ANÁLISIS DE ESTABILIDAD DE PEQUEÑA SEÑAL EN EL SISTEMA ELÉCTRICO DE PEREIRA

ANÁLISIS DE ESTABILIDAD DE PEQUEÑA SEÑAL EN EL SISTEMA ELÉCTRICO DE PEREIRA

MAURICIO RAMÍREZ CASTAÑO 18520772

LUZ ADRIANA DUQUE TORRES 1088247681

UNIVERSIDAD TECNÓLOGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS PROGRAMA DE TECNOLOGÍA ELÉCTRICA PEREIRA 2009

ANÁLISIS DE ESTABILIDAD DE PEQUEÑA SEÑAL

EN EL SISTEMA ELÉCTRICO DE PEREIRA

MAURICIO RAMÍREZ CASTAÑO 18520772 LUZ ADRIANA DUQUE TORRES 1088247681

TRABAJO DE GRADO PARA OPTAR AL TÍTULO DE TECNÓLOGO ELÉCTRICO

DIRECTOR OSCAR GÓMEZ CARMONA INGENIERO ELECTRICISTA

UNIVERSIDAD TECNÓLOGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS PROGRAMA DE TECNOLOGÍA ELÉCTRICA PEREIRA 2009

Contenido

Co	onteni	ido		Ι
Li	sta de	e tablas		IV
Li	sta de	figuras	5	VI
RI	ESUN	IEN		XII
IN	TRO	DUCCI	ON	XIII
0	BJET	IVOS		XIV
1.	TEC ELÉ	DRÍA, O ECTRIO	CLASIFICACIÓN Y DEFINICIÓN DE ESTABILIDAD EN SISTEMAS COS DE POTENCIA	5 1
	1.1.	ESTAI	BILIDAD EN SISTEMAS DE POTENCIA	1
	1.2.	ESTAI	BILIDAD DE ÁNGULO.	1
		1.2.1.	Estabilidad de Pequeña Señal	2
		1.2.2.	Estabilidad Transitoria.	2
	1.3.	ESTAI	BILIDAD DE FRECUENCIA	2
		1.3.1.	Estabilidad de Frecuencia a Corto Plazo.	3
		1.3.2.	Estabilidad de Frecuencia a Largo Plazo.	3
	1.4.	ESTAI	BILIDAD DE TENSION.	3
		1.4.1.	Estabilidad de tensión Ante Grandes Disturbios.	3
		1.4.2.	Estabilidad de tensión Ante Pequeños Disturbios.	4
		1.4.3.	Estabilidad de tensión de Corto Plazo	4
		1.4.4.	Estabilidad de tensión a Largo Plazo.	4
	1.5.	ESTAI	BILIDAD DE PEQUEÑA SEÑAL.	5

1.6.	DEFIN	VICIÓN DE LAS VARIABLES DE ESTADO	5
	1.6.1.	Velocidad del Rotor:	6
	1.6.2.	Ángulo del Rotor:	6
	1.6.3.	Enlaces de flujo.	6
1.7.	METC ESTAI	DOLOGÍA UTILIZADA PARA REALIZAR EL ESTUDIO DE BILIDAD DE PEQUEÑA SEÑAL	6
	1.7.1.	ANÁLISIS MODAL	6
	1.7.2.	TIPOS DE OSCILACIONES QUE SE PRESENTAN EN EL SISTEMA .	7
	1.7.3.	TIPOS DE MODOS DE OSCILACIÓN	9
1.8.	ANÁL	ISIS MATEMÁTICO	11
	1.8.1.	MÉTODO DE OBTENCIÓN DE VALORES PROPIOS	12
	1.8.2.	Valores Propios:	12
	1.8.3.	Vectores Propios:	14
	1.8.4.	Factores de Participación.	15
CAF PER 2.1	RACTE EIRA (SISTE	RIZACION DEL SISTEMA ELECTRICO DE POTENCIA DE (VERSIÓN ACADÉMICA) MA ELÉCTRICO DE LA CIUDAD DE PEREIRA	16 16
2.1.	SISTE	MA ELECTRICO DE LA CIUDAD DE PEREIRA	10
2.2.	DESC		17
2.3.	DESC	RIPCION DE LAS SUBESTACIONES	17
	2.3.1.	Subestación Venterrille	1/
	2.3.2.		18
	2.3.3.		10
	221	Subastación Cantro	19
	2.3.4.	Subestación Centro.	18
	2.3.4.2.3.5.2.3.6	Subestación Centro. Subestación Cartago. Subestación Pavas	18 18 19
24	2.3.4.2.3.5.2.3.6.SISTE	Subestación Centro. Subestación Cartago. Subestación Cartago. Subestación Cartago. Subestación Pavas. Subestación Pavas. MA EL ÉCTRICO DE POTENCIA DE LA CIUDAD DE PEREIRA PARA	18 18 19
2.4.	2.3.4. 2.3.5. 2.3.6. SISTE ESTU	Subestación Centro.Subestación Cartago.Subestación Cartago.Subestación Pavas.Subestación Pavas.Subestación Pavas.MA ELÉCTRICO DE POTENCIA DE LA CIUDAD DE PEREIRA PARADIOS ACADÉMICOS	18 18 19 19
2.4.2.5.	2.3.4. 2.3.5. 2.3.6. SISTE ESTUI CARA	Subestación Centro. Subestación Cartago. Subestación Cartago. Subestación Pavas. Subestación Pavas. Subestación Pavas. MA ELÉCTRICO DE POTENCIA DE LA CIUDAD DE PEREIRA PARA DIOS ACADÉMICOS SUBESTEMA CTERÍSTICAS DE LOS ELEMENTOS DEL SISTEMA	 18 18 19 19 23
2.4.2.5.	2.3.4. 2.3.5. 2.3.6. SISTE ESTUI CARA 2.5.1.	Subestación Centro. Subestación Cartago. Subestación Cartago. Subestación Pavas. Subestación Pavas. Subestación Pavas. MA ELÉCTRICO DE POTENCIA DE LA CIUDAD DE PEREIRA PARA DIOS ACADÉMICOS Subestación Cartago. CTERÍSTICAS DE LOS ELEMENTOS DEL SISTEMA Subestación Cartago.	 18 18 19 19 23 23
2.4.2.5.	2.3.4. 2.3.5. 2.3.6. SISTE ESTUI CARA 2.5.1. 2.5.2.	Subestación Centro. Subestación Cartago. Subestación Cartago. Subestación Pavas. Subestación Pavas. Subestación Pavas. MA ELÉCTRICO DE POTENCIA DE LA CIUDAD DE PEREIRA PARA DIOS ACADÉMICOS Subestación Cartago. CTERÍSTICAS DE LOS ELEMENTOS DEL SISTEMA Subestación Líneas de subtransmisión Subestación Cartago.	 18 18 19 19 23 23 24
2.4.2.5.	2.3.4. 2.3.5. 2.3.6. SISTE ESTUI CARA 2.5.1. 2.5.2. 2.5.3.	Subestación Centro. Subestación Cartago. Subestación Cartago. Subestación Pavas. MA ELÉCTRICO DE POTENCIA DE LA CIUDAD DE PEREIRA PARA DIOS ACADÉMICOS CTERÍSTICAS DE LOS ELEMENTOS DEL SISTEMA Generadores Líneas de subtransmisión Transformadores	 18 18 19 19 23 23 24 24
2.4.2.5.2.6.	2.3.4. 2.3.5. 2.3.6. SISTE ESTUI CARA 2.5.1. 2.5.2. 2.5.3. CARA	Subestación Centro. Subestación Cartago. Subestación Cartago. Subestación Pavas. MA ELÉCTRICO DE POTENCIA DE LA CIUDAD DE PEREIRA PARA DIOS ACADÉMICOS CTERÍSTICAS DE LOS ELEMENTOS DEL SISTEMA Generadores Líneas de subtransmisión Transformadores CTERÍSTICAS DE LOS CIRCUITOS	 18 18 19 19 23 23 24 24 25
	 1.6. 1.7. 1.8. CAF PER 2.1. 2.2. 2.3. 	 1.6. DEFIN 1.6.1.	1.6. DEFINICIÓN DE LAS VARIABLES DE ESTADO 1.6.1. Velocidad del Rotor: 1.6.2. Ángulo del Rotor: 1.6.3. Enlaces de flujo. 1.6.3. Enlaces de flujo. 1.7. METODOLOGÍA UTILIZADA PARA REALIZAR EL ESTUDIO DE ESTABILIDAD DE PEQUEÑA SEÑAL 1.7.1. ANÁLISIS MODAL 1.7.2. TIPOS DE OSCILACIONES QUE SE PRESENTAN EN EL SISTEMA 1.7.3. TIPOS DE MODOS DE OSCILACIÓN 1.8. ANÁLISIS MATEMÁTICO 1.8.1. MÉTODO DE OBTENCIÓN DE VALORES PROPIOS 1.8.2. Valores Propios: 1.8.3. Vectores Propios: 1.8.4. Factores de Participación. CARACTERIZACIÓN DEL SISTEMA ELÉCTRICO DE POTENCIA DE PEREIRA (VERSIÓN ACADÉMICA) 2.1. SISTEMA ELÉCTRICO DE LA CIUDAD DE PEREIRA 2.3. DESCRIPCIÓN DE LAS SUBESTACIONES 2.3.1. Subestación Dosquebradas. 2.3.2. Subestación Cuba.

		2.6.2.	DEMANDA DE POTENCIA REACTIVA	33
	2.7.	CLAS	IFICACIÓN DE LOS NODOS	41
3.	ANÁ SIM	ÁLISIS ULADO	DE ESTABILIDAD DE PEQUEÑA SEÑAL MEDIANTE EL DR NEPLAN	42
	3.1.	EJERC	TICIO DE PRUEBA	42
	3.2.	INGRI	ESO DE DATOS AL SIMULADOR NEPLAN	43
		3.2.1.	PARÁMETROS CORRESPONDIENTES AL MÓDULO DE ESTABILIDAD DE PEQUEÑA SEÑAL	54
	3.3.	RESU	LTADOS CORRESPONDIENTES AL ANALISIS MODAL	56
		3.3.1.	Valores propios.	57
		3.3.2.	Formas de modo local	60
		3.3.3.	Forma de modo entre-áreas	62
		3.3.4.	Factores de Participación de Valores Propios	63
		3.3.5.	Participación de variables de estado	64
4.	CAS	SOS DE	PRUEBA	66
	4.1.	CARG	ABILIDAD MAXIMA DEL SISTEMA	66
	4.2.	DEMA	NDA MAXIMA DEL SISTEMA.	71
		4.2.1.	FACTORES DE PARTICIPACION DEL SISTEMA.	74
	4.3.	DEMA	NDA MÍNIMA DEL SISTEMA	76
	4.4.	CARG POTEN	ABILIDAD MÁXIMA DEL SISTEMA AUMENTADA EL 2% EN LA NCIA ACTIVA Y REACTIVA	81
	4.5.	ANAL	ISIS DE RESULTADOS	87
5.	CON	NCLUS	IONES	89
Bi	bliogr	afía		91

Lista de tablas

2.1.	Nodos del sistema	20
2.2.	Líneas de Subtransmisión	20
2.3.	Generadores	21
2.4.	Transformadores	21
2.5.	Compensaciones	22
2.6.	Circuitos de cada subestación	22
2.7.	Características de los generadores	23
2.8.	Características de las líneas	24
2.9.	Características transformadores	24
2.10.	Características de las compensaciones	25
2.11.	Demanda de potencia horaria en p.u	25
2.12.	Demanda de potencia horaria en p.u	27
2.13.	Demanda de potencia horaria en p.u	29
2.14.	Demanda de potencia horaria en p.u	30
2.15.	Demanda de potencia horaria en p.u	32
2.16.	Demanda de potencia horaria en p.u	32
2.17.	Demanda de potencia horaria en p.u	33
2.18.	Demanda de potencia horaria en p.u en la subestación Dosquebradas	34
2.19.	Demanda de potencia horaria en p.u	36
2.20.	Demanda de potencia horaria en p.u en la subestación Ventorrillo	38
2.21.	Demanda de potencia horaria en p.u	39
2.22.	Demanda de potencia horaria en p.u en la subestación Pavas	40
3.1.	Tipo de módulos de Neplan	44

4.1.	Valores propios, frecuencias y factores de amortiguamiento para cargabilidad máxima del sistema.	66
4.2.	Valores propios, frecuencias y factores de amortiguamiento para demanda máxima del sistema.	72
4.3.	Valores propios, frecuencias y factores de amortiguamiento para demanda máxima del sistema.	76
4.4.	Valores propios, frecuencias y factores de amortiguamiento para cargabilidad máxima del sistema más el 2% de la potencia activa y reactiva.	82

Lista de figuras

1.1.	Esquema de clasificación de estabilidad de sistemas de potencia, según IEEE and CIGRE Join Task Force.	5
1.2.	Oscilaciones positivamente amortiguadas	7
1.3.	Oscilaciones sostenidas o no amortiguadas	8
1.4.	Oscilaciones amortiguadas negativamente	8
1.5.	Modos entre-áreas	9
1.6.	Modos locales	9
1.7.	Modo intra-área	10
1.8.	Modo intra-planta	10
1.9.	Representación de Valores propios y Modos del sistema dinámico	12
2.1.	Diagrama unifilar del sistema electrico de Pereira	19
2.2.	Curva de demanda horaria de CE-CTO 1	26
2.3.	Curva de demanda horaria de CE-CTO 2	26
2.4.	Curva de demanda horaria de CE-CTO3	26
2.5.	Curva de demanda horaria de CE-CTO 4	26
2.6.	Curva de demanda horaria de CE-CTO 5	26
2.7.	Curva de demanda horaria de DQ-CTO 1	27
2.8.	Curva de demanda horaria de DQ-CTO 2	27
2.9.	Curva de demanda horaria de DQ-CTO 3	27
2.10.	Curva de demanda horaria de DQ-CTO 4	27
2.11.	Curva de demanda horaria de DQ-CTO 5	28
2.12.	Curva de demanda horaria de DQ-CTO 6	28
2.13.	Curva de demanda horaria de DQ-CTO 7+1 BE	28
2.14.	Curva de demanda horaria de CE-CTO 8	28
2.15.	Curva de demanda horaria de DQ-CTO IND	28

2.16. Curva de demanda horaria de CU-CTO 1	29
2.17. Curva de demanda horaria de CU-CTO 3	29
2.18. Curva de demanda horaria de CU-CTO 4	29
2.19. Curva de demanda horaria de CU-CTO 5	29
2.20. Curva de demanda horaria de CU-CTO 6	30
2.21. Curva de demanda horaria de CU-CTO 7+8	30
2.22. Curva de demanda horaria de VE-CTO 1	30
2.23. Curva de demanda horaria de VE-CTO 2	30
2.24. Curva de demanda horaria de VE-CTO 3	31
2.25. Curva de demanda horaria de VE-CTO 4	31
2.26. Curva de demanda horaria de VE-CTO 5	31
2.27. Curva de demanda horaria de VE-CTO 6	31
2.28. Curva de demanda horaria de VE-CTO VHP	31
2.29. Curva de demanda horaria de VE-CTO IND	31
2.30. Curva de demanda horaria de LR-CTO IND ANDI	32
2.31. Curva de demanda horaria de PA-CTO 1	32
2.32. Curva de demanda horaria de CE-CTO 1	33
2.33. Curva de demanda horaria de CE-CTO 2	33
2.34. Curva de demanda horaria de CE-CTO 3	33
2.35. Curva de demanda horaria de CE-CTO 4	33
2.36. Curva de demanda horaria de CE-CTO 5	34
2.37. Curva de demanda horaria de DQ-CTO 1	34
2.38. Curva de demanda horaria de DQ-CTO 2	34
2.39. Curva de demanda horaria de DQ-CTO 3	35
2.40. Curva de demanda horaria de DQ-CTO 4	35
2.41. Curva de demanda horaria de DQ-CTO 5	35
2.42. Curva de demanda horaria de DQ-CTO 6	35
2.43. Curva de demanda horaria de DQ-CTO 7+1BE	36
2.44. Curva de demanda horaria de DQ-CTO 8	36
2.45. Curva de demanda horaria de DQ-CTO IND	36
2.46. Curva de demanda horaria de CU-CTO 1	37
2.47. Curva de demanda horaria de CU-CTO 3	37
2.48. Curva de demanda horaria de CU-CTO 4	37

2.49.	Curva de demanda horaria de CU-CTO 5	 	 	 	•			•	37
2.50.	Curva de demanda horaria de CU-CTO 6	 	 	 	•			•	37
2.51.	Curva de demanda horaria de CU-CTO 7+8	 	 	 	•			•	37
2.52.	Curva de demanda horaria de VE-CTO 1	 	 	 	•			•	38
2.53.	Curva de demanda horaria de VE-CTO 2	 	 	 	•			•	38
2.54.	Curva de demanda horaria de VE-CTO 3	 	 ••	 •	•			•	38
2.55.	Curva de demanda horaria de VE-CTO 4	 	 ••	 •	•			•	38
2.56.	Curva de demanda horaria de VE-CTO 5	 	 ••	 •	•			•	39
2.57.	Curva de demanda horaria de VE-CTO 6	 	 • •	 •	•	• •	• •	•	39
2.58.	Curva de demanda horaria de VE-CTO VHP	 	 • •	 •	•	• •	• •	•	39
2.59.	Curva de demanda horaria de CU-CTO 7+8	 	 • •	 •	•	• •	• •	•	39
2.60.	Curva de demanda horaria de LR-CTO IND	 	 • •	 •	•	•••	• •	•	40
2.61.	Curva de demanda horaria de PA-CTO 1	 	 • •	 • •	•			•	40
3.1.	Un sistema de dos-áreas	 	 	 	•				42
3.2.	Parámetros del generador	 	 	 	•				44
3.3.	Límites del generador	 	 	 	•				45
3.4.	Punto de operación del generador	 	 	 	•			•	45
3.5.	Dinámico del generador	 	 	 	•				46
3.6.	Circuito equivalente reactancia subtransitoria	 	 	 	•				47
3.7.	Devanado amortiguador reactancia subtransitoria	 	 	 	•				47
3.8.	Circuito equivalente reactancia subtransitoria	 	 	 	•				48
3.9.	Devanado amortiguador reactancia subtransitoria	 	 	 	•				48
3.10.	Circuito equivalente reactancia subtransitoria	 	 	 	•				48
3.11.	Devanado amortiguador reactancia subtransitoria	 	 	 	•			•	48
3.12.	Ejemplo de un cortocircuito trifásico	 	 	 	•				49
3.13.	Saturación del generador	 	 	 	•				50
3.14.	Parámetros del transformador	 	 	 	•				50
3.15.	Limites del transformador	 	 	 	•			•	51
3.16.	Regulación del transformador	 	 	 	•				51
3.17.	Parámetro del nodo	 	 	 	•			•	52
3.18.	Parámetro de línea	 	 	 	•			•	52
3.19.	Parámetros de compensadores	 	 	 	•			•	53

3.20.	Parámetros de carga	53
3.21.	Acceso al módulo estabilidad de pequeña señal	54
3.22.	Parámetros de estabilidad de pequeña señal	55
3.23.	Pestaña modelos	55
3.24.	Archivos de resultados	56
3.25.	Acceder a los resultados	57
3.26.	Ventana de gráficos	57
3.27.	Ajustes subgráficos	58
3.28.	Curvas	58
3.29.	Curvas de resultados	59
3.30.	Valores Propios del sistema	59
3.31.	Forma de modo del valor propio seleccionado	60
3.32.	Curvas	61
3.33.	Ventana para seleccionar valor propio	61
3.34.	Forma de modo local del valor Propio $(-0,427 + j6,986)$	62
3.35.	Forma de modo local del valor Propio $(-0,718+j6,757)$	62
3.36.	Forma de modo entre áreas del valor propio $(-0, 613 + j3, 130)$	63
3.37.	Factores de participación del valores propio $(-0,613 + j3,130)$	63
3.38.	Factores de participación del valores propio $(-0,427 + j6,986)$	64
3.39.	Factores de participación del valores propio $(-0,718 + j6,757)$	64
3.40.	Participación de variables de estado	65
4.1.	Forma de Modo local utilizando el valor propio $0,006 + j8,504$	67
4.2.	Forma de Modo local utilizando el valor propio $-0,007 + j6,393$	67
4.3.	Forma de Modo local utilizando el valor propio $-0.032 + j7.552$	68
4.4.	Forma de Modo local utilizando el valor propio $-0.532 + j7.248$	68
4.5.	Gráfico de valores propios y estabilidad del sistema	69
4.6.	Factores de participación utilizando el valor propio $0,006 + j8,504$	69
4.7.	Factores de participación utilizando el valor propio $-0,007 + j6,393$	70
4.8.	Factores de participación utilizando el valor propio $-0.032 + j7.552$	70
4.9.	Factores de participación utilizando el valor propio $-0.532 + j7.248$	71
4.10.	Factores de participación de variable de estado (Ángulo Rotor)	71
4.11.	Modo local utilizando el valor propio $-0,003 + j8,091$	72

4.12. Modo local utilizando el valor propio $-0,007 + j6,659$	72
4.13. Modo local utilizando el valor propio $-0.035 + j6.692$	73
4.14. Modo local utilizando el valor propio $-0.538 + j7.123$	73
4.15. Valores Propios y Estabilidad del Sistema.	74
4.16. Factores de participación utilizando el valor propio $-0.003 + j8.091$	74
4.17. Factores de participación utilizando el valor propio $-0,007 + j6,659$	75
4.18. Factores de participación utilizando el valor propio $-0.035 + j6.692$	75
4.19. Factores de participación utilizando el valor propio $(-0,538 + j7,123)$	75
4.20. Factores de participación de variable de estado (Ángulo de Rotor)	76
4.21. Modo local utilizando el valor propio $-0,005 + j7,922$	77
4.22. Modo local utilizando el valor propio $-0.012 + j6.736$	77
4.23. Modo local utilizando el valor propio $-0.032 + j6.624$	78
4.24. Modo local utilizando el valor propio $-0.529 + j7.165$	78
4.25. Gráfico de Valores Propios y Estabilidad del Sistema	79
4.26. Factores de participación utilizando el valor propio $-0,005 + j7,922$	79
4.27. Factores de participación utilizando el valor propio $-0.012 + j6.736$	80
4.28. Factores de participación utilizando el valor propio $-0.032 + j6.624$	80
4.29. Factores de participación utilizando el valor propio $-0.529 + j7.165$	81
4.30. Factores de participación de variable de estado (Ángulo de Rotor)	81
4.31. Modo local utilizando el valor propio $0,006 + j8,484$	82
4.32. Forma de Modo local utilizando el valor propio $-0,007 + j6,381 \dots \dots \dots \dots$	83
4.33. Forma de Modo local utilizando el valor propio $-0.033 + j7.232$	83
4.34. Forma de Modo local utilizando el valor propio $-0.530 + j7.267$	84
4.35. Gráfico de valores propios y estabilidad del sistema	84
4.36. Factores de participación utilizando el valor propio $0,006 + j8,484$	85
4.37. Factores de participación utilizando el valor propio $-0,007 + j6,381$	85
4.38. Factores de participación utilizando el valor propio $-0.033 + j7.232$	86
4.39. Factores de participación utilizando el valor propio $-0.532 + j7.248$	86
4.40. Factores de participación de variable de estado (Ángulo Rotor)	87

DEDICATORIA

A mi familia que siempre me apoyó en todo momento y siempre tuvo fe en mí; a mi hermana y mi cuñado quienes estuvieron pendientes de mí en todo momento y siempre me dieron todo lo que yo necesitaba. Gracias por todo el apoyo que me brindaron y por toda la paciencia que me tuvieron.

Mauricio Ramírez

Dedico especialmente este trabajo a mis padres y hermanas quienes siempre estuvieron allí presentes y a una persona muy especial James A. Pérez que me ha ayudado y brindado su apoyo en todo momento.

L. Adriana Duque

AGRADECIMIENTOS

Un agradecimiento especial al ingeniero *Oscar Gómez* quien fue el director de este proyecto y quien nos orientó durante la realización del mismo.

A todos nuestros compañeros de carrera quienes estuvieron con nosotros en todo momento y nos prestaron su ayuda cuando la necesitamos.

RESUMEN

En este trabajo se presenta la metodología y los resultados obtenidos en el análisis de estabilidad de pequeña señal del Sistema Eléctrico de Pereira,(versión académica) realizado usando el software **NEPLAN 5.2**, el cual contiene un módulo para el análisis de **estabilidad de pequeña señal**.

Se utilizó el método de análisis modal para analizar la estabilidad de pequeña señal del sistema, por lo tanto se presenta la fundamentación teórica, la formulación matemática y se calculan los modos de oscilación, frecuencias y factores de participación de los generadores.

El estudio de estabilidad de pequeña señal se realizó para cuatro casos de prueba, estos son: cargabilidad máxima del sistema, cargabilidad máxima del sistema aumentada un 2%, demanda máxima del sistema y demanda mínima del sistema, para cada caso se obtuvo todos los valores propios, y de estos se calcularon todas las formas de modo del sistema para posteriormente hacer un análisis de resultados.

INTRODUCCION

En el planeamiento y operación de los SEP (Sistemas Eléctricos de Potencia) se requiere cada vez más del estudio y análisis de estabilidad, ya que estos constituyen una herramienta complementaria a los estudios realizados en el planeamiento operativo.

Es importante identificar el estado dinámico de la red y obtener el escenario de operación adecuado para la red, que desde el punto de vista de estabilidad, debe ser aquel que permita oscilaciones mas amortiguadas, mejor comportamiento ante pequeños cambios en el sistema, mejor estabilidad de voltaje, mayor seguridad y robustez. Los estudios, cálculos y verificaciones sobre el amortiguamiento de posibles modos críticos y la determinación de especificaciones de los generadores factibles de mejorar el amortiguamiento, permiten tomar acciones decisivas en el planeamiento y operación del sistema.

Los sistemas de potencia actuales presentan en general, tendencia a la aparición permanente de oscilaciones electromecánicas, debidas al aumento de interconexiones y a las características de los sistemas predominantemente hidroeléctricos constituidos por líneas de transmisión largas. La aparición de oscilaciones son producto de la inestabilidad denominada de pequeña señal que ocurren cuando el sistema de potencia es incapaz de mantenerse en sincronismo bajo pequeñas perturbaciones; estas ocurren constantemente debido a pequeños cambios en la carga y generación. Se dice entonces que un sistema posee estabilidad de pequeña señal, si después de ocurrido un pequeño disturbio, el sistema regresa a su condición inicial de operación [7].

Las oscilaciones electromecánicas crecientes pueden ocasionar problemas que afectan directamente al sistema eléctrico provocando entre otros los siguientes efectos: pérdida de estabilidad dinámica, actuación de los sistemas de protección, aumento de la probabilidad de corte de carga, deterioro de la calidad de servicio, disminución de la confiabilidad del sistema; y en ciertos casos, pueden provocar que el sistema evolucione hacia el colapso [1].

La combinación de la frecuencia de oscilación, amortiguamiento y diagrama de participaciones caracterizan a los modos de oscilaciones del sistema. Estos modos son estudiados por la estabilidad de pequeña señal cuyo propósito es identificar los modos de oscilación locales o entre-áreas que sean negativos o pobremente amortiguados y que por ende pueden poner en riesgo la estabilidad del sistema.

OBJETIVOS

Objetivo General

Realizar un estudio de estabilidad de pequeña señal en el sistema eléctrico de Pereira (versión académica).

Objetivos específicos

- Estudiar el problema de la estabilidad de pequeña señal en sistemas eléctricos
- Describir los métodos para el análisis de la estabilidad de pequeña señal en sistemas eléctricos.
- Estudiar y explicar el funcionamiento del software **NEPLAN** para el análisis de estabilidad de pequeña señal.
- Aplicar el software **NEPLAN** en el análisis de estabilidad de pequeña señal en el sistema eléctrico de Pereira.

TEORÍA, CLASIFICACIÓN Y DEFINICIÓN DE ESTABILIDAD EN SISTEMAS ELÉCTRICOS DE POTENCIA

1.1. ESTABILIDAD EN SISTEMAS DE POTENCIA.

A pesar que desde los años 20 se ha estudiado el problema de estabilidad de los sistemas de potencia, actualmente este interés se ha incrementado debido a los sucesos recientes en la infraestructura eléctrica de las grandes ciudades y países del planeta.

Un sistema de potencia es una función de orden multivariable en el cual la respuesta dinámica es influenciada por una amplia gama de dispositivos con diferentes características y tiempos de respuesta. La estabilidad es una condición de equilibrio entre fuerzas opuestas activas en el sistema. Dependiendo de la topología de la red, las condiciones operativas, la forma y magnitud de los disturbios, estas fuerzas de oposición pueden experimentar el desequilibrio sostenido que conduce a diversas formas de inestabilidad.

El problema de estabilidad de los SEP concierne a la recuperación del estado de operación de equilibrio en un tiempo finito, después que se ha sometido a un disturbio físico dada una condición inicial de operación [8].

Mantener en sincronismo estos sistemas ante cambios repentinos ó bruscos en la carga o en la generación, o ante cortocircuitos en la red, ha sido un problema a manejar desde que la transmisión de energía eléctrica comenzó a funcionar con corriente alterna. Esto se ha hecho más difícil conforme incrementaron las distancias, aumentó el mallado de las redes y se requirió cada vez más potencia. Ante estas necesidades, nuevos generadores fueron desarrollados, y sus sistemas de excitación junto a los interruptores de líneas fueron perfeccionándose aumentando su velocidad de respuesta.

Existen diferentes clases de estabilidad de SEP dependiendo del tema que se aborde. A continuación se dará la clasificación.

1.2. ESTABILIDAD DE ÁNGULO.

Es la habilidad de las máquinas síncronas de un SEP de permanecer en sincronismo después que ocurre un disturbio, significa que el torque electromagnético debido al sistema, deberá ser igual al torque mecánico impulsor del generador, que conducirá a un valor constante del ángulo del rotor. La inestabilidad ocurre en el momento en que las oscilaciones angulares de los generadores bajo disturbio, con respecto a los del resto del sistema, incrementan indefinidamente. Los estudios de estabilidad de ángulo de rotor se pueden dividir en dos subcategorías:

1.2.1. Estabilidad de Pequeña Señal.

Es la capacidad del sistema de potencia de mantener el sincronismo sobre pequeñas perturbaciones, las cuales son consideradas suficientemente pequeñas, lo que permite la linealización del sistema de ecuaciones para su análisis. El rango de tiempo de interés para el estudio de este tipo de estabilidad angular es de los 10 a los 20 segundos después de ocurrido el disturbio. En general, la inestabilidad en pequeña señal está asociada a la insuficiencia de amortiguación en el sistema. La inestabilidad se puede presentar de la siguiente forma:

- 1. Aumento del ángulo del rotor de forma aperiódica o no oscilatoria, debido a la falta de torque sincronizante, es decir este último está relacionado con la conversión de energía mecánica a eléctrica y la habilidad de desarrollar este torque es importante para la estabilidad.
- 2. Oscilaciones crecientes del ángulo de rotor debido a la falta de torque amortiguador, este último está asociado con la disipación de energía y es fundamental en las amortiguaciones de las oscilaciones de rotor [8].

1.2.2. Estabilidad Transitoria.

Es la disposición del sistema de potencia de mantener el sincronismo después de un disturbio transitorio severo. Producto de este disturbio se generan grandes variaciones del ángulo del rotor del generador, estas variaciones se deben a la relación no lineal que existe entre la potencia y el ángulo. La estabilidad transitoria de un SEP depende de la condición inicial de operación, de la severidad del disturbio y la robustez de la red de transmisión en el periodo de post falla. El rango de tiempo de interés para el estudio de este tipo de estabilidad angular es de los tres a los cinco segundos después de la ocurrencia del disturbio [6].

1.3. ESTABILIDAD DE FRECUENCIA

La estabilidad de frecuencia es la habilidad del sistema de potencia de mantener la frecuencia dentro de un rango después de una perturbación severa que puede seccionar el sistema en subsistemas. En un sistema de potencia, la frecuencia es una medida del balance de MW de generación y MW de carga. Cuando MW generación y MW carga están en balance exacto, la frecuencia está al nivel de 60 Hz. Cuando la carga excede la generación la frecuencia disminuye. La razón del descenso depende de la inercia de los generadores dentro del sistema. En el momento en el cual el ángulo de fase de voltaje entre generadores remotos y generadores locales llega ser muy grande, puede ocurrir inestabilidad en el ángulo de fase. En muchos casos, este evento ocurre en conjunto con el escenario de colapso de voltaje [8]. Para estudios de este tipo de estabilidad existen dos clasificaciones: estabilidad de frecuencia a corto plazo y estabilidad de frecuencia a largo plazo.

1.3.1. Estabilidad de Frecuencia a Corto Plazo.

Este tipo de estabilidad también se conoce como inestabilidad transitoria. La inestabilidad en el ángulo de fase de voltaje o estabilidad de frecuencia ocurre debido al lento despeje de fallas en el sistema de transmisión cercanas de la planta de generación, que al no ser superadas lo suficientemente rápido pueden producir un desbalance prolongado entre la salida mecánica y eléctrica del generador; de esta forma los generadores necesitan estar protegidos de los daños que pueden resultar cuando la protección en los sistemas de transmisión es muy lenta para operar, de esta afirmación se concluye que es muy importante la protección de pérdida de sincronismo en el generador para evitar daños en la máquina. Mientras más grande es el generador, más corto es el tiempo para manejar la máquina inestable por una falla en el sistema [6].

1.3.2. Estabilidad de Frecuencia a Largo Plazo.

Este tipo de estabilidad también es conocida como inestabilidad de estado-estable, ocurre cuando hay muy pocas líneas de transmisión para transportar energía desde la fuente de generación hasta el centro de carga local. La pérdida de líneas de transmisión dentro del centro de carga puede resultar en un colapso de voltaje, pero esto puede también resultar en una inestabilidad de ángulo de fase de estado-estable. Cuando el ángulo de fase de voltaje entre la generación local y remota se incrementa más allá de 90°, la potencia que puede ser transmitida se reduce y el sistema llega a ser inestable y usualmente se separa en islas. Si hay más carga que generación dentro de una isla, la frecuencia y el voltaje disminuyen; mientras que si existe un exceso de generación en una isla, la frecuencia y el voltaje generalmente aumentan. Comúnmente, la disminución del voltaje en el centro de carga es el indicador principal de que el sistema está en problemas de baja frecuencia, esto ocurre solamente después de que el sistema se divide en islas [6].

1.4. ESTABILIDAD DE TENSION.

Es la habilidad del sistema eléctrico para mantener tensiones estables en todos los nodos del sistema después de ocurrido un disturbio, depende de la habilidad para mantener o restaurar el equilibrio entre la potencia demandada y la potencia suministrada.

1.4.1. Estabilidad de tensión Ante Grandes Disturbios.

Se refiere a la capacidad del sistema para mantener los voltajes constantes después de disturbios grandes, tales como las fallas que se presentan en el sistema de transmisión, aumentos importantes de la carga, funcionamiento próximo al límite de transporte de potencia, generación alejada de la carga e insuficiencia de los medios de compensación de potencia reactiva. La determinación de la estabilidad de voltaje ante grandes disturbios requiere del estudio de la respuesta no lineal del sistema de potencia durante el tiempo suficiente para capturar el funcionamiento y las interacciones de los dispositivos tales como los cambiadores de tomas bajo carga de los transformadores y los

limitadores de campo del generador. El periodo de estudio de interés se extiende a partir de algunos segundos a 10 minutos [6].

1.4.2. Estabilidad de tensión Ante Pequeños Disturbios.

Se define este tipo de estabilidad como la capacidad del sistema para mantener voltajes constantes después de pequeños disturbios, tales como cambios incrementales en la carga del sistema. Esta forma de estabilidad es determinada por la característica de la carga, controles comunes y controles discretos a un instante de tiempo dado. Este concepto es útil para la determinación en todo momento de cómo los voltajes responden a cambios pequeños de cargabilidad. Las ecuaciones del sistema se pueden linealizar para el análisis, de tal manera que se pueda evaluar la sensibilidad de los factores que influyen en la estabilidad de voltaje. Esta linealización, sin embargo, no puede explicar los efectos no lineales de los controles. Por lo tanto, una combinación lineal y no lineal se utiliza de una manera complementaria para el análisis de la estabilidad de voltaje.

1.4.3. Estabilidad de tensión de Corto Plazo.

La estabilidad de corto plazo involucra la dinámica en el tiempo de los elementos de la carga, tales como motores. El periodo de estudio de interés está en el orden de varios segundos, y el análisis requiere la solución de las ecuaciones diferenciales del sistema, esto es similar al análisis de la estabilidad angular.

1.4.4. Estabilidad de tensión a Largo Plazo.

En este tipo de estabilidad se trata de estudiar el comportamiento de la red durante varios minutos, a fin de evaluar, por ejemplo, la respuesta del sistema ante un crecimiento sostenido de la demanda, por lo tanto resulta importante modelar adecuadamente la dinámica de las cargas y la dinámica de los elementos de la red con respuesta más lenta como los transformadores con cambio de tomas (LTC), el control de la sobreexcitación de los generadores, la compensación shunt, etc.

Figura 1.1: Esquema de clasificación de estabilidad de sistemas de potencia, según IEEE and CIGRE Join Task Force.

1.5. ESTABILIDAD DE PEQUEÑA SEÑAL.

La estabilidad de pequeña señal es la habilidad que tienen los sistemas para mantener un sincronismo durante pequeños cambios en las condiciones de operación básicamente relacionadas con variaciones de carga y generación. La estabilidad de pequeña señal depende del estado de operación inicial del sistema, ya que en este tipo de análisis son consideradas únicamente pequeñas perturbaciones. Son consideradas como pequeñas perturbaciones, aquellas en las que es posible linealizar el sistema de ecuaciones algebraicas y diferenciales que permiten simular el comportamiento del sistema. El rango de tiempo de interés en estudios de estabilidad de pequeños disturbios esta en el orden de 10 a 20 segundos después de un disturbio [1].

Las pequeñas perturbaciones que continuamente ocurren en los sistemas eléctricos de potencia se deben a pequeñas variaciones de carga y generación. Dichas perturbaciones originan cambios a nuevos puntos de equilibrio lo que a su vez provoca la interacción de la energía almacenada en las masas rotativas de los generadores con los campos eléctricos de los capacitores y los campos magnéticos de los inductores, lo que se refleja en forma de oscilaciones.

El comportamiento dinámico de un sistema eléctrico es un fenómeno complejo, que admite una multiplicidad de abordajes. El concepto mismo de estabilidad admite varias interpretaciones: estabilidad de ángulo, de tensión, estabilidad transitoria, en pequeña señal, etc. Cada uno de estos conceptos, originados en décadas de experiencia internacional en la operación y planificación de estos sistemas, así como sus herramientas de análisis asociadas, responde a un aspecto del fenómeno global, y como tal debe entenderse, su estabilidad en pequeña señal.

1.6. DEFINICIÓN DE LAS VARIABLES DE ESTADO

1.6.1. Velocidad del Rotor:

Es la velocidad que alcanza el rotor de la máquina síncrona cuando aumenta su potencia mecánica entrante, en ese momento el generador recibe más energía de la que vierte a la red y por lo tanto comienza a acelerarse y a incrementar su energía cinética. Al aumentar la velocidad del rotor, comienza a crecer el ángulo del rotor.

1.6.2. Ángulo del Rotor:

El ángulo del rotor depende de la carga del sistema, y está definido como la diferencia angular entre dos tensiones, el voltaje inducido por el campo magnético del rotor y el voltaje en terminales de la máquina, cuando la carga de la máquina es nula, ambas tensiones son idénticas en magnitud y fase y su ángulo es cero. A medida de que empieza el incremento de la carga en la máquina gradualmente empieza a aumentar el ángulo del rotor.

1.6.3. Enlaces de flujo.

Los enlaces de flujo se definen como el flujo total concentrado en un conductor embobinado con N vueltas. Es decir, cuando una corriente circula por un conductor embobinado produce un flujo magnético el cual forma una trayectoria cerrada, entonces si hay N vueltas y el flujo pasa a través de cada vuelta el flujo concentrado total es el que se llama enlaces de flujo. Existen entonces cuatro posibles formas de enlaces a saber:

- Flujo de eje directo $(\Delta \Psi_{1d})$
- Flujo de eje cuadratura $(\Delta \Psi_{1q})$
- Flujo de devanados amortiguados $(\Delta \Psi_{2q})$
- Flujo en devanados de campo $(\Delta \Psi_{fd})$

1.7. METODOLOGÍA UTILIZADA PARA REALIZAR EL ESTUDIO DE ESTABILIDAD DE PEQUEÑA SEÑAL

Sin perjuicio de que ninguna evaluación de desempeño de un sistema de potencia puede prescindir del análisis de una respuesta, el análisis modal mediante técnicas lineales proporciona información valiosa acerca de las características inherentes del sistema [7].

1.7.1. ANÁLISIS MODAL

Conocido ampliamente como análisis de valores propios, este método contiene las siguientes ventajas:

- La forma sistemática como se obtiene la información muestra las características del fenómeno dinámico.
- Los modos débilmente amortiguados e inestables son seleccionados y pueden analizarse en detalle, lo que permite identificar sin ambigüedad el patrón de oscilación.
- Se proporcionan índices para ubicar medidas amortiguadoras atenuantes tales como dispositivos estabilizadores de potencia.

1.7.2. TIPOS DE OSCILACIONES QUE SE PRESENTAN EN EL SISTEMA

 Oscilaciones normales o positivamente amortiguadas: Ocurren debido a eventos de rutina en los sistemas de potencia, por ejemplo: cambios de carga, salida de generadores y maniobras que pueden causar oscilaciones en el flujo de potencia, voltaje, corriente y frecuencia, el sistema no tiene problemas para reducir la amplitud de este tipo de oscilaciones.

Figura 1.2: Oscilaciones positivamente amortiguadas

 Oscilaciones sostenidas o no amortiguada: Este tipo de oscilaciones se auto sustentan y no desaparecen sin una acción correctiva. Las oscilaciones sostenidas no son crecientes pero tampoco tienden a reducirse. Este tipo de oscilaciones son dañinas en el sistema si tienen una amplitud suficientemente grande.

Figura 1.3: Oscilaciones sostenidas o no amortiguadas

Oscilaciones amortiguadas negativamente: Si una oscilación aparece y crece gradualmente en magnitud, es amortiguada negativamente. Este tipo de oscilación puede aparecer como oscilación normal o sostenida y crecer en tamaño hasta alcanzar una amplitud que los sistemas de potencia no pueden resistir por mucho tiempo.

Figura 1.4: Oscilaciones amortiguadas negativamente

1.7.3. TIPOS DE MODOS DE OSCILACIÓN

Los modos de oscilación que se presentan en problemas de estabilidad de pequeña señal en sistemas de potencia se clasifican en [1]:

Modos entre-áreas: Estos modos están relacionados con las oscilaciones de unidades generadoras de una parte del sistema con respecto a unidades generadoras en otras áreas, con gran cantidad de generadores participando en la oscilación. El rango de frecuencia asociado a estas oscilaciones es de 0,1 Hz a 0,8 Hz.

Modos locales: Son las oscilaciones que se presentan entre un generador ó un conjunto de generadores contra el resto del sistema. El término local se refiere a que las oscilaciones están asociadas con una planta ó una pequeña parte del sistema, el rango de frecuencia asociado es de 0,8 Hz a 2,0 Hz.

Figura 1.6: Modos locales

Modos intra-área: Estos modos se encuentran generalmente entre las frecuencias extremas de los modos locales y entre-áreas, en estos modos la oscilación se presentan entre un bloque de generación, oscilando contra otro bloque del sistema. Tienen un comportamiento similar al modo local, por lo que serán tratados de esta forma. El rango de frecuencia asociado a modos de oscilación local es entre 0,4 Hz a 1,0 Hz.

Figura 1.7: Modo intra-área

 Modo intra-planta. Estos modos comprenden un rango de frecuencia entre 1,5 Hz y 3 Hz y se presentan cuando máquinas de una misma planta oscilan entre sí, generalmente estos modos son bien amortiguados y no ocasionan problemas.

Figura 1.8: Modo intra-planta

Existen otros modos en el sistema interconectado de potencia que son:

- Modo de control. Estos modos están asociados con reguladores de voltaje, reguladores de velocidad, ajustes no adecuados en excitatrices y otros controles. Generalmente son modos monótonos y tienen fuerte amortiguamiento.
- Modos de sincronización. Son dos modos asociados con la operación sincrónica de todos los generadores, uno de ellos relacionado con el ángulo del rotor, se localiza en el origen del plano S y el otro relacionado con la velocidad del rotor se localiza en el eje real del plano S muy cerca del origen.

1.8. ANÁLISIS MATEMÁTICO

El comportamiento de un sistema dinámico y particularmente el de un sistema de potencia puede ser descrito por un arreglo de n ecuaciones diferenciales no lineales de primer orden así [7]:

$$x = f(x, u) \tag{1.1}$$

donde; f es el vector que contiene las n ecuaciones diferenciales de primer orden.

x es el vector de variables de estado.

u es el vector de variables de entrada del sistema.

La representación de un sistema dinámico lineal en un espacio de estado, puede realizarse mediante las ecuaciones de estado y salida así:

$$x = Ax + Bu \tag{1.2}$$

$$y = Cx + Du \tag{1.3}$$

donde:

y es el vector de variables de salida.

A es la matriz de estado del sistema.

B es la matriz de control de entrada.

C es la matriz de salida o matriz de observación.

D es la matriz de coeficientes (relación entre entradas y salidas).

Mediante el uso de la transformación de Laplace las ecuaciones 1.2 y 1.3 se convierten en el dominio de la frecuencia en:

$$sx(s) = Ax(s) + Bu(s) \tag{1.4}$$

$$y(s) = Cx(s) + Du(s) \tag{1.5}$$

donde *s* es la variable de Laplace.

La función de transferencia G(s) está dada por:

$$G(s) = \frac{y(s)}{u(s)} \tag{1.6}$$

$$G(s) = C(sI - A)^{-1}B + D$$
(1.7)

De esta forma se obtienen los valores propios o modos de una matriz de estado *A*, que son las raíces o los valores de *s* que satisfacen la ecuación característica dada como:

$$\det(sI - A) = 0 \tag{1.8}$$

1.8.1. MÉTODO DE OBTENCIÓN DE VALORES PROPIOS

Para el estudio lineal de la dinámica del sistema, se trata de obtener todos los valores propios del sistema, de esta forma se garantiza que dentro del estudio no quede excluido ningún modo inestable [7].

El método desarrollado para calcular todos los valores propios de la matriz, es el método de transformación QR. Las ventajas de la transformación QR pueden resumirse así:

- El método es robusto y converge rápidamente, se consigue fácilmente para la aplicación.
- Tiene buena estabilidad y exactitud numérica superior.
- Se pueden obtener todos los valores propios y es posible identificar y separar todos los modos del sistema.

1.8.2. Valores Propios:

$$\det(A - \lambda I) = 0 \tag{1.9}$$

Las *n* soluciones λ que satisfacen la ecuación característica, son llamados valores propios de la matriz *A* y tienen las siguientes propiedades:

- El número de valores propios es igual al número de estados del sistema.
- Los valores propios representan los modos naturales de oscilación de un sistema físico y caracterizan su respuesta temporal ante una pequeña perturbación.
- Para un sistema estable todos los valores propios tienen parte real negativa [1].

$$s_k = \sigma_k \pm j\omega_k \tag{1.10}$$

$$s_k = \sigma_k \tag{1.11}$$

donde: $\sigma(1/seg)$ es el amortiguamiento.

 $\omega(1/seg)$ es la frecuencia angular.

Figura 1.9: Representación de Valores propios y Modos del sistema dinámico

1.8.2.1. Valores Propios Reales:

Un valor propio real corresponde a un modo no oscilatorio,

- Un valor propio real negativo representa un decaimiento del modo de oscilación, es decir que mientras más grande es la magnitud del modo más rápido decae.
- Un valor propio real positivo representa una inestabilidad aperiódica.

1.8.2.2. Valores Propios Complejos:

Un valor propio complejo ocurre en pares conjugados, y cada par corresponde a un modo de oscilación.

$$(a+jb)e^{\sigma-j\omega} + (a-jb)e^{\sigma+j\omega}$$
(1.12)

Que tiene la forma

$$e^{\sigma t} \operatorname{sen} \omega t + \theta$$
 (1.13)

Cada modo de oscilación se representa por un valor propio complejo λ , donde:

- La parte real σ será una medida del amortiguamiento del modo.
- Una parte real negativa representa una oscilación amortiguada.
- Una parte real positiva representa una oscilación que incrementa su amplitud.
- La parte imaginaria ω da una medida de la velocidad angular de la oscilación que el modo representa.

$$\lambda = \sigma \pm j\omega = \zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$
(1.14)

donde: ω_n = frecuencia natural de oscilación.

Para un modo de oscilación representado por un valor propio complejo $\sigma \pm j\omega$, la razón de amortiguamiento ésta dada por:

$$\lambda = \frac{\sigma}{\sqrt{\sigma^2 + \omega^2}} \tag{1.15}$$

donde:

 ζ = representa el porcentaje de disminución de la amplitud de la oscilación del modo. Para $\sigma < 0$, la disminución de la amplitud de la constante de tiempo es $1/|\sigma|$, en otras palabras, la amplitud disminuye a 1/e o 37% de la amplitud inicial en $1/|\sigma|$ segundos o $1/2\pi\zeta$ ciclos de oscilación [1].

1.8.3. Vectores Propios:

Cualquier vector P_i diferente de cero que satisface la ecuación matricial.

$$(\lambda_i I - A)P_i = 0 \tag{1.16}$$

se conoce como vector propio o vector característico de A, asociado con un auto valor λ_i , es decir que por cada auto valor se tiene un auto vector [1].

1.8.3.1. Vectores Propios Derechos

Para cualquier λ_i , el vector columna ϕ_i , que satisface la ecuación:

$$A\phi_i = \lambda_i \phi_i \tag{1.17}$$

Con: i = 1, 2, ..., n. Es llamado vector propio derecho de *A*, asociado con el auto valor λ_i , el *k*-ésimo elemento de ϕ_i mide la actividad de la variable de estado X_k en el *i*-ésimo modo. La magnitud de los elementos da la actividad de las *n* variables de estado en el modo *i* y los ángulos de los elementos dan el desplazamiento de fase de las variables de estado respecto al modo [1].

1.8.3.2. Vectores Propios Izquierdos

Para cualquier λ_i , el vector fila Ψ_i que satisface la ecuación:

$$\Psi_i A = \lambda_i \Psi_i \tag{1.18}$$

Con: i = 1, 2, ..., n

Es llamado vector propio izquierdo de *A* asociado con el auto valor λ_i , el *K*-ésimo elemento de Ψ_i mide la actividad de la variable de estado X_k en el *i*-ésimo modo. El vector propio izquierdo, identifica cual combinación de las variables de estado muestra el modo *i*-ésimo. Y mide, la eficiencia de una real acción de control en diferentes oscilaciones, por lo tanto los vectores propios izquierdos pueden ser utilizados para la determinación del sitio de control. Los vectores propios izquierdos y derechos que pertenecen a diferentes valores propios son ortogonales, así:

$$\Psi_i \phi_i = 0 \tag{1.19}$$

Los vectores propios izquierdos y derechos que pertenecen al mismo valor propio cumple con:

$$\Psi_i \phi_i = C_i \tag{1.20}$$

Donde C_i es una constante diferente de cero.

1.8.4. Factores de Participación.

Es el producto del vector propio derecho por el vector propio izquierdo y determina cual es la responsabilidad de una máquina o grupo de máquinas en una determinada frecuencia de oscilación. El elemento

$$P_{ik} = \Psi_{ki} \cdot \phi_{ik}, \tag{1.21}$$

donde:

- El *k*-ésimo elemento de ϕ_i mide la actividad de la variable de estado X_k en el *i*-ésimo modo.
- El *k*-ésimo elemento de Ψ_i pesa la contribución de esta actividad de la variable de estado X_k , en el *i*-ésimo modo.

Es llamado factor de participación y determina la participación relativa de la *k*-ésima variable de estado en *i*-ésimo modo de oscilación y viceversa. Esta matriz combina vectores izquierdos y derechos, dando una medida de la asociación entre las variables de estado y los modos de oscilación, se presenta como:

$$P = [p_1 \ p_2 \ \cdots \ p_n]. \tag{1.22}$$

CARACTERIZACIÓN DEL SISTEMA ELÉCTRICO DE POTENCIA DE PEREIRA (VERSIÓN ACADÉMICA)

El Sistema Eléctrico de Potencia de la ciudad de Pereira, se clasifica según la resolución **Creg 025 de 1995** como sistema de interconexión regional y es operado por la E.E.P (Empresa de Energía de Pereira). La infraestructura de este sistema se ve influenciada por el desarrollo socioeconómico de la región Cafetera, que en estos últimos años ha tenido un gran crecimiento en la demanda de potencia y energía eléctrica, ya que el comercio, la industria y el turismo han tomado fuerza convirtiendo esta ciudad en un punto estratégico del eje Cafetero. En Pereira, una ciudad que se ha perfilado y sigue proyectándose a futuro con mayor crecimiento, es importante realizar estudios acerca de la operación del conjunto de elementos y equipos que alimentan eléctricamente la ciudad. El avance tecnológico permite utilizar ayudas de tipo computacional que facilitan el análisis del sistema cuando se simula la operación del mismo.

Para poder realizar simulaciones que arrojen resultados cercanos a la realidad, es necesario ingresar en el software (**Neplan**), datos técnicos y operativos que sean congruentes con la realidad actual de funcionamiento del sistema; es necesario por lo tanto tener los datos de transformadores, líneas de transmisión, generadores, demanda de potencia activa, reactiva y factores de potencia en los nodos de las diferentes subestaciones por donde se inyectan estas potencias, al igual que los nodos por donde se entregan a las diferentes cargas. También es importante tener en cuenta los diferentes límites de operación permitidos por la ley.

Es necesario resaltar que el sistema en el que se realiza el estudio fue construido con fines académicos, ya que aunque que la información suministrada por parte de la E.E.P en lo que concierne a los elementos del sistema es real, existen variaciones de tipo operativo que diariamente se presentan en el manejo del sistema y sería muy complejo tener en cuenta cada uno de estos cambios [6].

2.1. SISTEMA ELÉCTRICO DE LA CIUDAD DE PEREIRA

A continuación se presenta a grandes rasgos una descripción del sistema eléctrico de la ciudad de Pereira: una breve historia de su evolución, la topología, la descripción de las subestaciones, el diagrama unifilar, los datos de parámetros de los elementos que lo constituyen, tipo de elementos y demanda de potencia activa y reactiva máxima por cada una de las subestaciones en un día ordinario.

2.2. BREVE HISTORIA

En la ciudad de Pereira se inauguró el primer servicio de alumbrado eléctrico el 30 de enero de 1914, en el cual se suministraba energía a 50 casas particulares y a 100 lámparas para las calles. La capacidad de la planta eléctrica era de 50 kilovatios (kW).

En 1930 entra en funcionamiento la primera unidad de la planta Libaré con 1250 kVA y en 1936 la segunda con 1500 kVA. Aumentó el suministro de energía a 2750 kVA a una red de 30 Km de extensión; en 1976 salió de servicio la primera unidad, y en 1984 la segunda.

En 1940 comenzó a prestar sus servicios la planta hidroeléctrica de Belmonte que entró a suministrar energía a todas las veredas y a las empresas industriales de la ciudad; cuenta con 4.700 kVA instalados, representados en dos unidades de 2.350 kVA cada una; fueron puestas en operación en 1937 y 1941 respectivamente y han venido funcionando continuamente y a plena carga; tiene un alto factor de planta que hace que su generación sea muy estable, se interconecta con la Subestación Cuba por medio de una línea a 13,2 kV al Circuito 1 de Cuba.

El 12 de junio de 1961 las Empresas Públicas de Pereira se asociaron con la CHEC; fue así como se brindaron los servicios domiciliarios de Acueducto y Alcantarillado, Teléfono, Aseo y Energía a la comunidad Pereirana hasta la década de los años noventa.

En 1994 fue puesta en servicio la planta de Nuevo Libaré con capacidad instalada de 6250 kVA, pertenece a un proyecto mixto de acueducto y energía y está conectada directamente con la Subestación Ventorrillo a 13,2 kV.

En 1996 se convirtió el establecimiento público: Empresas Públicas de Pereira, en una sociedad por acciones para prestar el servicio público domiciliario de energía, cuya denominación sería: "EMPRESA DE ENERGIA DE PEREIRA S.A.-ESP" como se estipuló en la escritura pública No 1327 del 16 de mayo de 1997; es así como nace jurídicamente la Entidad [3].

2.3. DESCRIPCIÓN DE LAS SUBESTACIONES

La Empresa de Energía de Pereira presta su servicio de distribución de energía a través de las siguientes subestaciones transformadoras y distribuidoras.

2.3.1. Subestación Dosquebradas.

Se encuentra ubicada en el sitio donde operó antes la planta Dosquebradas, en la Avenida del Río con Calle 39 vía Turín - La Popa, frente al puente sobre el río Otún. Cumple su función como subestación receptora de energía del Sistema de Transmisión Nacional, reduciendo la tensión de 115 kV a 33 kV por medio de un banco de tres transformadores de 25 MVA. El banco de 33/13,2 kV se compone de cuatro transformadores de 10 MVA cada uno. Entrega energía a la ciudad a través de cinco circuitos de distribución primaria (13,2 kV), posee dos circuitos de reserva a 13,2 kV y uno industrial a 33 kV. Alimenta los sectores de Combia, Vía Estación Pereira, Parque Industrial, Avenida 30 de Agosto, Avenida del Río y sectores aledaños; por otra parte, la línea industrial

alimenta las cargas de este tipo en la vía a Cerritos. En agosto de 1999 la subestación fue ampliada para recibir energía a 115 kV, abriendo la línea La Rosa - Cartago. Esta posibilidad de recibir energía desde la CHEC y Cartago hace de ella la más importante del Sistema.

2.3.2. Subestación Ventorrillo.

Está localizada en la vía que conduce al Cerro Canceles, frente a la planta de tratamiento de agua, a 300 m de la urbanización La Aurora. Cumple como subestación de transformación y distribución. Cuenta con dos transformadores de 10 *MVA* cada uno y uno de 12,5 *MVA*; alimenta seis circuitos de distribución a 13,2 *kV* y tiene dos de reserva de la misma tensión, dos circuitos industriales a 33 *kV* y uno industrial a 13,2 *kV*. Está interconectada con la planta Nuevo Libaré a 13,2 *kV*, con la Subestación La Rosa por medio de la línea Pereira II y con la Subestación Cuba mediante el anillo a 33 *kV*. Alimenta los sectores del Cedral, Vía a Armenia, Avenida Circunvalar y la parte de la ciudad comprendida entre Kennedy y la calle 17. Por su parte la línea industrial alimenta clientes localizados en la vía a La Florida, también suministra la energía para los centros comerciales La 14 y Pereira Plaza, así como para el Hotel de Pereira.

2.3.3. Subestación Cuba.

Es actualmente la segunda subestación en importancia ya que recibe energía del Sistema de Transmisión Nacional por una línea a 115 kV proveniente de la subestación La Rosa; se interconecta con las subestaciones Dosquebradas y Ventorrillo por un anillo energizado a 33 kV formando todas un conjunto cerrado, lo que le da confiabilidad y estabilidad al sistema en caso de eventuales fallas. Posee un banco de transformación compuesto por tres unidades monofásicas de 25 MVA cada uno y cuenta con dos transformadores de 20 MVA. Cuenta con ocho circuitos de distribución a 13,2 kV y dos de reserva a igual tensión. Alimenta esta subestación los sectores de Cuba, Morelia, Altagracia, Vía a Cerritos hasta Hacienda Galias cerca al Ingenio Risaralda y hasta Puerto Caldas, cerca a Cartago.

2.3.4. Subestación Centro.

Situada en la calle 21 con carrera 2a, ocupa el predio en el cual veinticinco años atrás existió una subestación. Actualmente está interconectada con las subestaciones La Rosa y Dosquebradas mediante redes energizadas a 33 kV. Cuenta con un transformador de 25 MVA del cual se derivan cuatro circuitos de distribución (13,2 kV) y que alimentan el centro de la ciudad de Pereira. Entró en operación en mayo de 1998, se interconectó con la subestación La Rosa y la subestación Dosquebradas por medio de líneas a 33 kV.

2.3.5. Subestación Cartago.

Pertenece fundamentalmente al sistema EPSA con 150 MVA de capacidad total y en ella EEP realizó una inversión considerable lo cual le dio derecho a disponer de 33,6 MVA en casos de

emergencia, mejorando la confiabilidad del sistema.

2.3.6. Subestación Pavas.

Localizada en el kilómetro 6 vía Pereira-Cerritos. Se interconecta con la subestación Dosquebradas mediante una línea industrial a 33 *kV* y cuenta con un transformador 33/13,2 *kV* de 7,5 *MVA* [3].

Figura 2.1: Diagrama unifilar del sistema electrico de Pereira

2.4. SISTEMA ELÉCTRICO DE POTENCIA DE LA CIUDAD DE PEREIRA PARA ESTUDIOS ACADÉMICOS

El Sistema Eléctrico de Pereira está conformado por: 21 nodos con niveles de voltaje de 115 kV, 33 kV y 13,2 kV, 12 líneas de subtransmisión entre las cuales se encuentran 4 de 115 kV, 6 de 33 kV y 2 de 13,2 kV, 16 transformadores de potencia, 2 plantas de generación local: Belmonte y Libaré, 2 generadores: La Rosa y Cartago, 6 compensaciones: 2 en Dosquebradas, 2 en Cuba y 2 en Ventorrillo y la carga concentrada por subestación.
A continuación, en las tablas 2.1 a 2.6, se muestra la nomenclatura utilizada para identificar cada uno de los elementos del sistema.

Abreviatura	Nombre
N1-CA 115 kV	Nodo 1 Cartago 115 kV
N2-DQ 115 kV	Nodo 2 Dosquebradas 115 kV
N3-DQ 33 kV	Nodo 3 Dosquebradas 33 kV
N4-DQ 13,2 kV	Nodo 4 Dosquebradas 13,2 kV
N5-BE 13,2 kV	Nodo 5 Belmonte 13,2 kV
N6-BE 2,4 kV	Nodo 6 Belmonte 2,4 kV
N7-DQ 13,2 kV	Nodo 7 Centro 13,2 kV
N8-CE 33 kV	Nodo 8 Centro 33 kV
N9-RO 33 kV	Nodo 9 La Rosa 33 kV
N10-RO 115 kV	Nodo 10 La Rosa 115 kV
N11- VE 33 kV	Nodo 11 Ventorrillo 33 kV
N12-VE 13,2 kV	Nodo 12 ventorrillo 13,2 kV
N13-CU 33 kV	Nodo 13 Cuba 33 kV
N14-CU 13,2 kV	Nodo 14 Cuba 13,2 kV
N15-CU 115 kV	Nodo 15 Cuba 115 kV
N16-NA 33 kV	Nodo 16 Naranjito 33 kV
N17-NA 13,2 kV	Nodo 17 Naranjito 13,2 kV
N18-PA 33 kV	Nodo18 Pavas 33kV
N19-PA 13,2 kV	Nodo19 Pavas 33kV
N20-VE 13,2 kV	Nodo 20 Ventorrillo 13,2 kV
N21-VE 13,2 kV	Nodo 21 Libaré 13,2 kV

Tabla 2.1: Nodos del sistema

Tabla 2.2: Líneas de Subtransmisión

Abreviatura	Nombre
LDQ-CA	Línea entre Dosquebradas y Cartago
LDQ-RO	Línea entre Dosquebradas y La Rosa
LDQ-PA	Línea entre Dosquebradas y Pavas
LDQ-CE	Línea entre Dosquebradas y Centro
LDQ-CU	Línea entre Dosquebradas y Cuba
LBE-CU	Línea entre Belmonte y Cuba
LCU-VE	Línea entre Cuba y Ventorrillo
LCU-NA	Línea entre Cuba y Naranjito
LNA-VE	Línea entre Naranjito y Ventorrillo

LRO-VE	Línea entre La Rosa y Ventorrillo
LRO-CU	Línea entre La Rosa y Cuba
LRO-CE	Línea entre La Rosa y Centro

Tabla 2.3: Generadores

Abreviatura	Nombre
G-LI	Generador Libaré
G-1BE	Generador 1 de Belmonte
G-2BE	Generador 2 de Belmonte
G-CA	Generador Cartago
G-RO	Generador La Rosa

Tabla 2.4: Transformadores

Abreviatura	Nombre
T1-PA	Transformador 1 de Pavas
T1-RO	Transformador 1 de La Rosa
T2-RO	Transformador 2 de La Rosa
T1-DQ	Transformador 1 de Dosquebradas
T2-DQ	Transformador 2 de Dosquebradas
T3-DQ	Transformador 3 de Dosquebradas
T1-CE	Transformador 1 de Centro
T1-BE	Transformador 1 de Belmonte
T1-VE	Transformador 1 de Ventorrillo
T2-VE	Transformador 2 de Ventorrillo
T3-VE	Transformador 3 de Ventorrillo
T4-VE	Transformador 4 de Ventorrillo
T1-CU	Transformador 1 de Cuba
T2-CU	Transformador 2 de Cuba
T3-CU	Transformador 3 de Cuba
T1-NA	Transformador 1 de Naranjito

Abreviatura	Nombre
DQ-C1	Compensación 1 de Dosquebradas
CU-C1	Compensación 1 de Cuba
CU-C2	Compensación 2 de Cuba
VE-C1	Compensación 1 de Ventorrillo
VE-C2	Compensación 2 de Ventorrillo

Tabla 2.5: Compensaciones

Tabla 2.6: Circuitos de cada subestación

ABREVIATURA	NOMBRE
Cto 1- CE	Circuito 1 del Centro
Cto 2 - CE	Circuito 2 del Centro
Cto 3 - CE	Circuito 3 del Centro
Cto 4 - CE	Circuito 4 del Centro
Cto 5 - CE	Circuito 5 del Centro
Cto 1- DQ	Circuito 1 de Dosquebradas
Cto 2 - DQ	Circuito 2 de Dosquebradas
Cto 3 - DQ	Circuito 3 de Dosquebradas
Cto 4- DQ	Circuito 4 de Dosquebradas
Cto 5 - DQ	Circuito 5 de Dosquebradas
Cto 6 - DQ	Circuito 6 de Dosquebradas
Cto 7 - DQ	Circuito 7 de Dosquebradas
Cto 8 - DQ	Circuito 8 de Dosquebradas
Cto Ind- DQ	Circuito industrial de Dosquebradas
Cto 1- CU	Circuito 1 de Cuba
Cto 2 - CU	Circuito 2 de Cuba
Cto 3 - CU	Circuito 3 de Cuba
Cto 4 - CU	Circuito 4 de Cuba
Cto 5 - CU	Circuito 5 de Cuba
Cto 6 - CU	Circuito 6 de Cuba
Cto 7 - CU	Circuito 7 de Cuba
Cto 8 - CU	Circuito 8 de Cuba
Cto 1 - NA	Circuito 1 de Naranjito
Cto 1 - PA	Circuito 1 de Pavas
Cto ANDI	Circuito ANDI de la Rosa
Cto 1- VE	Circuito 1 de Ventorrillo
Cto 2 - VE	Circuito 2 de Ventorrillo
Cto 3 - VE	Circuito 3 de Ventorrillo
Cto 4 - VE	Circuito 4 de Ventorrillo

Cto 5 - VE	Circuito 5 de Ventorrillo
Cto 6 - VE	Circuito 6 de Ventorrillo
Cto VHP-VE	Circuito Ventorrillo Hotel de Pereira
Cto I-VE	Circuito Industrial de Ventorrillo

En el sistema de prueba se consideraron 8 subestaciones: subestación Dosquebradas, subestación Cuba, subestación Centro, subestación Ventorrillo, subestación Naranjito, subestación Pavas, subestación La Rosa y Cartago. Esta última no es propiedad de la Empresa de Energía de Pereira pero se consideró en el diagrama unifilar por su alta incidencia en el sistema.

A través de las subestaciones de la Rosa y de Cartago el sistema de Pereira se interconecta con el Sistema Eléctrico Nacional. En las simulaciones el sistema externo visto desde la subestación La Rosa y en la subestación de Cartago se simuló como un generador con el fin de ingresar datos dinámicos a la máquina.

2.5. CARACTERÍSTICAS DE LOS ELEMENTOS DEL SISTEMA

A continuación se presentan las tablas con las características de cada uno de los elementos que conforman el sistema de la E.E.P.

2.5.1. Generadores

Central	S	V	rs	Xs	Qmín	Qmax	f.p
	MVA	kV	(p.u.)	(p.u.)	MVAr	MVAr	
Libaré	3	13,2		1,24	-1,5	3,75	0,8
Belmonte	2,35	2,4	0,012	1,20	-0.654	1,41	0,8
	2,35	2,4	0,012	1,20	-0.564	1,41	0,8
Cartago	100	115			-50	50	0,8
Rosa	90	115			-60	60	0,8

Tabla 2.7: Características de los generadores

2.5.2. Líneas de subtransmisión

Línea	Longitud	Voltaje	Conductor	Capacidad	Z1=Z2
	(km)	kV		(A)	(Ω/km)
Rosa-Ventorrillo	3,731	33	336,4 MCM	535	0,19+j0,4056
Rosa-Cuba	7,8	115	336,4 MCM	535	0,19+j0,4976
Naranjito-Ventorrillo	4	33	336,4 MCM	802,5	0,19+j0,4056
Cuba-Naranjito	3,39	33	336,4 MCM	535	0,19+j0,4056
Cuba-D/Q	4,301	33	336,4 MCM	535	0,19+j0,4056
Belmonte-Cuba	4,48	13,2	4/0 ACSR	358	0,3679 + j0,472
Centro-D/Q	3,5	33	336,4 MCM	535	0,19+j0,4056
Rosa-D/Q	4,1	115	336,4 MCM	535	0,19+j0,4976
Libare-Ventorrillo	1	13,2	4/0 ACSR	387	0,3679 + j0,472
DQ-Cartago	26,5	115	336,4 MCM	535	0,19+j0,4976
DQ-pavas	10	115	336,4 MCM	535	0,144 + 0,3763
Rosa-Centro	3,6	33	477,0 MCM	666	0,1218+j0,3931

Tabla 2.8: Características de las líneas

2.5.3. Transformadores

Subestación	No Trafo.	Capacidad (MVA)	Voltios	X0=X1=X2	Conexión
			(kV)		
La Rosa	Banco1	60	115/33	0,098	Ynyn0
	Banco2	60	115/33	0,0937	Ynyn0
Dosquebradas	T1	12,5	33/13,2	0,012	Dyn11
	T2	12,5	33/13,2	0,012	Dyn11
	T3	6,25	33/13,2	0,087	Dyn11
	T4	75	115/33	0,125	Ynyn0
Centro	T1	20	33/13,2	0,0875	Dyn5
Belmonte	T1	5	13,2/2,4	0,0682	Dyn11
Ventorrillo	T1	12,5	33/13,2	0,094	Dyn11
	T2	10	33/13,2	0,094	Dyn11
	T3	12,5	34,5/13,8	0,0858	Dyn11
	T4	5	33/13,2	0,002	Dyn5
Naranjito	T1	20	33/13,2	0,0875	Dyn5
Pavas	T1	6,25	33/13,2	0,087	Dyn11
Cuba	T1	15	33/13,2	0,0887	Dyn5
	T2	15	33/13,2	0,0887	Dyn5
	T3(B)	75	115/33	0,1275	Ynyn0

Tabla 2.9: Características transformadores

Nota: Los valores en p.u. tienen como base los valores nominales de los equipos.

Compensación	Tensión (kV)	Tipo	Numero de pasos	Paso (MVAR)
DQ-C1	13,2	Fijo	1	6,5
CU-C1	13,2	Fijo	1	2,5
CU-C2	13,2	Fijo	1	2,5
VE-C1	13,2	Fijo	1	2,5
VE-C2	13,2	Fijo	1	1,8

Tabla 2.10: Características de las compensaciones

2.6. CARACTERÍSTICAS DE LOS CIRCUITOS

Los datos de potencias (activa-reactiva) fueron tomados de la hora de mayor demanda por cada uno de los circuitos, en un día ordinario, estas lecturas fueron registradas por los medidores de la E.E.P. en las subestaciones.

2.6.1. DEMANDA DE POTENCIA ACTIVA

SUBESTACIÓN CENTRO

Figura 2.2: Curva de demanda horaria de CE-CTO 1

Figura 2.4: Curva de demanda horaria de CE-CTO3

Figura 2.3: Curva de demanda horaria de CE-CTO 2

Figura	2.5:	Curva	de	demanda	horaria	de
CE-CT	O 4					

Figura 2.6: Curva de demanda horaria de CE-CTO 5

SUBESTACIÓN DOSQUEBRADAS

CTOS	Dem	5	UB	ES	TAC	IÓN		osa	UEE	RA	DA	S DEI	MAN	IDA I	DEF	ют	ENG	CIA	AC	TIV	AHO	RAF	AIS	(pu)	DIA	OR	DIN	ARI	0
0103	(mW) 1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	4,15	0.43	0,41	0,4	0,43	0.40	3 0,6	5 0,6	8 0.80	0,87	0.92	0,96	0,96	0,92	0,87	0.89	0,89	0,89	0,89	0,92	0.94	1.00	1,00	0.99	0,94	0,87	0,77	0,63	0,55
CTO2		0.39	0.39	0,3	0.39	0,40	0.6	2 0.6	1 0.74	0.83	0.87	0,91	0,91	0,87	0,83	0.83	0.83	0.83	0.83	0,87	0.91	0.98	1,00	0.91	0.85	0.78	0.65	0,67	0,48
стоз	3,83	0.07	0,06	0,0	6 0.01	0,05	0,1	2 0,1	2 0,63	0,66	0.69	0,71	0,73	0,74	0,72	0,65	0,62	0,59	0.57	0,65	0,76	0,91	1,00	0,96	0,96	0,94	0,90	0,67	0,44
CTO4	3,83	0.07	0.06	0.0	6 0.07	0.05	0,1	2 0,1	2 0.63	0,66	0.69	0,71	0.73	0.74	0,72	0.65	0,62	0,59	0.57	0,65	0.76	0.91	1.00	0.96	0,96	0,94	0,90	0,67	0.44
CTO5	3.17	0,36	0,35	0,3	0.37	0,48	30,6	7 0.6	1 0,59	0,60	0,64	0,67	0,70	0,71	0,68	0,60	0,55	0,52	0,50	0,57	0,65	0,85	0,93	1,00	0,98	0,96	0,83	0,57	0,42
стоб	3,90	0,41	0,39	0,3	0.4	0.54	10,7	4 0,7	2 0,72	0.74	0.77	0.80	0,82	0,82	0,77	0,74	0,69	0,69	0.69	0,69	0,72	0.90	1.00	1,00	0,97	0.97	0,85	0,69	0,54
CT7+1	2,20	0,64	0,36	0,5	0,64	0,77	7 0,9	1 0,8	6 0,86	0,82	0,82	0,82	0,82	0,82	0,82	0,77	0,73	0,77	0,77	0,77	0,82	0,86	1,00	1,00	0,96	0,82	0,73	0,64	0,64
стов	2,50	0.56	0.56	0.5	6 0.56	0.64	10.7	2 0.7	6 0.68	0.72	0.76	0.80	0.80	0.80	0,76	0.76	0.72	0.72	0.72	0.72	0.80	0.88	0.96	1.00	1.00	0.96	0.88	0.80	0.68
IND	.6,17	0,46	0,46	0,4	6 D.46	0,54	10,6	3 0,7	5 0,88	0,96	1,00	1,00	0,96	0,96	0,92	0,92	0,92	0,96	0,92	0,92	0,83	0,88	0,92	0,92	0,88	0,79	0,67	0,58	0,54

Figura 2.7: Curva de demanda horaria de DQ-CTO 1

Figura 2.8: Curva de demanda horaria de DQ-CTO 2

Figura 2.9: Curva de demanda horaria de DQ-CTO 3

Figura 2.10: Curva de demanda horaria de DQ-CTO 4

Figura 2.11: Curva de demanda horaria de DQ-CTO 5

Figura 2.12: Curva de demanda horaria de DQ-CTO 6

Figura 2.13: Curva de demanda horaria de DQ-CTO 7+1 BE

Figura 2.14: Curva de demanda horaria de CE-CTO 8

Figura 2.15: Curva de demanda horaria de DQ-CTO IND

SUBESTACIÓN CUBA

стоя	Dem			SI	JBE	ST/		ÓN	CUB	AC	EM	AND	A D	E PO	TEN		A	CTI	AH	OR	AR	A (pu	i) D	IA OF	RDI	NAF	10		
0100	(mW)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	4.23	0,25	0,25	0,21	0,22	0,36	0,44	0,49	0,53	0,58	0,61	0,64	0,65	0,65	0,74	0,75	0,61	0,63	0,63	0,62	0,65	0,97	1,00	0,99	0,96	0,90	0,80	0,65	0,54
стоз	5,00	0,44	0,42	0,42	0,44	0,58	0,74	0,64	0,60	0,65	0,68	0,68	0,72	0,73	0,69	0,64	0,63	0,61	0,62	0,64	0,68	0,90	0,96	1,00	0,98	0,96	0,86	0,72	0,48
CTO4	4,70	0,40	0,38	0,38	0,38	0,60	0,70	0,64	0,57	0,59	0,60	0,63	0,63	0,64	0,61	0,56	0,54	0,52	0,55	0,55	0,64	0,89	0,99	1,00	0,98	0,98	0,85	0,68	0,43
CTO5	5,20	0,35	0,33	0,33	0,33	0,56	0,65	5 0,52	0,48	0,53	0,59	0,62	0,64	0,64	0,61	0,55	0,51	0,50	0,51	0,52	0,62	0,89	0.96	0,98	1,00	0,96	0,87	0,69	0,39
CTO6	3,16	0,45	0,42	0,42	0,49	0,65	0,76	0,71	0,71	0,71	0,73	0,75	0,76	0,74	0,74	0,64	0,65	0,65	0,65	0,65	0,79	0,94	1,00	1,00	0,97	0,92	0,79	0,62	0,50
CT7+8	4,10	0,42	0,42	0,42	0.42	0,63	0,76	50,66	0,62	0,59	0,62	0,61	0,63	0,61	0,59	0,51	0,51	0,51	0,54	0,56	0,66	0,93	1,00	1,00	0,98	0,88	0,71	0,56	0,44

Tabla 2.13: Demanda de potencia horaria en p.u

Figura 2.16: Curva de demanda horaria de CU-CTO 1

Figura 2.17: Curva de demanda horaria de CU-CTO 3

Figura 2.18: Curva de demanda horaria de CU-CTO 4

Figura 2.19: Curva de demanda horaria de CU-CTO 5

Figura 2.20: Curva de demanda horaria de CU-CTO 6

Figura 2.21: Curva de demanda horaria de CU-CTO 7+8

SUBESTACIÓN VENTORRILLO

Tabla 2.14: Demanda de potencia horaria en p.u

CTOS	Dem		SU	BES	STA	CIÓ	N V	ENT	OR	RIL	LO	DEM	AND	A DE	E PC	TE	NCI	A A	сті	VA	но	RARI	A (F	ou) Di	A O	RD	NA	RIO	
0105	(mW)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	2,60	0,46	0,39	0,39	0,42	0,50	0,62	0,69	0,85	0,85	0,89	0,92	0,92	0,92	0,92	0,85	0,85	0,89	0,89	0,89	0,92	1.00	1.00	1,00	0,92	0,92	0,85	0,65	0,65
CTO2	2,00	0,40	0,40	0,40	0,40	0,50	0,55	0,55	0,70	0,70	0,80	0,85	0.85	0,85	0,85	0,80	0.80	0,75	0.80	0,85	0,85	1.00	1,00	1.00	0,95	0,90	0,80	0,65	0,65
стоз	3,55	0,34	0,32	0,31	0,37	0,49	0,71	0,61	0,59	0,59	0,62	0,66	0,66	0,66	0,66	0,57	0,52	0,53	0,59	0,60	0,79	1,00	1.00	0,99	0,99	0,93	0,80	0,60	0,57
CTO4	1:50	0,60	0,60	0,60	0,67	0,73	0.80	0,87	0,80	0.80	0,87	0,87	0.87	0,87	0,87	0,80	0.73	0,73	0.80	0,80	0.80	1.00	1.00	1.00	1.00	0,87	0,80	0,67	0,67
СТО5	4,00	0,45	0,45	0,45	0,45	0,55	0,75	0,83	0,80	0,80	0,80	0,85	0,85	0,85	0,85	0,75	0,70	0,70	0,70	0,70	0,75	1,00	1.00	1,00	1,00	1.00	0,90	0,70	0,70
СТОб	2,60	0,62	0,58	0,58	0,69	0,73	0,77	0,81	0,69	0,69	0.69	0,69	0.69	0,69	0,69	0,62	0.62	0,62	0,62	0,65	0,85	1.00	1,00	1.00	0,96	0,92	0,81	0.69	0,69
VHP	3:40	0,53	0,50	0,50	0,56	0,60	0,66	0,71	0,77	0,77	0,82	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,93	0,91	0,91	1,00	1,00	1,00	0,91	D,91	0,82	0,82	0,82
IN+14	2,80	0,43	0,43	0,43	0,50	0,50	0,50	0,50	0,64	0,64	0,82	0,93	0,93	0,93	0,93	0,93	0,93	0,93	0.93	0,93	1.00	0.86	0.86	0.86	0,71	0,71	0,50	0.43	0,43

Figura 2.22: Curva de demanda horaria de VE-CTO 1

Figura 2.23: Curva de demanda horaria de VE-CTO 2

Figura 2.24: Curva de demanda horaria de VE-CTO 3

Figura 2.26: Curva de demanda horaria de VE-CTO 5

Figura 2.28: Curva de demanda horaria de VE-CTO VHP

Figura 2.25: Curva de demanda horaria de VE-CTO 4

Figura 2.27: Curva de demanda horaria de VE-CTO 6

Figura 2.29: Curva de demanda horaria de VE-CTO IND

SUBESTACIÓN LA ROSA

CTOS	Dem max		5	SUB	ES'	TAC	IÓN	LA	RC	SA	DE	MAN	DA	DE P	OTE	NC	IA A	ACT	IVA	HO	RA	RIA (pu)	DIA	ORE	DINA	ARIC)	
- 8	(mw)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO IND. ANDI	6,93	0,64	0,62	0,62	0,62	0,62	0,72	0,83	0,83	0,85	0,93	0,95	0,93	0,98	1,00	0,96	0,95	0,94	0,96	0,94	0,91	0,92	0,89	0,90	0,87	0,81	0,75	0,69	0,67

Tabla 2.15: Demanda de potencia horaria en p.u

Figura 2.30: Curva de demanda horaria de LR-CTO IND ANDI

SUBESTACIÓN PAVAS

CTOS	D	em			su	BES	ТА	CIÓ	N P	AVA	SD	EM	AND	A D	E PO	TEN		A	TIV	/A	HOF	RAR	IA (p	u) C		RDI	NAF	RIO	1.2	
0.00	(n	nW)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	4	03	0,55	0,54	0,57	0,77	0,72	0,70	0,70	0,70	0,68	0,70	0.72	0,72	0,72	0,65	0,64	0,61	0,62	0,66	0,66	0.74	0,88	0,98	1,00	0,98	0.90	0,76	0,63	0,55

2.6.2. DEMANDA DE POTENCIA REACTIVA

SUBESTACIÓN CENTRO

CTOS	Dem		S	UBE	ST	ACI	ÓN	CEI	NTR	0 0	EM	AND	A D	E PO	TEN		RE	AC	TIV	AH	OR/	ARIA	(pu) DIA	OR	DIN	AR	0	
0.00	(mW)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	1,06	0,72	0,71	0,70	0,71	0.64	0,65	0,77	0,89	0,95	0,96	0,96	0,97	1,00	0,97	0,94	0,94	0,98	0,94	0,95	0,92	0,78	0,79	0,79	0,77	0.74	0,70	0,71	0,72
CTO2	2,79	0,33	0,31	0.28	0,27	0,27	0,30	0,38	0,61	0,83	0,90	0,91	0,93	0,95	0,91	0,81	0,88	0,99	1,00	0,99	0,98	0,91	0,84	0,68	0,60	0,50	0,39	0,37	0,35
СТОЗ	2,57	0,60	0,60	0,60	0,60	0,54	0,55	0,68	0,88	0,96	1,00	0,98	0,97	0,97	0,97	0.92	0,93	0,99	0,96	0,95	0,96	0,85	0,77	0,72	0,69	0,66	0,58	0,59	0,61
CTO4	0.98	0,70	0,70	0.67	0,68	0,64	0,71	0,82	0,88	0,93	0,99	0,97	0,99	1,00	0,98	0,96	0,97	1,00	0,95	0,92	0,98	0,88	0,88	0,84	0,89	0,85	0,72	0,74	0,75
CTO5	1.18	0,90	0,90	0,93	0,92	0,82	0,84	0,88	0,88	0,93	0,93	0,94	0,94	0,98	0,96	0,96	0,93	0,92	0,92	0,89	0,97	0,95	0,95	0,96	0,97	1,00	0,93	0,91	0,89

Tabla 2.17: Demanda de potencia horaria en p.u.

Figura 2.32: Curva de demanda horaria de CE-CTO 1

Figura 2.33: Curva de demanda horaria de CE-CTO 2

Figura 2.34: Curva de demanda horaria de CE-CTO 3

Figura 2.35: Curva de demanda horaria de CE-CTO 4

Figura 2.36: Curva de demanda horaria de CE-CTO 5

SUBESTACIÓN DOSQUEBRADAS

Tabla 2.18: Demanda de potencia horaria en p.u en la subestación Dosquebradas

CTOS	Dem	SU	BES	STA	CIĆ	N D	os	QU	EBR	AD	AS	DEM	AND		EPO	DTE	NCI	A R	EAG	CTIN	/A	IORA	RIA	(pu) DI/	4 0	RDI	NAF	210
0103	(mW)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	1,70	0,65	0,65	0.65	0,65	0,65	0,59	0,71	0,82	0,94	1,00	1,00	1,00	1,00	0,94	1,00	1,00	1,00	1,00	1,00	0,94	0,85	0,79	0,79	0,77	0,74	0,68	0,65	0,68
CTO2	1,00	0,67	0,68	0,69	0,68	0,68	0,63	0,67	0,87	0,97	0,97	0,98	0,99	0,98	0,97	0,98	0,98	0,98	0,98	0,99	1,00	0,96	0,96	0,91	0,87	0,83	0,78	0,72	0,76
стоз	1,85	0,07	0,06	0.06	0,07	0,09	0,12	0,12	0,63	0,66	0,69	0,71	0,73	0,74	0,72	0,65	0,62	0,59	0,57	0,65	0,76	0,91	1,00	0,96	0,96	0,94	0,90	0,67	0.44
CTO4	1,85	0,07	0,06	0,06	0,07	0,09	0,12	0,12	0,63	0,66	0.69	0.71	0,73	0,74	0,72	0,65	0.62	0,59	0,57	0,65	0,76	0,91	1.00	0,96	0,96	0,94	0,90	0,67	0.44
CTO5	1,53	0,36	0,35	0,34	0,37	0,48	0,67	0,61	0,59	0,60	0,64	0,67	0,70	0,71	0,68	0,60	0,55	0,52	0,50	0,57	0,65	0,85	0,93	1,00	0,98	0,96	0,83	0,57	0,42
CTO6	1,10	0,67	0,64	0,62	0,63	0,63	0,58	0,71	0,89	0,91	1,00	1.00	1.00	1,00	1,00	1,00	1,00	1,00	0,91	1,00	0,91	0,89	0,86	0,86	0,84	0,88	0.82	0,74	0.76
CT7+1	1,36	0,64	0,64	0,59	0,64	0,77	0,91	0,86	0,86	0,82	0,82	0,82	0,82	0,82	0,82	0,77	0,73	0,77	0,77	0,77	0,82	0,86	1,00	1,00	0,96	0,82	0,73	0,64	0,64
стоя	1,55	0,56	0,56	0.56	0,56	0,64	0,72	0,76	0,68	0,72	0,76	0,80	0.80	0,80	0,76	0,76	0.72	0,72	0,72	0,72	0,80	0,88	0,96	1,00	1,00	0,96	0,88	08,0	0,68
IND	3,83	0,46	0,46	0,46	0,46	0,54	0,63	0,75	0,88	0,96	1,00	1,00	0,96	0,96	0,92	0,92	0,92	0,96	0,92	0,92	0,83	0,88	0,92	0,92	0,88	0,79	0,67	0,58	0,54

Figura 2.37: Curva de demanda horaria de DQ-CTO 1

Figura 2.38: Curva de demanda horaria de DQ-CTO 2

Figura 2.39: Curva de demanda horaria de DQ-CTO 3

Figura 2.40: Curva de demanda horaria de DQ-CTO 4

Figura 2.41: Curva de demanda horaria de DQ-CTO 5

Figura 2.42: Curva de demanda horaria de DQ-CTO 6

Figura 2.43: Curva de demanda horaria de DQ-CTO 7+1BE

Figura 2.44: Curva de demanda horaria de DQ-CTO 8

Figura 2.45: Curva de demanda horaria de DQ-CTO IND

SUBESTACIÓN CUBA

CTOS	Dem		. 8	su	BES	TAC	ciói	NC	JBA	DE	MA	NDA	DE	POT	ENC	CIA I	REA	ACT	IVA	но	RA	RIA (p	ou)		ORD	INA	RIC)	
0103	(mW)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	2.05	0,25	0,25	0.21	0,22	0,36	0,44	0,49	0,53	0,58	0,61	0,64	0,65	0,65	0,74	0,75	0,61	0,63	0,63	0,62	0,65	0,97	1,00	0,99	0,96	0,90	0,80	0,65	0,54
стоз	1.90	0,79	0,79	0.75	0,79	0,79	0,76	0,84	0,87	0,95	1.00	1.00	0,99	1,00	0,98	0,97	1.00	0,98	0,97	0,95	0,95	0,74	0,63	0,63	0,63	0,68	0,79	0,74	0,79
сто4	1,60	0,88	0,88	0.88	0,88	0,88	0,78	0,91	0,94	0,95	0,97	1,00	0,99	1,00	1,00	1,00	0,98	0,96	0,94	0,94	0,94	0,94	0,88	0,81	0,81	0,88	0,94	0,88	0,88
сто5	1.00	1,00	1,00	1.00	1,00	1,00	0,80	0,90	0,95	0,97	0,95	0,94	0,95	0,94	0,96	1,00	1.00	1,00	1,00	1,00	0,96	0,78	0,72	0,70	0,70	0,70	0,72	0,80	1,00
СТОб	1,53	0,45	0,42	0,42	0,49	0,65	0.76	0.71	0,71	0.71	0,73	0,75	0,76	0,74	0,74	0,64	0.65	0,65	0,65	0,65	0.79	0,94	1,00	1.00	0.97	0.92	0,79	0.62	0.50
СТ7+8	1.25	0,88	0.88	0.88	0.88	0.88	0.88	0.96	0.99	0,96	0.98	0,96	0.96	0,96	1.00	0.96	0.96	0.93	0.94	0.96	0.88	0,80	0.80	0.80	0.80	0.80	0.80	0.72	0,88

Figura 2.46: Curva de demanda horaria de CU-CTO 1

Figura 2.48: Curva de demanda horaria de CU-CTO 4

Figura 2.50: Curva de demanda horaria de CU-CTO 6

Figura 2.47: Curva de demanda horaria de CU-CTO 3

Figura 2.49: Curva de demanda horaria de CU-CTO 5

Figura 2.51: Curva de demanda horaria de CU-CTO 7+8

SUBESTACIÓN VENTORRILLO

CTOS	Dem	s	UB	EST	AC	ÓN	VE	NTC	RR	ILL	DD	EMA	NDA	DE	POT	ΈN	CIA	RE	ACT	riv,	чно	RAR	IA ((pu) (AIC	OR	DIN	ARI	0
	(mW)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	1,10	0,64	0,64	9,64	0,64	0,55	0,55	0,73	0.91	0,91	0,91	0,91	0,91	0,91	0,91	0,91	1,00	1,00	1,00	0,91	0,91	0,82	0,82	0,82	0,91	0,82	0,82	0,73	0,73
CTO2	0,70	0,86	0,86	0,86	0,86	0,71	0,57	0,57	0,86	0,86	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,86	0,86	0,86	0,86	0,86	0,86	0,71	0,71
стоз	1,10	0.87	0.89	0.84	0.86	0,80	0.80	0,88	0.91	0,91	0,92	1.00	0.92	0,92	0,92	0,98	0.95	0.97	0,96	0,97	0,97	0.95	0.95	0,95	0.98	0.97	0,96	0,87	0.86
CTO4	0,93	0,60	0,60	0,60	0.67	0,73	0,80	0.87	0.80	0,80	0,87	0,87	0,87	0,87	0,87	0,80	0.73	0,73	0,80	0.80	0,80	1,00	1,00	1.00	1,00	0.87	0.80	0,67	0.67
СТО5	1,70	0,88	0,88	0,88	0,88	0,88	0,82	0,82	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,94	1,00	1,00	1,00	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94
СТОб	3,70	0.49	0,49	0,54	0,54	0,68	0,78	0,76	0.62	0,62	0,65	0,62	0,62	0,62	0,62	0,51	0.51	0,51	0,57	0.57	0,81	1,00	1,00	1,00	0,97	0.89	0.76	0,68	0,62
VHP	2,11	0,53	0,50	0,50	0,56	0,60	0,66	0,71	0,77	0,77	0,82	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,93	0,91	0,94	1,00	1,00	1,00	0,94	0,94	0,82	0,82	0,82
IN+14	1 80	0,44	0,44	0,44	0,44	0,44	0,56	0,44	0,67	0,67	0,83	0,89	0,89	0,89	0,89	0,89	0,89	0,89	0,94	0,89	1,00	0,89	0,89	0,89	0,83	0,78	0,56	0,56	0,56

Tabla 2.20: Demanda de potencia horaria en p.u en la subestación Ventorrillo

Figura 2.52: Curva de demanda horaria de VE-CTO 1

Figura 2.53: Curva de demanda horaria de VE-CTO 2

Figura 2.54: Curva de demanda horaria de VE-CTO 3

Figura 2.55: Curva de demanda horaria de VE-CTO 4

Figura 2.56: Curva de demanda horaria de VE-CTO 5

Figura 2.57: Curva de demanda horaria de VE-CTO 6

Figura 2.58: Curva de demanda horaria de VE-CTO VHP

SUBESTACIÓN ROSA

CU-CTO 7+8

Figura 2.59: Curva de demanda horaria de

Tabla 2.21: Demanda de potencia horaria en p.u.

CTOS	Dem max		SL	JBE	ST/		ÓN		ROS	AD	EM	AND	A D	E PO	TEN		R	EAC	TIV	AH	OR	ARIA	(pu	I) DIA	OF	RDIN	AR	10	
	(mW	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO IND. ANDI	1,91	0,40	0,34	0,34	0,33	0,41	0,54	0,84	0,86	0,83	0,88	0,90	0,90	0,93	1,00	0,89	0,86	0,84	0,80	0,68	0,68	0,59	0,56	0,51	0,51	0,47	0,40	0,33	0,38

Figura 2.60: Curva de demanda horaria de LR-CTO IND

SUBESTACIÓN PAVAS

Tabla 2.22: Demanda de potencia horaria en p.u en la subestación Pavas

CTOS	Dem		S	UB	EST	AC	IÓN	PA	VAS	DE	EM/	NDA	DE	POT	EN	CIA	RE/	ACT	IVA	HO	RA	RIA (pu)	DIA	ORE	DINA	ARIC	>	
0.00	(mW)	1	2	3	4	5	6	7	8	9	10	10:30	11	11:30	12	13	14	15	16	17	18	18:30	19	19:30	20	21	22	23	24
CTO1	1,35	0.83	0.81	0,82	0,68	0,65	0,65	0,68	0,95	0.94	0,95	1.00	1,00	0,97	0,93	0,92	0,90	0,92	0.91	0,85	0,81	0.74	0,58	0,62	0,61	0,62	0,65	0,60	0,70

Se puede observar en las tablas 2.11 a 2.22 sombreado con un color diferente el rango de datos que se introdujo al simulador **Neplan**, dependiendo de cual fuera el caso de prueba a estudiar. (Fucsia para cargabilidad, verde mar para demanda máxima del sistema y azul claro para demanda mínima).

2.7. CLASIFICACIÓN DE LOS NODOS

Con el propósito de realizar la simulación, es necesario especificar cada uno de los nodos del sistema. Los nodos se clasifican como:

Nodo Slack:

La Rosa.

Nodos de generación (PV):

Cartago.

Nodos de carga (*PQ*):

- Cuba
- Ventorrillo.
- Centro.
- Dosquebradas.
- Pavas.
- Nuevo Libaré.
- Belmonte.
- Naranjito

ANÁLISIS DE ESTABILIDAD DE PEQUEÑA SEÑAL MEDIANTE EL SIMULADOR NEPLAN

El análisis a realizar al sistema eléctrico de Pereira se llevó a cabo mediante el simulador **NEPLAN**, diseñado para el planeamiento, estudios y operación de redes eléctricas. En el desarrollo de este trabajo es necesario mencionar que se tomó unas consideraciones al sistema, es decir que los datos dinámicos que requieren los generadores para realizar este tipo de estudio no estaban disponibles en la E.E.P, por tal razón esos datos fueron extraídos de máquinas similares encontrados en la literatura especializada, es decir, se tomó valores típicos, los demás datos correspondientes a líneas, transformadores, cargas y compensaciones fueron datos proporcionados por la E.E.P. que corresponden a las tablas mencionadas en el capítulo 2.

3.1. EJERCICIO DE PRUEBA

En este trabajo se inició primero entendiendo un ejercicio propuesto en el libro (Kundur 1994) [5]. El cual proporciona todos los datos necesarios para realizarse dicho análisis. En este ejercicio, se analizará la estabilidad de pequeña señal de un sistema de dos áreas como se muestra en la figura 3.1. Este sistema es analizado con el fin de estudiar la naturaleza fundamental de oscilaciones entre áreas.

El sistema consiste de dos áreas similares conectadas por un enlace débil. Cada área consiste de dos unidades acopladas, con un valor de 900 MVA y 20 kV. Los parámetros de los generadores se encuentran en p.u como siguen:

Impedancia del transformador: 0 + j0,15 en p.u Potencia: 900 *MVA* y relación de transformación 20/230 *kV* base.

El voltaje nominal del sistema transmisión es de 230 kV. Los parámetros de las líneas en por unidad de 100 MVA, 230 kV base son:

r = 0.0001 pu/km $x_L = 0.001 \text{ pu/km}$ $b_C = 0.00175 \text{ pu/km}$

Los valores de las unidades generadoras son los siguientes:

G1:	$P = 700 {\rm MW},$	Q = 185 MVAr,	$E_t = 1.03 \angle 20.2^\circ$
G2:	$P = 700 {\rm MW},$	Q = 235 MVAr,	$E_t = 1.01 \angle 10.5^\circ$
G3:	P = 719 MW,	Q = 176 MVAr,	$E_t = 1.03 \angle -6.8^{\circ}$
G4:	$P = 700 {\rm MW},$	Q = 202 MVAr,	$E_t = 1.01 \angle -17.0^\circ$

Datos de las cargas y la potencia reactiva de los condensadores en los nodos 7 y 9:

Bus 7: $P_L = 967$ MW, $Q_L = 100$ MVAr, $Q_C = 200$ MVAr Bus 9: $P_L = 1,767$ MW, $Q_L = 100$ MVAr, $Q_C = 350$ MVAr

A continuación se muestra utilizando el ejercicio planteado, la forma de ingresar los datos al simulador **NEPLAN**.

3.2. INGRESO DE DATOS AL SIMULADOR NEPLAN

Seguidamente se presentará la forma de ingresar los datos de cada uno de los elementos del sistema al módulo de estabilidad de pequeña señal, todo con el fin de proporcionar una herramienta más descriptiva e informativa acerca de todos los parámetros que se requieren utilizar para realizar un análisis de pequeña señal.

El simulador **NEPLAN** contiene módulos definidos para estudios específicos, para cada parámetro se da una indicación acerca del tipo de cálculo para el cual se necesita el dato. Por lo cual el dato enmarcado corresponde al utilizado en este caso.

L	Flujo Carga, Flujo Carga Óptimo, Análisis de Contingencias, Estabilidad de Voltaje
S	Cortocircuito, Protección de Distancia
М	Arranque de Motores
Н	Análisis de Frecuencias Armónicas
Р	Análisis de Protección de Distancia
D	Análisis Dinámico, Estabilidad de Pequeña Señal
R	Confiabilidad
0	Análisis de Selectividad

Lo que significa que en el cuadro de dialogo de entrada de datos se va a ingresar el tipo de cálculo que se requiere en cada elemento.

Inicialmente se ingresó la información del generador G1, por tanto al ingresar al cuadro de dialogo de la máquina síncrona se observan varias pestañas para almacenar datos, entre esas se encuentran las tres primeras pestañas que son utilizadas para estudios de flujos de carga, pero posteriormente aparecen las pestañas relacionadas con datos dinámicos.

Figura 3.2: Parámetros del generador

SIMPOW-Regulador/ Parámetros Limito	Turbinas es Punt	o de opera	ción	Confiabilidad Fact de Escalamie	Más nto D	Da	tos de Usuario Saturación (D
Nombre: 20 Tipo: 20 Sr. MVA: 900 Pr. MV/ 700 Cos(phi): 0.77777 Vinds/Vir: 1.3	pWq sd i kd sd ^e	%; tat%; tat%; sat%;		×/R: RG . 0.hm x(2) . % x(0) . % Ikk . kA muet			
Devan Amortiguad	ог		Motor se	gán IEC/ANSI			
Unid, generadora		Tipe	notor:	Rotor Liso	-		
C directa	Be Obm	10		a Moneda/Mult/Av	0	1	
C impedancia	×eOhm	0		b.Moneda/MW/h	0		
(* aislada	Activo %:	100	2	cMoneda/h	0		
				Factor mult :	1		

En la pestaña parámetros (figura 3.2) se subrayan las casillas de información, las cuales corresponden a potencias, voltaje y factor de potencia. Es pertinente la aclaración que estos datos son también utilizados para correr flujos de cargas.

Figura 3.3: Límites del generador

sión (D

En la pestaña límites se observa (figura 3.3) los cuadros señalados que representan los datos relacionados con los límites de potencia activa y reactiva.

Figura 3.4: Punto de operación del generador

Nombre: Tipo - FC:	PV ·	-	PGen 1 0 1	eración Generador		
V oper	0	PGen, MW	700	Valores escalar Poper MW: Occer Mear	lot. 700 105	
Fact escal efe	ct. para P:	1	Nodo Control	Remotam.:		
Fact. escal. efe	ct. para Q:	1	1		1	
Control pooply	(Tipo FC 1PC			1		
Couphi oper	1	Capacitive .		Estatis Hz/MW:	0	
Cospilico	nistante act. cosphi	C Pol. mactive C Pol. active/	escliva	Qpv., %:	100	

En la pestaña denominada punto de operación (figura 3.4) se muestra un menú de opciones que habilita el tipo de nodo que se requiere, es decir : "PQ", "PV", "SL" y "PC", por tanto si se escoge "PV" se activan las casillas correspondientes al voltaje en porcentaje y la potencia activa que generará el elemento.

Parámetros Límites	Punto de operaci	on Fact de Escalamie	nto Dinámico	Saturación (
Nombre: 350				
Modelo				
Modelo:	Subtransitorio 🖛	Add/Edil Singson	19739 and 6P11 Mode	Mis 1
		Fiermanye Simpson	CT 33 and SP11 Med	d
Mech Load	0	MENU DESPLEOA	ex.e	- I
Destaura				
Tipo rotor: Ro	tor Liso	MENAJ DESPLEGABLE		
Vr kV. [20	Hut	6.5	B. Ohm	0.0025
Sr., MVA: 90	D. MW	//Hz 0	R(2) Ohm	0
Reactancias de la más	pina	Ctes, de tiempo		
Hd. N: 180	Xo., %: 0	Tipo: Circ	vito abierto	
Xq. %: 170	>0% 20		And a second second second	
Xer %: 30		T do' # 0.8	3.0	10
Xq'% 55		Tgo' #: 0.4	T41	10
Nd* . %: 25		T do* # 0.0	3 Tell = 6	10
Xq*%: 25		Tgo* s: 0.0	5 Tor = 0	10

Figura 3.5: Dinámico del generador

En la (figura 3.5) aparece la pestaña Dinámico es la más importante para este estudio ya que el problema de estabilidad de pequeña señal es netamente dinámico, en primera instancia se despliega un menú de opciones que indica que se puede seleccionar el tipo de modelo que requiere la máquina, los tipos modelo son: clásico, transitorio y subtransitorio. Luego aparece otro menú que indica el tipo de rotor a utilizar, cuadros donde se ingresa el valor de voltaje y potencia, y más adelante se tienen otras casillas que corresponden a la constante de inercia, el amortiguamiento mecánico, resistencia del estator y los valores de las reactancias de las máquinas y las constantes de tiempo.

A continuación se presentan los significados de los parámetros dinámicos de las máquinas síncronas que fueron utilizados en este análisis.

Vr: Voltaje nominal en kV

Sr: Potencia nominal en MVA

H: Constante de inercia del generador y la turbina en *s*.

Esta constante se define como la razón entre la energía cinética almacenada por la máquina girando a una velocidad síncrona y la potencia aparente nominal de la máquina [10]. Es decir: $H_i = \frac{E_{ci}}{G_i}$ donde,

E_{ci}: Energía cinética almacenada.

G_i: Potencia aparente nominal.

D: Amortiguamiento mecánico en MW/Hz esta constante de amortiguamiento es importante en los sistemas de potencia porque su tarea es mitigar las oscilaciones que producen problemas en dichos sistemas.

R: Resistencia del estator en ohmios.

REACTANCIAS DE LA MÁQUINA:

Las reactancias en el eje directo y en cuadratura representan el efecto magnetizante o desmagnetizante de la reacción de inducido [10].

Reactancia Subtransitoria X'': Comprende las siguientes reactancias parciales:

- Reactancia de dispersión del arrollamiento estatórico: Xd. est
- Reactancia por reacción de inducido: Xri
- Reactancia de dispersión del arrollamiento rotórico: Xd rotor
- Reactancia de dispersión del arrollamiento amortiguador: Xd.am

Su circuito equivalente se muestra en la (figura 3.6).

Figura 3.6: Circuito equivalente Figura 3.7: Devanado amortiguador reactancia subtransitoria reactancia subtransitoria

La reactancia (X'') representa el flujo por reacción de inducido que atraviesa el entrehierro y penetra en el rotor hasta el devanado amortiguador (figura 3.7).

Significado físico: Se usa para determinar la corriente de cresta, a fin de poder calcular los esfuerzos electromagnéticos máximos en las barras.

Duración de oscilación: Señal de 1 a 6 ciclos para 50/60 Hz.

Reactancia Transitoria X':

Comprende las siguientes reactancias parciales

- Reactancia de dispersión del arrollamiento estatórico: *Xd.est*.
- Reactancia por reacción de inducido: Xri
- Reactancia de dispersión del arrollamiento rotórico: Xd.rot

Su circuito equivalente es (figura 3.8)

Figura 3.8: Circuito equivalente reactancia subtransitoria

Figura 3.9: Devanado amortiguador reactancia subtransitoria

Significado físico: El flujo por reacción de inducido penetra en el rotor hasta el devanado inductor (figura 3.9)

Aplicaciones: Determina la corriente que debe cortar el interruptor para eliminar una falla.

Duración de oscilación: Desaparece dentro de 3 a 6 segundos.

Reactancia del estado estacionario (reactancia síncrona): Xs

Comprende las siguientes reactancias parciales:

- Reactancia de dispersión en el arrollamiento estatorico: *Xd.est*.
- Reactancia por reacción de inducido: Xri

Su circuito equivalente es (figura 3.10)

Figura 3.10: Circuito equivalente reactancia subtransitoria

Significado físico: El flujo por reacción de inducido actúa ya netamente con su efecto desmagnetizante. Figura 3.11.

Duración de oscilación: Es la reactancia en estado de régimen permanente.

Xd: Reactancia síncrona de eje directo en % [9].

- Xq : Reactancia síncrona de eje en cuadratura en %.
- Xd': Reactancia transitoria de eje directo en %.

Xq': Reactancia transitoria de eje en cuadratura en %.

Xd'': Reactancia subtransitoria de eje directo en %.

Xq'': Reactancia subtransitoria de eje en cuadratura en %.

Xl : Reactancia de dispersión del estator ó reactancia de potier en %.

CONSTANTES DE TIEMPO:

Estas constantes representan el tiempo de respuesta que se demora el sistema en establecer de nuevo su punto de equilibrio, tras haber ocurrido una falla. En función de la constante de tiempo disminuye la amplitud de la onda [9].

Tdo': Constante de tiempo transitoria del circuito abierto del eje directo en *s*.

Tqo': Constante de tiempo transitoria de circuito abierto del eje en cuadratura en s.

Tdo": Constante de tiempo subtransitoria de circuito abierto de eje directo en *s*.

Tqo'': Constante de tiempo subtranstoria de circuito abierto en eje de cuadratura en s.

Figura 3.12: Ejemplo de un cortocircuito trifásico

En la figura 3.12 se muestra un ejemplo del comportamiento en el tiempo de la onda de corriente en un cortocircuito trifásico donde durante los primeros ciclos después de la falla, la corriente es muy grande y decae con rapidez. Este período se denomina subtransitorio, a sus parámetros se les individualiza con ("). Al finalizar este período la corriente disminuye pero con más lentitud donde entra a un estado transitorio y se denota con el símbolo ('), termina con el tiempo posterior llamado estado estacionario. [10]

Parametrice Limites Punto de operación Fact. de Escalamiento Dinúmico Saturación Parámetros saturación cied Parámetros saturación cied Parámetros valuración cied Parámetros valuración cied Inúmico Inúmico Saturación To: Image: Saturación cied Parámetros valuración cied Inúmico Inúmico Inúmico Saturación Ia. A: Inúmico Parámetros valuración cied Inúmico Inúmico Inúmico Saturación Ia. A: Inúmico Parámetros valuración cied Inúmico Inúmico Inúmico Saturación Ia. A: Inúmico Parámetros valuración cied Inúmico Inúmico	SIMPOW-Regulador/Tur	binas Info	Confiabilidad	Más	Datos de Usuario
Saturación Párámetro saturación ejed Tipo: Parámetro (A/B) Ia. A: 0 Ib. B: 35	Parámetros Límites	Punto de operación	Fact. de Escalamier	nto Dinámico	Saturación (E
	Saturación Parámetros saturación cién Tipo: Restantatos (Alfé IaA: 0 IbA: 0 IcA: 0 MI MI A: 0.015 B: 9.6	d Parámetros satur. Tipo: Parámetros satur. Tipo: Parámetros satur. IaA: 0 IaA: 0 IoA: 0 A: 0.015 B: 9.6	ación eje-q htto (A/8) ▼ MENU		
Librenia Expo					

Figura 3.13: Saturación del generador

Saturación: Los parámetros de saturación se pueden ingresar para el eje d (eje directo) y el eje q (eje en cuadratura).

A, B: Parámetros ó factores de saturación.

Para el ingreso de datos del transformador se tomó un transformador del ejercicio propuesto y a partir de este se señala los datos importantes que se deben colocar.

Figura 3	3.14:	Parámetros	del	transformador
----------	-------	------------	-----	---------------

Confiabilida	d	Más	Datos de Us	uario
Parámetro Lir	mites Regulació	in P. a Tierra	SIMPOW-Regulador	Info
Nombre:				
Vn1kV: 20 R(1)%: 20 Zcc(1)%: 15 X11/R(1): 0 0%: 0 PfekW: 0 CanbTap bajo c 0 Unid.Terratomac 0	Vn2k Vr2k R(0)2 Zoc(0) X(0)/R(0 V01(0) V01(0) V02(0) Suic Suic	4: 230 2: 0 2: 0 2: 0 0: 0 2: 0 0: 0 0: 0 2: 0 0: 0 0: 0 0: 0 0: 0 0: 0 0: 0 0: 0	Sr NVA: 900 □ EC: Valores de opera □ □ Valores de operaci- Lado secundario ∨ bmáx kV: Ib máx AC □ Cos[phi] b: □ □ Lado primario ∨b mín kV:	revios al CC activ.
	 1	OPCIONES	,	

En la figura 3.14 se muestra la pestaña parámetros donde se indica la tensión, la impedancia, la potencia y se presenta un menú de opciones que permiten escoger el grupo al cual pertenece el transformador.

D / .	Confiabilidad		Aás	Datos de Usuario	
Parametro	Límites	Regulación	P. a Tierra	SIMPOW-Regulador	Info
Nombre:	TRA				
Evaluación	según				
Clr	🔍 Sr				
Ir1 mín A:	0	Srmín M	IVA: 0		
Ir1 máx A:	0	Srmáx M	IVA: 900		
lr2 mín A:	0		Obtener de Sr	1	
lr2 máx A:	0	i –			
Obte	ener de Vr, Sr				
Obtener de \	/r, Srmín,máx				
		1			
		Co	piar Pe	igar Librería	Export

Figura 3.15: Limites del transformador

En la figura 3.15 se hace énfasis en la pestaña límites en la cual se presentan dos opciones que corresponden a potencia y corriente. En este caso se habilita Sr, que indica colocar los valores de potencia mínima y máxima del transformador.

Figura 3.16: Regulación del transformador

Confi	abilidad		Más		Datos de Usua	ario
Parámetro	Límites	Regulación	P. a Tierra	SIMPOV	/-Regulador	Info
Nombre:	TR-1					
_Lado del tap		odo controlado —			Con	trol HVDC-
Primario	C	Primario	C Nodo control	ado remota/		uctivo
C Secund	lario 🔎	Secundario			Re	g. HVDC
Tap mín:	0	Zcc(1)%: 0	Zco	c(0)%: 🛛 🛛		
Tap nom:	0	Zcc(1)%: 1	5 Zco	c(0)%: 0		
Tap máx:	0	Zcc(1)%: 0	Zco	c(0)%: 0		
Tap act:	0	Zcc(1)%: 1	5 Zco	c(0)%: 0		
Delta V %:	0	Beta G: 0				
V obj %:	0	P obj %: 0				
Compuesto					1	
lmin %:	0	V mín %: [0	C Activo		
lmáx %;	0	∨ máx %; 👖	0			
		Co	ipiar Pe	gar	Librería	Export

En la figura 3.16 se muestra la pestaña regulación donde se ingresan los valores de los taps que

permiten realizar la regulación de tensión en el transformador. Aunque en este caso en particular no se requirió de variaciones en los tap del transformador.

ombre	280		1	
po:	- L.		100	
ea:	Área 1		·	
ma:	Zona 1		-	
po de nodo:	Node		-	
n KV:	20	f., Hz	60	
obj 🎋	0	ip máx kA:	0	
ain %:	90	t dp 👑 📧	0	
ndos ., 76;	110			
Nodo de prot	de distancia			

Figura 3.17: Parámetro del nodo

En la figura 3.17 se observa que se habilita la pestaña Parámetros donde se ingresa la tensión a la cual opera el nodo, la frecuencia y el voltaje mínimo y máximo permitido en porcentaje, este límite es de gran importancia cuando el estudio es de flujo de carga.

Figura 3.18: Parámetro de línea

Nomber	hee			
Tipo:	1.50			
Longit km	25	Unidades	Olwa/k.m	
R(1). Ohm/km:	0.0529	R(0) Ohm/km	0	
2(1) 0hm/km	0.529	>(0) Ohm/km	0	
C(1) uF/km:	0.0105	C(0) of Aunc	0	
D(1) uS Arm:	3,958	0(0) uS/km	0	
G(1)uS/km	0			
Ir máxA:	438	T. al final del CC*	00	
Irmin A:	0	Número de líneas	1	
Fact de Reducción	1	Q mm2:	0	
Temp. de oper*:	40			
Cable	Suicheable			
Adrea				

En la figura 3.18 se enfatiza en la longitud que posee la línea, la impedancia y capacitancia, además de la corriente mínima y máxima que puede soportar la línea.

Nombre	ê.	SHUNTERS		
Tipo:			14	1
Modo c	ontrol	Fijo	- v	r kV: 230
Admit	ancia fija	2010-2		
P(1)	MW: C) Р	(0) MW: 0	
Q(1)	Mvar:	200	(0) Mvar: 0	
Modo	operación:	E	actor escalam. efectivo	(Q):
Capa	citivo	D D		
- moqu	es de Admit	Sucheables	1	
	Nro. de pasos	(Incremento por paso)	(Incremento por Daso)	Eliminar

Figura 3.19: Parámetros de compensadores

En la figura 3.19 se señalan los parámetros que se deben ingresar en los condensadores. Para explicar estos recuadros, primero aparece el menú modo de control el cual contiene las opciones de: fijo, discreto y continuo estas opciones generalmente indican la forma en que se quiere ingresar la potencia reactiva, si es el caso de la opción fijo solo se ingresa el valor de la potencia reactiva con signo negativo dando a entender que es una inyección de potencia.

Figura 3.20: Parámetros de carga

Info Parámetros	Contiabilidad	f.	Más	Datos de Usuario
r aramoutra	Depend	iencia de s	onaje	Fact. de Escalamiento
Nombre: 135	108			
Tipo:				1
fipo - FC:		les: NES	AV 💌	1
5. MVA: 97	2,157 E MV	vh:	0	P(0) MW 0
P. MW: 📴	7 Fact V	elander 1	0	Q(0) Mvar 0
Q. Mvar 10	0 Fact V	elander 2	0	
kA: [2,	44			
cos(phi) 0.	995 Unid F	tesidenc.:	0	lan and the second
Valores escalad	0.9.	Fact,	escalam. to	stal para P: 1
S oper MVA:	972.157	Fact	escalam. to	stal para Q
Poper Mut	967	- U alárv	ce de Carga	•
P open Muse	100	IF C	arga variabi	le
G oper Mvar:	Find the second	Fact	de Escal c	alculado P: 1
Loper., KA:	2.44	Fact,	de Escal c	alculado Q; [1
cos(phi) oper	0.995	Circui	t, equival, p	sara análisis de armónicos:
		B.L	conectada	T 000 40000

Para dar fin a la explicación de cada uno de los elementos en la figura 3.20 se muestra el ingreso de

datos de la carga, donde se accede al menú de opciones llamado Tipo-FC el cual permite seleccionar tipos de carga, según los datos proporcionados. Demandada en este caso se escoge el tipo PQ que habilita potencia activa y reactiva.

3.2.1. PARÁMETROS CORRESPONDIENTES AL MÓDULO DE ESTABILIDAD DE PEQUEÑA SEÑAL

Siguiendo con el propósito de explicar la manera de ingresar los datos, se pretende también explicar cómo se accede al modulo de estabilidad de pequeña señal.

Figura 3.21: Acceso al módulo estabilidad de pequeña señal

En la figura 3.21 se muestra la opción análisis y se despliegan varios módulos diferentes para el caso de interés se selecciona el módulo de estabilidad de pequeña señal en el cual seguidamente aparecen varias opciones.

Factores de Participació	n	
Vectores propios		
Lím. para factrs. de participa	ación: 5	% de máximo
Ordenar Valores Propios:	Disminució	n en sigma 💌
Valores Propios		1
Todos		
⊂ Parte imaginaria >= 0		OPCION
Según límites		
	Límite Inferior	Límite Superior
Parte real 1/s:	+1e+020	1e+020
Parte imaginaria rad/s:	-1e+020	1e+020

Figura 3.22: Parámetros de estabilidad de pequeña señal

En la figura 3.22 se muestra la opción calcular donde posteriormente se habilita lo relacionado con el cálculo de factores de participación y vectores propios, mas adelante aparace una opción para designar un valor que permita poner un límite para factores de participación, continuando, existe otro menú de opciones que permite seleccionar el orden en que se desean obtener los valores propios y por último se selecciona ver todos los valores propios, es decir mostrar el par conjugado de cada valor propio.

Máquinas Sincró	nicas variac. de vel. en	ecua. de voltaj	e del estator
Codo de saturac	ión:	0,8	
			÷.
En la figura 3.23 se muestra como, solo el dato correspondiente al codo de saturación, es decir se escoge un valor permisible.

En la figura 3.24 se indica como guardar los resultados obtenidos por el NEPLAN.

Archivo de export. —	tri\simulacior	nes\TBABAIO bt	
Crear después de	cálc. C	Crear arch, de Expo	ort.

Figura 3.24: Archivos de resultados

3.3. RESULTADOS CORRESPONDIENTES AL ANALISIS MODAL

Para observar los resultados, se accede a la pestaña **Análisis** donde aparece el **módulo de estabilidad de pequeña señal**, seguidamente se muestra la opción resultados de gráficos, la cual proporciona gráficos relacionados con los valores propios del sistema, factores de participación y formas de modo, como lo indica la figura 3.25.

Figura 3.25: Acceder a los resultados

3.3.1. Valores propios.

Para observar los valores propios del sistema, se accede a la ventana resultados gráficos donde aparece una ventana (figura 3.26), se le da click derecho y se selecciona la opción "**Parámetro subgráfico**".

Figura 3.26:	Ventana o	de	gráficos
--------------	-----------	----	----------

	Recargar Resultados	
	Zoom Normal	
	Parám, Subgráfico	
	Agregar Subgráfico	
	Quitar Subgráfico Duplicar Subgráfico	
	Parám, Gráfico	
	Duplicar Gráfico	

Una vez realizada la selección anterior, aparecerá una ventana llamada **ajustes subgráficos**, se selecciona la pestaña **subgráfico** y aparece una lista desplegable llamada **Tipo de Subgráfico** donde se encuentran varias opciones a graficar, como lo indica la figura 3.27. En este caso se seleccionan **valores propios**, con el fin de obtener su gráfica. Es pertinente mencionar que en esta ventana se pueden hacer todos los ajustes adicionales a las gráficas como lo son: la resolución, los valores de partida y llegada del grafico, la cuadrícula y algunos efectos de la leyenda.

Figura 3.27: Ajustes subgráficos

o subgráfico:	Valores	Propios		•
\rightarrow	Valores	Propios		
ropiedades de eje	Participa	e modo ación de	dei vaior propic I valor propio se	eleccionado eleccionado
eleccionar eje:	Participa	ación de	la variable de	estado seleccionada
ítulo:				✓ Automático
esolución:	0,2		Automático	
o. de decimls.:	3		Automático	
lín:	0		Automático	
láx:	1	-		
Tabla				
eyenda	— • •			
Mostrar leyenda	V Urdena	ar segun	ele-	fostrar texto

Seguidamente, en la ventana de ajustes subgráficos aparece otra pestaña llamada curvas (figura 3.28) y seguidamente aparece una ventana donde se habilitan todos los valores propios a graficar (figura 3.29).

Parámetros Curv Color àrosor Estilo Objeto Estilo Marco Desplegar Estilo	a Seleccionada 2 Circle Line Connected Line	Poner curv © Y1 © Y2 ▼	va sobre
Datos Curvas —	Agregar Curva	Editar Curva	Eliminar Curva

	Crear nombre automáticamente	
√ariante:	Rootnet	-
√alor propio:		-
√ariable de estado:		V
Valores Propios		

Figura 3.29: Curvas de resultados

Después de haber realizado los pasos consecutivamente, se obtiene la gráfica correspondiente a los valores propios del sistema, como lo muestra la figura 3.30

En este gráfico (figura 3.30) se muestran los valores propios correspondientes al sistema utilizado, donde se muestran todos los valores propios con su componente real negativa por lo que se considera un sistema estable.

3.3.2. Formas de modo local

Esta es una de las formas para analizar el comportamiento de los generadores con respecto al resto del sistema. Para observar las formas de modo local se accede como se explicó anteriormente ingresando a la ventana ajustes subgráficos donde se escoge la opción forma de modo del valor propio seleccionado, como lo indica la figura 3.31

Aiustes Suborafic Subgráfico Curvas Tipo subgráfico: Forma de modo del valor propio seleccionado Propiedades de eje Participación del valor propio seleccionado Participación del valor propio seleccionado Participación de la variable de estado seleccionada Seleccionar eje: ✓ Automático T ítulo: ✓ Automático Resolución: ✓ Automático No. de decimis.: Mín: ✓ Automático Máx 🔲 Tabla Leyenda 🔽 Mostrar leyenda 🔽 Ordenar según eje-🔽 Mostrar texto 10 Altura .. %

Figura 3.31: Forma de modo del valor propio seleccionado

Luego se accede a la pestaña curvas donde se le asigna el nombre correspondiente al gráfico figura 3.31 y aparece una pestaña llamada editar curva que permite escoger el valor propio que se quiere graficar, como se muestra en la figura 3.32 y figura 3.33.

]		(• Y1		
		C Y2		
	v			Ĩ.
	Y			
orm	•			
Agregar Curva	Edita	ar Curva	Eliminar	Curva
	Agregar Curva	Agregar Curva	Agregar Curva	Agregar Curva Eliminar

Figura 3.32: Curvas

Figura 3.33: Ventana para seleccionar valor propio

Nombre curva:	net (Valor Propio: -0,427 + j6,986)	
	, Crear nombre automáticamente	
Variante:	Rootnet	•
Valor propio:	-0,427 + j6,986	•
Variable de estado:		Ŧ
Valores Propios		
C Límite relac, de an	nortig%: 5	

Posteriormente se obtiene la gráfica del generador cuatro (G4) donde se observa que este se

encuentra oscilando a una frecuencia de 1,12 H_z por lo que se caracteriza como modo local, presentando un factor de amortiguamiento de 0,061 como lo indica la figura 3.34.

Figura 3.34: Forma de modo local del valor Propio (-0,427 + j6,986)

Seguidamente se muestra otra gráfica (figura 3.35) que corresponde a la forma de modo local del valor propio (-0,718 + j6,757) donde se muestra el generador 2 (G2) que oscila a una frecuencia de 1,075 *Hz* y tiene un factor de amortiguamiento de 0,106, considerablemente más alto, por lo que se puede concluir que es un modo estable.

Figura 3.35: Forma de modo local del valor Propio (-0,718+j6,757)

3.3.3. Forma de modo entre-áreas

La forma de modo entre-áreas es utilizado para análisis de pequeña señal ya que permite establecer el comportamiento de los generadores en cierto modo de oscilación, en la figura 3.36 se muestra la gráfica correspondiente al modo -0,613 + j3,130

Figura 3.36: Forma de modo entre áreas del valor propio (-0,613 + j3,130)

En la figura 3.36 los generadores G1 y G2 del área 1 oscilan con baja frecuencia la cual es de 0,498 Hz contra G3 y G4 del área 2 y presentan un grado de amortiguación de 0,192 considerablemente alto.

3.3.4. Factores de Participación de Valores Propios

Para obtener la gráfica de factores de participación de valores propios se escogen los valores propios que tienen más alta participación en el sistema, como se muestra en las figuras 3.37 a 3.39.

En estas gráficas se muestran las variables que tienen alta importancia en cada modo de oscilación, las variables velocidad del rotor y ángulo de rotor son las más participativas.

Figura 3.37: Factores de participación del valores propio (-0,613 + j3,130)

Figura 3.38: Factores de participación del valores propio (-0,427 + j6,986)

Figura 3.39: Factores de participación del valores propio (-0,718 + j6,757)

3.3.5. Participación de variables de estado

En esta figura 3.40 se observa la variable de estado velocidad del rotor que tiene gran participación en este pequeño sistema.

Figura 3.40: Participación de variables de estado

CASOS DE PRUEBA

Para realizar el estudio de estabilidad de pequeña señal se tuvo en cuenta tres casos a saber: cargabilidad máxima, demanda mínima y demanda máxima del sistema.

4.1. CARGABILIDAD MAXIMA DEL SISTEMA.

Para el caso de cargabilidad máxima todos los valores de potencia activa y reactiva que se ingresaron al **NEPLAN**, fueron tomados de las tablas de demanda de potencia horaria suministrada por la E.E.P, (tablas 2.11 a 2.22) los valores de demanda máxima fueron tomados en la hora de mayor demanda en cada uno de los circuitos. Lo anterior se hace con el fin de llevar al sistema a su máxima cargabilidad como si todos los circuitos estuvieran entregando su mayor demanda de potencia a la misma hora. Después de ingresar los datos de potencias (activa y reactiva) se procedió a realizar el análisis de estabilidad de pequeña señal como se explicó en el capítulo 3 mediante el módulo de estabilidad de pequeña señal, por consiguiente se obtienen los resultados de valores propios, frecuencias y factores de amortiguamiento obtenidos para la cargabilidad máxima, señalados a continuación:

Tabla 4.1: Valores propios, frecuencias y factores de amortiguamiento para cargabilidad máxima del sistema.

Valor Propio	Grado de amortiguamiento	Frecuencia (Hz)	Descripción
0,006 + j8,504	-0,001	1,354	G1 Belmonte
-0,007+j6,393	0,001	1,017	G1 Libaré
-0,032+j5,252	0,004	1,154	G2 Belmonte
-0,532+j7,248	0,073	1,153	G Rosa

En la tabla 4.1 se puede ver todos los valores propios de los generadores, observándose que el generador 1 (G1) de Belmonte tiene un inestable y los demás generadores tienen un comportamiento estable en el sistema. Luego de tener todos los valores propios, frecuencias y factores de participación se procede a clasificar todas las formas de modo, teniendo en cuenta la frecuencia de cada generador y comparándolas con el rango de frecuencias de cada modo, ya explicados en el capítulo 1. Al final se concluye que todos los modos son locales porque las frecuencias de los generadores están entre 1,017 Hz y 1,354 Hz y el rango de frecuencias que es establecido para definir que son modos locales está entre 0,8 Hz y 2 Hz.

Figura 4.1: Forma de Modo local utilizando el valor propio 0,006 + j8,504

En la figura 4.1 Generador 1 Belmonte oscila a una frecuencia de 1,354 Hz. Por lo que se puede observar que este modo de oscilación es crítico (0,006 + j8,504) ya que se estableció una inestabilidad en el sistema, definido por su parte real positiva y con un amortiguamiento negativo.

Figura 4.2: Forma de Modo local utilizando el valor propio -0,007 + j6,393

En la figura 4.2 se muestra el Generador Libaré oscila a una frecuencia de 1,017 Hz, por lo que describen una respuesta de oscilación un poco más amortiguada, presentando a su vez un factor de amortiguamiento de 0,001 considerablemente bajo.

Figura 4.3: Forma de Modo local utilizando el valor propio -0.032 + j7.552

En la figura 4.3 se muestra el Generador 2 de Belmonte que oscila a una frecuencia 1,154 Hz, con un factor de amortiguamiento de 0,004.

En la figura 4.4 se muestra el Generador de la Rosa oscilando a una frecuencia de 1,153 Hz y presentando un factor de amortiguamiento de 0,073 considerado relativamente alto.

Figura 4.5: Gráfico de valores propios y estabilidad del sistema.

En la figura 4.5 se puede observar todos los valores propios del sistema que indican los modos de oscilación de amplitud variable, en esta gráfica se puede observar un modo inestable.

En la figura 4.6 se puede observar el factor de participación correspondiente al valor propio 0,006 + j8,504, y además se puede apreciar que el generador 1 de Belmonte posee gran participación con respecto al generador 2 de Belmonte.

Figura 4.7: Factores de participación utilizando el valor propio -0,007 + j6,393

Figura 4.8: Factores de participación utilizando el valor propio -0.032 + j7.552

Figura 4.9: Factores de participación utilizando el valor propio -0,532 + j7,248

Figura 4.10: Factores de participación de variable de estado (Ángulo Rotor)

En esta gráfica (figura 4.10) se muestra la variable de estado con más alta participación.

4.2. DEMANDA MAXIMA DEL SISTEMA.

Para el caso de demanda máxima del sistema los datos de potencia activa y reactiva se tomaron de la hora en el que el sistema presenta su mayor demanda. Después de ingresar los datos de demanda máxima al simulador se realizó el análisis de estabilidad de pequeña señal, donde se presentaron modos de oscilación con mejor amortiguamiento, sin presencia de modos inestables. Los resultados de valores propios, frecuencias y factores de amortiguamiento se muestran a continuación:

Tabla 4.2: Valores propios, frecuencias y factores de amortiguamiento para demanda máxima del sistema.

Valor Propio	Grado de amortiguamiento	Frecuencia (Hz)	Descripción
-0,003 + j8,091	0	1,288	G1 Belmonte
-0,007+j6,659	0,001	1,060	G1 Libaré
-0,035+j6,692	0,005	1,065	G2 Belmonte
-0,538+j7,123	0,075	1,134	G Rosa

Después de tener todos los valores propios, frecuencias y factores de amortiguamiento, se procede a clasificar todas las formas de modo del sistema. Observando las frecuencia, se llegó a la conclusión que todas las formas de modo son locales.

Figura 4.12: Modo local utilizando el valor propio -0,007 + j6,659

Figura 4.14: Modo local utilizando el valor propio -0,538 + j7,123

Figura 4.15: Valores Propios y Estabilidad del Sistema.

En la figura 4.15 se pueden observar todos los valores propios del sistema que indican los modos de oscilación de amplitud variable.

4.2.1. FACTORES DE PARTICIPACION DEL SISTEMA.

Figura 4.16: Factores de participación utilizando el valor propio -0,003 + j8,091

Figura 4.17: Factores de participación utilizando el valor propio -0,007 + j6,659

Figura 4.18: Factores de participación utilizando el valor propio -0,035 + j6,692

Figura 4.19: Factores de participación utilizando el valor propio (-0,538 + j7,123)

Figura 4.20: Factores de participación de variable de estado (Ángulo de Rotor)

4.3. DEMANDA MÍNIMA DEL SISTEMA.

Para analizar el caso de demanda mínima del sistema los datos de potencia activa y reactiva se tomaron de la hora en la que el sistema presenta su menor demanda. Cuando se ingresó los datos de demanda mínima al simulador Neplan, se realizó el análisis de estabilidad de pequeña señal y se presentaron oscilaciones más amortiguadas (Tabla 4.3), los resultados de valores propios, frecuencias y factores de amortiguamiento se muestran a continuación:

Tabla 4.3: Valores propios, frecuencias y factores de amortiguamiento para demanda máxima del sistema.

Valor Propio	Grado de amortiguamiento	Frecuencia (Hz)	Descripción
-0,005+j7,922	0,001	1,261	G1 Belmonte
-0,012+j6,736	0,002	1,072	G1 Libaré
-0,032+j6,624	0,005	1,054	G2 Belmonte
-0,529+j7,165	0,074	1,140	G Rosa

Después de tener todos los valores propios, frecuencias y factores de amortiguamiento, se procede a clasificar todas las formas de modo del sistema. Observando las frecuencia se llegó a la conclusión que todas las formas de modo son locales.

Figura 4.21: Modo local utilizando el valor propio -0,005 + j7,922

Figura 4.22: Modo local utilizando el valor propio -0.012 + j6.736

Figura 4.23: Modo local utilizando el valor propio -0,032 + j6,624

Figura 4.24: Modo local utilizando el valor propio -0.529 + j7.165

Figura 4.25: Gráfico de Valores Propios y Estabilidad del Sistema.

En la figura 4.25 se pueden observar todos los valores propios del sistema que indican los modos de oscilación de amplitud variable.

FACTORES DE PARTICIPACIÓN DEL SISTEMA.

Figura 4.26: Factores de participación utilizando el valor propio -0,005 + j7,922

Figura 4.27: Factores de participación utilizando el valor propio -0,012 + j6,736

Figura 4.28: Factores de participación utilizando el valor propio -0,032 + j6,624

Figura 4.30: Factores de participación de variable de estado (Ángulo de Rotor)

4.4. CARGABILIDAD MÁXIMA DEL SISTEMA AUMENTADA EL 2 % EN LA POTENCIA ACTIVA Y REACTIVA.

Para el caso de cargabilidad máxima más el 2% de la potencia activa y reactiva todos los valores de potencia activa y reactiva que se ingresaron al NEPLAN, fueron tomados de las tablas de demanda de potencia horaria suministrada por la E.E.P, los valores de demanda máxima fueron tomados en la hora de mayor demanda en cada uno de los circuitos y se les sumó un 2% de la potencia a cada circuito.

Lo anterior se hace con el fin de llevar al sistema a su máxima cargabilidad como si todos los circuitos estuvieran entregando su mayor demanda de potencia a la misma hora, teniendo en cuenta un crecimiento de la carga de un 2%. Después de ingresar los datos de potencias (activa y reactiva) se procedió a realizar el análisis de estabilidad de pequeña señal que proporciona el módulo de estabilidad de pequeña señal, los resultados de valores propios, frecuencias y factores de amortiguamiento obtenidos para la cargabilidad máxima más un 2% se muestran a continuación:

Tabla 4.4: Valores propios, frecuencias y factores de amortiguamiento para cargabilidad máxima del sistema más el 2% de la potencia activa y reactiva.

Valor Propio	Grado de amortiguamiento	Frecuencia (Hz)	Descripción
0,006+j8,484	-0,001	1,35	G1 Belmonte
-0,007+j6,381	0,001	1,016	G1 Libaré
-0,033+j7,232	0,004	1,151	G2 Belmonte
-0,530+j7,267	0,073	1,157	G Rosa

En la tabla 4.4 se pueden ver todos los valores propios de los generadores destacándose que los modos críticos corresponden a amortiguamientos muy pequeños.

Luego de tener todos los valores propios, frecuencias y factores de participación se procede a clasificar todas las formas de modo, teniendo en cuenta la frecuencia de cada generador y comparándolas con el rango de frecuencias de cada modo. Al final se concluye que todos los modos son locales porque las frecuencias de los generadores están entre 1,016 H_z y 1,357 H_z y el rango de frecuencias que es establecido para concluir que son modos locales está entre 0,8 H_z y 2 H_z .

En la figura 4.31 Generador 1 de Belmonte oscila a una frecuencia de 1,350 Hz, presentándose a su vez un amortiguamiento muy deficiente, considerándose con estas características un modo de oscilación (0,006 + *j*8,504) crítico.

En la figura 4.32 se muestra que el Generador Libaré oscila a una frecuencia de 1,016 H_z , y a su vez presentando un factor de amortiguamiento de 0,001 considerablemente bajo.

En la figura 4.33 se muestra que el Generador 2 de Belmonte oscila a una frecuencia 1,154 H_z , presentando un poco mejor factor de amortiguamiento de 0,004.

Figura 4.34: Forma de Modo local utilizando el valor propio -0.530 + j7,267

En la figura 4.34 se muestra que el Generador Rosa oscila a una frecuencia de 1,157 H_z , con un factor de amortiguamiento de 0,073

Figura 4.35: Gráfico de valores propios y estabilidad del sistema.

En la figura 4.35 podemos observar todos los valores propios del sistema que indican los modos de oscilación de amplitud variable, en esta gráfica se puede observar un modo inestable ya que existe un valor propio ubicado a la derecha del Plano.

Figura 4.36: Factores de participación utilizando el valor propio 0,006 + j8,484

En la figura 4.36 podemos observar el factor de participación correspondiente al valor propio 0,006 + j8,484, donde se aprecia la importancia existente en el generador 1 de Belmonte ya que posee gran participación con respecto al generador 2 de Belmonte.

Figura 4.37: Factores de participación utilizando el valor propio -0,007 + j6,381

Figura 4.38: Factores de participación utilizando el valor propio -0.033 + j7.232

Figura 4.39: Factores de participación utilizando el valor propio -0,532 + j7,248

En esta grafica (figura 4.40) se muestra la variable de estado con más alta participación.

4.5. ANALISIS DE RESULTADOS

En el caso de cargabilidad máxima se observan los resultados más críticos que corresponden a factores de amortiguamiento menores al 5%, por lo que el G1 Belmonte presenta un modo de oscilación inestable, caracterizándose por presentar un amortiguamiento negativo, debido a insuficiente torque de amortiguamiento, lo que indica una respuesta con oscilaciones crecientes de amplitud sin límite, oscilando con una frecuencia de 1,354 H_z y un factor de amortiguamiento muy bajo por lo que confirma una pérdida de estabilidad en el sistema. Con respecto a los demás valores propios se presenta oscilaciones amortiguadas aunque no muy fuertes.

El caso de cargabilidad máxima comparado con el caso de cargabilidad aumentada a un 2%, se puede concluir que el factor de amortiguamiento continua siendo el mismo, aunque en el valor propio ocurre un pequeño decaimiento en la parte compleja del modo de oscilación, por lo que se puede decir que su velocidad de oscilación disminuyó en poco porcentaje y la componente de amortiguamiento es la misma, por lo tanto estos amortiguamientos débiles persisten. Se puede decir que ante una variación de carga el sistema se debilita, ya que se genera un gran esfuerzo para mantenerlo en equilibrio.

Observando el caso de demanda máxima se pueden apreciar mejores resultados. Para G1 de Belmonte el porcentaje de disminución de amplitud de oscilación es bajo, donde se observan además valores propios con componente real negativa lo que confirma un sistema estable, con magnitud pequeña lo que significa que el modo cae con más lentitud, en el caso de demanda máxima se observa que el grado de amortiguamiento es cero, lo que nos indica que el sistema está en el límite de operación, porque ante cualquier aumento en la carga conduce a que el sistema se vuelva inestable.

Para el caso de demanda mínima se observa un mejor comportamiento del sistema. En cuanto al grado de amortiguamiento de los modos de oscilación se puede ver que el valor del grado de amortiguamiento empieza a mejorar, lo que significa que a medida que se disminuye la carga, el sistema tiende a presentar un comportamiento más adecuado con menos riesgo de que exista una inestabilidad. Los valores propios arrojados en el sistema tienen parte real negativa con su correspondiente parte imaginaria, por lo que se muestra un decaimiento del modo y por consiguiente se presenta una respuesta oscilatoria amortiguada.

CONCLUSIONES

En este trabajo realizado al Sistema Eléctrico de Pereira se muestra el análisis de estabilidad de pequeña señal donde se aprecian los resultados producto de las condiciones inherentes del sistema por consiguiente se identifica en el primer caso correspondiente a cargabilidad máxima, un modo de oscilación inestable resultado de oscilaciones electromecánicas crecientes en magnitud, debido a la ausencia de torque de amortiguamiento, las cuales ocasionaron amortiguamiento insuficiente en el sistema, lo que provocó en este incapacidad de contrarrestar las fuerzas disturbadoras y mantener el equilibrio luego de estar sujeto a una perturbación de pequeña magnitud. En cuanto a los demás casos de estudio se observan resultados un poco mejores, aunque para el caso de demanda máxima se tiende a pasar al estado inestable, debido a un amortiguamiento muy bajo. Para el caso de demanda mínima se presenta respuesta de oscilaciones normales, con grados de amortiguamientos relativamente fuertes.

En todos los casos de análisis realizados se observa que las frecuencias de los modos de oscilación se encuentran entre 1,017 H_z y 1,354 H_z por lo que a manera de conclusión todos los modos de oscilación son considerados solamente formas de modos locales. En las gráficas de formas de modo del sistema se muestra que los casos más críticos pertenecen a cargabilidad máxima y cargabilidad máxima aumentada el 2% de la carga, ya que en estos se presenta inestabilidad oscilatoria, debido a existencia de amortiguamientos negativos.

Se puede apreciar además en los factores de participación, que las unidades generadoras presentan gran importancia en el sistema, ya que permiten establecer una ubicación adecuada para una medida de amortiguamiento. En los casos estudiados se observó que la variable con mayor participación en un modo de oscilación correspondiente a Ángulo de Rotor.

En el análisis de estabilidad de pequeña señal se puede de decir que ante aumentos de carga en el sistema, se presentan más posibilidades de generar riesgo de inestabilidad aún cuando las perturbaciones son pequeñas, ya que la finalidad en un SEP es mantener en sincronismo conservando el balance entre la carga y la generación. Por lo que se hace necesario realizar estudios que permitan establecer medidas adecuadas ó posibles soluciones ante el problema de estabilidad de pequeña señal.

Los estudios de estabilidad de pequeña señal son necesarios para una adecuada calibración de los parámetros de los elementos de control del sistema especialmente de los generadores, de forma que el sistema pueda mantener ó recuperar un estado de equilibrio.

Es indispensable para manejar un control de seguridad en los Sistemas Eléctricos de Potencia poseer una herramienta fundamental como el simulador **NEPLAN**, que mediante la obtención de los valores propios es capaz de realizar un análisis detallado del comportamiento del sistema ante proyecciones ó variaciones de carga que en ocasiones conducen a poner en riesgo el equilibrio del sistema, por lo que estos estudios son pertinentes para proyectar un adecuado funcionamiento ó

operación en las máquinas síncronas donde generalmente ocurren los problemas, de esta manera proporcionando una mejor calidad, seguridad y viabilidad en el Sistema Eléctrico de Pereira.

Bibliografía

- ARGUELLO Gabriel, FLORES Hermógenes, Estudio de estabilidad de pequeña señal en el sistema nacional interconectado aplicando el método de análisis modal. Escuela Politécnica Nacional. JIEE, Vol.19, 2005.
- [2] BUCCEIRO J. TERBRUEGGEN M. Interconnected power system dinamics tutorial. California: Electric Power research institute, Third edition, 1998
- [3] EMPRESA DE ENERGÍA DE PEREIRA S.A-E.S.P. Normas de Diseño y Construcción para Redes y Subestaciones dentro del Sistema Eléctrico de la Empresa de Energía de Pereira.
- [4] JATIVA, Jesús. AGUILAR Rommel. Análisis de pequeña señal de un sistema maquina barra infinita. Departamento de energía eléctrica. Escuela Politécnica Nacional. JIEE, Vol.19, 2005.
- [5] KUNDUR, P. Power System Stability and Control. Mc Graw Hill, 1994
- [6] OSORIO, O. Patricia, LÓPEZ L. Leonardo. Análisis de estabilidad de tensión en el Sistema de Transmisión Regional. Pereira, 2008, p 20-22. Trabajo de grado (Tecnólogos en Electricidad).Universidad Tecnológica de Pereira. Facultad de Tecnologías. Escuela de Tecnología eléctrica.
- [7] RUIZ, E. TORRES, A. Estudio de estabilidad de pequeña señal en el sistema eléctrico colombiano. Universidad de los Andes, Bogotá-Colombia.
- [8] Mundo Eléctrico. Revista Especializada del Sector Eléctrico Nº 64, vol. 20, pág.110, Julio-Septiembre, 2006.
- [9] Manuales y Tutoriales NEPLAN En Español.pdf (online) (citado 10Feb., 2009) http://www.neplan.com
- [10] Máquinas Síncronas. http://www.fing.uncu.edu.ar/cátedras/electrotecnia/archivos /Apuntes/máquinas_sincronas/maq_sincronas1.pdf.