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ABSTRACT

The main purpose of this paper is to study Lie algebras L such that if a subalgebra
U of L has a maximal subalgebra of dimension one then every maximal
subalgebra of U has dimension one. Such an L is called Im(0)-algebra. This class
of Lie algebras emerges when it is imposed on the lattice of subalgebras of a Lie
algebra the condition that every atom is lower modular. We see that the effect of
that condition is highly sensitive to the ground field F. If F is algebraically closed,
then every Lie algebra is Im(0). By contrast, for every algebraically non-closed
field there exist simple Lie algebras which are not Im(0). For the real field, the
semisimple 1m(0)-algebras are just the Lie algebras whose Killing form is
negative-definite. Also, we study when the simple Lie algebras having a maximal
subalgebra of codimension one are Im(0), provided that char(F) # 2. Moreover,
Im(0)-algebras lead us to consider certain other classes of Lie algebras and the
largest ideal of an arbitrary Lie algebra L on which the action of every element
of L is split, which might have some interest by themselves.
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1. INTRODUCTION

Throughout L will denote a finite-dimensional Lie algebra over a field F. The
relationship between the structure of L and that of the lattice #(L) of all subalgebras
of L has been studied by many authors. Much is known about modular subalgebras
(modular elements in ¥ (L)) through a number of investigations including Amayo
and Schwarz (1980), Gein (1987a,b), Varea (1989, 1990, 1993). Modular subalgebras
of dimension greater than one which are not quasi-ideals were exhibited in Varea
(1993). Other lattice conditions, together with their duals, have also been studied.
These include semimodular, upper semimodular, lower semimodular, upper
modular, lower modular and their respective duals (see Bowman and Towers, 1989,
for definitions). For a selection of results on these conditions see Gein (1976),
Varea (1983, 1999), Gein and Varea (1992), Lashi (1986), Towers (1986, 1997),
Bowman and Varea (1997). Moreover, it has been proved that none non-solvable
locally finite-dimensional Lie algebra admits a lattice isomorphism on a solvable
Lie algebra, except the three-dimensional non-split simple, provided that the ground
field is perfect of characteristic not 2 or 3 (see Gein and Varea, 1992).

Many of the lattice conditions imposed so far have proved to be very strong,
forcing the algebra to be abelian, almost abelian, supersolvable, a u-algebra (this
means that every proper subalgebra has dimension one) or an algebra direct sum
of the above. Typically, see Gein (1987a), Varea (1993, 1999). In this paper we shall
introduce a condition that is less restrictive.

Recall that an element U of a lattice % is called lower modular in % if, given any
element B of ¥ with U V B covering U, then B covers U A B. A subalgebra U of a Lie
algebra L is called lower modularin L (Im in L) if it is a lower modular element in the
lattice of subalgebras of L.

In this paper, we impose the condition that every minimal subalgebra of L is Im
in L. We prove that this condition is equivalent to the condition that if a subalgebra
U of L has a maximal subalgebra of dimension one then every maximal subalgebra
of U has dimension one. We shall call such an algebra Im(0). The situation depends
essentially on the ground field. For example, we will obtain that if the field is alge-
braically closed then all Lie algebras are Im(0), and over other any field there are
even simple Lie algebras which are not Im(0). On the other hand, for each element
a of any Lie algebra L, denote by Sy (a) the largest subalgebra of L containing a
on which ada is split. This subalgebra was introduced in Barnes and Newell
(1970). In our study on Im(0)-algebras, we obtain some properties of the intersection
S(L) of all S;(a) which might have some interest by themselves.

In Sec. 2 we obtain several properties of the subalgebra S(L) which will be used
in the sequel. We prove that if L’ is nilpotent then L/C(S(L),) is supersolvable and
every chief factor of L below S(L), is one-dimensional. If «/F £ F and char(F) = 0,
then S(L) is supersolvable. Also, we prove that if char(F) =0 and if T is a Levi
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subalgebra of a Lie algebra L, then S(L) < L and S(L) + T decomposes into a direct
sum of ideals A and B such that S(A) = A and S(B) = 0.

In Sec. 3 we assemble some general results on Im(0)-algebras. We prove that
every homomorphic image of S(L) is Im(0). Over an algebraically closed field every
Lie algebra is Im(0), whereas over any algebraically non-closed field there are simple
Lie algebras that are not Im(0). We prove that either S(L) = L, L/S(L), is semi-
simple or else L/S(L), is not Im(0). Also, in this section we introduce some other
classes of Lie algebras which might have some interest by themselves.

Section 4 is concerned with solvable Im(0)-algebras over arbitrary fields. It
is shown that every strongly solvable Im(0)-algebra with trivial Frattini ideal is
supersolvable, and that every strongly solvable, non-supersolvable, Lic algebra is an
extension of a Lie algebra that is not Im(0) by an Im(0)-algebra.

In the next two sections many of the results require the underlying field to have
characteristic zero. Non-solvable Im(0)-algebras are considered in Sec. 5. A major
result classifies such algebras having an abelian radical. In Sec. 6 we determine the
Lie algebras all of whose proper homomorphic images are Im(0).

Section 7 concerns Im(0)-algebras over a field F of characteristic p > 0. First, we
prove that the derived subalgebra of a centerless ad-semisimple Lie algebra has no
non-singular derivations, provided that F is perfect and p > 3. Then, we obtain that
every ad-semisimple Lie algebra over such a field F is Im(0). Finally we investigate
when the simple Lie algebras having a maximal subalgebra of codimension one
are Im(0). In particular we consider the Zassenhaus algebras.

Throughout L will denote a finite-dimensional Lie algebra over a field F. An
element A of a lattice & is said to be an atom (resp. co-atom) if it is minimal (resp.
maximal) in &. Let A, B be elements of a lattice . We say that B covers Aif A < B
and A is maximal in B. If L is a Lie algebra, we denote by #(L) the lattice of all
subalgebras of L. A Lie algebra L is said to be strongly solvable if its derived
subalgebra, L', is nilpotent. We shall denote the nilradical of L by Nil(L). If U is
a subalgebra of L, we denote by U, the largest ideal of L contained in U and by
Cr(U) the centralizer of U in L. We shall denote the center of L by Z(L).

2. THE SUBALGEBRA S(L)

Following Barnes and Newell (1970), for each element a € L we denote by S.(a)
the largest subalgebra of L containing a on which ad a is split. We denote by S(L) the
intersection of all Sy (a). In this section we obtain several properties of the subalgebra
S(L) which will be used in the sequel. Note that S(L) = L means that ad x is split on
F for every x € L. In this case, we will say that the Lie algebra L is completely split;
while if S(L) =0, we will say that L is completely non-split. We start with the
following lemma which is easily checked.

Lemma 2.1. Let L be any Lie algebra. Let U < S(L) and N<L such that
N < S(L). Then S(U) = U and S(L/N) = S(L)/N.

We say that an ideal I of a Lie algebra L is supersolvably immersed in L if every
chief factor of L below I is one dimensional. Clearly, every one dimensional ideal of
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L is contained in S(L). Now we obtain the following result which is an extension of
Lemma 2.4 of Barnes and Newell (1970).

Proposition 2.2. Let F be an arbitrary field.
(1) Let L' be nilpotent. Then the following hold.:

(a) Every minimal ideal of L contained in S(L) is one-dimensional.
(b) S(L), is the largest ideal of L which is supersolvably immersed in L,
and L/Cr(S(L),) is supersolvable.

(2) (Lemma 2.4 of Barnes and Newell, 1970). If S(L)' is nilpotent, then S(L) is
supersolvable.

Proof. (1) Let A be a minimal ideal of L contained in S(L). As L' is nilpotent,
A < Z(Nil(L)). Then we can define a representation p : L/Nil(L) — A by means
of p(x+ Nil(L))(a) = [x,a] for every x € L. Since L' < Nil(L), we have that
p(L/Nil(L)) is a commuting family of split linear mappings. Hence these linear maps
have a common eigenvector. Minimality of A implies that dim A = 1. To prove (b),
let H/K be a chief factor of L below S(L),. By using Lemma 2.1 and (a) we obtain
that dim H/K = 1. The last assertion in (b) follows from Varea (1989).

(2) is a direct consequence of (1) and Lemma 2.1.
Lemma 2.3. Let char(F) = 0. Then, S(L) is a characteristic ideal of L.

Proof. Note that S(L) is invariant under every automorphism of L. So, the result
follows from Theorem 3.1 of Towers (1973) and Chevalley (1968).

Let P be a simple Lie algebra of characteristic zero. As S(P) is an ideal of P, we
have that either S(P) =0 or S(P) = P. When /F £ F, we see that S(P) = 0 (since
P contains a subalgebra isomorphic to sl(2) which is not completely split). Now,
let 7 be a semisimple Lie algebra. As S(7) is an ideal of T, there exists an ideal
K(T) of T such that T = S(T) & K(T). We see that K(T) is the sum of the minimal
ideals of T which are completely non-split and S(7) is the sum of those which are
completely split. When ~/F £ F, S(T) = 0.

Theorem 2.4. Let char(F) = 0. Let T be any Levi subalgebra of a Lie algebra L.
Let T=S(T)® K(T) be the decomposition of T into its completely split and
completely non-split components. Then the following hold:

(i) [S(L),K(T)]=0;
(i) S(S(L)+ S(T)) = S(L) + S(T): that is S(L) + S(T) is completely split;
(i) S(L)+ T is a direct sum of a completely split Lie algebra and a
completely non-split semisimple Lie algebra; and
(iv) If ~/F £ F, then S(L) is supersolvable.

Proof. (1) We may suppose without loss of generality that K(7) is simple. For
short, put K = K(T). As S(K) =0, there must exist an element x € K such that
adg(x) is not split on F. Let x = s + n be the decomposition of x into its semisimple
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and nilpotent components, s, n € K, respectively. We see that adg(s) is not split on F
either. It is well-known that there exists a Cartan subalgebra H of K containing s. As
S(L) is an ideal of L (see Lemma 2.3), we have that S(L) is a K-module. This yields
that ad(s)| s(z) 18 semisimple too (see Jacobson, 1979). As ad(s) s(v) Splits on F, we get
that ad(s)g, is diagonalizable on F. On the other hand, let Q be an algebraic
closure of F and consider the Lie algebra Lo = L ®f Q over Q. We see that Hg is
a Cartan subalgebra of Kq and that Kq is semisimple. Let

Ko =Hq® Z(Kﬂ)a

be the decomposition of K into its root spaces relative to Ho. As adgs is not split
on F, it follows that a(s) ¢ F for some root o. Let a be such a root. Put (Kg), = Qe,.
Let a € S(L) be an eigenvector of ad(s)|s) and let r € F be its corresponding eigen-
value. Then we see that [a,e,] = 0. Otherwise 7+ a(s) would be an eigenvalue
of ad(s)] sy and then 74 oa(s) € F, which is a contradiction. This yields that
Ko N Cry(S(L))g # 0 and hence K N CL(S(L)) # 0. As K is simple, it follows that
K < CL(S(L)), as required.

(i) Clearly, S(L)NT <S(T). Since S(T) is semisimple, there exists an ideal N
of S(T) such that S(T) = (S(L)NT) ® N. As N < S(T), we see that N is completely
split. Write U = S(L) + S(T). We have U=S(L)+ N and S(L)NN =0. Let
0#x € U. We want to prove that ad,(x) is split. Decompose x = a + b where
a€ S(L) and b € N. Let Q be an algebraic closure of F and let Uy = U ®F Q. Let
o € Q be an eigenvalue of ady, (x). We need to prove that « € F. We have that there
exists 0 # y € Ugq such that [y, x] = ay. Decompose y = a’ + b’ where @’ € S(L)q and
b’ € No. We have

[y,x] = [d',al + [d',b] + [V, al + [V, b] = a(d’ + b').

As [d,al+[d,b]+ [V ,a] € S(L)y and [V, b] € No and since S(L)g N No =0, it
follows that [b',b] = ab’ and [d’,a] + [a@’,b] + [V, a]l = ad’. If b’ # 0, we see that o
is an eigenvalue of ady(b). So, o € F since S(N) = N. Now assume »' = 0. Then
we have a #0 and [a',a+ b] = aa’. This yields that o is an eigenvalue of
ad|g,(a + b) and hence o € F, since S(L) < S.(a + b). We deduce that ad,x is split
on F, for every x € U, so that S(U) = U, as required.

(iii) Since S(L)NT < S(T) and [S(L),K(T)] =0, we have that S(L)+ T =
(S(L) + S(T)) ® K(T). So, (iii) follows from (ii).

(iv) From +/F £ F, it follows that S(T)=0. Since S(L)NT < S(T) and
S(L) < L, it follows that S(L) is solvable. So, S(L)' is nilpotent. By Proposition 2.2(2),
we have that S(L) is supersolvable. The proof is complete.

Corollary 2.5. Let char(F) = 0. Assume that R(L) < S(L). Then L is a direct sum
of a completely split Lie algebra (supersolvable in the case where \/F £ F) and
a completely non-split semisimple Lie algebra.

Note that R(L) < S(L) whenever R(L") < S(L).
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3. GENERAL RESULTS ON Im(0)-ALGEBRAS
First we give the following result:

Proposition 3.1. Let F be any field. For a Lie algebra L the following are
equivalent:

(1) Every minimal subalgebra of L is lower modular.
(i1) If a subalgebra U of L has a maximal subalgebra of dimension one, then
every maximal subalgebra of U has dimension one.

Proof. (1) = (i) Let x € U < L such that Fx is maximal in U. Let M be a max-
imal subalgebra of U distinct from Fx. We see that Fx VM = U. As FxisIm in L, it
follows that M N Fx is maximal in M. Since M N Fx =0, dim M = 1.

(i) = (i) Let 0# x € L. Assume that Fx is maximal in FxV B for some
subalgebra B of L. If Fx < B, then FxV B = B. So, FxN B is maximal in B. Then
suppose Fx £ B. We have that B is a proper subalgebra of Fx V B. By (ii), dim B = 1.
This yields that Fx N B is maximal in B and hence Fx is Im in L.

A Lie algebra satisfying the two equivalent conditions in Proposition 3.1 is called
Im(0)-algebra. A lattice & is called Im(0) if every atom is lower modular. As a first
consequence we obtain the following characterization of lattices of subalgebras of
Im(0)-algebras.

Corollary 3.2. Let char(F) # 2,3. Let & be the lattice of subalgebras of a Lie
algebra. Then & is1m(0) if and only if the interval [0 : B] of & is a modular lattice
for every element B of & covering an atom.

Proof. Let L be a Lie algebra over F such that ¥ = #(L). Let us first suppose & is
Im(0). Let B be an element of ¥ covering an atom A of .. Let U denote the sub-
algebra of L corresponding to B. Then U has a one-dimensional maximal subalgebra.
By Proposition 3.1 it follows that every proper subalgebra of U has dimension one.
So, the subalgebra lattice #(U) of U is modular. As the interval [0: B] of the lattice
& is isomorphic to the lattice #(U), it follows that [0:B] is a modular lattice. In
order to prove the converse, let U be a subalgebra of L having a maximal subalgebra
A of dimension one. We have that U covers the atom A in the lattice of subalgebras
of L. Then, by hypothesis, the lattice of subalgebras of U is modular. By Corollary 5
of Varea (1995), it follows that every proper subalgebra of U has dimension one. By
using Proposition 3.1, we obtain that % is Im(0). The proof is now complete.

An easy consequence of Proposition 3.1 is the following.
Corollary 3.3.
(1) Every supersolvable Lie algebra is Im(0).

(i) For every Lie algebra L, each homomorphic image of S(L) is Im(0).
(iii) Owver algebraically closed fields, EVERY Lie algebra is Im(0).



0NN AW~

A A PR PP DDDWWWWWWLWLLWLWENDNDDNDNDNDNDNDNDNDN e e e e e e e
N AN PR, OOVOIANANUNPEAEWNODP,OOVOIANANDNPE WD, OOV A W~ OO

200036762_LAGB32_12_R2_091304
Lie Algebras Whose Minimal Subalgebras Are Lower Modular 7

Proof. (1) follows from the well-known result that every maximal subalgebra of a
supersolvable Lie algebra has codimension one.

(i) By Lemma 2.1 it suffices to prove that S(L) is Im(0) for every Lie algebra L.
To do that, let U be a subalgebra of S(L) having a maximal subalgebra M of
dimension one. Pick 0 # x € M and consider the action of x on the vector space
U/M. Since adgzyx is split, there exist u€ U, u¢ M, and o« € F such that
[x, u] = au(mod M). It follows that M + Fu is a subalgebra of U. By the maximality
of M, we have M + Fu = U. So, dim U = 2. Therefore S(L) is Im(0).

(iii) follows from (ii) and the fact that S(L) = L for every Lie algebra L over an
algebraically closed field.

For algebraically non-closed fields, the situation is quite different. Here we will
prove that, for any such fields, there are simple Lie algebras which are not Im(0). In
the next section, we will prove that every strongly solvable Lie algebra can be
obtained as an extension of a Lie algebra which is not Im(0) by an Im(0)-algebra.
Also, we note that the three-dimensional split simple Lie algebra is Im(0) whenever
VF < F or char(F)=2, but it is not Im(0) in the case where +F £ F and
char(F) # 2.

Proposition 3.4. Let L be a simple, but not central-simple, Lie algebra having an
element x such that ad x has a nonzero eigenvalue in F. Then L is not Im(0).

Proof. By our hypothesis, there exists an element x € L such that adx has a
nonzero eigenvalue ¢ in F. So, there exists e € L such that [e,x] = te. Put x' =
t~'x. Then, we have [e, x'] = e. Let T be the centroid of L. As L is not central-simple,
' £ F. Then, we can take y €I, y ¢ F. Let n be the degree of the minimum
polynomial of y over F. So n > 1. Consider the vector subspace A of L spanned by
e, y(e), ..., 7" '(e). We see that e, y(e), ..., y" '(e) is a basis for A and that A is
an abelian subalgebra of L. Also, we see [e,7(x')] = 7([e, x']) = y(e) and [y’ (e),y(x')] =
(Y@, XD =y (), X)) =y ([e,x']) = 7"+ (e), for every 1<i<r. As
7" can be decomposed into a linear combination of 1, y, ..., y"~! with coefficients
in F, it follows that [A,y(x')] C A. We see that the corresponding matrix
to the transformation ad(y(x’))|, is the companion matrix to the minimum
polynomial of y over F. So ad(y(x))|, has no eigenvalues in F. This yields that L
is not Im(0).

Corollary 3.5. For every algebraically non-closed field F, there exist simple Lie
algebras which are not lm(0).

Proof. Pick an element w in an algebraic closure Q of F such that w & F.
By Proposition 3.4, the Lie algebra over F obtained from the three-dimensional
split simple Lie algebra over F(w) by restricting the field of scalars, is not
Im(0).

Next we study the class of Im(0)-algebras and relations between it and certain
other classes of Lie algebras. These classes might have some interest by themselves.
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If Z is a class of Lie algebras, we will denote by sZ the class of all subalgebras of
Z'-algebras.

The first class we introduce is defined in terms of the lattice theory: let % denote
the class of Lie algebras L such that if an atom of #(L) is a co-atom so is every
atom. The class % is a very large class. Indeed

Lemma 3.6. (i) For any field, the only Lie algebras which are not in % are those
Lie algebras L such that L = L' + Fx with x acting irreducibly on L' and dim L' > 1,
and the simple Lie algebras of rank one having a one-dimensional maximal
subalgebra and subalgebras of dimension greater than one.

(1) If char(F) =0, then a Lie algebra L is not in % if and only if either
L = A+ Fx where A is a proper minimal abelian ideal of L and dim A > 1, or
L =51(2) and /F £ F.

Proof. This is straightforward.

Corollary 3.7. (i) 1m(0) = s%.

(1) Ifchar(F) =0, then L is minimal non-lm(0) (this means that every proper
subalgebra of L is Im(0) but L is not) if and only if L & %.

Next, we introduce the class 2| of Lie algebras L such that every minimal ideal
of L is one dimensional or L = 0. This class of Lie algebras is contained in the
class 2, of Lie algebras L in which every minimal ideal lies in S(L). Let 25 be the
class of Lie algebras L such that every abelian ideal of L is contained in S(L). So that
L € 25 if and only if the transformation ad(x)| , is split for every abelian ideal A of L
and every x € L. Let 24 be the class of Lie algebras L such that either S(L) # 0 or
L=0.

Some relationships between these classes are given in the following result.

Theorem 3.8. (i) For any field, 1 C Py C 4N %, and Im(0) C s25.

(i) If char(F) = 0, then s?4 C Im(0) and every Lie algebra in sP) is solvable.

Proof. (1) Clearly, ) C 2, and 2, C 24. Now let L € #,. To prove that L € %,
assume that L has a maximal subalgebra M of dimension one. Put M = Fx. Take a
minimal ideal N of L. We have N < S(L) and so ad(x)| is split. Thus there exists
0 # y € N such that [x,y] = ty for some 7 € F. This yields dimL =2 and hence
Le?%. Now let L be Im(0). To prove that L € s#3, it suffices to show that
L € 25 Let A be an abelian ideal of L. Suppose A £ S(L). Then there exists
x €L, x¢ A such that A £ S;(x). Let K. (x) be the ad(x)-invariant subspace of L
such that L =S.(x)+ K.(x) and Sp.(x) NKp(x) =0 (see Barnes and Newell,
1970). We see that K, (x) N A # 0 and (K.(x) N A) + Fx is a subalgebra of L. Take
a subalgebra M of (K.(x) N A) + Fx containing Fx and such that Fx is maximal in
M. We have that (M N K. (x)) N A is an ideal of M and a maximal subalgebra of
M. Since L is Im(0), it follows that dim(M N Ky (x) N A) = 1. This yields that
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ad(x)|g, ()na has an eigenvalue in F, which is a contradiction. The proof of (i) is now
complete.

(i) As char(F) =0, every nonsolvable Lie algebra has a semisimple
subalgebra. Since, clearly, a Lie algebra in s#; contains no semisimple subalgebras,
it follows that every Lie algebra in s#; is solvable. It remains only to show that
s?4 C1m(0). Let L € s24. We need only prove that L € %. By Lemma 2.3 we have
S(L) < L. This yields that for each 0 # x € L there exists a nonzero element y € S(L)
such that [x,y] =ty, where r € F. So, either dimL <2 or L has no maximal
subalgebras of dimension one. From this it follows that L € #.

Later in this paper, we show examples of Lie algebras L which are Im(0) and
such that S(L) = 0 (so that, in general, Im(0) is not contained in %4).

Corollary 3.9. Let L be any Lie algebra. Then either L is completely split, L/S(L),
is semisimple or else L/S(L), is not Im(0).

Next, we give some properties of the classes above introduced. Let L be a Lie
algebra which is isomorphic to the direct sum of the Lie algebras L; and L,. A
subalgebra U of L is said to be a sub-direct summand of L if the canonical
projections 7y : U — L and 7, : U — L, are both surjective. A class 2 of Lie
algebras is called Ry-closed if every sub-direct summand of L; & L, is in Z when-
ever Ly and L, both lie in Z (or equivalently if, whenever L/A € & and L/B € %,
where A and B are ideals of the Lie algebra L, it always follows that
L/ANBEX).

Lemma 3.10. Let & be a class of Lie algebras which is Ry-closed. Then the class
s is Ro-closed too.

Proof. Let Ly, Ly € sZ. Write L=L; & L,. Let U<L. We see that U is a
sub-direct summand of 7y (U) @ my(U). Since n;(U) < L; € sZ, fori = 1,2, it follows
that n;(U) € Z. Then, by our hypothesis, U € Z" too.

Proposition 3.11. The classes ?; for 1 <i <4 and the class % are all Ry-closed
and hence so are the classes s?; for 1 <i <4 and the class of Im(0)-algebras.

Proof. This is straightforward.

We will denote by Asoc(L) the sum of all abelian minimal ideals of the Lie
algebra L and call it the abelian socle of L. The Frattini subalgebra, Fr(L), of a
Lie algebra L is defined to be the intersection of all maximal subalgebras of L. It
is well-known that Fr(L) is an ideal of L whenever either L is solvable or else
char(F) =0, (see Towers, 1973). However, for any algebraically closed field of
characteristic greater than 7, there exist simple Lie algebras having non-trivial
Frattini subalgebra (see Varea, 1993). We will denote by ¢(L) the largest ideal of
L contained in Fr(L). A Lie algebra L is said to be ¢-free if ¢(L) = 0.

We finish this section giving, for a ¢-free and £ -algebra L, a relationship
between the dimensions of L, the center of L and the abelian socle of L.
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Proposition 3.12. Let F be any field. Let L € 2| be ¢-free. Then

dim L 4+ dim Z(L) < 2(dim Asoc(L)).

Proof. 1f L is abelian, there is nothing to prove. Then assume L is non-abelian.
Since ¢(L) =0, by Theorem 7.3 of Towers (1973) there exists B < L such that
L = Asoc(L) + B and BN Asoc(L) = 0. We see that B contains no nonzero ideals
of L; since otherwise, B would contain a minimal ideal of L which is of dimension
one (because L € %), a contradiction. On the other hand, we have Asoc(L) =
Z(LYD A @ --- @ A, where each A; is an abelian minimal ideal of L and r > 0.
We have r > 0, since otherwise we would have B < L, which is a contradiction. Also,
we have dim A; = 1 for every i. Write A; = Fa;. Define p, : L — Fa; by means of
p;(x) = [a;, x] for every x € L. Since a; ¢ Z(L), we see dim L/Cy(a;) = 1 for every i.
Write C = Cr(a;) N---NCr(a,). We see that [CN B,L] = [CN B,Asoc(L) + B] <
[CNB,B] < CNB. This yields, CNB<L and hence CN B =0. So, C = Asoc(L),
giving dim(L/Asoc(L)) < r. We have dim L < r + dim Asoc(L) = 2r + dim Z(L).
Therefore, dim L + dim Z(L) < 2(dim Asoc(L)).

4. ON SOLVABLE Im(0)-ALGEBRAS OVER
ARBITRARY FIELDS

A Lie algebra L is said to be strongly solvable if its derived subalgebra L’ is
nilpotent. It is well-known that for fields of characteristic zero, every solvable Lie
algebra is strongly solvable (see Jacobson, 1979). For arbitrary fields, every super
solvable Lie algebra is strongly solvable. For algebraically closed fields, every
strongly solvable Lie algebra is supersolvable (Proposition 2.2(2)).

Theorem 4.1.

(1) For solvable Lie algebras, s?, C s2, = Im(0) = s23 = s24.
(ii) For strongly solvable Lie algebras, s = Im(0).

Proof. (1) From Theorem 3.8 and Corollary 3.7 it follows that s2| C s#, C
Im(0) C s25;. For solvable Lie algebras it is trivial that 23 C 2, N %4. Let
0 #£ L € s24 and let L be solvable. We need only to prove that L is Im(0). Assume
that L is not Im(0). We may suppose, without loss of generality, that every proper
subalgebra of L is Im(0). By Corollary 3.7, we have L ¢ %. By Lemma 3.6, L has
a unique abelian minimal ideal A of dimension greater than one and codimension
onein L. Let x € L, x ¢ A. We see that Fx is maximal in L and ad(x)|, is not split.
This yields that S; (x) = Fx and therefore S(L) = 0. This contradicts the fact that
L € #4. The proof of (i) is complete.

(i) Let L be an Ilm(0)-algebra which is strongly solvable. We need only to
prove that L € #;. To do that, let A be a minimal ideal of L. By Theorem 3.8, it
follows that A < S(L). Then by Proposition 2.2, dim A = 1. This completes the
proof.
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Proposition 4.2. If L is strongly solvable and ¢(L) =0, then either L is super-
solvable or L is not Im(0).

Proof. Let L be strongly solvable and let ¢(L) = 0. Assume that L is Im(0). Then,
by Theorem 4.1, we have that every minimal ideal of L is one dimensional. This
yields that every maximal subalgebra of L which does not contain Asoc(L) has
codimension one in L. On the other hand, since ¢(L) =0 we have Nil(L) =
Asoc(L) (see Theorem 7.4 of Towers, 1973). It follows that L/Asoc(L) is abelian,
since L' is nilpotent. This yields that every maximal subalgebra of L has codimension
one in L. Hence, by using Theorem 7 of Barnes (1967), we conclude that L is
supersolvable.

Next, we prove that every strongly solvable, non-supersolvable Lie algebra has
homomorphic images which are NOT Im(0)-algebras.

Corollary 4.3. Let F be any field. Let L be strongly solvable but not supersolvable.
Then, none of the Lie algebras L/S(L);, L/¢(L), L/(S(L),N¢p(L)) and
L/(S(L), + ¢(L)) is Im(0).

Proof. By Proposition 2.2(2), we have that S(L) # L. Thus L/S(L), is not Im(0) by
Corollary 3.9. By Theorem 6 of Barnes (1967), we have that L/¢(L) is not super-
solvable. So, L/¢(L) is not Im(0) by Proposition 4.2. To prove that L/(S(L), N
¢ (L)) is not Im(0), we may suppose without loss of generality that S(L), N ¢(L) =0
and ¢(L) #0. Then, we can take an abelian minimal ideal A of L contained in
¢(L). Since A £ S(L), by Theorem 3.8, it follows that L is not Im(0). What remains
to prove is that the Lie algebra L/(S(L); + ¢(L)) is not Im(0). By Proposition 2.2,
we have that (S(L), + ¢(L))/$(L) is a supersolvably immersed ideal of L/¢(L).
This yields that L/(S(L), + ¢(L)) is not supersolvable, since otherwise we would
have that L/¢(L) is supersolvable and then so is L, which is a contradiction. On
the other hand, we see that ¢(L/S(L),) = S(L), + ¢(L). So, the algebra
L/(S(L); + ¢(L)) is ¢-free. Then, the result follows from Proposition 4.2. The
proof is now complete.

Corollary 4.4. FEvery strongly solvable, non-supersolvable Lie algebra is an
extension of a Lie algebra which is not Im(0) by an Im(0)-algebra.

Proof. Let L be strongly solvable but not supersolvable. By Corollary 3.3(ii), we
have that S(L), is Im(0). By Corollary 4.3, we have that L/S(L), is not Im(0).

Notice that Corollary 4.4 fails for solvable Lie algebras over fields of prime char-
acteristic. Indeed, we will see that there are solvable non-supersolvable Lie algebras L
such that S(L) = L. So, by Corollary 3.3(ii), every homomorphic image of such an L
is Im(0).

Next we want to consider solvable Im(0)-algebras L which are not supersolvable.
In the case where L is strongly solvable, it follows from Proposition 4.2 that such an
L must have non-trivial Frattini subalgebra. We will determine the Im(0)-algebras in
the class of solvable, non-supersolvable Lie algebras all of whose proper subalgebras
are supersolvable (called minimal non-supersolvable for short). The algebras L in
this class are determined in Elduque and Varea (1986). In the case where L' is not
nilpotent, there it is proved that ad x is split for every x € L, so that S(L) = L. Then,
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by Corollary 3.3(ii), L/N is lm(0) for every ideal N of L. In the case where L’ is
nilpotent, we see that S(L) = ¢(L). It follows that L/¢(L) is not lm(0), by
Corollary 4.3. However, we see that L is Im(0) whenever ¢(L) # 0. Therefore we
have the following:

Proposition 4.5. Let F be an arbitrary field. For a solvable, minimal non-super-
solvable Lie algebra L, the following are equivalent:

(1) L is NOT Im(0).
(i) L is strongly solvable and ¢(L) = 0.

(iii) L has a basis ey, ..., e, x with non-trivial product given by [e;, x] = e;11,
forevery 1 <i<randle,x]=cye;+ -+ c,_1e,, where the polynomial
Ar — Cr_1Ap—1 — - -+ — ¢ I8 irreducible in F[)] and r > 1.

Note that the minimal non-supersolvable Lie algebras with non-nilpotent
derived subalgebra and with trivial Frattini subalgebra are examples of solvable
Im(0)-algebras having no minimal ideals of dimension one.

5. NON-SOLVABLE Im(0)-ALGEBRAS OF
CHARACTERISTIC ZERO

In this section F is assumed to be of characteristic zero. First we see that the
problem of the classification of Im(0)-algebras is reduced in some sense to the
classification of solvable Im(0)-algebras.

Theorem 5.1. Let L be a nonsolvable Lie algebra. Then the following hold.:

(i) IfF <F, then L isim(0) if and only if every solvable subalgebra of L is
Im(0).

(i) If~/F £ F, then L isIm(0) if and only if every solvable subalgebra of L is
Im(0) and L has no subalgebras isomorphic to sl(2).

Proof. We prove (i) and (ii) together. As the class of Im(0)-algebras is closed by
subalgebras, it suffices to prove the “only if”’ part. Let L be a counterexample of
minimal dimension. Then we see that L is minimal non-Im(0). By Corollary 3.7(ii),
it follows that L ¢ %. By Lemma 3.6(ii), we have that either L is solvable or
L =51(2) and +/F £ F, which is a contradiction.

A Lie algebra L is said to be anisotropic if it has no nonzero ad-nilpotent
elements. A Lie algebra L is called ad-semisimple if ad x is semisimple for every
x € L. Note that if L is ad-semisimple, then L/Z(L) is semisimple. It is known that
for perfect fields a Lie algebra L is anisotropic if and only if it is ad-semisimple. It is
easy to see and well-known that if L is ad-semisimple, then zero is the only eigen-
value of adx for every x € L and that every solvable subalgebra of L is abelian
(see Farnsteiner 1983). From Theorem 5.1, it follows that every ad-semisimple Lie
algebra is Im(0).
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Next, we study semisimple Lie algebras which are Im(0). In the case where
VF £ F, we have the following.

Corollary 5.2. Let /F £ F. Then, a semisimple Lie algebra L is Im(0) if and only
if it is anisotropic.

Proof. Assume that L is Im(0). As v/F £ F, the Lie algebra sl(2) is not Im(0). So,
L cannot contain any subalgebra isomorphic to sl(2). This yields that L has no
nonzero ad-nilpotent element; since otherwise, such an element would be immersed
in a subalgebra of L isomorphic to sl(2), according to Theorem 17, p. 100 of
Jacobson (1979), which is a contradiction. This gives that L is anisotropic. The
converse follows from Theorem 5.1.

Corollary 5.2 covers the case where the ground field F is the real number field.
We recall that a real semisimple Lie algebra is anisotropic if and only if it is compact
(that is, its Killing bilinear form is negative definite). So that, the only real semisimple
Lie algebras which are Im(0) are the compact ones.

Our next task is to study Im(0) algebras which are neither solvable nor semi-
simple. We see that Im(0)-algebras with abelian solvable radical, as well as Lie
algebras all of whose solvable subalgebras are supersolvable (for short, .#-algebras),
satisfy the condition assumed in Corollary 2.5. We will see that the classes Im(0) and
M are closely related. Now we obtain the following:

Theorem 5.3. Let L be a Lie algebra. Then the following hold:

(1) If L€ ., then L is a direct sum of a completely split Lie algebra and a
completely non-split semisimple Lie algebra.

Now assume in addition that R(L) is abelian. Then

(i) If~F £ F, L isIm(0) if and only if L is a direct sum of an abelian Lie
algebra and an anisotropic semisimple Lie algebra; and

(ili) If/F <F, Lislm(0) if and only if L is a direct sum of a completely split
Lie algebra and a completely non-split, semisimple 1m(0)-algebra.

Proof. (1) Assume L € .. We claim that R(L) < S(L). To see this, let x € L.
Since the subalgebra R(L) + Fx is solvable, by our hypothesis it is supersolvable.
This yields that ad(x)[g,, is split and therefore R(L) < Sp(x). Hence,
R(L) < S(L), as claimed. Then the result follows from Corollary 2.5. Assertions
(1) and (iii) follow from Theorem 3.8 and Corollaries 5.2 and 2.5.

Corollary 5.4. Let «/F £ F. Let L be a Lie algebra such that R(L) is supersolvable.
Then, the following hold:

(i) L'ed<Le.u.
(i1) if L' is Im(0) and if R(L') is abelian, then L is Im(0).

Proof. (1) Assume L' € .#. Then, R(L') < S(L’) (see the proof of Theorem 5.3).
Let L=R(L)+ T be a Levi decomposition of L. We see L' =R(L)+T. As
VF £ F, we have S(T) = 0. Then, by Theorem 2.4, it follows that [R(L'),T] =0,
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whence T is an ideal of L’. This gives that T is the only Levi subalgebra of L'
Since every Levi subalgebra of L must be contained in L', we see that T is the only
Levi subalgebra of L. Hence T<L and L = R(L)® T. Now, let B be a maximal
solvable subalgebra of L. We see that B= R(L) & (BN T). Since BN T is a solvable
subalgebra of L', it is supersolvable. This yields that B is supersolvable too and hence
L € /. The converse is clear.

(i) Assume L' is Im(0) and R(L') is abelian. By Theorem 5.3, we have
L'=A@®B, where A is an abelian ideal of L’ and B is an anisotropic
semisimple ideal of L. We see that B is the only Levi subalgebra of L and so
L =R(L)® B. As R(L) and B are both Im(0), it follows from Proposition 3.11 that
L is Im(0).

Corollary 5.5. . C 1Im(0) whenever JF < F, while the class of semisimple 1m(0)-
algebras is properly contained in the class of semisimple M -algebras whenever

VF £ F.

Proof. This follows from Theorem 5.1, Corollary 5.2, and from the fact that sl(2) is
in ./, but it is not Im(0) whenever vF £ F.

6. LIE ALGEBRAS ALL OF WHOSE PROPER HOMOMORPHIC
IMAGES ARE Im(0)

In this section, by using previous results in this paper, we are able to determine
the Lie algebras all of whose proper homomorphic images are Im(0), which will be
called Q — Im(0) for short. A Lie algebra all of whose proper homomorphic images
are supersolvable will be called Q-supersolvable.

We start by considering solvable Lie algebras over arbitrary fields.

Theorem 6.1. Let F be an arbitrary field. Let L be solvable. Then the following
hold:

(1) Every homomorphic image of L is Im(0) if and only if L is completely
split; and

(i1) If L is strongly solvable, then L is Q —Im(0) if and only if L is Q-
supersolvable.

Proof. (1) This follows from Corollary 3.9 and Corollary 3.3(ii).

(i) Assume that L is strongly solvable and Q-lm(0). Let us first suppose that
¢(L) # 0. Then we have that L/¢$(L) is Im(0) and ¢-free. So, by Proposition 4.2,
it follows that L/¢(L) is supersolvable. Then, by Theorem 6 of Barnes (1967), we
have that L is supersolvable. Now assume that ¢(L) = 0. Then we have that L/N
is Im(0) and ¢-free for every proper ideal N of L. It follows from Proposition 4.2
again that every proper homomorphic image of L is supersolvable. Thus L is
Q-supersolvable, as required. The converse is clear.

Solvable, Q-supersolvable Lie algebras were studied by Towers (1985). He
proved that such a Lie algebra L must have the following form: L = N(L) + U,
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N(L)NU =0, where N(L) is the unique minimal ideal of L, [u, N(L)] = N(L) for
some u € U, and U is a supersolvable maximal subalgebra of L.

Next we classify the nonsolvable Lie algebras all of whose homomorphic images
are Im(0). To do that we need the assumption of characteristic zero for the ground
field.

Theorem 6.2. Let char(F) = 0. For a nonsolvable Lie algebra L, the following are
equivalent:

(1) Every homomorphic image of L is Im(0).
(i) L and L/S(L) are both lm(0); and
(iii) Either /F £ F and L = U @® T where U is a supersolvable ideal of L and
T is an anisotropic semisimple ideal of L, or else 'F < F and L is
isomorphic to a direct sum of a completely split Lie algebra and a
completely non-split, semisimple Im(0)-algebra.

Proof. (i)=(ii) is trivial.

(if)=(iii)) Let L=R(L)+ T be a Levi decomposition of L. As L is non-
solvable, T # 0. As L/S(L) is Im(0), by using Corollary 3.9 we obtain that either
L is completely split, or else L/S(L) is semisimple. In the former case, we have
VF < F because S(T) = T, and we are done. So assume L/S(L) is semisimple. This
implies that R(L) < S(L), since S(L) is an ideal of L. Then the result follows from
Corollary 2.5.

(ili)=> (i) Let N < L. Then we see that L/N is a direct sum of two Im(0) ideals.
By Proposition 3.11, it follows that L/N is Im(0).

Corollary 6.3. Let char(F) = 0. For a non-solvable, non-semisimple and non-Im(0)
Lie algebra L, the following are equivalent:

(1) L is @ —Im(0).
(i) S(L) =0, L has a unique minimal ideal A that is abelian and L/A has the
structure given in Theorem 6.2(iii).

Proof. (1)=(ii)) By Proposition 3.11, it follows that L has only one minimal
ideal A. As R(L) # 0, we have A < R(L) and so A is abelian. Now we prove that
S(L) = 0. Suppose S(L) # 0. Then L/S(L) is Im(0). By Corollary 3.9 it follows that
L/S(L) is semisimple. This yields R(L) < S(L). Then by Corollary 2.5 it follows
that L = S(L) & K, where K is a semisimple ideal of L. As A is the unique minimal
ideal of L, we have K = 0. This yields that S(L) = L and hence L is Im(0). This
contradiction shows that S(L) = 0. The last statement follows from Theorem 6.2,
since every homomorphic image of L/A is Im(0).

(il)= (i) By Theorem 6.2, we have that every homomorphic image of L/A is
Im(0). As A is the unique minimal ideal of L, it follows that L is Q-lm(0). Since
S(L) =0 and L has abelian minimal ideals, from Theorem 3.8 it follows that L is
not Im(0).
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7. ON Im(0)-ALGEBRAS OVER FIELDS OF
PRIME CHARACTERISTIC

First, we consider ad-semisimple Lie algebras over perfect fields of characteristic
greater than three. Before that we need the following lemma:

Lemma 7.1. Let F be perfect and char(F) = p > 3. Let L be ad-semisimple without
center. Then L' has no non-singular derivations.

Proof. Since L/L" is ad-semisimple and solvable, we have that it is abelian (see
Farnsteiner, 1983). Therefore L' = L”. Then, by using Theorem 3 and Corollary 2
of Premet (1987), we obtain that L' ®q F is a direct sum of simple ideals which
are of classical type. In particular, we have that L' ®q F is restricted and without
center. This yields that every derivation of L' ®q F is restricted, see Seligman
(1967). By Jacobson (1955), it follows that L’ ®q F has no non-singular derivation,
and so neither has L'.

Proposition 7.2. Let F be perfect and char(F) = p > 3. Then, every ad-semisimple
Lie algebra is Im(0).

Proof. Let L be a minimal counterexample. Then, we have that every proper
subalgebra of L is Im(0). By Corollary 2.9 (i) it follows that L ¢ %. So, either
L = L' + Fx with x acting irreducibly on L' and dimL’ > 1 or L is simple of rank
one having subalgebras of dimension greater than one (Lemma 3.6(i)). In the former
case we see that Z(L) = 0 and adx | ;; is a non-singular derivation of L’. This contra-
dicts Lemma 7.1. Therefore L is simple of rank one. By using Theorem 3 and
Corollary 2 of Premet (1987), we obtain that Lg is a direct sum of simple ideals of
classical type. This yields Lo = sl(2). Therefore dim L = 3. Finally, since L is
ad-semisimple, it follows that every proper subalgebra of L has dimension one. This
contradiction completes the proof.

Next, we consider Lie algebras L having a maximal subalgebra L of codimen-
sion one which does not contain any proper ideal of L. We recall that such a Lie alge-
bra L must be isomorphic to one of the Lie algebras L, (I') constructed by Amayo
(1976). Assume char(F) = p > 2 and let I' = {yy,71,---,7,_1} C F. Then, the Lie
algebra L,(I') can be defined by having a basis y_1, yo, y1,..., ¥, with product
given by [y_j,yi]=yi_1 for 0<i< p"? except when i=p/~! for some j,
-1, Ypi1] = ypi2 + 7,92 and [y, y;1 = aijyiy; for 0 < i, j < p"~2, where

i+j+1 i+j+1
aijj = j - ; )

and where we follow the convention that the binomial coefficient (r) = 0 unless

s

0 <s<r. We mention that L,({0}) is the Zassenhaus algebra Z,(F) and that
L;({0}) is the Witt algebra over F.

Let char(F) = p > 2. We recall that a polynomial f € F[X] is called a p-

polynomial if the only powers of X having nonzero coefficients in f are of the form
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X? for i > 0. For n > 0, we say that the field F has p- index greater than or equal to
n (written ind,(F) > n) if every p-polynomial f of degree less than or equal to p"
without multiple roots in an algebraic closure of F, has a non-zero root in F. We
say that ind,(F) = n if ind,(F) > n but ind,(F) 2 n+ 1. Finally, ind,(F) = oo if
every p-polynomial of degree greater than zero without multiple roots in an
algebraic closure of F, has nonzero roots in F.

Theorem 7.3. Let char(F) = p > 2. Let n be a positive integer. Then, the following
are equivalent.

(1) L, () is Im(0) for every I and m < n.
(i) ind,(F) > n and /F < F.

Proof. (1) = (ii) Note that the span of y_i, yo and y; in Z,(F) is a subalgebra of
Z,(F) which is isomorphic to sl(2). This yields that sI(2) is Im(0) and hence +/F < F.
Now, let f be a monic p-polynomial over F of degree <n without multiple roots in
an algebraic closure of F. So that, f has the form

FOO = X" 4 B, X7 - B,

where iy 20 and m <n. Put I' = {—f,...,—f,,_1}. We see that the minimum
polynomial of ady_; is equal to f(X), where y_; is the first vector in a standard
basis for L, (I"). This algebra is Im(0), by our hypothesis. Take a subalgebra
U of L,(I') containing Fy_; and such that Fy_; is maximal in U. We see
dimU/(UNL,(T), = 1. By Proposition 3.1 it follows that dimU N L, ("), = 1.
This yields dim U = 2. On the other hand, we see that y_; is self-centralizing in
L, (') and that it is not ad-nilpotent. It follows that ad(y_;)|y has a nonzero
eigenvalue in F. Therefore f(X) has a nonzero root in F.

(il) = (i) Letm < n.Suppose that L,,(I") is not Im(0). Then, by Proposition 3.1,
there exists a subalgebra U of L,,(I') which has a maximal subalgebra of dimension
one, say Fu, and a maximal subalgebra of dimension greater than one. As U is not
Im(0) and since L,,(I'), is supersolvable (see Lemma 2.1 of Varea, 1988), we have
UL L,I)y. Then the subalgebra UNL,(I'), of U has codimension one in U.
Moreover, U N L,,(I"), contains no nonzero ideals of U (see the proof of Lemma
3.7 of Benkart et al., 1979). This yields that U is simple. Thus U is central simple,
since Fu is maximal in U. Therefore, U ®F Q is a simple Lie algebra over Q having
a maximal subalgebra of codimension one, where Q is an algebraic closure of F. By
Theorem 3.9 of Benkart et al. (1979), it follows that either U ®F Q = sl(2,Q) or
else URrQ=Z,(Q) for some r < m. In the former case, we have that U is
three-dimensional simple. So, U = sl(2, F) since U has a maximal subalgebra of
dimension greater than one. Since +/F < F, we find that the algebra sl(2, F) has
no maximal subalgebras of dimension one, and so neither has U , which is a
contradiction. Therefore, U @ Q is a Zassenhaus algebra. By using Theorem 6.1
of Benkart et al. (1979), we get that the characteristic polynomial of ady(u) is
equal to the minimum polynomial and has the form

w(X) = X" + 0,1 X7+ o XP + o X.
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Since Fu is a Cartan subalgebra of U, we have oy # 0, so that, u(X) has no multiple
roots in Q. Then, by our hypothesis, ;£(X) has a nonzero root ¢ in F. Therefore, there
exists 0 #y € U such that Fu# Fy and [u,y] = ty. Maximality of Fu implies
dim U = 2, which is a contradiction.

Finally, we consider the Zassenhaus algebras Z, (F).
Corollary 7.4. Let F be perfect and char(F) > 2. Then the following hold:

(i) Z,(F) is Im(0) if and only if ind,(F) > n and ~/F < F; and
(i) Every Zassenhaus algebra is Im(0) if and only if ind,(F) = o0 and
JVF<F.

Proof. Note that, for each n we have L,(I') = Z,(F) for every I', since F is perfect
and char(F) > 3 (see Corollary 2.3 of Varea, 1988). Also, note that if m < n, then
Z,,(F) is isomorphic to a subalgebra of Z,(F). So, if Z,(F) is Im(0), so is Z,(F)
for every m < n. The result follows from these notes and Theorem 7.3.
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