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Abstract — This paper considers the identificaion o static
hysteresis functions which describe phenomena in mechanica
systems, piezeledric aduators and materials. A solution
based on a mode with a parallél structure of elementary
models (with switching) and the Interading Multiple Model
(IMM) approach is proposed. For eah elementary model a
separate IMM  estimator is implemented. The estimated para
meters represent afusion o values from preset grids, weighted
by the IMM mode probabilities. The estimated state of each
elementary model is afusion o the estimated states (from the
separate Kalman filters) weighted by the IMM probabilities.
The nonlinea identificaion problem is reduced to alinea one.
Results from simulation experiments are presented.
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I. INTRODUCTION

One of the phenomena where hysteresis appeas is in
friction. Friction is a nonlinea phenomenon occurring
amost in all mecdhanicd systems exhibiting hysteretic
behavior. Different friction regimes can be distinguished
— predliding region for movements over short distances
(a few micrometers) in which the alhesive forces are
dominant such that the friction force gpeas to be a
hysteresis function of the displacement and a dliding
region, for larger movements in which the friction force
depends on the velocity. Different methods for modeling
this phenomenon and identifying its charaderistics are
proposed, starting with classcd descriptions between
velocity and friction force (differential equations, static
maps) which can not adequately describe the predliding
region to the more wmplex LuGre [1,2] and Leuven [9]
models. Those last two models are cgable to describe
bath regions. The Leuven model [9] implements also the
nonlocd memory hysteresis charaderistic which is not
the case for the LuGre model.

This paper considers only the prediding region. It
investigates the identification of static hysteresis fun-
ctions with norlocal memory, i.e. functions for which
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the future output value depends both on the airrent
output value, and past extremums of the input. The term
static indicaes that the speed o the input variations has
no influence on the shape of the hysteresis curve. The
identification is performed by a multiple model (MM)
approach (with the Interading Multiple Model (IMM)
estimator). The MM approach has recently proven to be
powerful to solve problems with urcertainties (structural
and pearametric), abrupt changes in the system behavior,
in decomposing a complex problem into simpler sub-
problems in various areas as target tradking [6], fault
detedion [8, 10] and identificaion [6, 7]. Using this
approach the hysteresis function, charaderized by a
strong nonlineaity (switching function), can be de-
coupled into a set of linea functions yielding a linea
description of the nonlinea phenomenon. The IMM
estimator uses the model derived in [4, 5] which
describes the hysteresis as a paralel structure of
elementary models. The developed method can be used
to identify ead hysteresis function.

Il. PROBLEM FORMULATION

The hysteresis behaviour can be described as a parall el
connedion (Fig.1) of elementary models [3, 5] with un-
known parameters.

Fel(k)
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u(k) ; Fik) | Falk)
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Fig. 1. Model of the hysteresis force based
on paralel connedion of elementary models

Eadh elementary model has one common displacement
input u(k) and one output force F; (k) (unmeasurable).

The hysteresis force F, (k) corresponds to the sum
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Fh(k)%a,i (k). ®

of the outputs Fe,( ) of the elementary models. Each
dementary model has its own state ¢;(k) and is
characterized by two parameters: its maximum force W,
(i.e. W D[O, Fmax]) and the spring constant K .

Fig. 2. The characteristic of the elementary model i
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Fig. 3. Physical interpretation of the elementary model i

An elementary model relates the relative displacement
u(k)-¢; (k) to the force Fe;(k). The relationship is

shown in Fig. 2 and can be described by the equations:

e casel:

i (k+D) = (k)

for f,(k)O[-w, W] : Ef:e,i K)=fk) 2
e Case2:
fi (k) -W,
for 1, (k)>W, % k+D=C00+ == — 3
EFe,i (k) =W,
e cae3:
fi (k) +W

for f;(k)<- %(kﬂ) GU+=m Ki @

EFe,i (k) =

where f, (k): Ki[u(k)—Zi(k)] is the switching para-
meter. Each elementary model can be considered as an
elasto-dide element consisting of a massess block
subject to a Coulomb friction connected to a massless
linear spring (See Fig. 3). The parameter W, represents
the Coulomb friction and the coefficient K; characteri-
zes the spring constant. Another characteristic parameter
of the elementary model which can be used is
A=W, /K;, i=12,..,N, corresponding to the defor-

mation of the spring when the spring force equals the
Coulomb friction force. The deformation of the spring is
the difference of the input displacement u(k) and the
position {; (k) of the element. When the spring force is

larger than the Coulomb friction force, the element
begins to dide. Each block of an elementary model can
remain in the same position called sticking (case 1), or
can undergo a change of the position, caled slipping
(case 2 and 3). The parallel connection of the different
elasto-dide elementary models (Fig.1) form the global
static hysteresis model.

On the basis of (2)-(4), the following state-space
description can be obtained

x (k+1)=Fx (k)+Giu(k)+Gn,ini (). %)
i (k)= Cix; (k)+ Du(k) + & (k). (6)
where the state x; (k) ={; (k) is the position of the i -th
element, u(k) isthe input signal, y; (k)= F; (k) is the

output of the element. The respective model parameters
are:

o casel: for f (k)D[—V\/i ,V\/i]

F =1, G =0, C; =-K;, D; =K;; @
« case2 for f;(k)>W,

x (k)=-W, / K;, F, =1,G; =1,

G =-K;,D; =0; 8
e case3 for f,(k)<-W

xi (k) =W, 1 K;,

F =1, G =1, C, =-K,, D, =0. ©)

n (k) and ¢&; (k) are process and measurement noises,
mutually uncorrelated, Gaussian, zero-mean, with cova
riances Q; and R, . G,; alows to change the influence
of the process noise n; , reflecting model and discreti-
zation errors due to the replacement of 4; and K; with
grid values from uncertainty domains. There are 2N
parameters to identify, namely, W, and K; (i=
12,...,N isthe number of the elementary models used).
The connected in parallel N elementary models form
an augmented single-input single-output model
%(k +1)= FX(k)+ Gu(k)+G,n(k), (10)
y(k)=Cx(k)+ Du(k)+¢ k), (12)
where X(k +1)=[Z,(k+1),...,{n (k+D]", y(K) = Fy (K)
F=ly, G=[Gy,....Gy1", G, =[Gpy,--,Gyn1"

C =[-K,,....~Ky], D=[Dy,...,DN1T,
| y denotes the identity matrix. The parameters K; and
W, are estimated through a MM approach. Adding or

removing elementary models (5)-(6) is equivalent to an
order change of the augmented model (10)-(11).
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Il HYSTERESIS FUNCTION IDENTIFICATION AND
REGIMES DETECTION WITH IMM ESTIMATOR

The MM estimation [6] is based on a grid o the un-
known parameters and variables. In the cnsidered prob-
lem the unknown parameters are K; and the related
with them variables A;. A set of grid values for A,
i =12,...,N isformed from physicd restrictions, i.e. the
maximal A, is determined by the maximal amplitude of
the input signal. The uncertainty interval of the spring
constants, [K; nin: Kimax] Can be determined by
looking to the minimal and maximal slopes of the
measured hysteresis function. Then with each A; agrid
of spring constants K; (i.e. K3, Kj,,--,Kjq) is
formed, covering well the interval [K; iy, Ki max] -

For ead elementary model i a separate IMM estimator
isrun, with j =12,...,q linear Kalman filters (KF)

X, (K+UK) =R (k/K)+Gju(k), (12
fg‘j(k+ljk+]):X’j(k+]Jk)+KFi‘j (k+Dv;; (k+1), (13)
v, (k+D = y(k+D -5 ;(k+1/K), (14)
Ri(k+1/k)=F ;R (k/KF} +G, .Q Gy . (15)
S, (k+D)=CR;(k+UKC| +R;, (16)
Ke, (k+D=R;(k+UKCTST(k+D), 17

Rik+1/k+1)=R,(k+1/k)-
(18)
Kei;(k+23 j(k+ DT, (k+1)

working in paralel. Each Kalman filter uses the state-
spacemodel (5)-(6) with one of its three caes, depen-
ding on the switching parameter f;; (k). The filtered

and predicted estimates of x ;(k) are % ;(k+1/k+1)

and X ; (k +1/k) respedively; v; j(k+1) and S ;(k+1)

are the innovation processand its covariance, Kg; ; (k)

is the Kalman filter gain (note the difference with K; ;

which is the spring constant); R ; (k) is the eror cova-
riance 9i,j(k +1/ k) isthe predicted output (acording to
eg. (6), with parameters of the form (7), (8) or (9),
depending on the value of fi’j (k) ). The number of grid
values for 4; is equal to the number N of elementary
models and the dimension of the state vedor X(k). The
g grid vaues for the spring constants determine the
number of the KFs.

Using the MM approach [6], the estimated state %, (k/k)
of ead i -th elementary model can be represented as a
fuson of | sate estimates % ;(k/k)of the KFs ,

weighted by the mode probabiliti es 4 ; (k)

% (k/ k)= i?i,j (k/k)lli,j (k).

For ead i -th elementary model an IMM filter is syn-
thesized and its mode probabiliti es are used to compute
the averaged elementary model state estimate. Each i -th

estimate Ki (k) can be found as afusion of values from

the preliminary given set, probabilisticdly weighted by
the IMM mode probabiliti es

. q
Ki(k) = K u,; (k).
fa

Based on the grid values for 4, and the estimates
Ki(k), the respedive estimated force efficients

W(k) can be computed. The total estimated output

(the hysteresis force) is the sum of estimated outputs
from the dementary models

lfh(k/k):gyi(k/k),
1=1
where
q
Vi(k/K) =% ¥ (K1) 5 (K)
=

In the cae of multiple dementary models, the innova-
tion processv; ; (k+1) of the j -th Kalman filter within

the i -th IMM estimator is computed as follows
N
Vij(k+D) = y(k+1) = §; ; (k+1/K) = 5 § (k+1/K),
I=1T#i

where the predicted outputs from the dementary models
I =1,...,N, | #i are subtraded from the measured out-

put y(k +1) . The output from each elementary model is

computed as a fusion of the KFs' outputs weighted by
the respedive IMM mode probabiliti es.

For eath elementary model the different behavior —
gticking or dipping can be determined by using the
information provided by the probabiliti es. The probabili -
ty whose value is greder than a preset threshold L, i.e.

mjaxu i (k) >

is considered as corresponding to the true regime.

IV. SIMULATION RESULTS

A. Resultswith ore dementary model

In the first simulation the hysteresis function consists of
one dementary model (5)-(9) with Gnl,- =1 and a

known parameter 4, = 0.55. A hysteresis function of one
elementary model corresponds to a badlash phenome-
non. The parameters to identify are K; and W,. A grid

of values for K; ismade, Ky4iq ={0.1, 0.2, 0.3, 0.4}.
The true wefficient K, =0.33 is not on the grid, but it
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iswithin the uncertainty interval [0.1,0.4]. The transition
probability matrix Pr and the initial mode probabili ty
vedor 1(0) are

0994 0.002 0.002 0.0020 /40

Plr_%).002 0994 0.002 0.002 (0)_%/45.
“ 002 0002 0994 00020 %7 @/40

%).002 0.002 0.002 0.9945 a/ 4%
The probabiliti es 14 ;(0), j =12,34, charaderizing the
posshle values of K,, are chosen to be equal. The ini-
tidl true state variables are x;(0)=0, whereas the
initial estimated states % ; (0) are generated as random
uniformly distributed numbers within the interval (0, 1).

The Kaman filters are run with initial state estimate
covariances R =10> and noise @variances

Q,; =(0.00INY, R ; =(0.3um)*, Q, =(0.05um)’.
Theinput signal has been seleded of the form [5]

u(k) = sin2 k sinPT 20k E,
06 0 0 16 C

The data ae obtained with a sampling interval
T =0.002s. The results presented are receved by ave-
raging over 30 Monte Carlo experiments. The red plant
force F,(k), modeled by one dement, the estimated

plant force F,,(k), and the IMM probabiliti es are given

in Figs. 4-6, respedively. The shape of the estimated
hysteresis function is close to the shape of the modeled
one as shown in Figs. 4 and 5. The mode probabiliti es

.
[N] :

0.1

0.05

M5 a1 05 0 05 1 15

u(k), [um]
Fig. 4. Plant force modeled by one dementary model

Fr (K)

0.15
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0
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-0.15

u(k), [um
Fig. 5. Estimated plant force

closest to the true parameter value (Fig. 6). The aror
e(k)=F, (k)-F,(k) between the etimated and red
forceiscloseto zero (Fig. 7). The estimation acairacy,

1

Ha(K) g (k)

0.8

0.6
0.4f [

0.2}

Fig. 6. The IMM mode probabiliti es

e(k)’ 0.06
[N]

0.04
0.02
0

-0.02

0 0.5 1 1.5 2
time, [9]
Fig. 7. Error between the estimated and red force

0.35

K, (K) ]

0.25

0.2

0.15
0 0.5 1 15 2

time, 9]
Fig. 8. The estimated coefficient K (k)

25

15

0 0.5 1 15 2
time, 9]

Fig. 9. Switching between the three"cases' in the red
model for asingle run
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charaderized by this error with resped to the red force
is lessthan 5 %. The estimated spring constant varies
around its true value (Fig. 8). The three caes in the
model (5)-(6) are denoted respedively by 1, 2 and 3.
Switching between the three caes in the red model is
given in Fig.9. The aror between red switching and
switching observed based on the biggest IMM
probabili ty (the third one) are presented in Fig. 10.

15

0.5

-05

-15

0 0.5 1 15 2

time, [

Fig. 10. Error between red switching and switching ob-
served based on the biggest probabili ty for asingle run

B. Resultswith more dementary models
In this experiment the red hysteresis function is
simulated with ten elementary models (5)-(9), with
Gy, j =1 and

4, ={0.05,0.1, 0.15,0.20, 0.25,0.35,0.55,0.65,0.85, 1},
K; ={0.4,0.25,0.25,0.38, 0.10,0.40,0.15,0.12,0.30,0.4} .

It means that the augmented model (10)-(11) is of order
ten (unknown to the designer). The hysteresis behavior
resulting from this augmented model is now approxi-
mated with areduced order augmented model consisting
of seven elementary models. Preliminary the uncertainty
intervals for the parameters are determined, i.e
A, 0(0]] and K; 0[0.1,0.4] .With eat elementary mo-
del a separate IMM estimator is implemented with the
same transition probability matrix, mode probabiliti es,
initial conditions for the state estimates (random,
uniformly distributed) and noise cvariances as in the
first experiment. The grid for 4; is: 4; 44 ={0.03, 0.1,
0.2,04, 0.6, 0.8, 1} and for all spring constants: K; g
={0.1, 0.2, 0.3, 0.4}. Compared to the ead values,
threegrid values of 4; coincide with their exad values,

the others are not the same, but are within the un-
certainty interval. Also some grid values of K; coincide

with the exad ones, but the most of them - not. The red
hysteresis force F,(k), its estimate F,(k), the aror
e(k) between them and the estimated coefficients
K;(k), i =1...7 aregivenin Figs. 11-14 As sen from

Figs. 11 and 12 the shapes of the estimated and red
hysteresis functions are dose. The etimation error is

small (lessthan 5 %) (Fig.13). The estimated coeffi-
cients vary around their true values (Fig.14).

Fa(k), 1
[N]

u(k), [um]
Fig. 11. The red hysteresis force, modeled by 10 ele-
mentary models

Fo(k), 1
[N] 0.5

0

-05

1 / A
1 -0.5 0 0.5 1

u(k), [um]

Fig. 12. The estimated hysteresis forceby 7 elementary
models

e(k) 0.15
[N] o1
0.05
0
-0.05
-0.1

0 0.5 1 15 2

time, [

Fig. 13. Error between the estimated and red force

~ 0.4
Rido
035t | W
03 »”"

0.25

0.2¢

0.15

0 0.5 1 15 2

time, [s]
Fig. 14. Etimated coefficients K; (k)

The examples considered ill ustrate that through the MM
approach the discontinuity (switching) in the state and
output models can be overcome.
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V. COMPARISON WITH THE RLSM

Another possble solution for hysteresis function identi-
fication is developed in [5] using the reaursive least-
squares method (RLSM). Results with high estimation
acaracy are presented. The results obtained by the
IMM estimator have a @mparable acaracy of those
from the RLSM. The RLSM requires an additional
adaptation of the forgetting fador in the presence of
changes in the model parameters, whereas the IMM
approach possesses an inherent mechanism to refled
quickly the dchanges. The parallel structure of the model
with three different cases and the IMM estimator give
the possbility to model and identify hysteresis func-
tions, charaderized with a hard nonlineaity as swit-
ching. The IMM probabiliti es provide for eah ee-
mentary model information about sticking and slipping
behavior, that information is not available in the RLSM
parameter estimates. In comparison with the results
recaved by the RLSM [5], it is not possble to olktain
negative values of the estimated parameters due to the
fad that the probabiliti es can only have apositive sign.
The IMM implementation does not require wnsiderable
computations. In every moment only one of the caes of
the dementary model is adive. For N parallel elemen-

tary models and a grid with q values for K;, the number
of adive Kalman filters at ead moment is qN . Advan-

tage of the RLSM is that it works almost without initial
information, whereas for the IMM the transition
probability matrix should be preset. But the transition
probabiliti es are dhosen to correspond to the fad that
one value of the spring coefficient is the most probable
and this smplifiesits determination. The aucia point of
eahh MM estimator is the grid construction of the
uncertain parameters. The true parameter values have to
be within the preset uncertainty intervals.

V1. CONCLUSIONS

This work presents a solution for static hysteresis func-
tion identification with a multiple model approach. The
hysteresis function is described by a set of elementary
models conneded in paralel. This paralle structure of
the model, in combination with the IMM estimator gives
the possbhility to reduce the nonlinea identification
problem to a linea one. For the parameters (the spring
constant and the force ®efficient) of ead elementary
model, grids of possble values are preset taking into
acount physicd restrictions. With each elementary
model a separate IMM estimator is synthesized working
by linear Kalman filters based on models with different
parameters. The final estimate of each parameter
represents a fusion of the values from the grid weighted
by the IMM mode probahiliti es. The estimated output of
ead elementary model is a fusion of the weighted
estimates of the Kalman filters by the probabiliti es, and
the total hysteresis force represents the sum of the
estimated outputs of al elementary models. A compari-
son with the recursive least-squares method is discussed.

Results from simulation experiments with one and more
elementary models are presented.
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