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ABSTRACT

The main purpose of this paper is to study Lie algebras L such that if a subalgebra
U of L has a maximal subalgebra of dimension one then every maximal

subalgebra of U has dimension one. Such an L is called lm(0)-algebra. This class
of Lie algebras emerges when it is imposed on the lattice of subalgebras of a Lie
algebra the condition that every atom is lower modular. We see that the effect of

that condition is highly sensitive to the ground field F . If F is algebraically closed,
then every Lie algebra is lm(0). By contrast, for every algebraically non-closed
field there exist simple Lie algebras which are not lm(0). For the real field, the
semisimple lm(0)-algebras are just the Lie algebras whose Killing form is

negative-definite. Also, we study when the simple Lie algebras having a maximal
subalgebra of codimension one are lm(0), provided that charðFÞ 6¼ 2. Moreover,
lm(0)-algebras lead us to consider certain other classes of Lie algebras and the

largest ideal of an arbitrary Lie algebra L on which the action of every element
of L is split, which might have some interest by themselves.
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1. INTRODUCTION

Throughout L will denote a finite-dimensional Lie algebra over a field F . The
relationship between the structure of L and that of the latticeLðLÞ of all subalgebras
of L has been studied by many authors. Much is known about modular subalgebras
(modular elements in LðLÞ) through a number of investigations including Amayo
and Schwarz (1980), Gein (1987a,b), Varea (1989, 1990, 1993). Modular subalgebras
of dimension greater than one which are not quasi-ideals were exhibited in Varea
(1993). Other lattice conditions, together with their duals, have also been studied.
These include semimodular, upper semimodular, lower semimodular, upper
modular, lower modular and their respective duals (see Bowman and Towers, 1989,
for definitions). For a selection of results on these conditions see Gein (1976),
Varea (1983, 1999), Gein and Varea (1992), Lashi (1986), Towers (1986, 1997),
Bowman and Varea (1997). Moreover, it has been proved that none non-solvable
locally finite-dimensional Lie algebra admits a lattice isomorphism on a solvable
Lie algebra, except the three-dimensional non-split simple, provided that the ground
field is perfect of characteristic not 2 or 3 (see Gein and Varea, 1992).

Many of the lattice conditions imposed so far have proved to be very strong,
forcing the algebra to be abelian, almost abelian, supersolvable, a m-algebra (this
means that every proper subalgebra has dimension one) or an algebra direct sum
of the above. Typically, see Gein (1987a), Varea (1993, 1999). In this paper we shall
introduce a condition that is less restrictive.

Recall that an element U of a latticeL is called lower modular inL if, given any
element B ofL with U _ B covering U , then B covers U ^ B. A subalgebra U of a Lie
algebra L is called lower modular in L (lm in L) if it is a lower modular element in the
lattice of subalgebras of L.

In this paper, we impose the condition that every minimal subalgebra of L is lm
in L. We prove that this condition is equivalent to the condition that if a subalgebra
U of L has a maximal subalgebra of dimension one then every maximal subalgebra
of U has dimension one. We shall call such an algebra lm(0). The situation depends
essentially on the ground field. For example, we will obtain that if the field is alge-
braically closed then all Lie algebras are lm(0), and over other any field there are
even simple Lie algebras which are not lm(0). On the other hand, for each element
a of any Lie algebra L, denote by SLðaÞ the largest subalgebra of L containing a

on which ad a is split. This subalgebra was introduced in Barnes and Newell
(1970). In our study on lm(0)-algebras, we obtain some properties of the intersection
SðLÞ of all SLðaÞ which might have some interest by themselves.

In Sec. 2 we obtain several properties of the subalgebra SðLÞ which will be used
in the sequel. We prove that if L0 is nilpotent then L=CLðSðLÞLÞ is supersolvable and
every chief factor of L below SðLÞL is one-dimensional. If

ffiffiffiffi
F

p 6� F and charðFÞ ¼ 0,
then SðLÞ is supersolvable. Also, we prove that if charðFÞ ¼ 0 and if T is a Levi
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subalgebra of a Lie algebra L, then SðLÞEL and SðLÞ þ T decomposes into a direct
sum of ideals A and B such that SðAÞ ¼ A and SðBÞ ¼ 0.

In Sec. 3 we assemble some general results on lm(0)-algebras. We prove that
every homomorphic image of SðLÞ is lm(0). Over an algebraically closed field every
Lie algebra is lm(0), whereas over any algebraically non-closed field there are simple
Lie algebras that are not lm(0). We prove that either SðLÞ ¼ L, L=SðLÞL is semi-
simple or else L=SðLÞL is not lm(0). Also, in this section we introduce some other
classes of Lie algebras which might have some interest by themselves.

Section 4 is concerned with solvable lm(0)-algebras over arbitrary fields. It
is shown that every strongly solvable lm(0)-algebra with trivial Frattini ideal is
supersolvable, and that every strongly solvable, non-supersolvable, Lie algebra is an
extension of a Lie algebra that is not lm(0) by an lm(0)-algebra.

In the next two sections many of the results require the underlying field to have
characteristic zero. Non-solvable lm(0)-algebras are considered in Sec. 5. A major
result classifies such algebras having an abelian radical. In Sec. 6 we determine the
Lie algebras all of whose proper homomorphic images are lm(0).

Section 7 concerns lm(0)-algebras over a field F of characteristic p > 0. First, we
prove that the derived subalgebra of a centerless ad-semisimple Lie algebra has no
non-singular derivations, provided that F is perfect and p > 3. Then, we obtain that
every ad-semisimple Lie algebra over such a field F is lm(0). Finally we investigate
when the simple Lie algebras having a maximal subalgebra of codimension one
are lm(0). In particular we consider the Zassenhaus algebras.

Throughout L will denote a finite-dimensional Lie algebra over a field F . An
element A of a lattice L is said to be an atom (resp. co-atom) if it is minimal (resp.
maximal) in L. Let A, B be elements of a lattice L. We say that B covers A if A < B

and A is maximal in B. If L is a Lie algebra, we denote by LðLÞ the lattice of all
subalgebras of L. A Lie algebra L is said to be strongly solvable if its derived
subalgebra, L0, is nilpotent. We shall denote the nilradical of L by NilðLÞ. If U is
a subalgebra of L, we denote by UL the largest ideal of L contained in U and by
CLðUÞ the centralizer of U in L. We shall denote the center of L by ZðLÞ.

2. THE SUBALGEBRA S(L)

Following Barnes and Newell (1970), for each element a 2 L we denote by SLðaÞ
the largest subalgebra of L containing a on which ad a is split. We denote by SðLÞ the
intersection of all SLðaÞ. In this section we obtain several properties of the subalgebra
SðLÞ which will be used in the sequel. Note that SðLÞ ¼ L means that ad x is split on
F for every x 2 L. In this case, we will say that the Lie algebra L is completely split;
while if SðLÞ ¼ 0, we will say that L is completely non-split. We start with the
following lemma which is easily checked.

Lemma 2.1. Let L be any Lie algebra. Let U � SðLÞ and N EL such that
N � SðLÞ. Then SðUÞ ¼ U and SðL=NÞ ¼ SðLÞ=N .

We say that an ideal I of a Lie algebra L is supersolvably immersed in L if every
chief factor of L below I is one dimensional. Clearly, every one dimensional ideal of
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L is contained in SðLÞ. Now we obtain the following result which is an extension of
Lemma 2.4 of Barnes and Newell (1970).

Proposition 2.2. Let F be an arbitrary field.

(1) Let L0 be nilpotent. Then the following hold:

(a) Every minimal ideal of L contained in SðLÞ is one-dimensional.
(b) SðLÞL is the largest ideal of L which is supersolvably immersed in L,

and L=CLðSðLÞLÞ is supersolvable.

(2) (Lemma 2.4 of Barnes and Newell, 1970). If SðLÞ0 is nilpotent, then SðLÞ is
supersolvable.

Proof. (1) Let A be a minimal ideal of L contained in SðLÞ. As L0 is nilpotent,
A � ZðNilðLÞÞ. Then we can define a representation r : L=NilðLÞ�!A by means
of rðxþNilðLÞÞðaÞ ¼ ½x; a� for every x 2 L. Since L0 � NilðLÞ, we have that
rðL=NilðLÞÞ is a commuting family of split linear mappings. Hence these linear maps
have a common eigenvector. Minimality of A implies that dimA ¼ 1. To prove (b),
let H=K be a chief factor of L below SðLÞL. By using Lemma 2.1 and (a) we obtain
that dimH=K ¼ 1. The last assertion in (b) follows from Varea (1989).

(2) is a direct consequence of (1) and Lemma 2.1.

Lemma 2.3. Let charðFÞ ¼ 0. Then, SðLÞ is a characteristic ideal of L.

Proof. Note that SðLÞ is invariant under every automorphism of L. So, the result
follows from Theorem 3.1 of Towers (1973) and Chevalley (1968).

Let P be a simple Lie algebra of characteristic zero. As SðPÞ is an ideal of P, we
have that either SðPÞ ¼ 0 or SðPÞ ¼ P. When

ffiffiffiffi
F

p 6� F , we see that SðPÞ ¼ 0 (since
P contains a subalgebra isomorphic to slð2Þ which is not completely split). Now,
let T be a semisimple Lie algebra. As SðTÞ is an ideal of T , there exists an ideal
KðTÞ of T such that T ¼ SðTÞ � KðTÞ. We see that KðTÞ is the sum of the minimal
ideals of T which are completely non-split and SðTÞ is the sum of those which are
completely split. When

ffiffiffiffi
F

p 6� F , SðTÞ ¼ 0.

Theorem 2.4. Let charðFÞ ¼ 0. Let T be any Levi subalgebra of a Lie algebra L.
Let T ¼ SðTÞ � KðTÞ be the decomposition of T into its completely split and
completely non-split components. Then the following hold:

(i) ½SðLÞ;KðTÞ� ¼ 0;
(ii) SðSðLÞ þ SðTÞÞ ¼ SðLÞ þ SðTÞ: that is SðLÞ þ SðTÞ is completely split;
(iii) SðLÞ þ T is a direct sum of a completely split Lie algebra and a

completely non-split semisimple Lie algebra; and
(iv) If

ffiffiffiffi
F

p 6� F , then SðLÞ is supersolvable.

Proof. (i) We may suppose without loss of generality that KðTÞ is simple. For
short, put K ¼ KðTÞ. As SðKÞ ¼ 0, there must exist an element x 2 K such that
adKðxÞ is not split on F . Let x ¼ sþ n be the decomposition of x into its semisimple
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and nilpotent components, s, n 2 K, respectively. We see that adKðsÞ is not split on F

either. It is well-known that there exists a Cartan subalgebra H of K containing s. As
SðLÞ is an ideal of L (see Lemma 2.3), we have that SðLÞ is a K-module. This yields
that adðsÞjSðLÞ is semisimple too (see Jacobson, 1979). As adðsÞjSðLÞ splits on F , we get
that adðsÞjSðLÞ is diagonalizable on F . On the other hand, let O be an algebraic
closure of F and consider the Lie algebra LO ¼ L�F O over O. We see that HO is
a Cartan subalgebra of KO and that KO is semisimple. Let

KO ¼ HO � SðKOÞa

be the decomposition of KO into its root spaces relative to HO. As adKs is not split
on F , it follows that aðsÞ 62 F for some root a. Let a be such a root. Put ðKOÞa ¼ Oea.
Let a 2 SðLÞ be an eigenvector of adðsÞjSðLÞ and let t 2 F be its corresponding eigen-
value. Then we see that ½a; ea� ¼ 0. Otherwise tþ aðsÞ would be an eigenvalue
of adðsÞjSðLÞ and then tþ aðsÞ 2 F , which is a contradiction. This yields that
KO \ CLOðSðLÞÞO 6¼ 0 and hence K \ CLðSðLÞÞ 6¼ 0. As K is simple, it follows that
K � CLðSðLÞÞ, as required.

(ii) Clearly, SðLÞ \ T E SðTÞ. Since SðTÞ is semisimple, there exists an ideal N
of SðTÞ such that SðTÞ ¼ ðSðLÞ \ TÞ � N . As N � SðTÞ, we see that N is completely
split. Write U ¼ SðLÞ þ SðTÞ. We have U ¼ SðLÞ þ N and SðLÞ \ N ¼ 0. Let
0 6¼ x 2 U . We want to prove that aduðxÞ is split. Decompose x ¼ aþ b where
a 2 SðLÞ and b 2 N . Let O be an algebraic closure of F and let UO ¼ U �F O. Let
a 2 O be an eigenvalue of adUOðxÞ. We need to prove that a 2 F . We have that there
exists 0 6¼ y 2 UO such that ½y; x� ¼ ay. Decompose y ¼ a0 þ b0 where a0 2 SðLÞO and
b0 2 NO. We have

½y; x� ¼ ½a0; a� þ ½a0; b� þ ½b0; a� þ ½b0; b� ¼ aða0 þ b0Þ:

As ½a0; a� þ ½a0; b� þ ½b0; a� 2 SðLÞO and ½b0; b� 2 NO and since SðLÞO \ NO ¼ 0, it
follows that ½b0; b� ¼ ab0 and ½a0; a� þ ½a0; b� þ ½b0; a� ¼ aa0. If b0 6¼ 0, we see that a
is an eigenvalue of adN ðbÞ. So, a 2 F since SðNÞ ¼ N . Now assume b0 ¼ 0. Then
we have a0 6¼ 0 and ½a0; aþ b� ¼ aa0. This yields that a is an eigenvalue of
adjSðLÞðaþ bÞ and hence a 2 F , since SðLÞ � SLðaþ bÞ. We deduce that adux is split
on F , for every x 2 U , so that SðUÞ ¼ U , as required.

(iii) Since SðLÞ \ T � SðTÞ and ½SðLÞ;KðTÞ� ¼ 0, we have that SðLÞ þ T ¼
ðSðLÞ þ SðTÞÞ � KðTÞ. So, (iii) follows from (ii).

(iv) From
ffiffiffiffi
F

p 6� F , it follows that SðTÞ ¼ 0. Since SðLÞ \ T � SðTÞ and
SðLÞEL, it follows that SðLÞ is solvable. So, SðLÞ0 is nilpotent. By Proposition 2.2(2),
we have that SðLÞ is supersolvable. The proof is complete.

Corollary 2.5. Let charðFÞ ¼ 0. Assume that RðLÞ � SðLÞ. Then L is a direct sum
of a completely split Lie algebra (supersolvable in the case where

ffiffiffiffi
F

p 6� F) and
a completely non-split semisimple Lie algebra.

Note that RðLÞ � SðLÞ whenever RðL0Þ � SðLÞ.
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3. GENERAL RESULTS ON lm(0)-ALGEBRAS

First we give the following result:

Proposition 3.1. Let F be any field. For a Lie algebra L the following are
equivalent:

(i) Every minimal subalgebra of L is lower modular.
(ii) If a subalgebra U of L has a maximal subalgebra of dimension one, then

every maximal subalgebra of U has dimension one.

Proof. (i) ¼) (ii) Let x 2 U � L such that Fx is maximal in U . Let M be a max-
imal subalgebra of U distinct from Fx. We see that Fx _M ¼ U . As Fx is lm in L, it
follows that M \ Fx is maximal in M. Since M \ Fx ¼ 0, dimM ¼ 1.

(ii) ¼) (i) Let 0 6¼ x 2 L. Assume that Fx is maximal in Fx _ B for some
subalgebra B of L. If Fx � B, then Fx _ B ¼ B. So, Fx \ B is maximal in B. Then
suppose Fx 6� B. We have that B is a proper subalgebra of Fx _ B. By (ii), dimB ¼ 1.
This yields that Fx \ B is maximal in B and hence Fx is lm in L.

A Lie algebra satisfying the two equivalent conditions in Proposition 3.1 is called
lm(0)-algebra. A lattice L is called lm(0) if every atom is lower modular. As a first
consequence we obtain the following characterization of lattices of subalgebras of
lm(0)-algebras.

Corollary 3.2. Let charðFÞ 6¼ 2; 3. Let L be the lattice of subalgebras of a Lie
algebra. ThenL is lmð0Þ if and only if the interval ½0 : B� ofL is a modular lattice
for every element B of L covering an atom.

Proof. Let L be a Lie algebra over F such thatL ffi LðLÞ. Let us first supposeL is
lm(0). Let B be an element of L covering an atom A of L. Let U denote the sub-
algebra of L corresponding to B. Then U has a one-dimensional maximal subalgebra.
By Proposition 3.1 it follows that every proper subalgebra of U has dimension one.
So, the subalgebra lattice LðUÞ of U is modular. As the interval ½0 :B� of the lattice
L is isomorphic to the lattice LðUÞ, it follows that ½0 :B� is a modular lattice. In
order to prove the converse, let U be a subalgebra of L having a maximal subalgebra
A of dimension one. We have that U covers the atom A in the lattice of subalgebras
of L. Then, by hypothesis, the lattice of subalgebras of U is modular. By Corollary 5
of Varea (1995), it follows that every proper subalgebra of U has dimension one. By
using Proposition 3.1, we obtain that L is lm(0). The proof is now complete.

An easy consequence of Proposition 3.1 is the following.

Corollary 3.3.

(i) Every supersolvable Lie algebra is lmð0Þ.
(ii) For every Lie algebra L, each homomorphic image of SðLÞ is lmð0Þ.
(iii) Over algebraically closed fields, EVERY Lie algebra is lmð0Þ.
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Proof. (i) follows from the well-known result that every maximal subalgebra of a
supersolvable Lie algebra has codimension one.

(ii) By Lemma 2.1 it suffices to prove that SðLÞ is lm(0) for every Lie algebra L.
To do that, let U be a subalgebra of SðLÞ having a maximal subalgebra M of
dimension one. Pick 0 6¼ x 2 M and consider the action of x on the vector space
U=M. Since adSðLÞx is split, there exist u 2 U , u 62 M, and a 2 F such that
½x; u� � auðmodMÞ. It follows that M þ Fu is a subalgebra of U . By the maximality
of M, we have M þ Fu ¼ U . So, dimU ¼ 2. Therefore SðLÞ is lm(0).

(iii) follows from (ii) and the fact that SðLÞ ¼ L for every Lie algebra L over an
algebraically closed field.

For algebraically non-closed fields, the situation is quite different. Here we will
prove that, for any such fields, there are simple Lie algebras which are not lm(0). In
the next section, we will prove that every strongly solvable Lie algebra can be
obtained as an extension of a Lie algebra which is not lm(0) by an lm(0)-algebra.
Also, we note that the three-dimensional split simple Lie algebra is lm(0) wheneverffiffiffiffi
F

p � F or charðFÞ ¼ 2, but it is not lm(0) in the case where
ffiffiffiffi
F

p 6� F and
charðFÞ 6¼ 2.

Proposition 3.4. Let L be a simple, but not central-simple, Lie algebra having an
element x such that ad x has a nonzero eigenvalue in F . Then L is not lmð0Þ.

Proof. By our hypothesis, there exists an element x 2 L such that ad x has a
nonzero eigenvalue t in F . So, there exists e 2 L such that ½e; x� ¼ te. Put x0 ¼
t�1x. Then, we have ½e; x0� ¼ e. Let G be the centroid of L. As L is not central-simple,
G 6¼ F . Then, we can take g 2 G, g 62 F . Let n be the degree of the minimum
polynomial of g over F . So n > 1. Consider the vector subspace A of L spanned by
e, gðeÞ, . . . , gn�1ðeÞ. We see that e, gðeÞ, . . . , gn�1ðeÞ is a basis for A and that A is
an abelian subalgebra of L. Also, we see ½e;gðx0Þ� ¼ gð½e;x0�Þ ¼ gðeÞ and ½giðeÞ;gðx0Þ� ¼
gð½giðeÞ; x0�Þ ¼ gðgð½gi�1ðeÞ; x0�ÞÞ ¼ giþ1ð½e; x0�Þ ¼ giþ1ðeÞ, for every 1 � i � r. As
gn can be decomposed into a linear combination of 1, g, . . . , gn�1 with coefficients
in F , it follows that ½A; gðx0Þ� � A. We see that the corresponding matrix
to the transformation adðgðx0ÞÞjA is the companion matrix to the minimum
polynomial of g over F . So adðgðx0ÞÞjA has no eigenvalues in F . This yields that L
is not lm(0).

Corollary 3.5. For every algebraically non-closed field F , there exist simple Lie
algebras which are not lmð0Þ.

Proof. Pick an element o in an algebraic closure O of F such that o 62 F .
By Proposition 3.4, the Lie algebra over F obtained from the three-dimensional
split simple Lie algebra over FðoÞ by restricting the field of scalars, is not
lm(0).

Next we study the class of lm(0)-algebras and relations between it and certain
other classes of Lie algebras. These classes might have some interest by themselves.
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If X is a class of Lie algebras, we will denote by sX the class of all subalgebras of
X-algebras.

The first class we introduce is defined in terms of the lattice theory: let Y denote
the class of Lie algebras L such that if an atom of LðLÞ is a co-atom so is every
atom. The class Y is a very large class. Indeed

Lemma 3.6. (i) For any field, the only Lie algebras which are not in Y are those
Lie algebras L such that L ¼ L0 þ Fx with x acting irreducibly on L0 and dimL0 > 1,
and the simple Lie algebras of rank one having a one-dimensional maximal
subalgebra and subalgebras of dimension greater than one.

(ii) If charðFÞ ¼ 0, then a Lie algebra L is not in Y if and only if either
L ¼ Aþ Fx where A is a proper minimal abelian ideal of L and dimA > 1, or
L ffi slð2Þ and ffiffiffiffi

F
p 6� F .

Proof. This is straightforward.

Corollary 3.7. (i) lmð0Þ ¼ sY.

(ii) If charðFÞ ¼ 0, then L is minimal non-lmð0Þ (this means that every proper
subalgebra of L is lmð0Þ but L is not) if and only if L 62 Y.

Next, we introduce the class P1 of Lie algebras L such that every minimal ideal
of L is one dimensional or L ¼ 0. This class of Lie algebras is contained in the
class P2 of Lie algebras L in which every minimal ideal lies in SðLÞ. Let P3 be the
class of Lie algebras L such that every abelian ideal of L is contained in SðLÞ. So that
L 2 P3 if and only if the transformation adðxÞjA is split for every abelian ideal A of L
and every x 2 L. Let P4 be the class of Lie algebras L such that either SðLÞ 6¼ 0 or
L ¼ 0.

Some relationships between these classes are given in the following result.

Theorem 3.8. (i) For any field, P1 � P2 � P4 \Y, and lmð0Þ � sP3.

(ii) If charðFÞ ¼ 0, then sP4 � lmð0Þ and every Lie algebra in sP1 is solvable.

Proof. (i) Clearly, P1 � P2 and P2 � P4. Now let L 2 P2. To prove that L 2 Y,
assume that L has a maximal subalgebra M of dimension one. Put M ¼ Fx. Take a
minimal ideal N of L. We have N � SðLÞ and so adðxÞjN is split. Thus there exists
0 6¼ y 2 N such that ½x; y� ¼ ty for some t 2 F . This yields dimL ¼ 2 and hence
L 2 Y. Now let L be lm(0). To prove that L 2 sP3, it suffices to show that
L 2 P3. Let A be an abelian ideal of L. Suppose A 6� SðLÞ. Then there exists
x 2 L, x 62 A such that A 6� SLðxÞ. Let KLðxÞ be the adðxÞ-invariant subspace of L
such that L ¼ SLðxÞ þ KLðxÞ and SLðxÞ \ KLðxÞ ¼ 0 (see Barnes and Newell,
1970). We see that KLðxÞ \ A 6¼ 0 and ðKLðxÞ \ AÞ þ Fx is a subalgebra of L. Take
a subalgebra M of ðKLðxÞ \ AÞ þ Fx containing Fx and such that Fx is maximal in
M. We have that ðM \ KLðxÞÞ \ A is an ideal of M and a maximal subalgebra of
M. Since L is lm(0), it follows that dimðM \ KLðxÞ \ AÞ ¼ 1. This yields that
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adðxÞjKLðxÞ\A has an eigenvalue in F , which is a contradiction. The proof of (i) is now
complete.

(ii) As charðFÞ ¼ 0, every nonsolvable Lie algebra has a semisimple
subalgebra. Since, clearly, a Lie algebra in sP1 contains no semisimple subalgebras,
it follows that every Lie algebra in sP1 is solvable. It remains only to show that
sP4 � lmð0Þ. Let L 2 sP4. We need only prove that L 2 Y. By Lemma 2.3 we have
SðLÞEL. This yields that for each 0 6¼ x 2 L there exists a nonzero element y 2 SðLÞ
such that ½x; y� ¼ ty, where t 2 F . So, either dimL � 2 or L has no maximal
subalgebras of dimension one. From this it follows that L 2 Y.

Later in this paper, we show examples of Lie algebras L which are lm(0) and
such that SðLÞ ¼ 0 (so that, in general, lm(0) is not contained in P4).

Corollary 3.9. Let L be any Lie algebra. Then either L is completely split, L=SðLÞL
is semisimple or else L=SðLÞL is not lmð0Þ.

Next, we give some properties of the classes above introduced. Let L be a Lie
algebra which is isomorphic to the direct sum of the Lie algebras L1 and L2. A
subalgebra U of L is said to be a sub-direct summand of L if the canonical
projections p1 : U �!L1 and p2 : U �!L2 are both surjective. A class X of Lie
algebras is called R0-closed if every sub-direct summand of L1 � L2 is in X when-
ever L1 and L2 both lie in X (or equivalently if, whenever L=A 2 X and L=B 2 X,
where A and B are ideals of the Lie algebra L, it always follows that
L=A \ B 2 X).

Lemma 3.10. Let X be a class of Lie algebras which is R0-closed. Then the class
sX is R0-closed too.

Proof. Let L1, L2 2 sX. Write L ¼ L1 � L2. Let U � L. We see that U is a
sub-direct summand of p1ðUÞ � p2ðUÞ. Since piðUÞ � Li 2 sX, for i ¼ 1; 2, it follows
that piðUÞ 2 X. Then, by our hypothesis, U 2 X too.

Proposition 3.11. The classes Pi for 1 � i � 4 and the class Y are all R0-closed
and hence so are the classes sPi for 1 � i � 4 and the class of lmð0Þ-algebras.

Proof. This is straightforward.
We will denote by AsocðLÞ the sum of all abelian minimal ideals of the Lie

algebra L and call it the abelian socle of L. The Frattini subalgebra, FrðLÞ, of a
Lie algebra L is defined to be the intersection of all maximal subalgebras of L. It
is well-known that FrðLÞ is an ideal of L whenever either L is solvable or else
charðFÞ ¼ 0, (see Towers, 1973). However, for any algebraically closed field of
characteristic greater than 7, there exist simple Lie algebras having non-trivial
Frattini subalgebra (see Varea, 1993). We will denote by fðLÞ the largest ideal of
L contained in FrðLÞ. A Lie algebra L is said to be f-free if fðLÞ ¼ 0.

We finish this section giving, for a f-free and P1-algebra L, a relationship
between the dimensions of L, the center of L and the abelian socle of L.

Lie Algebras Whose Minimal Subalgebras Are Lower Modular 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

200036762_LAGB32_12_R2_091304



Proposition 3.12. Let F be any field. Let L 2 P1 be f-free. Then

dimLþ dimZðLÞ � 2ðdimAsocðLÞÞ:
Proof. If L is abelian, there is nothing to prove. Then assume L is non-abelian.
Since fðLÞ ¼ 0, by Theorem 7.3 of Towers (1973) there exists B � L such that
L ¼ AsocðLÞ þ B and B \AsocðLÞ ¼ 0. We see that B contains no nonzero ideals
of L; since otherwise, B would contain a minimal ideal of L which is of dimension
one (because L 2 P1), a contradiction. On the other hand, we have AsocðLÞ ¼
ZðLÞ � A1 � 	 	 	 � Ar where each Ai is an abelian minimal ideal of L and r 
 0.
We have r > 0, since otherwise we would have B / L, which is a contradiction. Also,
we have dimAi ¼ 1 for every i. Write Ai ¼ Fai. Define ri : L�!Fai by means of
riðxÞ ¼ ½ai; x� for every x 2 L. Since ai 62 ZðLÞ, we see dimL=CLðaiÞ ¼ 1 for every i.
Write C ¼ CLða1Þ \ 	 	 	 \ CLðarÞ. We see that ½C \ B;L� ¼ ½C \ B;AsocðLÞ þ B� �
½C \ B;B� � C \ B. This yields, C \ B / L and hence C \ B ¼ 0. So, C ¼ AsocðLÞ,
giving dimðL=AsocðLÞÞ � r. We have dimL � r þ dimAsocðLÞ ¼ 2r þ dimZðLÞ.
Therefore, dimLþ dimZðLÞ � 2ðdimAsocðLÞÞ.

4. ON SOLVABLE lm(0)-ALGEBRAS OVER
ARBITRARY FIELDS

A Lie algebra L is said to be strongly solvable if its derived subalgebra L0 is
nilpotent. It is well-known that for fields of characteristic zero, every solvable Lie
algebra is strongly solvable (see Jacobson, 1979). For arbitrary fields, every super
solvable Lie algebra is strongly solvable. For algebraically closed fields, every
strongly solvable Lie algebra is supersolvable (Proposition 2.2(2)).

Theorem 4.1.

(i) For solvable Lie algebras, sP1 � sP2 ¼ lmð0Þ ¼ sP3 ¼ sP4.
(ii) For strongly solvable Lie algebras, sP1 ¼ lmð0Þ.

Proof. (i) From Theorem 3.8 and Corollary 3.7 it follows that sP1 � sP2 �
lmð0Þ � sP3. For solvable Lie algebras it is trivial that P3 � P2 \P4. Let
0 6¼ L 2 sP4 and let L be solvable. We need only to prove that L is lm(0). Assume
that L is not lm(0). We may suppose, without loss of generality, that every proper
subalgebra of L is lm(0). By Corollary 3.7, we have L 62 Y. By Lemma 3.6, L has
a unique abelian minimal ideal A of dimension greater than one and codimension
one in L. Let x 2 L, x 62 A. We see that Fx is maximal in L and adðxÞjA is not split.
This yields that SLðxÞ ¼ Fx and therefore SðLÞ ¼ 0. This contradicts the fact that
L 2 P4. The proof of (i) is complete.

(ii) Let L be an lm(0)-algebra which is strongly solvable. We need only to
prove that L 2 P1. To do that, let A be a minimal ideal of L. By Theorem 3.8, it
follows that A � SðLÞ. Then by Proposition 2.2, dimA ¼ 1. This completes the
proof.
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Proposition 4.2. If L is strongly solvable and fðLÞ ¼ 0, then either L is super-
solvable or L is not lmð0Þ.

Proof. Let L be strongly solvable and let fðLÞ ¼ 0. Assume that L is lm(0). Then,
by Theorem 4.1, we have that every minimal ideal of L is one dimensional. This
yields that every maximal subalgebra of L which does not contain AsocðLÞ has
codimension one in L. On the other hand, since fðLÞ ¼ 0 we have NilðLÞ ¼
AsocðLÞ (see Theorem 7.4 of Towers, 1973). It follows that L=AsocðLÞ is abelian,
since L0 is nilpotent. This yields that every maximal subalgebra of L has codimension
one in L. Hence, by using Theorem 7 of Barnes (1967), we conclude that L is
supersolvable.

Next, we prove that every strongly solvable, non-supersolvable Lie algebra has
homomorphic images which are NOT lm(0)-algebras.

Corollary 4.3. Let F be any field. Let L be strongly solvable but not supersolvable.
Then, none of the Lie algebras L=SðLÞL, L=fðLÞ, L=ðSðLÞL \ fðLÞÞ and
L=ðSðLÞL þ fðLÞÞ is lmð0Þ.
Proof. By Proposition 2.2(2), we have that SðLÞ 6¼ L. Thus L=SðLÞL is not lm(0) by
Corollary 3.9. By Theorem 6 of Barnes (1967), we have that L=fðLÞ is not super-
solvable. So, L=fðLÞ is not lm(0) by Proposition 4.2. To prove that L=ðSðLÞL \
fðLÞÞ is not lm(0), we may suppose without loss of generality that SðLÞL \ fðLÞ ¼ 0
and fðLÞ 6¼ 0. Then, we can take an abelian minimal ideal A of L contained in
fðLÞ. Since A 6� SðLÞ, by Theorem 3.8, it follows that L is not lm(0). What remains
to prove is that the Lie algebra L=ðSðLÞL þ fðLÞÞ is not lm(0). By Proposition 2.2,
we have that ðSðLÞL þ fðLÞÞ=fðLÞ is a supersolvably immersed ideal of L=fðLÞ.
This yields that L=ðSðLÞL þ fðLÞÞ is not supersolvable, since otherwise we would
have that L=fðLÞ is supersolvable and then so is L, which is a contradiction. On
the other hand, we see that fðL=SðLÞLÞ ¼ SðLÞL þ fðLÞ. So, the algebra
L=ðSðLÞL þ fðLÞÞ is f-free. Then, the result follows from Proposition 4.2. The
proof is now complete.

Corollary 4.4. Every strongly solvable, non-supersolvable Lie algebra is an
extension of a Lie algebra which is not lmð0Þ by an lmð0Þ-algebra.
Proof. Let L be strongly solvable but not supersolvable. By Corollary 3.3(ii), we
have that SðLÞL is lm(0). By Corollary 4.3, we have that L=SðLÞL is not lm(0).

Notice that Corollary 4.4 fails for solvable Lie algebras over fields of prime char-
acteristic. Indeed, we will see that there are solvable non-supersolvable Lie algebras L
such that SðLÞ ¼ L. So, by Corollary 3.3(ii), every homomorphic image of such an L

is lm(0).
Next we want to consider solvable lm(0)-algebras L which are not supersolvable.

In the case where L is strongly solvable, it follows from Proposition 4.2 that such an
L must have non-trivial Frattini subalgebra. We will determine the lm(0)-algebras in
the class of solvable, non-supersolvable Lie algebras all of whose proper subalgebras
are supersolvable (called minimal non-supersolvable for short). The algebras L in
this class are determined in Elduque and Varea (1986). In the case where L0 is not
nilpotent, there it is proved that ad x is split for every x 2 L, so that SðLÞ ¼ L. Then,
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by Corollary 3.3(ii), L=N is lm(0) for every ideal N of L. In the case where L0 is
nilpotent, we see that SðLÞ ¼ fðLÞ. It follows that L=fðLÞ is not lm(0), by
Corollary 4.3. However, we see that L is lm(0) whenever fðLÞ 6¼ 0. Therefore we
have the following:

Proposition 4.5. Let F be an arbitrary field. For a solvable, minimal non-super-
solvable Lie algebra L, the following are equivalent:

(i) L is NOT lmð0Þ.
(ii) L is strongly solvable and fðLÞ ¼ 0.
(iii) L has a basis e1; . . . ; er , x with non-trivial product given by ½ei; x� ¼ eiþ1,

for every 1 � i < r and ½er ; x� ¼ c0e1 þ 	 	 	 þ cr�1er , where the polynomial
lr � cr�1lr�1 � 	 	 	 � c0 is irreducible in F½l� and r > 1.

Note that the minimal non-supersolvable Lie algebras with non-nilpotent
derived subalgebra and with trivial Frattini subalgebra are examples of solvable
lm(0)-algebras having no minimal ideals of dimension one.

5. NON-SOLVABLE lm(0)-ALGEBRAS OF
CHARACTERISTIC ZERO

In this section F is assumed to be of characteristic zero. First we see that the
problem of the classification of lm(0)-algebras is reduced in some sense to the
classification of solvable lm(0)-algebras.

Theorem 5.1. Let L be a nonsolvable Lie algebra. Then the following hold:

(i) If
ffiffiffiffi
F

p � F , then L is lmð0Þ if and only if every solvable subalgebra of L is
lmð0Þ.

(ii) If
ffiffiffiffi
F

p 6� F , then L is lmð0Þ if and only if every solvable subalgebra of L is
lmð0Þ and L has no subalgebras isomorphic to slð2Þ.

Proof. We prove (i) and (ii) together. As the class of lm(0)-algebras is closed by
subalgebras, it suffices to prove the ‘‘only if ’’ part. Let L be a counterexample of
minimal dimension. Then we see that L is minimal non-lm(0). By Corollary 3.7(ii),
it follows that L 62 Y. By Lemma 3.6(ii), we have that either L is solvable or
L ffi slð2Þ and ffiffiffiffi

F
p 6� F , which is a contradiction.

A Lie algebra L is said to be anisotropic if it has no nonzero ad-nilpotent
elements. A Lie algebra L is called ad-semisimple if ad x is semisimple for every
x 2 L. Note that if L is ad-semisimple, then L=ZðLÞ is semisimple. It is known that
for perfect fields a Lie algebra L is anisotropic if and only if it is ad-semisimple. It is
easy to see and well-known that if L is ad-semisimple, then zero is the only eigen-
value of ad x for every x 2 L and that every solvable subalgebra of L is abelian
(see Farnsteiner 1983). From Theorem 5.1, it follows that every ad-semisimple Lie
algebra is lm(0).
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Next, we study semisimple Lie algebras which are lm(0). In the case whereffiffiffiffi
F

p 6� F , we have the following.

Corollary 5.2. Let
ffiffiffiffi
F

p 6� F . Then, a semisimple Lie algebra L is lmð0Þ if and only
if it is anisotropic.

Proof. Assume that L is lm(0). As
ffiffiffiffi
F

p 6� F , the Lie algebra slð2Þ is not lm(0). So,
L cannot contain any subalgebra isomorphic to slð2Þ. This yields that L has no
nonzero ad-nilpotent element; since otherwise, such an element would be immersed
in a subalgebra of L isomorphic to slð2Þ, according to Theorem 17, p. 100 of
Jacobson (1979), which is a contradiction. This gives that L is anisotropic. The
converse follows from Theorem 5.1.

Corollary 5.2 covers the case where the ground field F is the real number field.
We recall that a real semisimple Lie algebra is anisotropic if and only if it is compact
(that is, its Killing bilinear form is negative definite). So that, the only real semisimple
Lie algebras which are lm(0) are the compact ones.

Our next task is to study lm(0) algebras which are neither solvable nor semi-
simple. We see that lm(0)-algebras with abelian solvable radical, as well as Lie
algebras all of whose solvable subalgebras are supersolvable (for short, M-algebras),
satisfy the condition assumed in Corollary 2.5. We will see that the classes lm(0) and
M are closely related. Now we obtain the following:

Theorem 5.3. Let L be a Lie algebra. Then the following hold:

(i) If L 2 M, then L is a direct sum of a completely split Lie algebra and a
completely non-split semisimple Lie algebra.

Now assume in addition that RðLÞ is abelian. Then
(ii) If

ffiffiffiffi
F

p 6� F , L is lmð0Þ if and only if L is a direct sum of an abelian Lie
algebra and an anisotropic semisimple Lie algebra; and

(iii) If
ffiffiffiffi
F

p � F , L is lmð0Þ if and only if L is a direct sum of a completely split
Lie algebra and a completely non-split, semisimple lmð0Þ-algebra.

Proof. (i) Assume L 2 M. We claim that RðLÞ � SðLÞ. To see this, let x 2 L.
Since the subalgebra RðLÞ þ Fx is solvable, by our hypothesis it is supersolvable.
This yields that adðxÞjRðLÞ is split and therefore RðLÞ � SLðxÞ. Hence,
RðLÞ � SðLÞ, as claimed. Then the result follows from Corollary 2.5. Assertions
(ii) and (iii) follow from Theorem 3.8 and Corollaries 5.2 and 2.5.

Corollary 5.4. Let
ffiffiffiffi
F

p 6� F . Let L be a Lie algebra such that RðLÞ is supersolvable.
Then, the following hold:

(i) L0 2 M()L 2 M.
(ii) if L0 is lmð0Þ and if RðL0Þ is abelian, then L is lmð0Þ.

Proof. (i) Assume L0 2 M. Then, RðL0Þ � SðL0Þ (see the proof of Theorem 5.3).
Let L ¼ RðLÞ þ T be a Levi decomposition of L. We see L0 ¼ RðL0Þ þ T . Asffiffiffiffi
F

p 6� F , we have SðTÞ ¼ 0. Then, by Theorem 2.4, it follows that ½RðL0Þ;T� ¼ 0,
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whence T is an ideal of L0. This gives that T is the only Levi subalgebra of L0.
Since every Levi subalgebra of L must be contained in L0, we see that T is the only
Levi subalgebra of L. Hence T / L and L ¼ RðLÞ � T . Now, let B be a maximal
solvable subalgebra of L. We see that B ¼ RðLÞ � ðB \ TÞ. Since B \ T is a solvable
subalgebra of L0, it is supersolvable. This yields that B is supersolvable too and hence
L 2 M. The converse is clear.

(ii) Assume L0 is lmð0Þ and RðL0Þ is abelian. By Theorem 5.3, we have
L0 ¼ A� B, where A is an abelian ideal of L0 and B is an anisotropic
semisimple ideal of L0. We see that B is the only Levi subalgebra of L and so
L ¼ RðLÞ � B. As RðLÞ and B are both lmð0Þ, it follows from Proposition 3.11 that
L is lmð0Þ.

Corollary 5.5. M � lmð0Þ whenever ffiffiffiffi
F

p � F , while the class of semisimple lmð0Þ-
algebras is properly contained in the class of semisimple M-algebras wheneverffiffiffiffi
F

p 6� F .

Proof. This follows from Theorem 5.1, Corollary 5.2, and from the fact that slð2Þ is
in M, but it is not lm(0) whenever

ffiffiffiffi
F

p 6� F .

6. LIE ALGEBRAS ALL OF WHOSE PROPER HOMOMORPHIC
IMAGES ARE lm(0)

In this section, by using previous results in this paper, we are able to determine
the Lie algebras all of whose proper homomorphic images are lmð0Þ, which will be
called Q� lmð0Þ for short. A Lie algebra all of whose proper homomorphic images
are supersolvable will be called Q-supersolvable.

We start by considering solvable Lie algebras over arbitrary fields.

Theorem 6.1. Let F be an arbitrary field. Let L be solvable. Then the following
hold:

(i) Every homomorphic image of L is lmð0Þ if and only if L is completely
split; and

(ii) If L is strongly solvable, then L is Q� lmð0Þ if and only if L is Q-
supersolvable.

Proof. (i) This follows from Corollary 3.9 and Corollary 3.3(ii).

(ii) Assume that L is strongly solvable and Q-lmð0Þ. Let us first suppose that
fðLÞ 6¼ 0. Then we have that L=fðLÞ is lmð0Þ and f-free. So, by Proposition 4.2,
it follows that L=fðLÞ is supersolvable. Then, by Theorem 6 of Barnes (1967), we
have that L is supersolvable. Now assume that fðLÞ ¼ 0. Then we have that L=N
is lmð0Þ and f-free for every proper ideal N of L. It follows from Proposition 4.2
again that every proper homomorphic image of L is supersolvable. Thus L is
Q-supersolvable, as required. The converse is clear.

Solvable, Q-supersolvable Lie algebras were studied by Towers (1985). He
proved that such a Lie algebra L must have the following form: L ¼ NðLÞ þ U ,
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NðLÞ \ U ¼ 0, where NðLÞ is the unique minimal ideal of L, ½u;NðLÞ� ¼ NðLÞ for
some u 2 U , and U is a supersolvable maximal subalgebra of L.

Next we classify the nonsolvable Lie algebras all of whose homomorphic images
are lmð0Þ. To do that we need the assumption of characteristic zero for the ground
field.

Theorem 6.2. Let charðFÞ ¼ 0. For a nonsolvable Lie algebra L, the following are
equivalent:

(i) Every homomorphic image of L is lmð0Þ.
(ii) L and L=SðLÞ are both lmð0Þ; and
(iii) Either

ffiffiffiffi
F

p 6� F and L ¼ U � T where U is a supersolvable ideal of L and
T is an anisotropic semisimple ideal of L, or else

ffiffiffiffi
F

p � F and L is
isomorphic to a direct sum of a completely split Lie algebra and a
completely non-split, semisimple lmð0Þ-algebra.

Proof. (i)¼) (ii) is trivial.

(ii)¼) (iii) Let L ¼ RðLÞ þ T be a Levi decomposition of L. As L is non-
solvable, T 6¼ 0. As L=SðLÞ is lmð0Þ, by using Corollary 3.9 we obtain that either
L is completely split, or else L=SðLÞ is semisimple. In the former case, we haveffiffiffiffi
F

p � F because SðTÞ ¼ T , and we are done. So assume L=SðLÞ is semisimple. This
implies that RðLÞ � SðLÞ, since SðLÞ is an ideal of L. Then the result follows from
Corollary 2.5.

(iii)¼) ðiÞ Let N / L. Then we see that L=N is a direct sum of two lmð0Þ ideals.
By Proposition 3.11, it follows that L=N is lmð0Þ.

Corollary 6.3. Let charðFÞ ¼ 0. For a non-solvable, non-semisimple and non-lmð0Þ
Lie algebra L, the following are equivalent:

(i) L is Q� lmð0Þ.
(ii) SðLÞ ¼ 0, L has a unique minimal ideal A that is abelian and L=A has the

structure given in Theorem 6.2(iii).

Proof. ðiÞ¼) ðiiÞ By Proposition 3.11, it follows that L has only one minimal
ideal A. As RðLÞ 6¼ 0, we have A � RðLÞ and so A is abelian. Now we prove that
SðLÞ ¼ 0. Suppose SðLÞ 6¼ 0. Then L=SðLÞ is lmð0Þ. By Corollary 3.9 it follows that
L=SðLÞ is semisimple. This yields RðLÞ � SðLÞ. Then by Corollary 2.5 it follows
that L ¼ SðLÞ � K, where K is a semisimple ideal of L. As A is the unique minimal
ideal of L, we have K ¼ 0. This yields that SðLÞ ¼ L and hence L is lmð0Þ. This
contradiction shows that SðLÞ ¼ 0. The last statement follows from Theorem 6.2,
since every homomorphic image of L=A is lmð0Þ.

(ii)¼) (i) By Theorem 6.2, we have that every homomorphic image of L=A is
lmð0Þ. As A is the unique minimal ideal of L, it follows that L is Q-lmð0Þ. Since
SðLÞ ¼ 0 and L has abelian minimal ideals, from Theorem 3.8 it follows that L is
not lmð0Þ.
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7. ON lm(0)-ALGEBRAS OVER FIELDS OF
PRIME CHARACTERISTIC

First, we consider ad-semisimple Lie algebras over perfect fields of characteristic
greater than three. Before that we need the following lemma:

Lemma 7.1. Let F be perfect and charðFÞ ¼ p > 3. Let L be ad-semisimple without
center. Then L0 has no non-singular derivations.

Proof. Since L=L00 is ad-semisimple and solvable, we have that it is abelian (see
Farnsteiner, 1983). Therefore L0 ¼ L00. Then, by using Theorem 3 and Corollary 2
of Premet (1987), we obtain that L0 �O F is a direct sum of simple ideals which
are of classical type. In particular, we have that L0 �O F is restricted and without
center. This yields that every derivation of L0 �O F is restricted, see Seligman
(1967). By Jacobson (1955), it follows that L0 �O F has no non-singular derivation,
and so neither has L0.

Proposition 7.2. Let F be perfect and charðFÞ ¼ p > 3. Then, every ad-semisimple
Lie algebra is lmð0Þ.

Proof. Let L be a minimal counterexample. Then, we have that every proper
subalgebra of L is lmð0Þ. By Corollary 2.9 (i) it follows that L 62 Y. So, either
L ¼ L0 þ Fx with x acting irreducibly on L0 and dimL0 > 1 or L is simple of rank
one having subalgebras of dimension greater than one (Lemma 3.6(i)). In the former
case we see that ZðLÞ ¼ 0 and adx j L0 is a non-singular derivation of L0. This contra-
dicts Lemma 7.1. Therefore L is simple of rank one. By using Theorem 3 and
Corollary 2 of Premet (1987), we obtain that LO is a direct sum of simple ideals of
classical type. This yields LO ffi slð2Þ. Therefore dimL ¼ 3. Finally, since L is
ad-semisimple, it follows that every proper subalgebra of L has dimension one. This
contradiction completes the proof.

Next, we consider Lie algebras L having a maximal subalgebra L0 of codimen-
sion one which does not contain any proper ideal of L. We recall that such a Lie alge-
bra L must be isomorphic to one of the Lie algebras LnðGÞ constructed by Amayo
(1976). Assume charðFÞ ¼ p > 2 and let G ¼ fg0; g1; . . . ; gn�1g � F . Then, the Lie
algebra LnðGÞ can be defined by having a basis y�1, y0, y1; . . . ; ypn�2 with product
given by ½y�1; yi� ¼ yi�1 for 0 � i � pn�2 except when i ¼ pj�1 for some j,
½y�1; ypj�1 � ¼ ypj�2 þ gjypn�2 and ½yi; yj� ¼ aijyiþj for 0 � i; j � pn�2, where

aij ¼ iþ j þ 1

j

� �
� iþ j þ 1

i

� �
;

and where we follow the convention that the binomial coefficient
r

s

� �
¼ 0 unless

0 � s � r. We mention that Lnðf0gÞ is the Zassenhaus algebra ZnðFÞ and that
L1ðf0gÞ is the Witt algebra over F .

Let charðFÞ ¼ p > 2. We recall that a polynomial f 2 F½X� is called a p-
polynomial if the only powers of X having nonzero coefficients in f are of the form
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Xpi

for i 
 0. For n > 0, we say that the field F has p- index greater than or equal to
n (written indpðFÞ 
 n) if every p-polynomial f of degree less than or equal to pn

without multiple roots in an algebraic closure of F , has a non-zero root in F . We
say that indpðFÞ ¼ n if indpðFÞ 
 n but indpðFÞ 6
 nþ 1. Finally, indpðFÞ ¼ 1 if
every p-polynomial of degree greater than zero without multiple roots in an
algebraic closure of F , has nonzero roots in F .

Theorem 7.3. Let charðFÞ ¼ p > 2. Let n be a positive integer. Then, the following
are equivalent.

(i) LmðGÞ is lmð0Þ for every G and m � n.
(ii) indpðFÞ 
 n and

ffiffiffiffi
F

p � F .

Proof. (i) ¼) (ii) Note that the span of y�1, y0 and y1 in ZnðFÞ is a subalgebra of
ZnðFÞ which is isomorphic to slð2Þ. This yields that slð2Þ is lm(0) and hence

ffiffiffiffi
F

p � F .
Now, let f be a monic p-polynomial over F of degree �n without multiple roots in
an algebraic closure of F . So that, f has the form

fðXÞ ¼ Xpm þ bm�1X
pm�1 þ 	 	 	 þ b0X;

where b0 6¼ 0 and m � n. Put G ¼ f�b0; . . . ;�bm�1g. We see that the minimum
polynomial of ady�1 is equal to fðXÞ, where y�1 is the first vector in a standard
basis for LmðGÞ. This algebra is lmð0Þ, by our hypothesis. Take a subalgebra
U of LmðGÞ containing Fy�1 and such that Fy�1 is maximal in U . We see
dimU=ðU \ LmðGÞ0Þ ¼ 1. By Proposition 3.1 it follows that dimU \ LmðGÞ0 ¼ 1.
This yields dimU ¼ 2. On the other hand, we see that y�1 is self-centralizing in
LmðGÞ and that it is not ad-nilpotent. It follows that adðy�1Þ j U has a nonzero
eigenvalue in F . Therefore fðXÞ has a nonzero root in F .

(ii) ¼) (i) Letm � n. Suppose thatLmðGÞ is not lmð0Þ. Then, by Proposition 3.1,
there exists a subalgebra U of LmðGÞ which has a maximal subalgebra of dimension
one, say Fu, and a maximal subalgebra of dimension greater than one. As U is not
lmð0Þ and since LmðGÞ0 is supersolvable (see Lemma 2.1 of Varea, 1988), we have
U 6� LmðGÞ0. Then the subalgebra U \ LmðGÞ0 of U has codimension one in U .
Moreover, U \ LmðGÞ0 contains no nonzero ideals of U (see the proof of Lemma
3.7 of Benkart et al., 1979). This yields that U is simple. Thus U is central simple,
since Fu is maximal in U . Therefore, U �F O is a simple Lie algebra over O having
a maximal subalgebra of codimension one, where O is an algebraic closure of F . By
Theorem 3.9 of Benkart et al. (1979), it follows that either U �F O ffi slð2;OÞ or
else U �F O ffi ZrðOÞ for some r � m. In the former case, we have that U is
three-dimensional simple. So, U ffi slð2;FÞ since U has a maximal subalgebra of
dimension greater than one. Since

ffiffiffiffi
F

p � F , we find that the algebra slð2;FÞ has
no maximal subalgebras of dimension one, and so neither has U , which is a
contradiction. Therefore, U �F O is a Zassenhaus algebra. By using Theorem 6.1
of Benkart et al. (1979), we get that the characteristic polynomial of adUðuÞ is
equal to the minimum polynomial and has the form

mðXÞ ¼ Xpr þ ar�1X
pr�1 þ 	 	 	 þ a1Xp þ a0X:
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Since Fu is a Cartan subalgebra of U , we have a0 6¼ 0, so that, mðXÞ has no multiple
roots in O. Then, by our hypothesis, mðXÞ has a nonzero root t in F . Therefore, there
exists 0 6¼ y 2 U such that Fu 6¼ Fy and ½u; y� ¼ ty. Maximality of Fu implies
dimU ¼ 2, which is a contradiction.

Finally, we consider the Zassenhaus algebras ZnðFÞ.

Corollary 7.4. Let F be perfect and charðFÞ > 2. Then the following hold:

(i) ZnðFÞ is lmð0Þ if and only if indpðFÞ 
 n and
ffiffiffiffi
F

p � F; and
(ii) Every Zassenhaus algebra is lmð0Þ if and only if indpðFÞ ¼ 1 andffiffiffiffi

F
p � F .

Proof. Note that, for each n we have LnðGÞ ffi ZnðFÞ for every G, since F is perfect
and charðFÞ > 3 (see Corollary 2.3 of Varea, 1988). Also, note that if m < n, then
ZmðFÞ is isomorphic to a subalgebra of ZnðFÞ. So, if ZnðFÞ is lmð0Þ, so is ZmðFÞ
for every m < n. The result follows from these notes and Theorem 7.3.

ACKNOWLEDGMENT

The authors are grateful to the referee for his=her suggestions. The third named
author was supported by DGI Grant BFM2000-1049-C02-01, Spain.

REFERENCES

Amayo, R. (1976). Quasi-ideals of Lie algebras II. Proc. London Math. Soc. 33(3):
37–64.

Amayo, R. K., Schwarz, J. (1980). Modularity in Lie algebras. Hiroshima Math. J.
10:311–322.

Barnes, D. W. (1967). On the cohomology of solvable Lie algebras. Math. Z. 101:
343–349.

Barnes, D. W., Newell, M. L. (1970). Some theorems on saturated homomorphs of
soluble Lie algebras. Math. Z. 115:179–187.

Benkart, G., Isaacs, I. M., Osborn, J. M. (1979). Lie algebras with self centralizing
ad-nilpotent elements. J. Algebra 57:279–309.

Bowman, K., Towers, D. A. (1989). Modularity conditions in Lie algebras.
Hiroshima Math. J. 19:333–346.

Bowman, K., Varea, V. R. (1997). Modularity� in Lie algebras. Proc. Edin. Math.
Soc. 40(2):99–110.
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