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Abstract – This paper considers the identification of static
hysteresis functions which describe phenomena in mechanical
systems, piezoelectric actuators and materials. A solution
based on a model with a parallel structure of elementary
models (with switching) and the Interacting Multiple Model
(IMM) approach is proposed. For each elementary model a
separate IMM estimator is implemented. The estimated para-
meters represent a fusion of values from preset grids, weighted
by the IMM mode probabilities. The estimated state of each
elementary model is a fusion of the estimated states (from the
separate Kalman filters) weighted by the IMM probabili ties.
The nonlinear identification problem is reduced to a linear one.
Results from simulation experiments are presented.

Key words – nonlinear systems, mechatronics, multiple-
models estimation, system identification,  hysteresis

I. INTRODUCTION

One of the phenomena where hysteresis appears is in
friction. Friction is a nonlinear phenomenon occurring
almost in all mechanical systems exhibiting hysteretic
behavior. Different friction regimes can be distinguished
– presliding region for movements over short distances
(a few micrometers) in which the adhesive forces are
dominant such that the friction force appears to be a
hysteresis function of the displacement and a sliding
region, for larger movements in which the friction force
depends on the velocity. Different methods for modeling
this phenomenon and identifying its characteristics are
proposed, starting with classical descriptions between
velocity and friction force (differential equations, static
maps) which can not adequately describe the presliding
region to the more complex LuGre [1,2] and Leuven [9]
models. Those last two models are capable to describe
both regions. The Leuven model [9] implements also the
nonlocal memory hysteresis characteristic which is not
the case for the LuGre model.

This paper considers only the presliding region. It
investigates the identification of static hysteresis fun-
ctions with nonlocal memory, i.e. functions for which
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the future output value depends both on the current
output value, and past extremums of the input. The term
static indicates that the speed of the input variations  has
no influence on the shape of the hysteresis curve.  The
identification is performed by a multiple model (MM)
approach (with the Interacting Multiple Model (IMM)
estimator). The MM approach has recently proven to be
powerful to solve problems with uncertainties (structural
and parametric), abrupt changes in the system behavior,
in decomposing a complex problem into simpler sub-
problems in various areas as target tracking [6], fault
detection [8, 10] and identification [6, 7]. Using this
approach the hysteresis function, characterized by a
strong nonlinearity (switching function), can be de-
coupled into a set of linear functions yielding a linear
description of the nonlinear phenomenon. The IMM
estimator uses the model derived in [4, 5] which
describes the hysteresis as a parallel structure of
elementary models. The developed method can be used
to identify each hysteresis function.

II . PROBLEM FORMULATION

The hysteresis behaviour can be described as a parallel
connection (Fig.1) of elementary models [3, 5] with un-
known parameters.
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Fig. 1. Model of the hysteresis force based
on parallel connection of elementary models

Each elementary model has one common displacement
input ( )ku  and one output force ( )kF ie,  (unmeasurable).

The hysteresis force ( )kFh  corresponds to the sum
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of the outputs ( )kF ie,  of the elementary models. Each

elementary model has its own state ( )kiζ  and is

characterized by two parameters: its maximum force iW

(i.e. [ ]maxi F,W 0∈ ) and the spring constant iK .
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Fig. 2. The characteristic of the elementary model i
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Fig. 3. Physical interpretation of the elementary model i

   An elementary model relates the relative displacement
( ) ( )kku iζ−  to the force )(, kF ie . The relationship is

shown in Fig. 2 and can be described by the equations:

• case 1:

       for ( ) [ ]iii W,Wkf −∈  : 
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• case 2:

       for ( ) ii Wkf > :
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• case 3:

       for ( ) ii Wkf −< :
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where ( ) ( ) ( )[ ]kkuKkf iii ζ−=  is the switching para-

meter. Each elementary model can be considered as an
elasto-slide element consisting of a massless block
subject to a Coulomb friction connected to a massless
linear spring (See Fig. 3). The parameter iW  represents

the Coulomb friction and the coefficient iK  characteri-

zes the spring constant. Another characteristic parameter
of the elementary model which can be used is

i∆ = ii KW / , Ni ,...,2,1= , corresponding to the defor-

mation of the spring when the spring force equals the
Coulomb friction force. The deformation of the spring is
the difference of the input displacement ( )ku  and the

position ( )kiζ  of the element. When the spring force is

larger than the Coulomb friction force, the element
begins to slide. Each block of an elementary model can
remain in the same position called sticking (case 1), or
can undergo a change of the position, called slipping
(case 2 and 3). The parallel connection of the different
elasto-slide elementary models (Fig.1) form the global
static hysteresis model.
     On the basis of (2)-(4), the following state-space
description can be obtained

        ( ) ( ) ( ) ( )kGkuGkxFkx iiiiii ηη,1 ++=+ ,    (5)

        ( ) ( ) ( ) ( )kkuDkxCky iiiii ξ++= ,   (6)

where the state ( ) ( )kkx ii ζ=  is the position of the i -th

element, ( )ku  is the input signal, ( ) )(, kFky iei =  is the

output of the element. The respective model parameters
are:

• case 1: for ( ) [ ]iii W,Wkf −∈
1=iF , 0=iG , ii KC −= , ii KD = ; (7)

• case 2:   for ( ) ii Wkf >
( ) iii K/Wkx −= , 1=iF , 1=iG ,

ii KC −= , 0=iD ; (8)

• case 3:    for  ( ) ii Wkf −<
( ) iii K/Wkx = ,

1=iF , 1=iG , ii KC −= , 0=iD . (9)

( )kiη  and ( )kiξ  are process and measurement noises,

mutually uncorrelated, Gaussian, zero-mean, with cova-
riances iQ  and iR . iG ,η  allows to change the influence

of the process noise iη , reflecting model and discreti-

zation errors due to the replacement of i∆  and iK  with

grid values from uncertainty domains. There are N2
parameters to identify, namely, iW  and iK  ( =i

N,,2,1 �  is the number of the elementary models used).

The connected in parallel N  elementary models form
an augmented  single-input single-output model
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NI  denotes the identity matrix. The parameters iK  and

iW  are estimated through a MM approach. Adding or

removing elementary models (5)-(6) is equivalent to an
order change of the augmented model (10)-(11).
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III . HYSTERESIS FUNCTION IDENTIFICATION AND

REGIMES DETECTION WITH IMM ESTIMATOR

The MM estimation [6] is based on a grid of the un-
known parameters and variables. In the considered prob-
lem the unknown parameters are iK  and the related

with them variables i∆ . A set of grid values for i∆ ,

Ni ,...,2,1=  is formed from physical restrictions, i.e. the

maximal i∆  is determined by the maximal amplitude of

the input signal. The uncertainty interval of the spring
constants, miniK ,[ , ],maxiK  can be determined by

looking to the minimal and maximal slopes of the
measured hysteresis function. Then with each i∆  a grid

of spring constants iK  (i.e. q,i,i,i K,,K,K �

21 ) is

formed, covering well the interval ][ max,imin,i K,K .

For each elementary model i  a separate IMM estimator
is run, with q,...,,j 21=  linear Kalman filters (KF)
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working in parallel. Each Kalman filter uses the state-
space model (5)-(6) with one of its three cases, depen-
ding on the switching parameter ( )kf ji , . The filtered

and predicted estimates of )(, kx ji  are  )1/1(ˆ , ++ kkx ji

and )/1(ˆ , kkx ji +  respectively; )1(, +kjiν  and )1(, +kS ji

are the innovation process and its covariance; )(, kK jiF

is the Kalman filter gain (note the difference with jiK ,

which is the spring constant); )(, kP ji  is the error cova-

riance; ( )kky ji /1ˆ , +  is the predicted output (according to

eq. (6), with parameters of the form (7), (8) or (9),
depending on the value of )(, kf ji ). The number of grid

values for i∆  is equal to the number N  of elementary

models and the dimension of the state vector )(~ kx . The

q  grid values for the spring constants determine the

number of the KFs.
Using the MM approach [6], the estimated state ( )kkxi /ˆ

of each i -th elementary model can be represented as a
fusion of j  state estimates )/(ˆ , kkx ji of the KFs ,

weighted by the mode probabiliti es ( )kji ,µ

( ) ( ) ( )∑
=
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For each i -th elementary model an IMM filter is syn-
thesized and its mode probabiliti es are used to compute
the averaged elementary model state estimate. Each i -th

estimate )(ˆ kK i  can be found as a fusion of values from

the preliminary given set, probabilistically weighted by
the IMM mode probabiliti es

( )∑
=
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j
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1
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Based on the grid values for i∆  and the estimates

)(ˆ kK i , the respective estimated force coeff icients

)(ˆ kWi  can be computed.  The total estimated output

(the hysteresis force) is the sum of estimated outputs
from the elementary models
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In the case of multiple elementary models, the innova-
tion process )1(, +kjiν  of the j -th Kalman filter within

the i -th  IMM estimator is computed as follows

∑
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ljiji kkykkykyk

,1
,, )/1(ˆ)/1(ˆ)1()1(ν ,

where the predicted outputs from the elementary models
ilNl ≠= ,,,1 �  are subtracted from the measured out-

put )1( +ky . The output from each elementary model is

computed as a fusion of the KFs' outputs weighted by
the respective IMM mode probabiliti es.

For each elementary model the different behavior –
sticking or slipping can be determined by using the
information provided by the probabiliti es. The probabili -
ty whose value is greater than a preset threshold Tµ , i.e.

( ) Tji
j

kmax µµ >,

is considered as corresponding to the true regime.

IV. SIMULATION RESULTS

A. Results with one elementary model

In the first simulation the hysteresis function consists of
one elementary model (5)-(9) with 1

,1
=

j
Gη  and a

known parameter 1∆ = 0.55. A hysteresis function of one

elementary model corresponds to a backlash phenome-
non. The parameters to identify are 1K  and 1W . A grid

of values for 1K  is made, =gridK ,1 { 0.1, 0.2, 0.3, 0.4} .

The true coeff icient 33.01 =K  is not on the grid, but it
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is within the uncertainty interval [0.1,0.4]. The transition
probabili ty matrix Pr  and the initial mode probabili ty
vector ( )0µ  are
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The probabiliti es ( )0,1 jµ , 4,3,2,1=j , characterizing the

possible values of 1K , are chosen to be equal. The ini-

tial true state variables are ( ) 00,1 =jx , whereas the

initial estimated states )0(ˆ ,1 jx  are generated as random

uniformly distributed numbers within the interval ( )1,0 .

The Kalman filters are run with initial state estimate

covariances 5
,1 10=jP  and noise covariances:

( )2,1 001.0 NQ j = , ( )2,1 1.0 mR j µ= , ( )2050 m.Qu µ= .

The input signal has been selected of the form [5]
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The data are obtained with a sampling interval
002.0=T s. The results presented are received by ave-

raging over 30 Monte Carlo experiments. The real plant
force ( )kFh , modeled by one element, the estimated

plant force ( )kF̂h , and the IMM probabiliti es are given

in Figs. 4-6, respectively. The shape of the estimated
hysteresis function is close to the shape of the modeled
one as shown in Figs. 4 and 5. The mode probabiliti es

Fig. 4. Plant force modeled by one elementary model

Fig. 5. Estimated plant force

closest to the true parameter value (Fig. 6). The error

( ) ( ) ( )kFkFke hh
ˆ−=  between the estimated and real

force is close to zero (Fig. 7). The estimation accuracy,

Fig. 6. The IMM mode probabiliti es

Fig. 7. Error between the estimated and real force

Fig. 8.  The estimated coefficient ( )kK̂1

Fig. 9. Switching between the three "cases" in the real
model for a single run
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characterized by this error with respect to the real force
is less than 5 %. The estimated spring constant varies
around its true value (Fig. 8). The three cases in the
model (5)-(6) are denoted respectively by 1, 2 and 3.
Switching between the three cases in the real model is
given in Fig.9. The error between real switching and
switching observed based on the biggest IMM
probabili ty (the third one) are presented in Fig. 10.

Fig. 10. Error between real switching and switching ob-
served based on the biggest probabili ty for a single run

B. Results with more elementary models

In this experiment the real hysteresis function is
simulated with ten elementary models (5)-(9), with

1
,

=
ji

Gη  and

i∆  ={ 0.05, 0.1, 0.15,0.20, 0.25,0.35,0.55,0.65,0.85, 1} ,

=iK { 0.4,0.25,0.25,0.38, 0.10,0.40,0.15,0.12,0.30,0.4} .

It means that the augmented model (10)-(11) is of order
ten (unknown to the designer). The hysteresis behavior
resulting from this augmented model is now approxi-
mated with a reduced order augmented model consisting
of seven elementary models. Preliminary the uncertainty
intervals for the parameters are determined, i.e.

]1,0(∈i∆  and ]4.0,1.0[∈iK .With each elementary mo-

del a separate IMM estimator is implemented with the
same transition probabilit y matrix, mode probabiliti es,
initial conditions for the state estimates (random,
uniformly distributed) and noise covariances as in the
first experiment. The grid for i∆  is : gridi ,∆ ={ 0.03, 0.1,

0.2, 0.4, 0.6, 0.8, 1} and for all spring constants: gridiK ,

={ 0.1, 0.2, 0.3, 0.4} . Compared to the exact values,
three grid values of i∆  coincide with their exact values,

the others are not the same, but are within the un-
certainty interval. Also some grid values of iK  coincide

with the exact ones, but the most of them - not. The real

hysteresis force ( )kFh , its estimate ( )kF̂h , the error

)(ke  between them and the estimated coefficients

( )kK i
ˆ , 7,...,1=i  are given in Figs. 11–14. As seen from

Figs. 11 and 12, the shapes of the estimated and real
hysteresis functions are close. The estimation error is

small (less than 5 %) (Fig.13). The estimated coeffi-
cients vary around their true values (Fig.14).

Fig. 11. The real hysteresis force, modeled by 10 ele-
mentary models

Fig. 12. The estimated hysteresis force by 7 elementary
models

Fig. 13. Error between the estimated and real force

Fig. 14. Estimated coefficients )(ˆ kK i

The examples considered ill ustrate that through the MM
approach the discontinuity (switching) in  the state and
output models can be overcome.
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V. COMPARISON WITH THE RLSM

Another possible solution for hysteresis function identi-
fication is developed in [5] using the recursive least-
squares method (RLSM). Results with high estimation
accuracy are presented. The results obtained by the
IMM estimator have a comparable accuracy of those
from the RLSM. The RLSM requires an additional
adaptation of the forgetting factor in the presence of
changes in the model parameters, whereas the IMM
approach possesses an inherent mechanism to reflect
quickly the changes. The parallel structure of the model
with three different cases and the IMM estimator give
the possibili ty to model and identify hysteresis func-
tions, characterized with a hard nonlinearity as swit-
ching. The IMM probabiliti es provide for each ele-
mentary model information about sticking and slipping
behavior, that information is not available in the RLSM
parameter estimates. In comparison with the results
received by the RLSM [5], it is not possible to obtain
negative values of the estimated parameters due to the
fact that the probabiliti es can only have a positive sign.
The IMM implementation does not require considerable
computations.  In every moment only one of the cases of
the elementary model is active. For N  parallel elemen-
tary models and a grid with q values for iK , the number

of active Kalman filters at each moment is Nq . Advan-

tage of the RLSM is that it works almost without initial
information, whereas for the IMM the transition
probabili ty matrix should be preset. But the transition
probabiliti es are chosen to correspond to the fact that
one value of the spring coefficient is the most probable
and this simpli fies its determination. The crucial point of
each MM estimator is the grid construction of the
uncertain parameters. The true parameter values have to
be within the preset uncertainty intervals.

VI. CONCLUSIONS

This work presents a solution for static hysteresis func-
tion identification with a multiple model approach. The
hysteresis function is described by a set of elementary
models connected in parallel. This parallel structure of
the model, in combination with the IMM estimator gives
the possibili ty to reduce the nonlinear identification
problem to a linear one. For the parameters (the spring
constant and the force coefficient) of each elementary
model, grids of possible values are preset taking into
account physical restrictions. With each elementary
model a separate IMM estimator is synthesized working
by linear Kalman filters based on models with different
parameters. The final estimate of each parameter
represents a fusion of the values from the grid weighted
by the IMM mode probabiliti es. The estimated output of
each elementary model is a fusion of the weighted
estimates of the Kalman filters by the probabiliti es, and
the total hysteresis force represents the sum of the
estimated outputs of all elementary models. A compari-
son with the recursive least-squares method is discussed.

Results from simulation experiments with one and more
elementary models are presented.
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