

El agua residual utilizada en el presente estudio fue recolectada en el descole de los vertimientos provenientes del sector sur de la comuna del café (Parque industrial), en la vía denominada *Variante La Romelia – El Pollo*.

1. JUSTIFICACIÓN

En Colombia se tratan las aguas residuales domésticas sólo en 235 de sus 1092 municipios, es decir cerca del 8% de las aguas vertidas. Considerando que en los centros urbanos de Colombia se vierten 67 m³/s de aguas residuales, y que gran parte de los sistemas de tratamiento instalados presentan deficiencias operativas y no cumplen con el proceso completo de tratamiento, se está ante una situación en extremo complicada cuya solución involucra grandes esfuerzos políticos, económicos y tecnológicos. (Hernández y Villegas, 2006)

En Pereira la zona urbana de la ciudad esta drenada por los ríos Otún y Consota a los cuales llegan aproximadamente 20 quebradas y caños importantes. La contaminación actual de los ríos mencionados es realmente crítica, esta contaminación da lugar a problemas de salud pública y problemas de olores que afectan la población que vive en las márgenes de esas fuentes hídricas. (CARDER, 2004)

En los procesos de coagulación y floculación para tratar el agua de fuentes hídricas se utiliza sulfato de aluminio como coagulante, para neutralizar las cargas generalmente electronegativas de los coloides presentes en el agua, quedando estos en posibilidad de formar flóculos y así darle paso al proceso siguiente llamado sedimentación, el cual permite que los coloides que se encontraban en el agua, queden en el fondo permitiendo así la remoción de este material.

Después de la sedimentación queda un residuo que en este caso es lodo aluminoso, el cual tiene altas concentraciones de aluminio de hasta 12685 mg Al/kg reutilizable para procesos de potabilización (según informe de ensayo 041-09. 2009 generado por el Laboratorio de Química Ambiental de la Universidad Tecnológica de Pereira), con el uso de este material se realizó el estudio que permitió llegar a la dosis óptima de lodo, para tratar aguas residuales, utilizándolo como coagulante. Esto permitirá en el futuro tener los siguientes beneficios:

Disminución en costos: Relacionados con los insumos químicos que en el proceso de potabilización se utilizan, en este caso el sulfato de aluminio $(Al_2(SO_4)_3)$.

Disminución de contaminación: Relacionado con los desechos que en este caso son nuestro material de estudio (lodos aluminosos), los cuales en la actualidad están siendo descargados directamente río abajo, generando un problema de contaminación a esta fuente hídrica.

2. OBJETIVOS

2.1 OBJETIVO GENERAL:

Obtener, a escala de laboratorio, la dosis óptima de lodo residual de la planta potabilizadora pizamo I en el municipio de Pereira, la cual sea requerida para los procesos de coagulación – floculación para la remoción efectiva de DQO, SST y Turbiedad de las aguas residuales provenientes del barrio Parque industrial zona urbana de la ciudad de Pereira.

2.2 OBJETIVOS ESPECÍFICOS:

- 1. Evaluar a escala de laboratorio por medio de prueba de jarras, la eficiencia de remoción de material suspendido y DQO en función de la dosis de lodo.
- 2. Evaluar a escala de laboratorio por medio de prueba de jarras, la remoción de material suspendido y DQO en función del pH.
- 3. Evaluar por medio de técnicas nefelometrías en este caso (turbiedad), la eficiencia de remoción de material suspendido.
- 4. Evaluar por medio de técnicas fotométricas la eficiencia de remoción en términos de la demanda química de oxigeno (DQO).
- 5. Evaluar la eficiencia de remoción de material suspendidos en términos de Sólidos Suspendidos Totales (SST).

3. MARCO TEORICO

3.1 LODO ALUMINOSO:

La mayoría de los municipios poseen sistemas de potabilización, particularmente plantas compactas y convencionales, basadas en la adición de un coagulante, predominantemente sulfato de aluminio. El uso de coagulantes en el tratamiento de agua para consumo humano implica la producción de lodos como subproducto. Es de esperarse que el volumen de los lodos producidos oscile entre el 0.3 y el 1% del agua tratada. (Pérez, 2002)

Las aguas captadas por las plantas potabilizadoras contienen una serie de sustancias tanto en solución como en suspensión, estas se deben a las sustancias arrastradas por el agua en su cauce, como arenas, arcillas, limos orgánicos e inorgánicos, virus y bacterias, contienen un elevado contenido de agua. (Franco y Velásquez, 2009)

La composición de los lodos generados en un sistema de abasto depende de la calidad del agua cruda así como de los procesos empleados para la potabilización. El lodo producido durante la coagulación contiene óxidos e hidróxidos metálicos y contaminantes orgánicos e inorgánicos como arcilla, arena y microorganismos, entre otros elementos. Igualmente, se caracteriza por su alto contenido de agua (baja concentración de sólidos), alta resistencia a la deshidratación mecánica, y en general gran dificultad para su manejo y tratamiento. Para lodos aluminosos (aquellos generados como subproducto de Coagulación con sales de aluminio), se afirma que poseen cerca de 39 % de aluminio en peso, presumiblemente en forma de Al (OH)₃, afirman que el hidróxido de aluminio insoluble representa de un 25% a un 60% de los sólidos del lodo. (Hernández y Villegas, 2008)

Estos hidróxidos contienen grandes cantidades de agua atrapada en su molécula, lo que genera una suspensión de lodo voluminosa con una concentración de sólidos y propiedades de deshidratación bajas. (Sandoval, 1998)

3.2 FUENTES DE LAS AGUAS RESIDUALES:

Las aguas residuales son las aguas usadas y los sólidos que por uno u otro medio se introducen en las cloacas y son transportadas por el sistema de alcantarillado.

En general se consideran aguas residuales domesticas (ARD) los líquidos provenientes de las residencias, edificios comerciales e institucionales.

AGUAS RESIDUALES MUNICIPALES: Residuos líquidos transportados por el alcantarillado de la ciudad o población y tratados en una planta de tratamiento municipal.

AGUAS RESIDUALES INDUSTRIALES: Son residuos líquidos que son descargados por industrias de manufactura.

AGUAS NEGRAS: Son residuos líquidos provenientes de inodoros, es decir que transportan excrementos humanos y orina, ricas en sólidos suspendidos, nitrógeno, y coliformes fecales.

AGUAS GRISES: Son residuos líquidos provenientes de tinas, duchas, lavamanos y lavadoras, a portantes de DBO, sólidos suspendidos, fósforo, grasas y coliformes.(Rojas 2004)

3.2.1 CARACTERISTICAS IMPORTANTES DE LAS AGUAS RESIDUALES:

En general, las aguas residuales se caracterizan por presentar color, turbidez, una concentración baja en oxígeno y sólidos en suspensión que pueden ser orgánicos e inorgánicos.

En las tablas 1 y 2 se muestran algunos de los parámetros más importantes de las aguas residuales:

Parámetro	Magnitud
DBO	200 mg O ₂ /L
DQO	400 mg O ₂ /L
Sólidos suspendidos totales	200 mg/L
Sólidos suspendidos volátiles	150 mg/L
Nitrógeno Amoniacal	30 mg/L - N
Orto fosfatos	10 mg/L -P

Tabla 1 Característica de agua residual

(Rojas 2004), (LÓPEZ 2009)

Parámetro	Magnitud
Sólidos totales	720 mg/L
Sólidos disueltos	500 mg/L
Sólidos disueltos volátiles	200 mg/L
Sólidos suspendidos	220 mg/L
Sólidos suspendidos volátiles	165 mg/L
Sólidos sediméntales	10 mg/L
DBO	220 mg O ₂ /L
DQO	500 mg O2/L
Nitrógeno total	40 mg O2/L –N
Nitrógeno orgánico	15 mg/L –N
Nitrógeno amoniacal	25 mg/L –N
Nitritos	0 mg/L –N
Nitratos	0 mg/L –N
Fosforo total	8 mg/L –P
Fosforo orgánico	3 mg/L –P
Fosforo inorgánico	5 mg/L –P
Cloruros	50 mg/L –P
Alcalinidad	100 mg/L –CaCO ₃
Grasas	100

Tabla 2 Composición de aguas residuales

(Rojas 2004), (LÓPEZ 2009)

3.2.2 MUESTRA SIMPLE O PUNTUAL:

Cuando la composición de una fuente es relativamente constante a través de un tiempo prolongado, a lo largo de distancias sustanciales en todas las direcciones, puede decirse que la muestra representa un intervalo de tiempo o un volumen más extenso. En tales circunstancias, un cuerpo de agua puede estar representado por muestras simples.

Una muestra puntual o simple, es la que se toma en determinado punto del espacio, en determinado instante de tiempo. Las muestras puntuales indican las características del vertimiento específico, en el momento de su recolección. (Ospina Valdez y Nieto Roa, 2009)

3.2.3 PROCESO DE POTABILIZACION DE AGUA:

Los pasos para la potabilización de agua en las plantas de tratamiento son: Coagulación, floculación, sedimentación, filtración, desinfección y distribución.

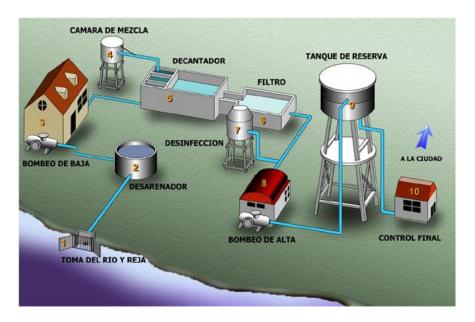


Figura 1 Proceso de potabilización del agua

(Unión Latinoamericana, 2008)

3.2.3.1 COAGULACIÓN

3.2.3.1.1 COLOIDE:

Son sólidos finamente divididos que no sedimentan por la simple acción de la gravedad, pero que pueden removerse del agua mediante coagulación, filtración o acción biológica.(Rojas 1996)

Estas partículas tienen un diámetro de 1 a 100 nm, esto les permite estar en suspensión, además se encuentran cargados eléctricamente por lo que tienen una gran capacidad de absorción de sustancias. (Valdez y Roa, 2009)

3.2.3.1.2 COAGULACIÓN:

La coagulación consiste en neutralizar la carga, generalmente electronegativa, de los coloides presentes en el agua, quedando estos en condiciones de formar flóculos. Este proceso se consigue introduciendo en el agua un producto químico denominado coagulante, para cambiar el comportamiento de las partículas en suspensión, este hace que las partículas, que anteriormente tendían a repelerse unas de otras, sean atraídas las

unas a las otras o hacia el material agregado. La coagulación ocurre durante una mezcla rápida o el proceso de agitación que inmediatamente sigue a la adición del coagulante. (Valdez y Roa, 2009)

En el proceso de potabilización del agua hay 3 clases de coagulación:

3.2.3.1.2.1 COAGULACIÓN POR NEUTRALIZACIÓN DE A CARGA:

Los iones metálicos proporcionados por el coagulante se adhieren al coloide neutralizando su carga debido a que se encuentran como cargas opuestas.

3.2.3.1.2.2 COAGULACIÓN POR PUENTE QUÍMICO:

En este tipo de coagulación se presumen puntos de absorción sin ocupar en los coloides, los cuales se establecen atracción con los iones positivos de una molécula coagulante, lo que conlleva a la formación de puentes químicos entre las moléculas de coagulante y los coloides. (Franco y Velásquez, 2009)

3.2.3.1.2.3 COAGULACIÓN POR INCORPORACIÓN O DE BARRIDO:

Cuando la concentración de coagulante es tan alta que se supera el límite de solubilidad de este compuesto en el agua, se precipitan los hidróxidos que se forman por la reacción de los coagulante con la alcalinidad y con el agua misma, lo que conlleva a la producción de una masa esponjosa (floc de barrido) al caer atrapa la partículas suspendidas obligándolas a decantar.(Franco y Velásquez, 2009)

3.2.3.1.3 CLASES DE COAGULANTES:

En general podemos decir que coagulantes son aquellos compuestos capaces de formar un floc y que pueden efectuar coagulación al ser añadidos al agua.

Los coagulantes más utilizados son: Sulfato de aluminio, sulfato ferroso y cal, sulfato férrico, aluminato de sodio, la sílice activada, el almidón y gran número de poli electrolitos de masa molecular muy alta. (López, 2009)

3.2.3.1.3.1 SULFATO DE ALUMINIO:

Es una sal de fórmula $Al_2(SO_4)_3$, es sólido y blanco. Es ampliamente usada en la industria, comúnmente como floculante en la purificación de agua potable y en la industria del papel. (Propiedades de sulfato de aluminio, 2010)

El sulfato de aluminio es el coagulante estándar usado en tratamientos de aguas, cuando se añaden soluciones de sulfato de aluminio al agua, las moléculas se disocian en Al⁺⁺⁺ y SO₄⁼. El AL⁺⁺⁺ puede combinarse con coloides cargados negativamente para neutralizar la carga de la partícula coloidal:

El AL⁺⁺⁺ puede combinarse con los OH⁻ del agua formando así un hidróxido de aluminio.

$$AI^{+++} + 3OH^{-} = AI (OH)_{3}$$

AI(OH)₃ + iones positivos \longrightarrow AI(OH)₃

Este hidróxido de aluminio es de carácter coloidal, ya que absorbe iones positivos en solución para formar un sol cargado positivamente. Dicho sol cargado positivamente neutraliza la carga de los coloides negativos y ayuda a complementar la aglomeración de los coloides negativos.

En esta parte se forma un exceso de solución de hidróxido de aluminio, su precipitación se logra mediante los iones sulfato y otros iones negativos presentes en el agua.

$$(AI (OH)_3)^+ + SO_4^= \longrightarrow AI(OH)_3 + sulfatos absorbidos$$

3.2.3.1.3.1.1 REACCIONES CON EL ALUMBRE:

$$AI^{+++} + H_2O = AI (OH)^{++} + H^{++}$$
 $AI^{+++} + 2H_2O = AI (OH)_2^{++} + 2H^{++}$
 $7AI^{+++} + 17H_2O = AI_7(OH)_{17}^{++} + 17 H^{++}$
 $AI^{+++} + 3H_2O = AI (OH)_3^{++} + 3H^{++}$

Como se dijo anteriormente, los coloides también pueden ser barridos por los flocs formados, al ser entrapados dentro de ellos durante la floculación y sedimentación, en otras palabras los precipitados de Al (OH) 3 entrapan los coloides efectuando una coagulación de barrido, las cuales predominan en soluciones de concentración coloidal baja. (Rojas, 1996)

3.2.3.2 FLOCULACION:

Se define como el proceso de unir partículas coaguladas y desestabilizadas para formar mayores masas o flóculos, de modo que posibilitan su separación por sedimentación (ó flotación) y/o filtración del agua tratada. Es sin duda, el proceso más utilizado para la remoción de sustancias que producen color y turbiedad en el agua.

En los floculadores, los micro-flóculos formados en el proceso de coagulación se aglutinan formando flócs, los que deben adquirir un tamaño y densidad adecuados al proceso de remoción que sigue: clarificación por sedimentación o por flotación y/o filtración. Al contrario de lo requerido para la sedimentación, en los procesos de flotación y filtración directa, no es deseable la formación de flóculos voluminosos. La formación de los flóculos depende de la permanencia y de la cantidad de energía aplicada (gradiente de velocidad) en los floculadores. (Cifuentes, 2007)

3.2.3.3 SEDIMENTACIÓN:

Consiste en separar de una suspensión un fluido claro, que sobrenade en la superficie, y un lodo con concentración elevada de materia sólida que se deposita por efecto gravitacional y por tener peso específico mayor que el fluido. La sedimentación se realiza en unidades o reactores en los cuales teóricamente, la masa líquida se traslada de un punto a otro con movimiento uniforme y velocidad constante.

Las partículas aglomeradas se obstaculizan mediante la sedimentación antes de unirse, una vez lograda la unión ganan peso y se precipitan a velocidad creciente en el tiempo.(Características sedimentación, 2011)

3.2.3.4 FILTRACIÓN:

La filtración consiste en la remoción de sólidos coloidales y suspendidos contenidos en el agua, mediante su flujo a través de lechos porosos de partículas sólidas para realizar adherencia y posterior evacuación de las partículas a remover. Según el tamaño, el tipo y la profundidad del filtro, y la tasa de flujo además de las características físicas del agua sin

tratar, los filtros pueden extraer los sólidos en suspensión, los patógenos y ciertos productos químicos, sabores y olores.(VALDES and ROA 2009)

3.2.3.5 ENSAYOS DE CONTROL:

3.2.3.5.1 pH:

Medida de la concentración del ion hidrogeno en el agua, expresado como logaritmo negativo de la concentración molar del ion hidrogeno.(Rojas 2004). El pH está relacionado con la concentración de protones en el agua. Se define el pH como:

$$pH = -\log[H^+]$$

El agua (H2O) se encuentra disociada en protones (H+) e iones hidroxilo (OH-). El producto de la concentración de estas especies está relacionado por una constante de equilibrio Kw:

$$[H^+][OH^-] = K_w = 10^{-14}$$

En una situación de neutralidad la concentración de H⁺ será igual que la concentración de OH- por lo que podremos expresar la ecuación anterior de la siguiente forma:

$$[H^+]^2 = 10^{-14}$$

 $[H^+] = \sqrt{10^{-14}} = 10^{-7}$

Si multiplicamos por -1 a cada lado de la ecuación y tomamos logaritmos tendremos:

$$-\log[H^+] = -\log(10^{-7}) = 7$$

Y por la definición de pH tendremos que en condiciones de neutralidad el pH es igual a 7. De la misma forma cuando el agua esté totalmente disociado en protones el pH tendrá un valor de 0 y será 14 cuando esté totalmente disociado en OH⁻.

El agua con un pH menor de 7 se dice que es un agua ácida y en cambio se dice que es básica si tiene un pH mayor que 7. (Valdez y Roa, 2009)

3.2.3.5.2 PRUEBA DE JARRAS:

La prueba de jarras es la principal prueba de laboratorio utilizada para determinar el dosaje de coagulantes en las plantas de tratamiento de agua potable, la cual tiene

diferentes variables como los son el PH y su efecto en la formación del flog, la dosis y la velocidad.(Kirchner, 83826)

3.2.3.5.3 DEMANDA QUÍMICA DE OXÍGENO (DQO):

La demanda química de oxígeno, es un parámetro analítico de polución que mide el material orgánico contenido en una muestra liquida mediante oxidación química. Es la cantidad de oxígeno consumido por la porción de materia orgánica existente en la muestra y que es susceptible a ser oxidada por un agente químico fuerte en este caso dicromato de potasio en solución ácida.(Rojas 1996)

3.2.3.5.4 TURBIEDAD:

Es el efecto óptico que se origina al dispersarse o interferirse el paso de los rayos de luz que atraviesan una muestra de agua, a causa de las partículas minerales u orgánicas que el líquido puede contener en forma de suspensión; tales como micro organismos, arcilla, precipitaciones de óxidos diversos, carbonato de calcio precipitado, compuestos de aluminio, etc. La turbiedad es generalmente usada como forma de control de aguas residuales crudas pero puede ser medida para caracterizar la eficiencia del tratamiento secundario una vez que, puede ser relacionada con la concentración de sólidos en suspensión. (Miranda, 2002)

3.2.3.5.5 SÓLIDOS SUSPENDIDOS TOTALES (SST):

Los sólidos suspendidos totales o el residuo no filtrable de una muestra de agua natural o residual industrial o doméstica, se definen como la porción de sólidos retenidos por un filtro de fibra de vidrio que posteriormente se seca a 103 -105 °C hasta peso constante. Este método es aplicable a aguas potables, superficiales, y salinas, aguas residuales domésticas e industriales y lluvia ácida. (López, 2009)

4. METODOLOGÍA

4.1 TRATAMIENTO PRIMARIO:

4.1.1 AGUA RESIDUAL:

Las aguas residuales utilizadas para la presente investigación fueron recolectadas en el punto con las coordenadas 4º49`08,39``N 75º43`54,35``O, en la vía denominada *Variante La Romelia – El Pollo*, a la altura de la comuna del café, que al año 2005 contaba con una población 25.233 habitantes (Duque, 2007), al noroeste en el casco urbano del municipio de Pereira. El punto de muestreo, con coordenadas 4º49`04,43``N 75º43`56,49``O, es correspondiente con el descole de los vertimientos provenientes del sector sur de la misma comuna, un sector primordialmente con uso del suelo residencial.

Se colectaron muestras puntuales durante 7 semanas consecutivas, estas aguas fueron trasladadas a la Universidad Tecnológica de Pereira, al Laboratorio de Química Ambiental donde se le analizaron los siguientes parámetros: TURBIEDAD, pH, DQO y SOLIDOS SUSPENDIDOS TOTALES.

Se decidió utilizar el agua residual para las pruebas subsiguientes a diferentes rangos de pH, los cuales son: pH 5.5, pH 6.5, pH 7.5, pH 8.5, pH 9.5 y pH 10 según el procedimiento del Standard Methods for the examination of water and wastewater para pH.

4.1.2 LODOS ALUMINOSOS:

Los lodos aluminosos utilizados para el presente estudio provienen de la estación potabilizadora de agua denominada Pizamo I, es una planta tipo convencional con una capacidad de 1,4 m³/s compuesta de unidades desarenadoras, canal de aducción, tanque de carga, unidades de dosificación, coagulantes, unidades de mezcla rápida y lenta, desinfección y almacenamiento.

Al lodo recolectado se le realizaron pruebas de caracterización en el Laboratorio de Quimica Ambiental de la Universidad Tecnológica de Pereira, arrojando como resultados en aluminio de 12685 mg Al/kg de lodo y densidad de 1,04 g/cm³. (Informe de ensayo 041-09. 2009)

4.1.2.1 MANEJO DE LODOS:

Se colectaron en diferentes beackers dosis de 50 ml, 100 ml, 150 ml, 200 ml, 250 ml, 300 ml y 350 ml (en lodo); medidos en probeta de 1 litro, cada una de estas dosis de lodo contiene en aluminio los siguientes valores consignados en la tabla 3.

4.1.2.1.1 MANEJO DE DATOS

1. 50 mHodo
$$\left(\frac{1.04 \text{ g/odo}}{\text{mHodo}}\right) \left(\frac{12685 \text{ m/g Al}}{\text{K/g lodo}}\right) \left(\frac{1 \text{ K/g}}{1000 \text{ g}}\right) \left(\frac{1 \text{ g}}{1000 \text{ m/g}}\right) = 0.66 \text{ g Al}$$

2.
$$100 \text{ mHodo} \left(\frac{1.04 \text{ g/odo}}{\text{mHodo}} \right) \left(\frac{12685 \text{ pr/g Al}}{\text{Kg lodo}} \right) \left(\frac{1 \text{ k/g}}{1000 \text{ gr}} \right) \left(\frac{1 \text{ g}}{1000 \text{ pr/g}} \right) = 1.32 \text{ g Al}$$

3. 150 mHodo
$$\left(\frac{1.04 \text{ g/odo}}{\text{mHodo}}\right) \left(\frac{12685 \text{ m/g Al}}{\text{Kg/lodo}}\right) \left(\frac{1 \text{ Kg}}{1000 \text{ g}}\right) \left(\frac{1 \text{ g}}{1000 \text{ m/g}}\right) = 1.98 \text{ g Al}$$

4.
$$200 \text{ mHodo} \left(\frac{1.04 \text{ g/odo}}{\text{mHodo}} \right) \left(\frac{12685 \text{ m/g Al}}{\text{K/g lodo}} \right) \left(\frac{1 \text{ K/g}}{1000 \text{ g/g}} \right) \left(\frac{1 \text{ g}}{1000 \text{ m/g}} \right) = 2.64 \text{ g Al}$$

5.
$$250 \text{ mHodo} \underbrace{ \frac{1.04 \text{ g/odo}}{\text{mHodo}} } \underbrace{ \frac{12685 \text{ m/g Al}}{\text{K/g lodo}} \underbrace{ \frac{1 \text{ Kg}}{1000 \text{ g/g}} } \underbrace{ \frac{1 \text{ g}}{1000 \text{ m/g}} } \underbrace{ = 3.30 \text{ g Al}}_{}$$

6. 300 mHodo
$$\left(\frac{1.04 \text{ g/odo}}{\text{mHodo}}\right) \left(\frac{12685 \text{ mg/Al}}{\text{Kg lodo}}\right) \left(\frac{1 \text{ Kg}}{1000 \text{ g}}\right) \left(\frac{1 \text{ g}}{1000 \text{ m/g}}\right) = 3.96 \text{ g/s}$$

7. 350 mHodo
$$\left(\frac{1.04 \text{ g lódo}}{\text{mHodo}}\right) \left(\frac{12685 \text{ mg/Al}}{\text{Kg lodo}}\right) \left(\frac{1 \text{ Kg}}{1000 \text{ g}}\right) \left(\frac{1 \text{ g}}{1000 \text{ m/g}}\right) = 4.62 \text{ g Al}$$

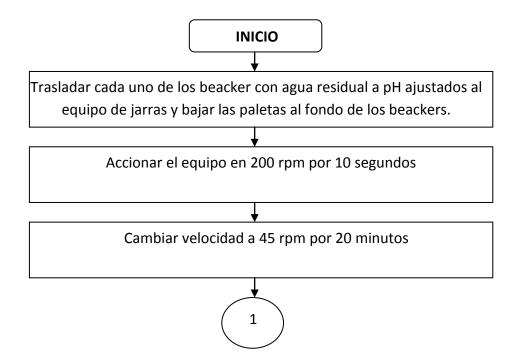

Dosis de lodo	
ml	Magnitud
50	0.66 g Al
100	1.32 g Al
150	1.98 g Al
200	2.64 g Al
250	3.30 g Al
300	3.96 g Al
350	4.62 g Al

Tabla 3 Cantidad de aluminio en cada dosis

Cada una de estas dosis, se añadió a los diferentes beackers antes mencionado que contienen el agua residual a diferentes rangos de pH, para después proceder a realizar la prueba de jarras.

4.2 ENSAYO PRUEBA DE JARRAS:

Se tomaron 6 beackers de 1 litro a los cuales introdujeron 500 ml de agua residual a un rango determinado de pH y se colocaron en los compartimientos del equipo de jarras, se bajaron las paletas agitadoras hasta el fondo de los beackers y se acciono el equipo a 200 rpm por 10 segundos. Después de este periodo de tiempo, se cambió la velocidad a 45 rpm por 20 minutos, pasados los 20 minutos se pasó a o rpm de velocidad, se dejó en reposo por 30 minutos y se retiraron las paletas agitadoras. A los 30 minutos de reposo se tomaron los sobrenadantes y se envasaron para pruebas subsiguientes. Ver figura 2.

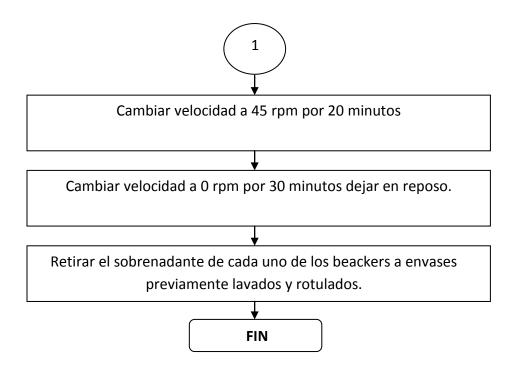


Figura 2 Diagrama de flujo Prueba de jarras

A cada uno de los sobrenadantes obtenidos en la prueba de jarras, se le realizaron las mismas pruebas que se le hicieron al agua residual, para así poder obtener el respectivo % de remoción.

4.3 MÉTODOS ANALÍTICOS:

Durante el desarrollo de ésta investigación, se hicieron análisis de TURBIEDAD, pH, DQO y SOLIDOS SUSPENDIDOS TOTALES por duplicado a las muestras de agua residual y a los respectivos sobrenadantes obtenidos después de la adición del lodo aluminoso en la prueba de jarras. Estos análisis se realizaron conforme a los procedimientos del Standard Methods for the examination of wáter and wastewater, los cuales se encuentran relacionados en la tabla 4

Nombre de la prueba	Código	Observaciones	
Turbiedad	2130	Método nefelométrico	
		Método	
рН	4500 - H+	Potenciometricos	
DQO	5220 - D	Micro reflujo cerrado	
SST	2540 - D	Método Gravimétrico	

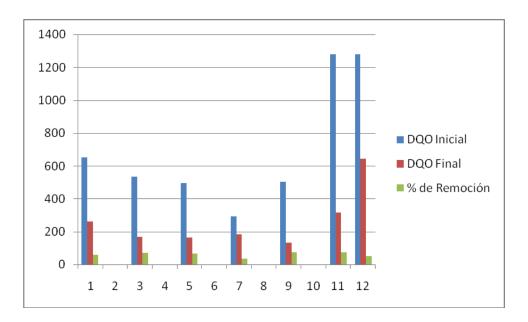
Tabla 4 Métodos analíticos

5. RESULTADOS Y ANALISIS

5.1 DEMANDA QUIMICA DE OXIGENO (DQO):

Las tablas que a continuación se muestran, llevan consignadas los resultados de cada ensayo de DQO a diferentes rangos de pH y diferentes dosis de lodo en ml.

Cada uno de estos análisis lleva un factor de dilución de 10, tanto para sobrenadantes obtenidos después de añadido el lodo como para cada muestra de agua residual cruda, los análisis se hicieron por duplicado.

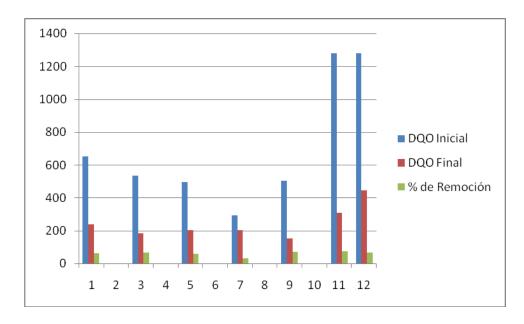

Para cada rango de pH se presenta un conjunto de datos donde se muestra la DQO inicial y DQO final con su respectivo % de remoción, estos datos de DQO fueron obtenidos a partir de multiplicar el valor de DQO por su factor de dilución. (Ver anexo A). Algunos datos dieron negativos, dando como resultado valores de DQO finales más altos que los iniciales, concluyendo así que para algunos rangos de dosis no se presentó remoción.

pH 5.5:

	DQ0 i	DQ0 f	Promedio de		
Dosis	(mg O ₂ /	$(mg O_2 /$	DQO i (mg O2 /	Promedio de DQO	
(ml)	L)	L)	L)	f (mg O2 / L)	% de Remoción
50	653,7	274,3	653	261	60.1
30	652	247	033	201	00.1
100	516,7	155,3	E26.2	169,1	68,4
100	555,7	183	536,2	109,1	00,4
150	496	160	496	164	67
150	496	168,1		104	67
200	291,3	165	291,3	184	37
200	291,3	202,7	291,5	104	37
250	491	131	504	122 F	74
250	517	134		132,5	/4
300	1278	317,5	1278	317,5	75,2
350	1278	643	1278	643	49,7

Tabla 5 Resultados DQO para pH 5.5 después de añadido el Lodo aluminoso

La gráfica 1, muestra el % de remoción del lodo en términos de DQO para pH 5.5. Puede observarse que la dosis que más remueve material orgánico para este conjunto de datos es la dosis de 300 ml arrojando una remoción de 75,2 %.

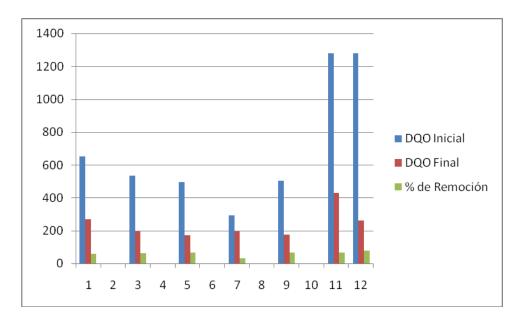


Grafica 1 Remoción en DQO a partir de la adición de dosis de Lodo en ml a pH 5,5 pH 6.5:

	DQO i	DQO f	Promedio de		
Dosis	(mg O ₂ /	$(mg O_2 /$	DQO i (mg O2 /	Promedio de DQO	
(ml)	L)	L)	L)	f (mg O2 / L)	% de Remoción
50	653,7	229,5	653	239,1	63,4
30	652	249	033	239,1	03,4
100	516,7	165,3	536,2	183	66
100	555,7	201	330,2	103	00
150	496	182.5	496	177	64.4
130	496	171	430	1//	04.4
200	291,3	198	291,3	203,2	30,3
200	291,3	208,3	291,3	203,2	30,3
250	491	164,5	504	152,2	70
230	517	140	304	132,2	70
300	1278	310	1278	310	<i>76</i>
350	1278	445	1278	445	65,2

Tabla 6 Resultados DQO para pH 6.5 después de añadido el Lodo aluminoso

La gráfica 2, muestra el % de remoción del lodo en términos de DQO para pH 6.5. Puede observarse que la dosis que más remueve material orgánico para este conjunto de datos es la dosis de 300 ml arrojando una remoción de 76 %.

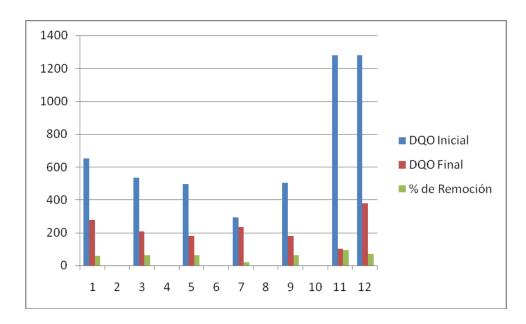


Grafica 2 Remoción en DQO a partir de la adición de dosis de Lodo en ml a pH 6,5 pH 7.5:

	DQO i	DQO f	Promedio de		
Dosis	(mg O ₂ /	(mg O ₂ /	DQO i (mg O2 /	Promedio de DQO	
(ml)	L)	L)	L)	f (mg O2 / L)	% de Remoción
50	653,7	232,1	653	257,5	60
30	652	283,3	033	237,3	00
100	516,7	156,7	536,2	158,5	70
100	555,7	160.3	330,2	136,3	70
150	496	161	496	171,2	65,5
130	496	181,3	490	171,2	05,5
200	291,3	165	291,3	174	40.3
200	291,3	183	291,3	1/4	40.5
250	491	180	504	177	65
250	517	173,4	504	1//	05
300	1278	430,5	1278	430,5	66,3
350	1278	262,5	1278	262,5	<i>79,5</i>

Tabla 7 Resultados DQO para pH 7.5 después de añadido el Lodo aluminoso

La gráfica 3 muestra el % de remoción del lodo en términos de DQO para pH 7.5. Puede observarse que la dosis que más remueve material orgánico para este conjunto de datos es la dosis de 350 ml arrojando una remoción de 79.5 %.

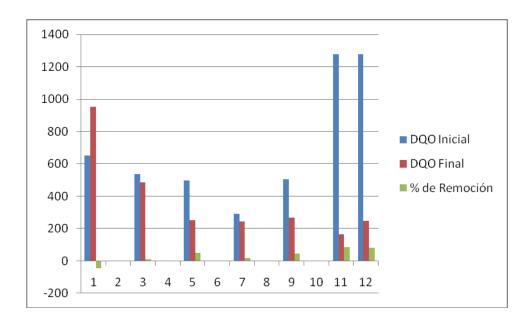


Grafica 3 Remoción en DQO a partir de la adición de dosis de Lodo en ml a pH 7,5 pH 8.5:

	DQO i	DQ0 f	Promedio de		
Dosis	(mg O ₂ /	$(mg O_2 /$	DQO i (mg O2 /	Promedio de DQO	
(ml)	L)	L)	L)	f (mg O2 / L)	% de Remoción
50	653,7	248,7	653	278	57,5
30	652	306,5	033	278	37,3
100	516,7	245.5	536,2	248.2	54
100	555,7	251	330,2	240.2	34
150	496	185	496	182	63.3
130	496	178,7	490	102	03.3
200	291,3	234	291,3	234	20
200	291,3	234	291,3	254	20
250	491	174,7	504	180	64,4
250	517	184,5	304	160	04,4
300	1278	101,5	1278	101,5	92,1
350	1278	380	1278	380	70,3

Tabla 8 Resultados DQO para pH 8.5 después de añadido el Lodo aluminoso

La gráfica 4 muestra el % de remoción del lodo en términos de DQO para pH 8.5. Puede observarse que la dosis que más remueve material orgánico para este conjunto de datos es la dosis de 300 ml arrojando una remoción de 92,1 %.



Grafica 4 Remoción en DQO a partir de la adición de dosis de Lodo en ml a pH 8,5 pH 9.5:

	DQO i	DQ0 f	Promedio de		
Dosis	(mg O ₂ /	$(mg O_2 /$	DQO i (mg O2 /	Promedio de DQO	
(ml)	L)	L)	L)	f (mg O2 / L)	% de Remoción
50	653,7	945	653	949	- 45.3
30	652	953	033	343	- 45.5
100	516,7	491.4	536,2	485,3	3
100	555,7	549,7	330,2	463,3	3
150	496	251.2	496	252	49,3
130	496	252	490	232	49,3
200	291,3	244	291,3	244	16,2
200	291,3	244	291,3	244	10,2
250	491	212,5	504	224	56
230	517	235	304	224	30
300	1278	166	1278	166	87
350	1278	247,5	1278	247,5	81

Tabla 9 Resultados DQO para pH 9.5 después de añadido el Lodo aluminoso

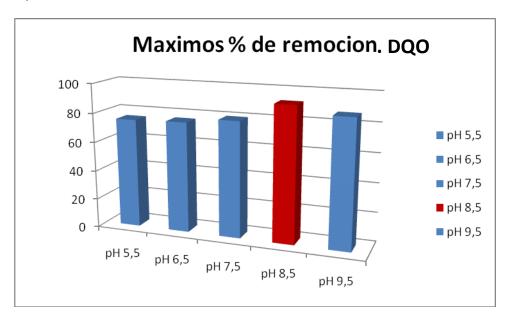
La gráfica 5 muestra el % de remoción del lodo en términos de DQO para pH 9.5. Puede observarse que la dosis que más remueve material orgánico para este conjunto de datos es la dosis de 300 ml arrojando una remoción de 87 %.

Grafica 5 Remoción en DQO a partir de la adición de dosis de Lodo en ml a pH 9,5 pH 10:

	DQO i		Promedio de		
Dosis	(mg O ₂ /	DQO f (mg	DQO i (mg O2 /	Promedio de DQO	
(ml)	L)	O ₂ / L)	L)	f (mg O2 / L)	% de Remoción
50	653,7	1150.1	653	1153.1	- 77
30	652	1156	055	1155.1	- //
100	516,7	858,7	F26.2	001	64.2
100	555,7	903	536,2	881	- 64,3
150	496	551.5	496	549	11
150	496	546,5	490	549	- 11
200	291,3	404	201.2	404	20
200	291,3	404	291,3	404	- 39
250	491	654	Γ04	653.3	20
250	517	652,5	504	653.2	-30

Tabla 10 Resultados DQO para pH 10 después de añadido el Lodo aluminoso

En la tabla 10 se puede observar el incremento en la DQO final, esto nos indica una estabilización en el coloide, ya que para el sulfato de aluminio el rango de pH estable para desestabilización y posterior formación de floc es a pH 5 — pH 8.5. No se realizó prueba para dosis más altas por el poco sobrenadante obtenido.


EVALUACION DE LA REMOCION DQO:

En la tabla 11 se muestra la evaluación de remoción en DQO para cada rango de pH y dosis de lodo. A pH de 9.5 y dosis de 50 se puede observar un dato negativo, la posible causa es que en esta dosis el lodo no actuó como coagulante.

Dosis (ml)	pH 5,5	pH 6,5	pH 7,5	pH 8,5	pH 9,5
50	60	63,4	60	57,4	- 46
100	68,5	66	70,4	54	3
150	67	64,4	65,5	63,3	49,3
200	37	30,3	40,3	20	16,2
250	74	70	65	64,4	56
300	75,2	76	66,3	92,1	87
350	49,7	65,2	79,5	70,3	80,6
Máximo	75,2	76	79,5	92,1	87

Tabla 11 Evaluación de la remoción de DQO

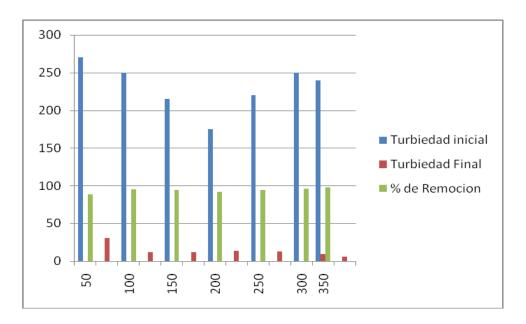
En la gráfica 6 se presenta el comportamiento de los máximos % de remociones en el ensayo de DQO, se puede observar claramente que la máxima remoción para DQO se obtiene a pH 8,5 usando 300 ml de dosis de lodo.

Grafica 6 Máximos % de Remoción en DQO a partir de la adición de dosis de Lodo

Todos los datos reportados fueron analizados en conjunto con estándares de Ftalato Acido de Potasio con una concentración de 150 mg O_2/L . para garantizar la confiabilidad en los resultados, los cuales arrojaron coeficientes de variaciones menores al 10 % para la aceptación o rechazo de los datos, en esta técnica el mayor porcentaje de error obtenido fue del 14.72 % y el menor de 0 %. (Ver anexo A).

5.2 TURBIEDAD:

Las tablas que a continuación se muestran, llevan consignadas los resultados de cada ensayo de turbiedad a diferentes rangos de pH y diferentes dosis de lodo en ml. Este análisis se le realizó tanto a los sobrenadantes obtenidos después de añadido el lodo como para cada muestra de agua residual cruda, cada análisis se evaluó por duplicado.

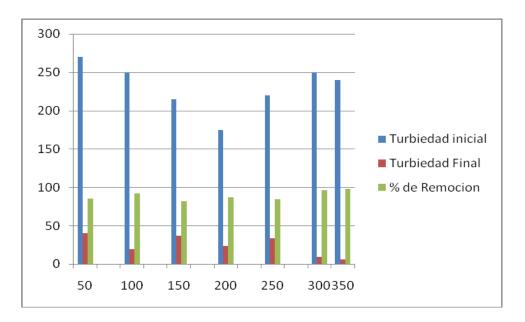

Para cada rango de pH se presenta un conjunto de datos donde se muestra la turbiedad inicial y turbiedad final con su respectivo % de remoción a diferentes dosis de lodo aluminoso.

pH 5.5:

			Promedio	Promedio	
Dosis	Turbiedad	Turbiedad	turbiedad inicial	turbiedad Final	
(ml)	i (NTU)	f (NTU)	(NTU)	(NTU)	% de remoción
50	270	42	270	31	88,5
50	270	20	270	21	00,5
100	250	18	250	11,5	95,4
100	250	5	230	11,3	93,4
150	200	13	215	11,5	95
150	230	10	213	11,5	93
200	200	12	175	13,5	92,3
200	150	15	1/5	15,5	92,3
250	220	12	220	13	94,1
250	220	14	220	13	94,1
300	250	9	250	9	96,4
350	240	6	240	6	97,5

Tabla 12 Resultados de turbiedad para pH 5.5 después de añadido el Lodo aluminoso

La gráfica 7 muestra el % de remoción del lodo en términos de Turbiedad para pH 5.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 350 ml arrojando una de remoción de 97.5 %.

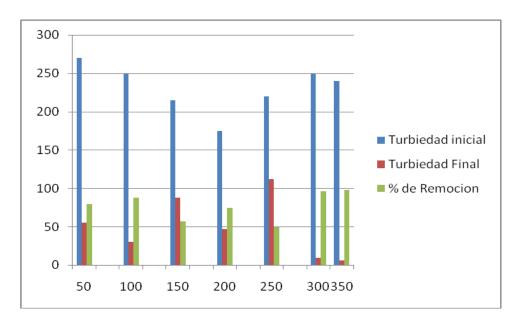


Grafica 7 Remoción en Turbiedad a partir de la adición de dosis de Lodo en ml a pH 5,5 pH 6.5:

Dosis	Turbiedad	Turbiedad	Promedio turbiedad inicial	Promedio turbiedad Final	
(ml)	i (NTU)	f (NTU)	(NTU)	(NTU)	% de remoción
50	270	50	270	40	9F 2
50	270	30	270	40	85,2
100	250	25	250	19,5	92,2
100	250	14	250	19,5	92,2
150	200	60	215	37	83
150	230	14	213	57	65
200	200	26	175	23	87
200	150	20	173	25	67
250	220	32	220	33,5	85
250	220	35	220	33,3	65
300	250	10	250	10	96
350	240	9	240	9	96,2

Tabla 13 Resultados de turbiedad para pH 6.5 después de añadido el Lodo aluminoso

La gráfica 8 muestra el % de remoción del lodo en términos de Turbiedad para pH 6.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 350 ml arrojando una remoción de 96,2 %.

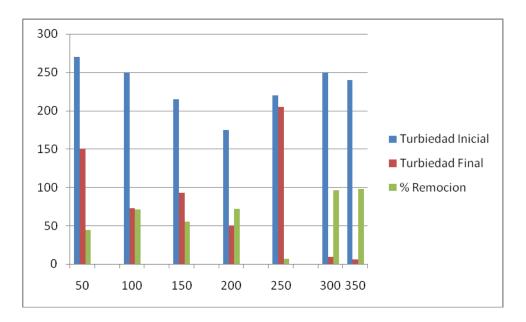


Grafica 8 Remoción en Turbiedad a partir de la adición de dosis de Lodo en ml a pH 6,5 pH 7.5:

Dosis	Turbiedad	Turbiedad	Promedio turbiedad inicial	Promedio turbiedad Final	
(ml)	i (NTU)	f (NTU)	(NTU)	(NTU)	% de remoción
50	270	65	270	55	80
50	270	45	270	55	80
100	250	43	250	30,5	88
100	250	18	250	30,3	00
150	200	150	215	87,5	59,3
150	230	25	215	67,5	29,5
200	200	65	175	46,5	73,4
200	150	28	173	40,3	75,4
250	220	110	220	112	40.1
250	220	114	220	112	49,1
300	250	25	250	25	90
350	240	17	240	17	<i>93</i>

Tabla 14 Resultados de turbiedad para pH 7.5 después de añadido el Lodo aluminoso

La gráfica 9 muestra el % de remoción del lodo en términos de Turbiedad para pH 7.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 350 ml arrojando una remoción de 93 %.



Grafica 9 Remoción en Turbiedad a partir de la adición de dosis de Lodo en ml a pH 7,5 pH 8.5:

Dania	Tandata da d	To colo i a al a al	Promedio	Promedio	
Dosis	Turbiedad	Turbiedad	turbiedad inicial	turbiedad Final	
(ml)	i (NTU)	f (NTU)	(NTU)	(NTU)	% de remoción
50	270	140	270	150	44,4
50	270	160	270	130	44,4
100	250	70	250	72,5	71
100	250	75	230	72,3	71
150	200	140	215	92,5	55
150	230	45	213	92,3	33
200	200	69	175	50,5	71,1
200	150	32	173	30,3	71,1
250	220	200	220	205	6,8
250	220	210	220	203	0,8
300	250	45	82	45	82
350	240	38	84.2	38	84.2

Tabla 15 Resultados de turbiedad para pH 8.5 después de añadido el Lodo aluminoso

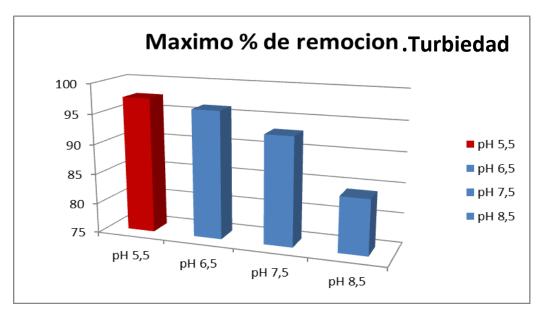
La gráfica 10 muestra el % de remoción del lodo en términos de Turbiedad para pH 7.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 350 ml arrojando una remoción de 84.2 %.

Grafica 10 Remoción en Turbiedad a partir de la adición de dosis de Lodo en ml a pH 8,5 pH 9.5:

Dosis (ml)	Turbiedad i (NTU)	Turbiedad f (NTU)	Promedio turbiedad inicial (NTU)	Promedio turbiedad Final (NTU)	Promedio % de remoción
50	270	>1000	,	(1113)	de remoción
50	270	>1000	270		
100	250	>1000	350	0	0
100	250	>1000	250	1000	1000
150	200	>1000	215	de	
150	230	>1000	215	Arriba	Arriba de
200	200	>1000	175	Arr	Arr
200	150	>1000	173	res	res
250	220	>1000	220	Valores	Valores
250	220	>1000	220	>	>
300	250	>1000	250		
350	240	>1000	240		

Tabla 16 Resultados de turbiedad para pH 9.5 después de añadido el Lodo aluminoso

Los valores de turbiedad para pH de 9,5 dieron resultados mayores a 1000, lo cual pudo ser por el poco sobrenadante obtenido a este rango de pH, lo cual hacia más crítica la decantación del sobrenadante ya que se pudo haber combinado con el precipitado.


EVALUACION DE LA REMOCION DE TURBIEDAD:

En la tabla 17 se muestra la evaluación de remoción en cuanto a turbiedad para cada rango de pH y dosis de lodo en ml. A pH de 9.5 se puede observar que no hay datos consignados ya que estos dieron resultados negativos lo que indica que el coloide se estabilizó y no formo el respectivo floc para la posterior coagulación.

Dosis (ml)	pH 5,5	pH 6,5	pH 7,5	pH 8,5
50	88,5	85,2	80	44,4
100	95,4	92,2	88	71
150	95	83	59,3	55
200	92,3	87	73,4	71,1
250	94,1	85	49,1	6,8
300	96,4	96	90	82
350	97,5	96,2	93	84,2
Máximo	97,5	96,2	93	84,2

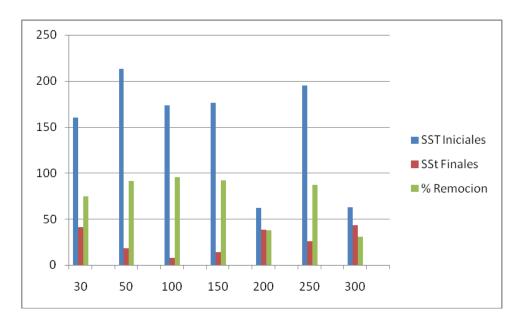
Tabla 17 Evaluación de le remoción de turbiedad.

En la gráfica 6 se presenta el comportamiento de los máximos % de remociones en el ensayo de Turbiedad, se puede observar claramente que la máxima remoción para esta se obtiene a pH 5,5 usando 350 ml de dosis de lodo.

Grafica 11 Máximos % de Remoción en Turbiedad a partir de la adición de dosis de Lodo

5.3 SOLIDOS SUSPENDIDOS TOTALES:

Las tablas que a continuación se muestran, llevan consignadas los resultados de cada ensayo de SST a diferentes rangos de pH y diferentes dosis de lodo en ml, este análisis se le realizo tanto a los sobrenadantes obtenidos después de añadido el lodo como para cada muestra de agua residual cruda, cada análisis se evaluó por duplicado.

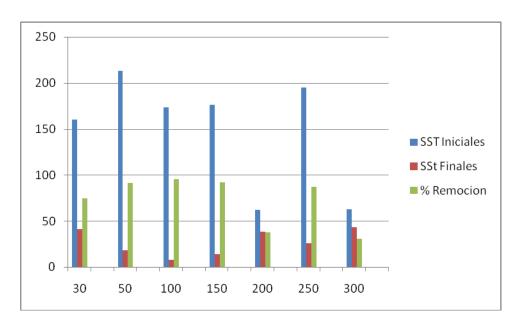

Para cada rango de pH se presenta un conjunto de datos donde se muestra los SST iniciales y SST finales con su respectivo % de remoción a diferentes dosis de lodo aluminoso. (Ver anexo B)

pH 5.5:

	SST					
Dosis	Iníciales	SST finales	Promedio SST i	Promedio SST f	Promedio % de	
(ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	remoción	
30	126,7	40	160	41	74,4	
30	193,3	42	100	41	74,4	
50	206,7	18	213,3	18	91,6	
50	220	18	213,3	10	91,0	
100	153,3	8	173,3	8	95,4	
100	193,3	8	173,3	0	33,4	
150	176	14	176	14	92	
150	176	14	170	14	92	
200	58	37	62	38,5	38	
200	66	40	02	30,3	36	
250	187,5	24,3	195	25,7	87	
250	202,5	27,1	133	23,7	8/	
300	53,3	42	62,5	43,5	30.4	
300	71,7	45	02,3	43,3	30,4	

Tabla 18 Resultados de SST para pH 5.5 después de añadido el Lodo aluminoso

La gráfica 12 muestra el % de remoción del lodo en términos de SST para pH 5.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 100 ml arrojando una remoción de 95,4 %.

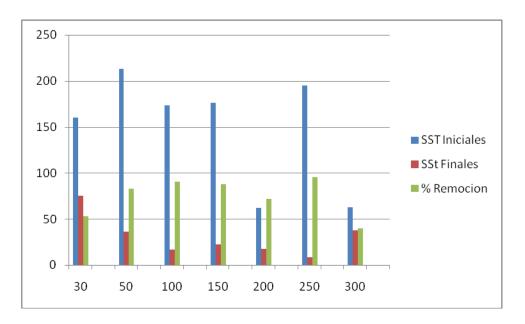


Grafica 12 Remoción en SST a partir de la adición de dosis de Lodo en ml a pH 5,5 pH 6.5:

	SST					
Dosis	Iníciales	SST finales	Promedio SST i	Promedio SST f		
(ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	% de remoción	
30	126,7	52	160	52	67,5	
30	193,3	52	100	32	07,5	
50	206,7	25	213,35	23,5	89	
50	220	22	213,33	25,5	69	
100	153,3	40	173,3	40	77	
100	193,3	40	173,3	40	,,	
150	176	10	176	11	94	
150	176	12	170	11	94	
200	58	18,3	62	19,15	69,1	
200	66	20	02	19,13	09,1	
250	187,5	20	195	21,65	90	
250	202,5	23,3	190	21,00	89	
300	53,3	48,3	62,5	45,8	27	
300	71,7	43,3	02,3	43,6	27	

Tabla 19 Resultados de SST para pH 6.5 después de añadido el Lodo aluminoso

La gráfica 13 muestra el % de remoción del lodo en términos de SST para pH 6.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 150 ml arrojando una remoción de 94 %.

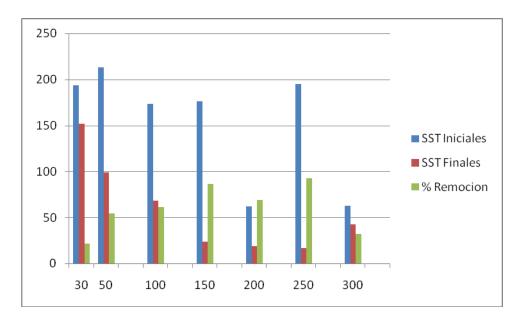


Grafica 13 Remoción en SST a partir de la adición de dosis de Lodo en ml a pH 6,5 pH 7.5:

	SST					
Dosis	Iníciales	SST finales	Promedio SST i	Promedio SST f		
(ml)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	% de remoción	
30	126,7	74	160	75	53,1	
30	193,3	76	100	73	33,1	
50	206,7	33	213,35	36	83,1	
50	220	39	213,33	30	65,1	
100	153,3	16	173,3	16,75	90,3	
100	193,3	17,5	173,3	10,73	30,3	
150	176	24	176	22	87,5	
150	176	20	170	22	87,5	
200	58	18,3	62	17,65	71,5	
200	66	17	02	17,03	71,3	
250	187,5	8,3	195	8,3	96	
250	202,5	8,3	132	0,3	30	
300	53,3	42	62,5	37,65	40	
300	71,7	33,3	02,3	37,03	40	

Tabla 20 Resultados de SST para pH 7.5 después de añadido el Lodo aluminoso

La gráfica 14 muestra el % de remoción del lodo en términos de SST para pH 7.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 250 ml arrojando una remoción de 96 %.

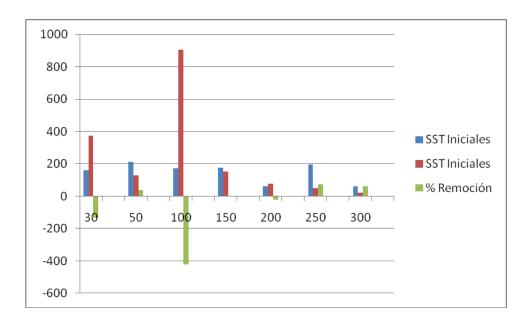


Grafica 14 Remoción en SST a partir de la adición de dosis de Lodo en ml a pH 7,5 pH 8.5:

Dosis	SST Iníciales (mg/L)	SST finales (mg/L)	Promedio SST i (mg/L)	Promedio SST f (mg/L)	% de remoción	
30	193,3	152	193,3	152	21.4	
50	206,7	90	242.25	00	F.4	
50	220	108	213,35	99	54	
100	153,3	72	173,3	68	61	
100	193,3	64	175,5	06	01	
150	176	26	176	24	86,4	
150	176	22	170	24	80,4	
200	58	18,3	62	19,1	69,1	
200	66	20	02	19,1	09,1	
250	187,5	15	195	17	91,5	
250	202,5	18,3	132	1/	91,5	
300	53,3	43,3	62,5	42,5	27	
300	71,7	42	02,5	42,3	32	

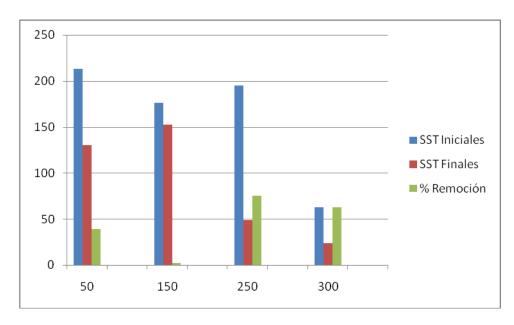
Tabla 21 Resultados de SST para pH 8.5 después de añadido el Lodo aluminoso

La gráfica 15 muestra el % de remoción del lodo en términos de SST para pH 8.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 250 ml arrojando una remoción de 91.5 %.



Grafica 15 Remoción en SST a partir de la adición de dosis de Lodo en ml a pH 8,5 pH 9.5:

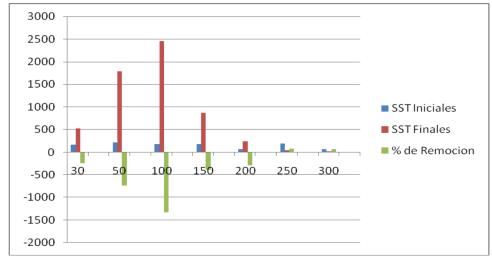
	SST Iníciales	SST finales	Promedio SST i	Promedio SST f	Promedio % de	
Dosis	(mg/L)	(mg/L)	(mg/L)	(mg/L)	remoción	
30	126,7	367	160	373,5	-133,3	
30	193,3	380	100	373,3	-133,3	
50	206,7	127	213,3	130	39	
50	220	133,3	213,3	130	39	
100	153,3	913,3	173,3	006.6	- 423,1	
100	193,3	900	173,3	906,6		
150	176	152	176	152,5	2,3	
150	176	153	170	152,5		
200	58	80	62	76	-22,5	
200	66	72	02	70	-22,3	
250	187,5	47	195	10 E	75.2	
250	202,5	50	133	48,5	75,2	
300	53,3	25	62,5	23,5	63	
300	71,7	22	02,5	23,3		


Tabla 22 Resultados de SST para pH 9.5 después de añadido el Lodo aluminoso

La gráfica 17 muestra el % de remoción del lodo en términos de SST para pH 9.5. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 250 ml arrojando una remoción de 75,2 %.

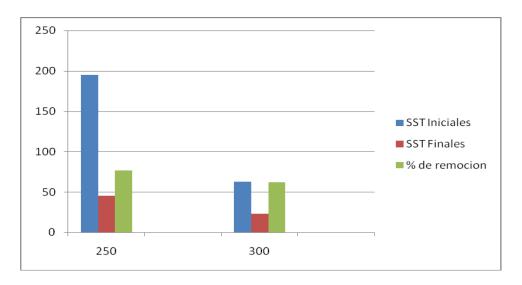
Grafica 17 Remoción en SST a partir de la adición de dosis de Lodo en ml a pH 9,5

La gráfica 18 muestra el % de remoción del lodo en términos de SST para pH 9.5 sin tener en cuenta los datos negativos, los cuales pudieron darse cuando se retiraba el sobrenadante que posiblemente se combino con el precipitado.


Grafica 18 Remoción en SST a partir de la adición de dosis de Lodo en ml a pH 9,5

pH 10:

	SST Iníciales	SST finales	Promedio SST i	Promedio SST f		
Dosis	(mg/L)	(mg/L)	(mg/L)	(mg/L)	% de remoción	
30	126,7	520	160	523,5	-227,2	
30	193,3	527	100	323,3	-221,2	
50	206,7	1740	213,35	1790	-739	
50	220	1840	213,33	1790	-739	
100	153,3	2347	173,3	2453,5	-1316	
100	193,3	2560	1/3,3	2455,5	-1310	
150	176	872	176	874	-397	
150	176	876	170	0/4	-397	
200	58	296	62	236,75	-282	
200	66	177,5	02	230,73	-282	
250	187,5	43,3	105	4F 1F	77	
250	202,5	47	195	45,15	77	
300	53,3	23,3	62,5	23,3	62	
300	71,7	23,3	02,3	23,3	63	


Tabla 23 Resultados de SST para pH 10 después de añadido el Lodo aluminoso

La gráfica 19 muestra el % de remoción del lodo en términos de SST para pH 10. Puede observarse que la dosis que más remueve material suspendido para este conjunto de datos es la dosis de 250 ml arrojando una remoción de 77 %. Se puede evidenciar además que hay datos donde se muestra estabilización por parte del coloide, lo cual significa que no se dio una aglomeración (desestabilización) por parte del lodo asía este, dando una coagulación nula.

Grafica 19 Remoción en SST a partir de la adición de dosis de Lodo en ml a pH 10

La gráfica 20 muestra el % de remoción del lodo en términos de SST para pH 10 sin tener en cuenta los datos negativos de desestabilización coloidal.

Grafica 20 Remoción en SST a partir de la adición de dosis de Lodo en ml a pH 10

EVALUACION DE LA REMOCION DE SST:

En la tabla 23 se muestra la evaluación de remoción en cuanto a SST para cada rango de pH y dosis de lodo. A pH de 9.5 se pueden observar resultados negativos de remoción lo que indica que el coloide se estabilizó y el lodo no actuó como coagulante.

Dosis (ml)	pH 5,5	pH 6,5	pH 7,5	pH 8,5	pH 9,5
50	74,4	67,5	53,1	-1250	-227,2
100	91,6	89	83,1	54	-739
150	95,4	80	90,3	61	-1316
200	92	94	87,5	86,4	-397
250	38	69,1	71,5	69,1	-282
300	87	89	96	91,5	<i>77</i>
350	30,4	27	40	32	63
Máximo	95,4	94	96	91,5	77

Tabla 24 Resumen de resultados % de remoción de SST.

En la gráfica 21 se presenta el comportamiento de los máximos % de remociones en el ensayo de SST, se puede observar claramente que la máxima remoción para SST se obtiene a pH 7,5 usando 300 ml de dosis de lodo.

Grafica 21 Máximos % de Remoción en SST partir de la adición de dosis de Lodo

RESUMEN DE DATOS MAXIMOS:

	%		
Prueba	Remoción	Dosis	рН
DQO	92,1	300	8,5
SST	96,0	300	7,5
331	91,5	300	8,5
Turbiedad	82,0	300	8,5
, a. S.caaa	97,5	350	5,5

Tabla 25 Estudio de datos máximos de remoción.

6. CONCLUSIONES

- Se pudo concluir que el lodo aluminoso obtenido de la planta de abastecimiento de agua potable AGUAS Y AGUAS de Pereira, cumplió como los requerimientos para ser coagulante en cada una las pruebas realizadas en esta investigación según la norma sobre aguas residuales (Normas sobre aguas residuales, 2001)
- Los porcentajes de remoción obtenidos en el ensayo de DQO fueron altos, concluyendo que la mejor dosis en este análisis es la de 300 ml en lodo a pH de 8.5 dando una remoción de 92% de material orgánico.
- En la técnica de DQO, el lodo a pH 10 no se comportó como coagulante, lo cual es congruente ya que para sales de aluminio el rango de pH optimo para la coagulación es de 6.5 a 8.0 (Cárdenas, 2000)
- Los porcentajes de remoción en el ensayo de turbiedad, muestran que la mejor dosis que remueve material suspendido es la de 350 ml en lodo a pH de 5.5, dando una remoción de 97.5%.
- Se pudo observar que para datos de turbiedad a pH de 9.5 dieron valores mayores a 1000, lo cual se pudo dar debido al poco sobrenadante obtenido después de añadido el lodo; esto hacía crítica la decantación del sobrenadante pudiéndose combinar con el precipitado generando así estos valores.
- Los datos obtenidos son eficientes para la remoción de SST; la dosis que más remueve es 300 ml en lodo a pH 7.5 con un porcentaje de 96% dando como sólidos finales 8.3 mg/L, cumpliendo así con la norma sobre aguas residuales descargadas al subsuelo y alcantarillado.
- Este trabajo cumplió con los objetivos específicos de evaluar la eficiencia de remoción del lodo aluminoso para aguas residuales en DQO, Turbiedad y SST, de los cuales cada análisis arrojó un porcentaje de remoción máximo consignados en la tabla 25.
- De los parámetros evaluados DQO, SST y turbiedad, la medición de la DQO es el parámetro de más peso, ya que en ella se puede evaluar además de carga contaminante relacionada con los SST y turbiedad, aquella que en estos no se reflejan, ejemplo: sustancias disueltas.
- A partir de la consideración anterior se concluyó que la dosis óptima de lodos aluminosos para ser utilizada en el proceso de coagulación en aguas residuales

provenientes del sector urbano parque industrial es de 300 ml que en gramos de aluminio equivalen a 3,96 g a pH de 8,5; dato arrojado por la remoción de DQO. Para esta dosis y este pH se obtuvo una remoción mayor al 80 % en SST y turbiedad.

7. RECOMENDACIONES

Tomando en cuenta los resultados obtenidos en el desarrollo de este trabajo se hacen las siguientes recomendaciones para que en futuras investigaciones no se tengan este tipo de dificultades.

- A la hora de realizar los análisis de laboratorio es muy importante la preservación adecuada de las muestras así como la correcta aplicación de los métodos de ensayo.
- Para la ejecución de los ensayos a escala de laboratorio, se recomienda mantener refrigerado el lodo aluminoso ya que este contiene material orgánico el cual pueda afectar los resultados.
- Realizar un análisis de costos para evaluar la viabilidad de uso de lodo aluminoso como coagulante frente al sulfato a de aluminio que es el coagulante tradicional.

8. BIBLIOGRAFIA

- AGUAS Y AGUAS de Pereira disponible en: www.aguasyaguas.com.co
- CARDER (2004). El soporte del desarrollo, las ciudades y los servicios de infraestructura. Eco región Eje Cafetero: un territorio de oportunidades. Proyecto construcción de un ordenamiento territorial para el desarrollo sostenible de la Eco región del Eje Cafetero. Convenio CARDER-FONADE (Ministerio del medio ambiente) No 1068 Convenio Corporación ALMA MATER-FOREC. 2^{da} edición. Pereira de 2004. p: 213-228.
- CIFUENTES OLGA. Floculación, capitulo VII. Disponible en: http://www.frbb.utn.edu.ar/carreras/materias/ing_sanitaria
- CARDENAS ARDIA YOLANDA. (LIMA, PERU. 2000). Tratamiento de agua: Coagulación y floculación. p: 17.
- CONTRERAS MIRANDA MICHELLE. Calidad del agua: Turbiedad. p: 2
- DUQUE L. 2007. Estadísticas Sociales Municipio de Pereira Año 2006. Alcaldía de Pereira. Secretaría de Planeación. 2007. p: 169.
- DAVILA LOPEZ MARTHA NEREYDA, (2009). validación de los métodos DQO, DBO₅ y sólidos suspendidos totales en el análisis de aguas residuales para el laboratorio de aguas y alimentos de la universidad tecnológica de pereira, p.27.
- FRANCO P.A, VELÁZQUEZ J.S. Caracterización acondicionamiento y aprovechamiento de lodos generados en plantas de potabilización de agua.
- HERNÁNDEZ DARWIN, VILLEGAS JUAN DAVID, CASTAÑO JUAN MAURICIO, PAREDES DIEGO. (2008). aprovechamiento de lodos aluminosos generados en sistemas de potabilización, mediante su incorporación como agregado en materiales de construcción. p: 223.

- KIRCHNER CLIFF J. Prueba de jarras; remoción de turbiedad por coagulación mediante alumbre y con un poli electrolito sintético catiónico orgánico. Disponible en : http://www.bvsde.paho.org/bvsacd/scan2/09234/09234.pdf p: 2-4
- Laboratorio de química ambiental UTP (2009): Informe de ensayo 041 09 caracterizaciones de lodos provenientes de la planta de agua potable AGUAS Y AGUAS.
- PEREZ PARRA JORGE ARTURO. Manual de Potabilización del Agua 4 ed. Universidad Nacional de Colombia sede Medellín, 2002.
- ROJAS, J. L. R. (2004). tratamiento de aguas residuales (Teoria y principios de diseño). p. 17, 19, 27, 66.
- ROJAS J. A. R. (1996). Acuiquimica. P. 146, 149 -152.
- SANDOVAL, L., F. L.M., et al. (1998). Tratabilidad de los Lodos Producidos en la potabilización del Agua. Seminario Regional Bienal sobre potabilización filtración. Septiembre de 1998. Instituto Mexicano de Tecnología del Agua (IMTA).
- SANTO DOMINGO, REPÚBLICA DOMINICANA (2001): Normas sobre aguas residuales; secretaria de estado de medio ambiente y recursos naturales, subsecretaria de gestión ambiental.
- Sedimentación características (2011). Disponible en : http://es.wikipedia.org/wiki/Sedimentaci%C3%B3n
- Unión Latinoamericana" de Perú y la Escuela de Educación Técnica № 466, de Argentina. Imagen disponible en: http://educasitios.educ.ar/grupo096/?q=node/59.
- VALDES A. M. O, L. M. N. ROA (2009). Caracterización de agua cruda y tratada para el proceso de fabricación de H2SO4 en la empresa industrias básicas de caldas tesis UTP. Pereira. p. 5, 20, 22, 25.
- Zig Zag, (1995) LA CONTAMINACION DEL AGUA. Disponible en: http://html.rincondelvago.com/contaminacion-del-agua 3.html

Anexo A TABLAS DE RESULTADOS ENSAYO DQO

FECHA: 03/06/2009 **DOSIS:** 50 ml en lodo

# DE MUESTRA	VOL (ml)	ABS	DQ0	FD	ABS	DQO (mg O ₂ / L)	DQ0	Х	σ	%CV
		0.014					(IIIg O ₂ / L)			
	5	0,014		10	0.014	20.6			19,3	
	5	<u> </u>		O2 / L) FD ABS DQO (mg O2 / L) (mg O2 / L) X 6 9.6 9.6 39.6 10 0,014 39.6 274.3 274.3 4<						
		0,014							51 19,3 7	
1 1 Jarra 1 DU: E E	5	0,007		10	0.007	21.2	27/12	261 19,3		
1,1 Jana 1 Fin. 3.3	5	0,007		10	0,007	21,3	274,3			
		0,007	21,6					261 19,3		
1,1 Jarra 1 PH: 5.5	5	0,007	21,3	10	0.007	21 4				
	3	0,007	21,3		0,007	21,1			19,3	
		0,008	23,5					261		7,4
1,2 Jarra 1 PH: 5.5	5	0,008	23,8	10	0,008	23,9				
		0,008	24,4		-,	-,-				
		0,009	26,9	10						
1,2 Jarra 1 PH: 5.5	5	0,009			0,009	26,9	247			
		0,009	26,9				_			
		0,008	23,2		0,008	23,3				
0,009 26,9 0,008 23,2 0,008 23,2 0,008 23,2 0,008 23,5	5	0,008	23,2	10						
		0,009	26,6							
	5	0,009	26,9	10	0,009	26,8				
		0,009	26,9							
		0,007	21,9							
1,3 Jarra 2 PH: 6.5	5	0,007	21,9	10	0,007	21,9	229,5	239,1	14	6
		0,007	21,9							
		0,006	20,1					9,5 239,1		
	 -	0,006	20,1	10	0,006	20,2				
		0,006	20,4							

# DE	VOL					DQO (mg O ₂ /	RESULTADO DQO			
MUESTRA	(ml)	ABS	DQO (mg O_2 / L)	FD	ABS	L)	(mg O ₂ / L)	Х	σ	%CV
		0,008	24,7							
	5	0,008	24,7	10	0,008	24,7				
		0,008	24,7							
1,4 Jarra 2		0,008	23,8							
PH: 6.5	5	0,008	23,5	10	0,008	23,6	248,7	239,1	14	6
		0,008	23,5							
		0,009	26,3							
	5	0,009	26,3	10	0,009	26,3				
		0,009	26,3							
		0,007	22,8							
_	5	0,008	23,2	10	0,007	22,9				
		0,007	22,8							
1,5 Jarra 3	_	0,008	25							
PH: 7.5	5	0,008	24,7	10	0,008	24,8	232			
		0,008	24,7							
		0,007	21,9							
	5	0,007	21,9	10	0,007	21,8				
		0,007	21,6					257,5	36,4	14,1
		0,009	26,3							
	5	0,009	26,3	10	0,009	26,3				
		0,009	26,3							
1,6 Jarra 3		0,009	26,6							
PH: 7.5	5	0,009	26,6	10	0,009	26,6	283,3			
		0,009	26,6							
		0,011	32,1			32,1				
	5	0,011	32,1	10	0,011					
		0,011	32,1							

Tabla 26 – 2 resultados DQO

Tabla 26 – 3 resultado DQO

# DE	VOL					DQO (mg O ₂ /	RESULTADO DQO			
MUESTRA	(ml)	ABS	DQO (mg O_2 / L)	FD	ABS	L)	(mg O ₂ / L)	Х	σ	%CV
		0,008	24,4							
	5	0,008	24,4	10	0,008	24,4				
		0,008	24,4							
1,7 Jarra 4		0,008	23,2							
PH: 8.5	5	0,008	23,2	10	0,008	23,2	250			
111.0.5		0,008	23,2							
		0,009	27,2			27				
	5	0,009	26,9	10	0,009				41	
		0,009	26,9					278		15
		0,011	32,1					276	41	13
	5	0,011	31,8	10	0,011	31,9				
		0,011	31,8							
1,8 Jarra 4		0,01	29,4		0,01		306,5			
PH: 8.5		0,01	29,4	10		29,4				
F11. 6.5		0,01	29,4							
		0,037	95,2							
	5	0,037	95	10	0,037	95,1				
		0,037	95,2							
1 0 Jarra E		0,036	94,5							
1,9 Jarra 5 PH: 9.5	5	0,036	94,5	10	0,036	94,5	945	949	6	0,6
FH. 9.5		0,036	94,5							
		0,035	93,6							
	5	0,036	94,2	10	0 0,035	93,8	3			
		0,035	93,6							

# DE MUESTRA	VOL (ml)	ABS	DQO (mg O ₂ / L)	FD	ABS	DQO (mg O ₂ / L)	RESULTADO DQO (mg O ₂ / L)	Х	σ	%CV
	,	0,037	97,6			,	V 0 - 27 7			
	5	0,037	97,6	10	0,037	97,6				
		0,037	97,6							
1 10 10 777 5		0,036	94,5							
1,10 Jarra 5 PH: 9.5	5	0,036	94,5	10	0,036	94,5	953	949	6	0,6
РП. 9.5		0,036	94,5							
		0,035	93,6	10	0,035	93,8				
	5	0,036	94,2							
		0,035	93,6							
		0,043	113,1	10						
	5	0,043	113,1		0,043	113,2				
		0,043	113,4							
1,11 Jarra 6		0,046	119,2	10			1150,1			
PH: 10		0,046	119,2		0,046	119,1				
111. 10		0,046	119							
		0,043	112,8							
	5	0,043	112,5	10	0,043	112,7				
		0,043	112,8					1153,	4,2	0,4
		0,043	113,1					1	7,2	0,4
	5	0,043	113,1	10	0,043	113,2				
		0,043	113,4							
1,12 Jarra 6		0,046	120,2							
PH: 10	5	0,046	120,8	10	0,046	120,9	1156,1			
111. 10		0,046	121,8							
		0,043	112,8							
	5	0,043	112,5	10	0 0,043	112,7				
		0,043	112,8							

Tabla 26 – 4 Resultado DQO

# DE	VOL					DQO (mg O ₂ /	RESULTADO DQO			
MUESTRA	(ml)	ABS	DQO (mg O_2 / L)	FD	ABS	L)	(mg O ₂ / L)	Х	σ	%CV
		0,023	61,6							
	5	0,023	61,3	10	0,023	61,3				
		0,022	61							
1,13		0,027	75,3							
Muestra	5	0,027	75,3	10	0,027	75,3	665			
Madre		0,027	75,3							
		0,023	62,8							
	5	0,023	62,8	10	0,023	62,8				
		0,023	62,8					643	21.2	5
		0,023	61,6					043	31,2	5
	5	0,023	61,3	10	0,023	61,3				
		0,022	61							
1,14		0,027	62							
Muestra	5	0,027	62,2	10	0,027	62,1	620,5			
Madre		0,027	62							
		0,023	62,8							
	5	0,023	62,8	10	0,023	62,8				
		0,023	62,8							

Tabla 26 – 5 Resultado DQO

FECHA: 08/06/2009 DOSIS: 100 ml en lodo

DE	VOL	. 100 IIII E				DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O2 / L)	(mg O2 / L)	Х	σ	%CV
	, ,	0,006	15,4			- , ,	(0 - 1 1		-	
	5	0,006	15,4	10	0,006	15,4				
		0,006	15,4							
2.4.1		0,006	15,7							
2.1 Jarra 1 PH: 5.5	5	0,006	15,4	10	0,006	15,6	155,3			
PH: 5.5		0,006	15,7							
		0,006	15,7							
	5	0,006	15,7	10	0,006	15,6				
		0,006	15,4					169,1	19,6	11,6
		0,005	17,6					105,1	19,0	11,0
	5	0,005	17,6	10	0,005	17,6				
		0,005	17,6							
2.2 Jarra 1		0,006	19,4							
PH: 5.5	5	0,006	19,4	10	0,006	19,4	183			
111. 5.5		0,006	19,4							
		0,005	17,9							
	5	0,005	17,9	10	0,005	17,9				
		0,005	17,9							
		0,006	14,8							
	5	0,006	14,8	10	0,006	14,8				
		0,006	14,8							
2.3 Jarra 2		0,006	15,7							
PH: 6.5	5	0,006	15,7	10	0,006	15,7	165,3	183	25	13,7
110.5		0,006	15,7							
		0,007	18,9							
	5	0,007	19,2	10	0,007	19,1				
		0,007	19,2						-la: 27 (

Tabla 27 – 1 Resultado DQO

DE	VOL					DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O2 / L)	(mg O2 / L)	Х	σ	%CV
		0,006	19,1							
	5	0,006	19,1	10	0,006	19,1				
		0,006	19,1							
2.4 Jarra 2		0,007	21							
PH: 6.5	5	0,007	21	10	0,007	21	200,7	183	25	13,7
F11. 0.3		0,007	21							
		0,006	20,1							
	5	0,006	20,1	10	0,006	20,1				
		0,006	20,1							
		0,006	15,4							
	5	0,006	15,4	10	0,006	15,4				
		0,006	15,4							
2.5 Jarra 3		0,006	15,4							
PH: 7.5	5	0,006	15,4	10	0,006	15,4	156,7			
111.7.5		0,006	15,4							
		0,006	16,4							
	5	0,006	16,1	10	0,006	16,2				
		0,006	16,1					158,5	2,6	1,6
		0,006	16,4							
	5	0,006	16,4	10	0,006	16,4				
		0,006	16,4							
2.6 Jarra 3		0,006	15,2							
PH: 7.5	5	0,006	15,2	10	0,006	15,2	160,3			
1111713		0,006	15,2							
		0,006	16,5							
	5	0,006	16,5	10	0,006	16,5				
		0,006	16,5						-1- 27 1	. D //

Tabla 27 – 2 Resultado DQO

DE	VOL					DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O2 / L)	(mg O2 / L)	Х	σ	%CV
		0,006	29,3							
	5	0,006	29,3	10	0,006	29,3				
		0,006	29,3							
2.7 Jarra 4		0,006	28,2			28,26666				
PH: 8.5	5	0,006	28,3	10	0,006	667	245,5			
РП. 6.3		0,006	28,3			007				
		0,006	16,1							
	5	0,006	16,1	10	0,006	16,1				
		0,006	16,1					248,3	3,8	1,5
		0,007	21,9					240,3	3,0	1,3
	5	0,007	21,9	10	0,007	21,9				
		0,007	21,9							
2.8 Jarra 4		0,01	30							
PH: 8.5	5	0,01	30,3	10	0,01	30,2	251			
111. 0.5		0,01	30,3							
		0,008	23,2							
	5	0,008	23,2	10	0,008	23,2				
		0,008	23,2							
		0,016	51,3							
	5	0,016	51,3	10	0,016	51,5				
		0,016	52							
2.9 Jarra 5		0,016	52,1				491,4	485,3	41,2	8,5
PH: 9.5	5	0,016	52,4	10	0,016	52,2	751,7	403,3	71,2	0,5
		0,016	52,1							
	5	0,017	43,7	10	0,017	43,7				
	,	0,017	43,7	10	0,017	43,7			al a 27	2 Dagustan

Tabla 27 – 3 Resultado DQO

DE	VOL					DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O2 / L)	(mg O2 / L)	Х	σ	%CV
		0,02	54,2							
	5	0,02	53,9	10	0,02	54				
		0,02	53,9							
2.10 Jarra 5		0,02	55,1				549,7	485,3	41,2	8,5
PH: 9.5	5	0,02	55,1	10	0,02	55,1	545,7	465,5	41,2	6,5
		0,02	55,1							
	5	0,021	56	10	0,02	55,8				
	J	0,02	55,7	10	0,02	33,0				
		0,035	91,7							
	5	0,035	91,7	10	0,035	91,7				
		0,035	91,7							
2.11 Jarra 6		0,033	88,9							
PH: 10	5	0,034	89,2	10	0,034	89,1	903			
111. 10		0,034	89,2							
		0,034	90,1							
	5	0,034	90,1	10	0,034	90,1				
		0,034	90,1					881	31,3	3,5
		0,033	84,6							
	5	0,033	84,6	10	0,033	84,6				
		0,033	84,6							
2.12 Jarra 6		0,034	89,4				858,7			
PH: 10	5	0,034	89,4	10	0,034	89,4	030,7			
		0,034	89,4							
	5	0,032	83,4	10	0,032	83,6				
		0,032	83,7			00,0				

Tabla 27 – 4 Resultado DQO

DE	VOL					DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O2 / L)	(mg O2 / L)	X	σ	%CV
		0,02	52							
	5	0,02	52	10	0,02	52				
		0,02	52							
2.13 Jarra		0,02	51,1							
muestra	5	0,02	51,1	10	0,02	51,1	516,7			
madre		0,02	51,1							
		0,02	51,9							
	5	0,02	51,9	10	0,02	51,9				
		0,02	51,9					536,2	27,6	E 1
		0,02	55,7					330,2	27,0	5,1
	5	0,02	55,7	10	0,02	55,7				
		0,02	55,7							
2.14 Jarra		0,021	56,6							
muestra	5	0,021	56,6	10	0,021	56,6	555,7			
madre		0,021	56,6							
		0,02	54,2							
	5	0,02	54,5	10	0,02	54,4				
		0,02	54,5							

Tabla 27 –5 Resultado DQO

FECHA: 12/06/2009 **DOSIS:** 150 ml en lodo

# DE	VOL	. 130 1111 0				DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS	DQO (mg O ₂ / L)	FD	ABS	O ₂ / L)	(mg O ₂ / L)	Х	σ	%CV
		0,006	15,7							
	5	0,006	16,1	10	0,006	15,9				
3.1 Jarra 1		0,006	16,1							
PH: 5.5	5	0,006	16,1	10	0,006	16,1	160			
111.3.3										
								164,0	6	3,5
	_	0,007	17,4	40	0.007	47.5				
	5	0,007	17,4	10	0,007	17,5				
		0,007	17,7							
3.2 Jarra 1	_	0,006	15,8	10	0.000	1.0	160.1			
PH: 5.5	5	0,006 0,006	16,1	10	0,006	16	168,1			
-		0,006	16,1 16,7							
		0,006	16,7	10	0,0063	16,9				
		0,000	17,4	10	33333	10,5				
		0,007	18,3							
	5	0,007	18,3	10	0,007	18,3				
	3	0,007	10,0	10	0,007	10,5				
		0,011	18,2							
3.3 Jarra 2	5	0,011	18,2	10	0,011	18,2	182,5	176,7	8,1	5
PH: 6.5	_	-,-	-,	-	-,	-,	- , -	-,.	- ,	

Tabla 28 – 1 Resultado DQO

# DE	VOL					DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS	DQO (mg O ₂ / L)	FD	ABS	O ₂ / L)	(mg O ₂ / L)	Х	σ	%CV
		0,006	16,1							
	5	0,006	16,1	10	0,006	16,2				
		0,006	16,4							
3.4 Jarra 2		0,007	17,4				171	176,7	8,1	5
PH: 6.5	5	0,007	17,4	10	0,007	17,4	1/1	170,7	0,1	3
		0,007	17,4							
		0,007	17,7	10	0,007	17,7				
		0,007	17,7	10	0,007	17,7				
		0,006	16,1							
	5	0,006	16,1	10	0,006	16,1				
3.5 Jarra 3		0,006	16,1							
PH: 7.5	5	0,006	16,1	10	0,006	16,1	161			
111.7.5										
								171,1	14,4	8,4
		0,007	18,3							
	5	0,007	18,3	10	0,007	18,3				
		0,007	18,3							
3.6 Jarra 3		0,008	19,8							
PH: 7.5	5	0,008	19,8	10	0,008	19,8	181,3			
111.7.5		0,008	19,8							
		0,006	16,1							
	5	0,006	16,4	10	0,006	16,3				
		0,006	16,4							

Tabla 28 – 2 Resultado DQO

# DE	VOL					DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS	DQO (mg O ₂ / L)	FD	ABS	O ₂ / L)	(mg O ₂ / L)	Х	σ	%CV
		0,008	21			24 22222				
	5	0,008	21	10	0,008	21,33333				
		0,008	22			333				
3.7 Jarra 4		0,006	16,4							
PH: 8.5	5	0,006	16,4	10	0,006	16,4	184,8			
F11. 6.5		0,006	16,4							
		0,007	17,7							
	5	0,007	17,7	10	0,007	17,7				
		0,007	17,7					181,7	4,32	2,4
		0,008	19,5					101,7	4,32	2,4
	5	0,008	19,5	10	0,008	19,5				
		0,008	19,5							
3.8 Jarra 4		0,006	16,4							
PH: 8.5	5	0,006	16,4	10	0,006	16,4	178,7			
111.0.5		0,006	16,4							
		0,007	17,7							
	5	0,007	17,7	10	0,007	17,7				
		0,007	17,7							
		0,009	24			23,66666				
	5	0,009	23	10	0,009	667				
		0,009	24			007				
3.9 Jarra 5		0,01	26,6							
PH: 9.5	5	0,01	26,6	10	0,01	26,6	251,2	251,6	0,5	0,2
		0,01	26,6							
		0,01	25,1							
	5	0,01	25,1	10	0,01	25,1				
		0,01	25,1							

Tabla 28 – 3 Resultado DQO

# DE	VOL					DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS	DQO (mg O ₂ / L)	FD	ABS	O ₂ / L)	(mg O ₂ / L)	Х	σ	%CV
		0,009	23,9							
	5	0,009	23,9	10	0,009	23,9				
		0,009	23,9							
3.10 Jarra		0,01	26,6							
5.10 Jana 5 PH: 9.5	5	0,01	26,6	10	0,01	26,6	252	251,6	0,5	0,2
3 F11. 9.3		0,01	26,6							
		0,01	25,1							
	5	0,01	25,1	10	0,01	25,1				
		0,01	25,1							
		0,021	56							
	5	0,021	56	10	0,021	55,5				
		0,021	54,5							
3.11 Jarra		0,021	54,8							
6 PH: 10	5	0,021	54,8	10	0,021	54,8	551,5			
0111.10		0,021	54,8							
								549	3,5	0,6
		0,021	54,5					3 13	3,3	0,0
	5	0,021	54,5	10	0,021	54,5				
		0,021	54,5							
3.12 Jarra		0,021	54,8							
6 PH: 10	5	0,021	54,8	10	0,021	54,8	546,5			
320		0,021	54,8							

# DE	VOL					DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS	DQO (mg O_2 / L)	FD	ABS	O ₂ / L)	(mg O ₂ / L)	Χ	σ	%CV
		0,0019	50			50,33333				
	5	0,0019	51	10	0,0019	333				
		0,0019	50			333				
3.13		0,0019	49,6							
Muestra	5	0,0019	49,6	10	0,0019	49,6	499,7			
madre		0,0019	49,6							
								497,8	3	0.5
		0,0019	49,6					497,6	3	0,5
	5	0,0019	49,6	10	0,0019	49,6				
		0,0019	49,6							
3.14		0,0019	49,6							
Muestra	5	0,0019	49,6	10	0,0019	49,6	496			
madre		0,0019	49,6							

Tabla 28 – 5 Resultado DQO

FECHA: 17/06/2009 **DOSIS:** 200 ml en lodo

# DE	VOL	. 200 1111 C	111000			DQO (mg				
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O_2/L	DQO (mg O2 / L)	X	σ	%CV
MOLSTICA	(1111)	0,005	11,9	טו	AD3	027 -	DQO (IIIg OZ / L)		0	70C V
	5	0,005	11,9	10	0,005	11,9				
	5	0,003	11,5	10	0,003	11,5				
		0,008	21,1							
4,1 Jarra 1	5	0,008	21,1	10	0,008	21,1	165			
PH: 5.5		,	,		,	,				
								183,8	26,6	14,5
		0,008	19,8					105,0	20,0	14,3
	5	0,008	19,8	10	0,008	19,9				
		0,008	20,1							
4,2 Jarra 1		0,008	21,1							
PH: 5.5	5	0,008	21,7	10	0,008	21,6	202,7			
111.3.3		0,009	22							
		0,007	19,2							
	5	0,008	19,5	10	0,007	19,3				
		0,007	19,2							
		0,008	19,5							
	5	0,008	19,9	10	0,008	19,7				
4,3 Jarra 2		0,008	19,9							
PH: 6.5	5	0,008	19,9	10	0,008	19,9	198	203,2	7,3	3,6

Tabla 29 – 1 Resultado DQO

# DE	VOL					DQO (mg				
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O ₂ / L)	DQO (mg O2 / L)	Х	σ	%CV
WIGESTIVE		0,008	21,1			2, ,	, ,			
	5	0,008	21,1	10	0,008	21,1				
		0,008	21,1							
4.4.10,000.2		0,009	22							
4,4 Jarra 2 PH: 6.5	5	0,009	22	10	0,009	22	208,3	203,2	7,3	3,6
РП. 0.5		0,009	22							
		0,007	19,2							
	5	0,008	19,5	10	0,008	19,4				
		0,008	19,5							
	5	0,006	15,4	10	0,006	15,4				
		0,006	15,4							
4,5 Jarra 3		0,007	17,6							
PH: 7.5	5	0,007	17,6	10	0,007	17,6	165			
111. 7.3										
								173,8	12,5	7,2
		0,007	18							
	5	0,007	17,5	10	0,007	17,8				
		0,007	18							
4,6 Jarra 3		0,007	19							
PH: 7.5	5	0,007	18,5	10	0,007	18,8	182,7			
		0,007	19							
		0,007	18							
	5	0,007	18,2	10	0,007	18,1				
		0,007	18,2							

Tabla 29 – 2 Resultado DQO

# DE	VOL					DQO (mg				
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O ₂ / L)	DQO (mg O2 / L)	Х	σ	%CV
		0,009	23,2	10		2. ,				
	5	0,009	23,6		0,009	23,3				
		0,009	23,2							
4.7 larra 4		0,009	23,6							
	5	0,009	23,6	10	0,009	23,6	234			
РП. 6.3		0,009	23,6							
		0,009	23,2					- 234	0	
	5	0,009	23,6	10	0,009	23,3				
		0,009	23,2							0
		0,009	23,2	10	0,009	23,3				
	5	0,009	23,6							
		0,009	23,2							
1 8 Jarra 1		0,009	23,6							
	5	0,009	23,6	10	0,009	23,6	234			
111.0.5		0,009	23,6							
		0,009	23,2	10	0,009	23,3			0	
	5	0,009	23,6							
		0,009	23,2							
		0,009	23,9							
	5	0,009	23,9	10	0,009	23,9				
		0,009	23,9							
· ·		0,01	24,5				244	244	0	0
PH: 9.5	5	0,009	23,9	10	0,009	24,1	244	244	0	
4,7 Jarra 4 PH: 8.5 4,8 Jarra 4 PH: 8.5 4,9 Jarra 5 PH: 9.5		0,009	23,9							
	5	0,01	25,4	10	0,01	25,2				
	J	0,01	25,1	10	0,01	25,2				2.0/4

Tabla 29 – 3 Resultado DQO

# DE	VOL					DQO (mg				
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O ₂ / L)	DQO (mg O2 / L)	Х	σ	%CV
		0,009	23,9	10	0,009					
	5	0,009	23,9			23,9				
		0,009	23,9							
		0,01	24,5							
	5	0,009	23,9	10	0,009	24,1	244	244	0	0
PH. 9.3		0,009	23,9							
		0,01	25,4							
	5	0,01	25,1	10	0,01	25,2				
		0,01	25,1							
	5	0,012	30,7	10	0,012	30,7	404			
		0,012	30,7							
		0,012	30,7							
1 11 Jarra 6	5	0,023	57,9	10	0,023	57,9				
·		0,023	57,9							
·		0,023	57,9							
		0,013	32,8	10	0,013	32,6				
	5	0,013	32,5							
		0,013	32,5					404		0
		0,012	30,7							
	5	0,012	30,7	10	0,012	30,7				
		0,012	30,7							
4,12 Jarra 6		0,023	57,9				404			
PH: 10	5	0,023	57,9	10	0,023	57,9	404			
		0,023	57,9							
	5	0,013	32,8	10	0,013	32,6				
PH: 9.5 4,11 Jarra 6 PH: 10	,	0,013	32,5	10	0,013	32,0				

Tabla 29 – 4 Resultado DQO

# DE	VOL					DQO (mg				
MUESTRA	(ml)	ABS Cr	DQO (mg O2 / L)	FD	ABS	O ₂ / L)	DQO (mg O2 / L)	Х	σ	%CV
		0,011	28,2							
	5	0,011	28,2	10	0,011	28,2				
		0,011	28,2							
4,13		0,011	28,8							
Muestra	5	0,011	28,8	10	0,011	28,8	291,3			
madre		0,011	28,8							
	5	0,012	30,3	10	0,012	30,4				
		0,012	30,3							
		0,012	30,7					291,3 0	0	
		0,011	28,2					231,3	U	U
	5	0,011	28,2	10	0,011	28,2				
	5	0,011	28,2							
4,14		0,011	28,8							
Muestra	5	0,011	28,8	10	0,011	28,8	291,3			
madre		0,011	28,8							
		0,012	30,3							
	5	0,012	30,3	10	0,012	30,4				
4,14 Muestra		0,012	30,7							

Tabla 29 – 5 Resultado DQO

FECHA: 24/06/2009 **DOSIS:** 250 ml en lodo

: 24/06/2009	סוכטט	: 250 mi er	1 1000							
# DE	VOL		DQO (mg O2 /			DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	L)	FD	ABS	O2 / L)	(mg O2 / L)	Χ	σ	%CV
		0,005	13,9							
	5			10	0,005	13,9				
5,1 Jarra 1		0,005	11,8							
PH: 5.5	5			10	0,005	11,8	131			
		0.005	10.6							
		0,005	13,6	10	0.005	12.6				
				10	0,005	13,6				
		0,005	14,003					132,7	2,4	1,8
	5	0,005	14,003	10	0,005	14,003	134,5			
	5	0,005	12,892	10	0,005	12,892				
5,2 Jarra 1		0,000								
PH: 5.5										
		0,005	16,4							
	5			10	0,005	16,4				
5,3 Jarra 2		0,005	16,5							
PH: 6.5	5			10	0,005	16,5	164,5	152,3	17,3	11,4

Tabla 30 – 1 Resultado DQO

# DE	VOL		DQO (mg O2 /			DQO (mg				-/
MUESTRA	(ml)	ABS Cr	L)	FD	ABS	O2 / L)	(mg O2 / L)	Х	σ	%CV
		0,007	14,162							
	5			10	0,0065	14,162				
5,4 Jarra 2		0,006	13,844							
PH: 6.5	5			10	0,006	13,844	140	152,3	17,3	11,4
		2 22=								
	_	0,007	14,9		0,007	14,9	180	176,7		
5,5 Jarra 3 PH: 7.5	5			10						
		0.000	24.2							
	5	0,006	21,3	10	0,006	21,3				
		0,008	17,8	10	0,008	17,8				
		0,000	17,0							
				10					4,7	2,6
		0,005	17,971							
	5			10	0,0065	17,971				
					, , , , , , ,	,-				
		0,005	16,701							
5,6 Jarra 3	5	,	,	10	0,006	16,701	173,4			
PH: 7.5				1	0,000		,.			

Tabla 30 – 2 Resultado DQO

# DE	VOL		DQO (mg O2 /			DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	L)	FD	ABS	O2 / L)	(mg O2 / L)	X	σ	%CV
		0,007	16,4							
	5			10	0,007	16,4				
5,7 Jarra 4	5	0,006	19,3	10	0,007	19,3	174,7			
PH: 8.5	J			10	0,007	19,3	174,7			
		0,008	16,7							
				10	0,008	16,7				
		0,007	18,289					179,6	6,9	3,9
	5			10	0,0125	18,289				
5,8 Jarra 4										
		0,007	18,606							
PH: 8.5	5			10	0,012	18,606	184,5			
111.0.5										
		0,013	21							
	5			10	0,013	21				
5,9 Jarra 5 PH: 9.5		0,012	21,5				212,5	223,7	15,9	7,1
	5			10	0,012	21,5	212,3	223,7	13,3	7,1

# DE	VOL		DQO (mg O2 /				RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	L)	FD	ABS	O2 / L)	(mg O2 / L)	Х	σ	%CV
		0,013	24							
	5			10	0,013	24				
F 10 James F		0,013	23							
5,10 Jarra 5	5			10	0,013	23	235	223,7	15,9	7,1
PH: 9.5										
		0,013	65							
	5	-,		10	0,013	65				
					,					
		0,013	64							
5,11 Jarra 6	5	3,5 = 5		10	0,013	64	645			
PH: 10					3,5 = 5					
								648,9	5,5	0,8
		0,012	68,133					3 10,3	3,3	0,0
	5	0,022	00,200	10	0.012	68,133				
				10	0.012	30,133				
5,12 Jarra 6		0,013	62,418							
PH: 10	5	0,013	02,710	10	0.013	62,418	652,7			
111. 10	,			10	0.013	02,410				

Tabla 30 – 4 Resultado DQO

# DE	VOL		DQO (mg O2 /			DQO (mg	RESULTADO DQO			
MUESTRA	(ml)	ABS Cr	L)	FD	ABS	O2 / L)	(mg O2 / L)	Х	σ	%CV
		0.015	70,851							
	5	0.015	39,119	10	0.015	49,1				
		0.015	37,499							
5,13										
Muestra							491,6			
madre										
								504,3	17,9	3,6
		0.014	52,059					304,3	17,5	3,0
	5	0.014	51,095	10	0.014	51,7				
		0.014	51,941							
5,14										
Muestra							516,9			
madre										

Tabla 30 – 5 Resultado DQO

FECHA: 29/06/2009 **DOSIS:** 300 ml en lodo

			DQO			X- DQO	
# de	Vol.		(mg			(mg O2 /	
muestra	(ml)	ABS Cr	O2 / L)	FD	X - ABS	L)	Resultado DQO (mg O2 / L)
		0,017	30,913				
	5	0,017	30,913	10	0,017	30,9	
6,1 Jarra		0,018	32,645				
1 PH: 5.5	5	0,018	32,645	10	0,018	32,6	317,5
1111.5.5							
		0,017	30,625				
	5	0,017	30,913	10	0,021	30,8	
		0.047	24 202				
6,2 Jarra	_	0,017	31,202	4.0		24.5	2.0
2 PH: 6.5	5	0,017	31,202	10	0,024	31,2	310
-							
		0,02	38,128				
	5	0,02	38,128	10	0,009	38,1	
	3	0,02	30,120	10	0,003	30,1	
6,3 Jarra		0,024	47,939				430,5
3 PH: 7.5	5	0,024	48,228	10	0,008	48	.55,5
	-	-,-	-, -	-		_	

Tabla 31 – 1 Resultado DQO

# de muestra	Vol.	ABS Cr	DQO (mg O2 / L)	FD	X - ABS	X- DQO (mg O2 / L)	Resultado DQO (mg O2 / L)
macstra	(1111)	0,009	11,867	וטו	X Ab5	LJ	Mesaltado DQO (mg O2 / L)
	5	0,009	11,867	10	0,011	11,9	
		,	,		,	,	
6 A Jarra		0,008	8,4046				
6,4 Jarra 4 PH: 8.5	5	0,008	8,4046	10	0,01	8,4	101,5
4111.0.5							
		0,061	135,09				
	5	0,062	136,53	10	0.0615	135,8	
		3,332					
6,5		0,054	119,22				
Muestra	5	0,055	120,37	10	0.0515	119,8	1278
madre							

Tabla 31 – 2 Resultado DQO

FECHA: 01/07/2009 **DOSIS:** 350 ml en lodo

	FECHA: 01/07/2009 DOSIS: 350 IIII eti 1000										
		ABS	DQO			X - DQO					
# de	Vol.	cromo	(mg			(mg O2 /					
muestra	(ml)	trivalente	O2 / L)	FD	X - ABS	L)	Resultado DQO (mg O2 / L)				
		0,031	63,233								
	5	0,031	63,522	10	0,031	63,4					
7.1.15		0,032	65,253								
7,1 Jarra 1 PH: 5.5	5	0,032	65,253	10	0,032	65,2	643				
PH. 3.3											
		0,03	61,79								
	5	0,031	62,945	10	0,016	62,4					
		0,015	26,585								
7,2 Jarra 2	5	0,015	26,585	10	0,013	26,6	445				
PH: 6.5											
		0,017	30,336								
	5	0,017	30,625	10	0,018	30,5					
7,3 Jarra 3		,	-			•	0.50 =				
PH: 7.5		0,013	22,256				262,5				
	5	0,013	21,967	10	0,026	22					
		-,	,,,,,,	-	, -						
	1						Table 24				

Tabla 31 – 3 Resultado DQO

Tabla 31 – 4 Resultado DQO

							Tabla 31 -
		ABS	DQO			X - DQO	
# de	Vol.	cromo	(mg			(mg O2 /	
muestra	(ml)	trivalente	O2 / L)	FD	X - ABS	L)	Resultado DQO (mg O2 / L)
		0,014	23,41				
	5	0,014	23,699	10	0,015	23,5	
7 4 larra 4		0,026	52,556				
7,4 Jarra 4 PH: 8.5	5	0,026	52,556	10	0,013	52,5	380
111.0.5							
		0,016	27,739				
	5	0,016	27,739	10	0,059	27,7	
		0,013	21,679				
7,5 Jarra 5	5	0,013	21,967	10	0,054	21,8	247,5
PH: 9.5							
		0,061	135,09				
	5	0,062	136,53	10		135,8	
7,6		•	,				
Muestra		0,054	119,22				1278
madre	5	0,055	120,37	10		119,8	
			,			,	
L	l	l .			ı		

Anexo B TABLAS DE RESULTADOS SOLIDOS SUSPENDIDOS TOTALES

FECHA: 04/06/2009

pH: 5.5 Tabla 32 Resultados SST

					Tubiu 32 Kest		
Dosis (ml)	Pesos Inicial del crisol	Peso Final de Crisol	Vol. de Muestra (ml)	SST mg / L	X - SST mg / L	% CV	% R
30	30,6995	30,7005	25	40	41	2.4	
30	28,7661	28,76715	25	42	41	3,4	74.4
M 30	29,9994	30,0013	15	127	160	29,5	74,4
M 30	28,842	28,8449	15	193,3	100	29,5	
50	29,3977	29,3995	100	18	10	0	
50	28,1497	28,1515	100	18	18	U	01.6
M 50	29,5897	29,5928	15	207	212.2	4,4	91,6
M 50	29,4746	29,4779	15	220	213,3	4,4	
100	27,0597	27,0599	25	8	8	0	
100	26,6182	26,6184	25	8	0	U	95,4
M 100	29,3109	29,3132	15	153,3	172.2	16,3	95,4
M 100	26,9655	26,9684	15	193,3	173,3	10,3	
150	28,7184	28,7191	50	14	14	4	
150	31,3578	31,3585	50	14	14	4	92
M 150	25,9156	25,92	25	176	176	0	92
M150	29,8293	29,8337	25	176	176	U	
200	29,0076	29,0113	100	37	38,5	5,5	
200	29,3964	29,3984	50	40	30,3	5,5	38
M 200	28,7636	28,7665	50	58	62	0.1	36
M 200	29,6552	29,6585	50	66	62	9,1	
250	26,6168	26,6185	70	24,3	26	8	
250	31,3577	31,3596	70	27,1	26	٥	87
M 250	28,7334	28,7409	40	187,5	195	5,4	0/
M 250	31,1832	31,1913	40	202,5	193	5,4	
300	27,8908	27,8933	60	42	42.2	5,4	
300	28,1497	28,1524	60	45	43,3	5,4	20.4
M 300	27,9522	27,9554	60	53,3	62.5	21	30,4
M 300	28,7637	28,768	60	72	62,5	21	

FECHA: 09/06/2009 **pH:** 6.5

Tabla 33 Resultados SST

Dosis (ml)	Pesos Inicial del crisol	Peso Final de Crisol	Vol. de Muestra (ml)	SST mg / L	X - de SST mg / L	% CV	% R
30	28,7339	28,7352	25	52			,
30	29,3982	29,3995	25	52	52	0	
M 30	29,9994	30,0013	15	126,7	1.50		67,5
M 30	28,842	28,8449	15	193,3	160	29,5	
50	28,844	28,8465	100	25	22.5	_	
50	29,0045	29,0067	100	22	23,5	9	00
M 50	29,5897	29,5928	15	206,7	212.2	1.1	89
M 50	29,4746	29,4779	15	220	213,3	4,4	
100	28,0672	28,0682	25	40	40	0	
100	27,6096	27,6106	25	40	40	U	77
M 100	29,3109	29,3132	15	153,3	173,3	16,3	//
M 100	26,9655	26,9684	15	193,3	173,3	10,3	
150	29,3085	29,309	50	10	11	13	
150	26,9636	26,9642	50	12	11	13	94
M 150	25,9156	25,92	25	176	176	0	34
M150	29,8293	29,8337	25	176	170	U	
200	29,2265	29,2276	60	18,3	19,1	6,1	
200	27,5707	27,5719	60	20	19,1	0,1	69
M 200	28,7636	28,7665	50	58	62	9,1	03
M 200	29,6552	29,6585	50	66	02	3,1	
250	29,2272	29,2284	60	20	21,6	11	
250	29,5868	29,5882	60	23,3	21,0	11	89
M 250	28,7334	28,7409	40	187,5	195	5,4	03
M 250	31,1832	31,1913	40	202,5	133	J, 4	
300	29,2268	29,2297	60	48,3	45,8	8	
300	28,7331	28,7357	60	43,3	45,0	0	27
M 300	27,9522	27,9554	60	53,3	62,5	21	
M 300	28,7637	28,768	60	71,7	02,3	4 1	

FECHA: 14/06/2009 **pH:** 7.5

Tabla	34	Resultados	SST

14/06/2009	pH: 7.5				Tabla 34 Res	ultados	s SST
	Pesos Inicial del						
Dosis (ml)	crisol	Peso Final de Crisol	Vol. de Muestra (ml)	SST mg / L	X - SST mg / L	% CV	% R
30	29,0092	29,01105	25	74	75	2	
30	28,1496	28,1515	25	76	75	2	53,1
M 30	29,9994	30,0013	15	126,7	160	29,5	33,1
M 30	28,842	28,8449	15	193,3	100	29,3	
50	28,9201	28,9234	100	33	36	12	
50	30,7013	30,7052	100	39	30	12	83,1
M 50	29,5897	29,5928	15	206,7	213,3	4,4	65,1
M 50	29,4746	29,4779	15	220	215,5	4,4	
100	28,7215	28,7219	25	16	16,6	5,1	
100	26,8812	26,88163	25	17,5	10,0	3,1	90,3
M 100	29,3109	29,3132	15	153,3	173,3	16,3	30,3
M 100	26,9655	26,9684	15	193,3	173,3	10,5	
150	26,6166	26,6178	50	24	22	13	
150	26,9046	26,9056	50	20	22	15	87,5
M 150	25,9156	25,92	25	176	176	0	67,5
M150	29,8293	29,8337	25	176	170	U	
200	31,1822	31,1833	60	18,3	17 5	7	
200	27,8903	27,8913	60	17	17,5	,	71,5
M 200	28,7636	28,7665	50	58	62	9,1	71,3
M 200	29,6552	29,6585	50	66	02	9,1	
250	26,9057	26,9062	60	8,3	8,3	0	
250	28,0651	28,0656	60	8,3	0,3	O	96
M 250	28,7334	28,7409	40	187,5	195	5,4	90
M 250	31,1832	31,1913	40	202,5	195	5,4	
300	29,9989	30,0014	60	42	27.5	16	
300	30,6987	30,7007	60	33,3	37,5	16	40
M 300	27,9522	27,9554	60	53,3	62.5	21	40
M 300	28,7637	28,768	60	71,7	62,5	21	

FECHA: 18/06/2009 **pH:** 8.5

Tabla 35 Resultados SST

10/00/2	009 pH: 8.5				Tabla 35 R	esuitaa	05 331
Dosis	Pesos Inicial del crisol	Peso Final de Crisol	Vol. de Muestra (ml)	SST mg / L	X - SST mg / L	% CV	% R
30	31,1832	31,2874	25	4168	2160	131,5	
30	27,8916	27,8954	25	152	2100	131,3	-1250
M 30	29,9994	30,0013	15	126,7	160	29,5	-1250
M 30	28,842	28,8449	15	193,3	100	29,3	
50	27,9539	27,9629	100	90	99	13	
50	29,2288	29,2315	25	108	99	15	54
M 50	29,5897	29,5928	15	206,7	213,3	4,4	54
M 50	29,4746	29,4779	15	220	213,3	4,4	
100	25,9187	25,9205	25	72	68	8,3	
100	26,9061	26,9077	25	64	08	0,3	61
M 100	29,3109	29,3132	15	153,3	173,3	16,3	01
M 100	26,9655	26,9684	15	193,3	173,3	10,5	
150	29,5871	29,5884	50	26	24	12	
150	27,7638	27,7649	50	22	24	12	86,4
M 150	25,9156	25,92	25	176	176	0	60,4
M150	29,8293	29,8337	25	176	170	U	
200	28,1487	28,1498	60	18,3	19,1	6,1	
200	29,9987	29,9999	60	20	19,1	0,1	69,1
M 200	28,7636	28,7665	50	58	62	9,1	05,1
M 200	29,6552	29,6585	50	66	02	3,1	
250	29,4716	29,4725	60	15	17	14,1	
250	29,3081	29,3092	60	18,3	17	14,1	91,5
M 250	28,7334	28,7409	40	187,5	195	5,4	91,3
M 250	31,1832	31,1913	40	202,5	133	2,4	
300	29,6557	29,6583	60	43,3	43	3	
300	31,1827	31,1852	60	42	43	3	32
M 300	27,9522	27,9554	60	53,3	62,5	21	32
M 300	28,7637	28,768	60	71,7	02,5	Z T	

FECHA: 18/06/2009 **pH: 9**.5

Tabla 36 Resultados SST

	003 pii. 3 .3	5 5 11 6 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CCT /:	rabia 30 m		
Dosis	Pesos Inicial del crisol		Vol. de Muestra (ml)	SST mg / L	X - SST mg / L	% CV	% R
30	29,2267	29,2322	15	367	373,3	2,5	133,
30	25,572	25,5777	15	380			
M 30	29,9994	30,0013	15	126,7	160	29,5	
M 30	28,842	28,8449	15	193,3			
50	29,0164	29,0354	15	1267	1300	4	-509,4
50	28,4188	28,4388	15	1333,3			
M 50	29,5897	29,5928	15	207	213,3	4,4	
M 50	29,4746	29,4779	15	220		4,4	
100	26,3308	26,3445	15	913,3	907	1	423
100	31,3583	31,3718	15	900			
M 100	29,3109	29,3132	15	153,3	173,3	16,3	
M 100	26,9655	26,9684	15	193,3			
150	29,4714	29,4752	25	152	172	16.4	- 2,3
150	28,0655	28,0703	25	192	1/2	16,4	
M 150	25,9156	25,92	25	176	176	0	
M150	29,8293	29,8337	25	176			
200	28,4166	28,4206	50	80	76	7,4	22,5
200	30,6989	30,70178	40	72			
M 200	28,7636	28,7665	50	58	62	0 17	
M 200	29,6552	29,6585	50	66		9,17	
250	27,0565	27,0593	60	47	48,3	_	
250	28,9182	28,9212	60	50		5	75,2
M 250	28,7334	28,7409	40	187,5	195	5,4	
M 250	31,1832	31,1913	40	202,5			
300	28,8421	28,8436	60	25	23,3	10,1	63
300	29,0142	29,0155	60	22			
M 300	27,9522	27,9554	60	53,33	62,5	21	
M 300	28,7637	28,768	60	72			

FECHA: 26/06/2009 **pH:** 10

Tabla 37 Resultados SST

26/06/2009 pH: 10 Tabla 37 Result								
Dosis	Pesos Inicial del crisol	Peso Final de Crisol	Vol. de Muestra (ml)	SST mg / L	X - SST mg / L	% CV	% R	
30	28,9187	28,9265	15	520	523,3	0,9		
30	28,418	28,4259	15	527			-227,1	
M 30	29,9994	30,0013	15	126,7	160	29,4	-227,1	
M 30	28,842	28,8449	15	193,3				
50	28,7349	28,761	15	1740	1790	3,9	739	
50	30,0008	30,0284	15	1840				
M 50	29,5897	29,5928	15	206,7	213,3	4,4		
M 50	29,4746	29,4779	15	220				
100	29,8321	29,8673	15	2347	2453,3	6,1	-1316	
100	27,7676	27,806	15	2560				
M 100	29,3109	29,3132	15	153,3	173,3	16,3		
M 100	26,9655	26,9684	15	193,3		10,5		
150	27,6035	27,6253	25	872	874	0,3	-397	
150	26,8781	26,9	25	876				
M 150	25,9156	25,92	25	176	176	0		
M150	29,8293	29,8337	25	176				
200	29,0141	29,0289	50	296	237	35,4	-282	
200	28,8422	28,8493	40	177,5				
M 200	28,7636	28,7665	50	58	62	9,1		
M 200	29,6552	29,6585	50	66		3,1		
250	27,7628	27,7654	60	43,3	45	5,2		
250	25,9157	25,9185	60	47		3,2	77	
M 250	28,7334	28,7409	40	187,5	195	5,4	//	
M 250	31,1832	31,1913	40	202,5				
300	25,5711	25,5725	60	23,3	23,3	0	63	
300	28,4171	28,4185	60	23,3				
M 300	27,9522	27,9554	60	53,3	62,5	21		
M 300	28,7637	28,768	60	72				

Anexo B TABLAS DE RESULTADOS SOLIDOS SUSPENDIDOS TOTALES