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Cirrus parametrization and the role of ice nuclei
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SUMMARY

A parametrization of cirrus clouds formed by homogeneous nucleation is improved so that it can be
used more easily in general-circulation models (GCMs) and climate models. The improved parametrization is
completely analytical and requires no fitting of parameters to models or measurements; it compares well with
full microphysical model results even when monodisperse aerosol particles are used in the parametrization to
determine cirrus ice-crystal number densities. However, the presence of ice nuclei in the atmosphere can modify
the formation of cirrus clouds. If sufficient ice particles have been generated by heterogeneous nucleation, the
saturation ratio of the air parcel will never reach that required for homogeneous nucleation. We calculate the
critical number density of ice nuclei, above which homogeneous nucleation will be suppressed. The critical
number density depends on the temperature, the updraught velocity, and the supersaturation at which ice nuclei
activate. The theory points to key uncertainties in our observations of ice nuclei in the upper troposphere; for ice
nuclei that activate at relatively low supersaturations, number density is more important than a precise knowledge
of the activation supersaturation. Overall, the theory provides a general framework within which to interpret
observations and the results of full microphysical cloud models. The theory can provide analytical test cases as
benchmarks for the testing of models in development, and can be implemented itself into larger-scale atmospheric
models, such as GCMs.
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1. INTRODUCTION

The indirect effect of aerosol on radiation and climate is the most uncertain part in
climate change (IPCC 2001). An example of this is the role of cirrus clouds in climate
(Lynch 1996). The net radiative effect of their presence is the result of competition
between the solar albedo and IR greenhouse effects, which is extremely sensitive to
crystal shape and the crystal-size distribution (Zhang et al. 1999).

In a newly formed cirrus cloud, the most important parameter in the size distribution
is the number density. Given the synoptic conditions, the water vapour available for
deposition is approximately fixed; the sizes of ice crystals are then determined by the
sharing of water vapour according to their surface areas. In the upper troposphere, ice
crystals form through homogeneous nucleation, as well as heterogeneous nucleation, if
ice nuclei are present. For homogeneous nucleation, Sassen and Benson (2000) gave
a parametrization based on numerical-model results that is only valid in the range
of temperatures from −36 to −60 ◦C, and for updraughts from 0.04 to 1.0 m s−1.
Considering the competition between generating supersaturation by updraught and
cooling and removing supersaturation by depositional growth of the ice crystals, Kärcher
and Lohmann (2002a,b) calculated the number density of ice crystals at the peak
value of supersaturation and achieved a parametrization for cirrus-cloud formation.
Their parametrization uses a fitting parameter to match model results, and includes the
complementary error function, which is not straightforward to use. For heterogeneous
nucleation, most studies rely on empirical formulae, e.g. Lin et al. (2002). Kärcher
and Lohmann (2003) extended their parametrization for homogeneous nucleation to
heterogeneous immersion freezing by decreasing freezing thresholds. Care must be
taken when making such an extension, because the surface area of solid particles
(e.g. soot, DeMott et al. 1997) must be taken into account when determining the
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nucleation rate. Gierens (2003) modelled the transition between heterogeneous and
homogeneous cirrus formation, and yielded a critical value to mark the transition, which
might be only valid for ice nuclei activating at supersaturations around 0.3. In this
work, the number densities of ice crystals in cirrus clouds formed by aerosol freezing,
both homogeneously and heterogeneously, in the upper troposphere are discussed using
parametrized relationships. Nucleation regimes, either heterogeneous or homogeneous
freezing, can be differentiated by comparing virtual supersaturation mixing ratios with
the critical supersaturation mixing ratio required by homogeneous nucleation, as in
section 2. The parametrization of homogeneous nucleation is improved by using a
theoretically determined timescale of homogeneous freezing, and made practicable
by providing a universal analytical expression, discussed in detail in section 3. The
conditions for ice nuclei to suppress homogeneous nucleation are given in section 4,
followed by a discussion of how a few existing ice crystals can depress secondary
homogeneous nucleation, using a modelled test case. The summary and conclusions
are given at the end. Symbols used in the text are defined in appendix B.

2. DIFFERENTIATING THE NUCLEATION REGIMES

In this section, an equation describing the revolution of water-vapour saturation
ratios is achieved first. The equation is solved for an imaginary case. Homogeneous
nucleation takes place only when the saturation ratio reaches a critical value. By
comparing the saturation ratios with the critical value, we defined various nucleation
regimes.

Consider an air parcel, lifted adiabatically at speed w, containing ice nuclei at the
number density of N , which nucleate at saturation S0. For simplicity, S0 is assumed
constant, and all the ice nuclei are the same size, r0. Within the air parcel, the water-
vapour saturation ratio with respect to ice changes with time as

dS

dt
= d

dt

(
e

es,i

)
= 1

es,i

de

dt
− S

d ln es,i

dt
. (1)

The water vapour pressure, e, changes through two processes, the deposition/sublima-
tion process and the expansion that changes the partial pressure without changing the
mixing ratio, i.e.

de

dt
= −e − es,i

τg(t)
+ e

p

dp

dt
, (2)

where
τ−1

g (t) = 4πNDri(t) (3)

is a parameter (bearing the dimension of the inverse of time) determined by the
diffusivity of water molecules in air, D, the radius of ice particles, ri (t), and the number
density of ice particles, N . Please note that these ice particles formed on ice nuclei, and
we have used an assumption that one ice nucleus activates to become one ice particle.

Using the Clausius–Clapeyron equation for the saturation vapour pressure of water
over ice at temperature, T ,

d ln es,i

dt
= d ln es,i

dT

dT

dt
= Ls

RvT 2

dT

dt
, (4)

where Ls is latent heat of sublimation, Rv is the gas constant of water vapour.
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Figure 1. The change of saturation ratios with time for constantly ascending air parcels. The dotted line is for
an imaginary case, showing the saturation ratio generated by a constant ascent; the solid line is for a case with no
ice nuclei; the dash-dotted line is for a case with ice nuclei of 0.02 cm−3; and the dashed line is for a case with

ice nuclei of 0.1 cm−3. Ice nuclei are assumed to activate at S0 (see text).

Inserting (2) and (4) into (1), and introducing a thermodynamical timescale τu, we
can achieve

dS

dt
= τ−1

u S − τ−1
g (t)(S − 1), (5)

where

τ−1
u = 1

p

dp

dt
− Ls

RvT 2

dT

dt
= a1w. (6)

When the updraught is at constant speed w, with hydrostatic equilibrium assumption
for p and adiabatic assumption for T , τu can be taken as a constant. a1 is a coefficient
given by Kärcher and Lohmann (2002a). However, because of the interaction between
S and τg, there is no analytical solution to Eq. (5). Gierens (2003) has attempted to
make one, but the significance of his solution is reduced by his having to prescribe
τg as a known function of time, i.e. the growth rate of ice particles is known before
the supersaturation is known. Alternatively, we can solve Eq. (5) numerically, by
running a microphysical box model. Figure 1 shows examples of S evolution. The
dotted line increases monotonically. This corresponds to an imaginary case, in which
the depositional growth of ice particles doesn’t consume water vapour. Mathematically,
from Eq. (5) with τg = 0, we have

dSu

dt
= τ−1

u Su, (7)

with initial condition
Su(0) = S(0) = S0, (8)
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where subscript ‘u’ denotes that we are considering the limit where only updraught
controls the change of saturation ratio. In this case, we do have an analytical solution
for the saturation ratio, i.e.

Su(t) = S0 exp(t/τu), (9)

and Su grows exponentially in an ascending air parcel. This imaginary case, although
apparently trivial, is used later.

Except the dotted line, all other three lines are for real cases. The solid line is a case
with no ice nuclei, the dash-dotted line is with ice nuclei of 0.02 cm−3, the dashed line is
with ice nuclei of 0.1 cm−3. Because of homogeneous nucleation, the solid line and the
dash-dotted line turn down just above a critical value of supersaturation. According to
Sassen and Benson (2000), the turn requires a critical effective temperature at ∼−38 ◦C,
corresponding to a homogeneous nucleation rate coefficient of 1010 cm−3s−1. (The
relationship between the rate coefficient and the homogeneous nucleation rate is given
later by Eq. (16).) If this value of the homogeneous nucleation-rate coefficient is used to
determine the critical value Scr, its temperature dependence can be written as

Scr = 2.349 − T

259
, (10)

with T in degrees absolute. This is an analytical fit to Koop et al.’s (2000) results, in
contrast with numerical fittings by Kärcher and Lohmann (2002a) or Gierens (2003).
The temperature in Eq. (10) is the ambient temperature, on the basis that Koop et al.
(2000) assumed water droplets are in equilibrium with water vapour.

By comparing the saturation ratios S(t) with Scr, we can identify different nucle-
ation regimes. When

Smax < Scr, (11)

the saturation is always below the value at which homogeneous nucleation takes place,
and so the contribution of homogeneous nucleation to ice particles is negligible. We
describe such a condition as a homogeneous-nucleation-suppressed case, which is
discussed in section 4(a). When

S(t) ≥ Scr, (12)

homogeneous nucleation does take place, and newly formed ice particles will soon start
to produce a decrease of the saturation ratio with time, so that we can safely assume

Smax = Scr (13)

(see Fig. 1). If no ice crystals have nucleated on heterogeneous ice nuclei at saturation
ratios below Scr, then we have a pure-homogeneous-nucleation case, which is discussed
in section 3. If some ice crystals have nucleated on heterogeneous ice nuclei, but
saturation ratios at, or above, Scr are reached, then we have a homogeneous-nucleation-
dominant case, which is discussed in section 4(b).

3. PURE HOMOGENEOUS NUCLEATION

It is believed that cirrus clouds not associated with convective clouds are often
formed by homogeneous freezing of deliquescent aerosols in the upper troposphere
(e.g. Santacesaria et al. 2003). Because of the radiative forcing of cirrus clouds, it is
desirable to include those clouds in weather-forecasting and climate models. Kärcher
and Lohmann (2002a,b) developed a cirrus parametrization for this purpose. Assuming
ice particles are formed by homogeneous freezing of deliquescent aerosol droplets,
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the parametrization determines the number density of ice particles by solving an equa-
tion governing the temporal evolution of saturation ratio over ice at its peak in a freezing
event. At the peak of the saturation ratio, S, of an ascending air parcel,

dS

dt

∣∣∣∣
S≈Scr

= 0. (14)

Resolving Eq. (14) can give the number density of ice particles formed by homogeneous
freezing of a size-spectrum of droplets. We improve the parametrization as follows: (1)
using a theoretically determined timescale of homogeneous nucleation, and (2) using a
freezing/growth integral for monodisperse aqueous particles that has an analytic solution
for all cases.

(a) On the nucleation timescale
The parametrization of cirrus clouds formed by homogeneous freezing follows the

results of Ford (1998) and Koop et al. (2000). The expression given by Ford (1998)
relates the nucleation rate some time before (at t0), ṅi(t0), to the nucleation rate at present
time t , ṅi(t),

ṅi(t0) = ṅi(t) exp

(
− t − t0

τ

)
. (15)

Here the nucleation timescale, τ , is taken as a constant with respect to time. The
nucleation timescale is in reverse proportion to the cooling rate. The following shows
how this relationship is achieved by applying a result of Koop et al. (2000).

The homogeneous nucleation rate is proportional to the total volume of aqueous
aerosols, V , with a homogeneous nucleation rate coefficient J ,

ṅi(t) = J (t)

∫ ∞

rs

4π

3
r3

0
dna

dr0
dr0 = J (t)V (t), (16)

where r0 is the radius of aerosol particles, and na the number density of aerosol particles.
Please note that na is a function of r0 and t , and should be kept updated with t , i.e.
the wet aerosol distribution at current supersaturation, instead of the initial/dry aerosol
distribution.

By taking the logarithm of ṅi(t) and differentiating it with respect to t from (15),
we can get

τ−1 = d ln ṅi(t)

dt
. (17)

On substituting (16) into (17),

τ−1 = d ln J (t)

dt
+ d ln V (t)

dt
. (18)

To relate τ to the cooling rate of the air parcel, we use the parametrization for J given
by Koop et al. (2000), i.e.

J (t) = J {�aw(t)} = J {�aw(T (t))} = J {T (t)}, (19)

where �aw is the excess of water activity, and T the temperature. By keeping the
ambient water vapour pressure constant, as is the case before the ice deposition domi-
nates the supersaturation change (neglecting the effect of atmospheric pressure change),
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we achieve
d ln J (t)

dt
= d ln J (T )

dT

dT (t)

dt
= C

dT

dt
, (20)

where
C = −0.004T 2 + 2T − 304.4, (21)

which is a simplified expression of d(ln J )/dT , with errors less than 0.4%, when �aw =
0.3063 (or J = Jcr = 1010 cm−3s−1) is used as a principal value for the formation of
ice particles. The slight dependence of C on temperature, and hence on time, means
that the assumption made by Ford (1998) is physically sound when the total volume
of aqueous aerosols, V (t), in (16) (and so in (18) as well) can be taken as constant
during the nucleation event. So, a more physically sound C replaces the numerically
fitted c|∂(ln J )/∂T |S=Scr of Kärcher and Lohmann (2002a,b) to give an estimate of the
nucleation timescale. The relationship we achieve here is

τ−1 = C
dT

dt
. (22)

(b) On the expression for ice-crystal number
As indicated in the beginning of this section, Eq. (14) is solved to give the number

density of ice particles.
From Eq. (14), following the same route as Kärcher and Lohmann (2002a), we have

a balance of terms driving the change in S:

a1Scr

a2 + a3Scr
w = Ri, (23)

where w is the vertical velocity of an adiabatic air parcel, and the coefficients a1, a2,
and a3 (which depend on temperature, T , and air pressure, p) are given by Kärcher
and Lohmann (2002a) and are defined in the list of nomenclature in appendix B. Scr
is an approximation of saturation maximum, having applied Eq. (13). Ri, the number
of water molecules consumed by the depositional growth of all ice particles in a unit
volume per unit time, is an integral. When the size distribution of aerosols is taken into
consideration, Ri is integrated down from a sufficiently large particle size to determine
the radius of the smallest aerosol particles that freeze, rs, achieved when Ri accumulates
to balance the left-hand side of Eq. (23). Then, the number density of ice particles is
given by integrating through the aerosol particles larger than rs.

In the integral of Ri, a complementary error function appears. Asymptotic expan-
sions for erfc(x) are available for x � 1 or for x � 1. These cases have been discussed
by Kärcher and Lohmann (2002b). However, most homogeneous nucleation events take
place in the upper troposphere under the conditions of κ close to 1, as can seen from
Fig. 1 of Kärcher and Lohmann (2002b). Unfortunately, both asymptotic expansions for
x � 1 and for x � 1 are divergent when x is close to 1. Here, we give a fit to erfc(x) as

exp

(
1

κ

)√
π erfc

(√
1

κ

)
≈ 3

2
√

1
κ

+
√

1
κ

+ 9
π

, (24)

which produces errors within 0.7%, verified by series expansions (erfc is the comple-
mentary error function). The mathematics describing the water-vapour consumption
term with the above fit is detailed in appendix A.



CIRRUS PARAMETRIZATION AND ICE NUCLEI 1591

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
2

10
1

10
0

10
1

10
2

R
i ,m

(b
2 2

/b
1)(

/4
)

 = b
2
r
0

 = 1000
 = 10
 = 1
 = 0.1
 = 0

Figure 2. The normalized monodisperse freezing/growth term, Ri,m(b2
2/b1)(ν/4π), (see text) as a function of

aerosol size, δ, for different constant freezing timescales, κ . Limiting cases in applicable conditions are indicated
by circles (Eq. (A.10)), the lower dotted line (Eq. (A.11)), and squares (Eq. (A.13)).

The number density of ice particles at cloud formation is moderately sensitive to
aerosol sizes. The normalized freezing/growth integral for monodisperse aerosols, a
dimensionless quantity, Ri,m(b2

2/b1)(ν/4π), is shown in Fig. 2 as a function of δ with
constant κ . It is clear that the size of aerosols has an effect on the number of ice particles
formed by homogeneous nucleation, unless the aerosol particles are small enough that
δ can be taken as 0. This is the limiting case (A.13), shown by squares in Fig. 2.
The critical value of δ, when (A.13) becomes applicable, depends on κ . The bigger
κ is, the bigger the critical value of δ. This is shown clearly by the squares in Fig. 2.
Further, suppose δ � 1; Eq. (A.10) predicts no size dependence, while (A.11) predicts
a second-order size dependence (through δ). The size effect increases from none to the
second-order dependence with decreasing nucleation timescale τ (i.e. κ ∝ τ ). For δ � 1,
both (A.10) and (A.11), together with (A.12), predict a first-order size dependence.
Therefore, for κ � 1, the size effect increases from none to first-order dependence
with increasing δ. For example, as κ = 1000 is big enough to use the limiting case of
(A.10) (see the upper row of circles in Fig. 2), size dependence is present for δ > 0.1
(aerosol sizes larger than 0.1/b2). For κ � 1 with increasing δ, the size effect increases
from none to second-order, then decreases, finally to first-order. So, as stated above, the
number of ice particles formed is independent of the aerosol size only when the aerosol
particles are so small that δ → 0. Contrary to the discussion of Kärcher and Lohmann
(2002a,b), there is not a separation between a fast-growth regime and a slow-growth
regime that can be clearly indicated by κ = 1.

(c) For monodisperse aerosol particles
Calculating (A.9), determining rs by (A.5), then integrating (A.7) to get the number

density of ice particles is not a completely analytical method, since (A.5) and (A.7) are
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integral equations. However, for monodisperse aerosol particles, r0 becomes a single-
value parameter instead of a variable that describes the aerosol size spectrum, so there
is no integration with respect to r0, and there is no need to use Eq. (A.4). From (A.5),
using the same approximation as Kärcher and Lohmann (2002b), the number density of
ice particles is achieved directly by

ni = Scr

Scr − 1

a1w{
Ri,m(r0)

b2
2

b1

ν
4π

}
4πD
b2

� na, (25)

since a2 exceeds a3Scr by at least a factor of three, as indicated by Kärcher and Lohmann
(2002a). Equation (25) is kept in this form because the expression within the braces
is the normalized freezing/growth integral for monodisperse aerosol (a dimensionless
quantity, shown in Fig. 2), which may be replaced by any expression between braces
from Eqs. (A.9) to (A.13). For κ � 1, inserting any of (A.12), (A.13), or (A.10) into (25)
produces a relation ni ∝ w3/2 (since κ ∝ τ ∝ 1/w). For κ � 1, when aerosol particles
are rather big, combining (25) with (A.12) gives ni ∝ w; when aerosol particles are
rather small, ni ∝ w2 is a coarse approximation from (25) with (A.13), while Kärcher
and Lohmann (2002b) obtained ni ∝ w3 with a second-order-accurate expansion of
erfc(x). We have compromized to achieve a universal expression. In any case, the
number density of ice particles can always be achieved by combining (25) with (A.9),
as shown in Fig. 3. Although monodisperse aerosol particles are used, we get number
densities of ice particles that are even closer than Kärcher and Lohmann (2002a,b)
to the number densities of the detailed model. Evidence of improvement is that there
is no crossing of lines for different aerosol sizes at the highest vertical velocities for
200 K and 220 K. Equation (25), together with (A.9), can be easily combined into
general-circulation models (GCMs) to simulate cirrus clouds formed from aqueous
aerosol particles. It also provides a way to check if a fully dynamical/microphysical
cirrus model with homogeneous nucleation is coded correctly by providing an analytical
test case (cf. Lin et al. 2002). Above all, an analytical expression has the merit that
physical relationships are described definitely. For example,the dependence of ni on
the deposition coefficient α can be singled out. α is included in both b1 and b2, and
hence in δ and κ . The dependence is ni ∝ 1/Ri,m(α), through the growth rate of ice
particles, different for each limiting case (see (A.10)–(A.13) ). The relationship given
here is clearer than the numerical test results of Lin et al. (2002). However, Eq. (25)
is not perfect. If the range of vertical velocities in Fig. 3 is extended to 20 m s−1, the
levelling off in the upper right corner, as in Fig. 4 of Kärcher and Lohmann (2002b),
will appear. This, as a limitation of the parametrization, is discussed in the next section.

(d) Limitation
The total volume of aqueous aerosols is not constant in a cloud-formation event.

This is the defect in the parametrization. Figure 3 plots the ice number concentration,
ni, against updraught velocity, w, for various temperatures. The parametrization returns
constant values for large w at low temperatures (not shown in Fig. 3, i.e. for w >
10 m s−1), as in the upper right corner of Fig. 4 of Kärcher and Lohmann (2002b).
In this section, we give an explanation for this levelling off of the parametrizations. The
discrepancies between parametrization and detailed model result from the omission of
the second term in the right-hand side of (18), d{ln V (t)}/dt , which Eq. (A.3) guarantees
to be zero in the parametrization. In fact, the total volume of aqueous aerosols does
change during a nucleation event, so d{ln V (t)}/dt cannot be zero. When the updraught
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Figure 3. The number density of ice particles, ni , as a function of the vertical velocity, w, for three freezing
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velocity is high at lower temperatures, nearly all the available aqueous aerosols freeze.
Given the same homogeneous nucleation rate coefficient, V (t) changes faster for larger
aerosol sizes. In this case, the omitted term is negative and the nucleation timescale
is underestimated, so the ice number is overestimated, even up to the upper bound
imposed by the total number of aerosols at which the ice number levels off. The inverse
of the timescale, τ−1, arrived at from (18), can be negative, meaning that the nucleation
rate decreases with time, i.e. that part of the nucleation event after the peak in the
nucleation rate. The parametrization discussed here neglects this part of the nucleation
event because of the technical difficulty in dealing with a time-dependent τ . The error
incurred can be compensated for by the choice of critical saturation Scr. In this sense
it is, perhaps, more useful to regard Scr as an adjustable parameter whose value is
indicated, but not fixed, by Eq. (10). The role of Scr in directly determining the number
of ice crystals is clearly shown by (25), i.e. the number is proportional to Scr/(Scr − 1).
Considering that nucleation takes place at saturation around Scr, another indirect, but
more significant, role of Scr is through its effect on the nucleation timescale, τ . The
relationship between J and �aw given by Koop et al. (2000) dictates a maximum c in
Eq. (20) at �aw = 0.3076, so Eq. (10) (which gives �aw = 0.3063) is almost the best
to make τ in (18) as big as possible.

On the other hand, this limitation of the parametrization is seldom reached under
real atmospheric conditions, at least at the resolution of meteorological analyses (e.g.
ERA-40∗). The range of the normalized freezing/growth integral for monodisperse

∗ The 40-year reanalysis performed by the European Centre for Medium-Range Weather Forecasts.
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aerosols in Fig. 2 is determined as the part 0.01 < δ < 10 and 0.01 < κ < 1000. There
is no single limiting case suitable for these ranges of δ and κ .

4. NUCLEATION WITH ICE NUCLEI PRESENT

The atmosphere is not clear of solid aerosols. Soot (DeMott et al. 1999) and mineral
dusts (Zuberi et al. 2002) can serve as ice nuclei. This section addresses how ice nuclei
modify cirrus clouds. Section 4(a) gives conditions under which ice nuclei suppress
homogeneous nucleation. When such conditions are not satisfied, homogeneous nucle-
ation will take place to generate secondary ice particles, the number density of which is
calculated in section 4(b), with an example in section 4(c).

(a) Suppressed homogeneous-nucleation conditions
The condition that homogeneous nucleation doesn’t take place is given by inequal-

ity (11), which is very simple in format, but not so straightforward to use since we do
not yet have a solution for Smax. This difficulty can be circumvented with the help of the
imaginary case (9).

The maximum of saturation is given by

dS

dt

∣∣∣∣
S=Smax

= 0. (26)

The solution to (26), considering (5), is

Smax = τ−1
g (tmax)

τ−1
g (tmax) − τ−1

u
. (27)

Substituting (27) in (11) leads to

τ−1
g (tmax) >

Scr

Scr − 1
τ−1

u . (28)

This inequality describes the relationship between the two timescales at the time of
maximum saturation ratio. The problem is that we don’t know either Smax or tmax. To
make practical use of inequality (28), the imaginary case, in which the depositional
growth of ice particles doesn’t assume water vapour (given by Eq. (9) and shown by the
dotted line in Fig. 1), is used. Then

tcr = τu ln

(
Scr

S0

)
(29)

is the time for an air parcel with a constant thermodynamical timescale to reach the
homogeneous-nucleation saturation-ratio threshold. This imaginary case sets up an
upper limit for the evolution of saturation as

S(t) ≤ Su(t). (30)

When tmax < tcr, i.e. the time, tmax, to reach the saturation-ratio maximum is shorter
than the time, tcr, to reach the homogeneous-nucleation threshold in the ‘updraught-
controlled’ limit,

{Smax = S(tmax)} ≤ Su(tmax) < {Su(tcr) = Scr}, (31)
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the inequality (11) is satisfied automatically, and the cloud evolves through heteroge-
neous nucleation and growth only.

When conditions are such that tmax ≥ tcr, inequality (28) is guaranteed by

τ−1
g (tcr) >

Scr

Scr − 1
τ−1

u , (32)

because
τ−1

g (tmax) ≥ τ−1
g (tcr). (33)

In the imaginary case, the growth of cloud particles can be given, according to Kärcher
and Lohmann (2002b), as

dru

dt
= b(Su − 1)

1 + b2ru
, (34)

with the initial condition
ru(0) = ri(0) = r0, (35)

where b(Su − 1) is b1.
Integrating (34) and (35) gives

ru(tcr) =
√
(1 + b2r0)

2 + 2bb2τu[Scr − S0 − ln(Scr/S0)] − 1

b2
. (36)

This imaginary case also sets up an upper limit for the size of ice particles as

ri(t) ≤ ru(t). (37)

When (3), (32) and (37) are used to determine the number density of ice nuclei,{
N = τ−1

g (tcr)

4πDri(tcr)

}
>

τ−1
u

4πDri(tcr)

Scr

Scr − 1

�
{

τ−1
u

4πDru(tcr)

Scr

Scr − 1
= NC1

}
.

(38)

Inequality (32) is a sufficient condition for ice nuclei to suppress homogeneous nu-
cleation. However, the condition (38) is compromised by the use of ru(tcr) rather than
realistic ice-particle sizes ri(tcr). NC1 is the lowest number of ice nuclei that the theory
assures us can prevent homogeneous nucleation in an ‘updraught-controlled’ cloud.

There is another upper limit for the size of ice particles that can be achieved by
assuming all the water is in the condensed phase, so

ri(t) < r∞ =
(

3S0es,i

4πNRvTρi

)1/3

. (39)

When (3), (28) and (39) are used to determine the number density of ice nuclei,

N = τ−1
g (tmax)

4πDri(tmax)
>

τ−1
u

4πDr∞
Scr

Scr − 1
, (40)

and the number density can be expressed as a function of thermodynamic conditions
(including S0) and updraught velocity, by substituting for τ−1

u , r∞ and D:

N >
5.4 × 1010w1.5p1.5

T 5.41(S0es,i)0.5

(
Scr

Scr − 1

)1.5

= NC2. (41)
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Figure 4. (a) The number density of ice particles, ni, formed by homogeneous nucleation (dash-dotted lines),
NC1 (solid lines), and NC2 (dotted lines), as a function of the vertical velocity, w, for three freezing temperatures
(196.4 K, 216.0 K, and 235.8 K—from top to bottom for each quantity). (b) The critical values of ni for NC1
(solid lines) and NC2 (dotted lines) as a function of the vertical velocity, w, for three initial saturation ratios S0 at
which heterogeneous nucleation takes place. The temperature is 216 K. Also shown is the number density of ice

crystals by homogeneous nucleation (dash-dotted line).

Inequality (41) is a necessary condition in that (39) must be satisfied in any circum-
stances. Equation (41) resembles (21) of Gierens (2003) in several aspects, principally
because the diffusivity of water vapour in air has been given the same way.

The dependence of NC1 and NC2 on w and T , and on w and S0, is shown in
Figs. 4(a) and (b), respectively. Note that the lines for NC1 and NC2 do not cross and NC1
is always greater than NC2 for the same conditions, as we would expect. To the accuracy
we can achieve, given our assumptions, condition (38) is a sufficient condition, and
condition (41) is a necessary condition, for the suppression of homogeneous nucleation.
There must be a critical value, NC, between NC2 and NC1, for which

N > NC (42)

is a sufficient and necessary condition. If condition (42) is satisfied (which implies
that condition (41) must be satisfied, but condition (38) might not be), homogeneous
nucleation will be suppressed by existing ice particles produced by heterogeneous
nucleation.

The role of ice nuclei in determining the number density of ice particles is shown
schematically in Fig. 5. With increasing number density of ice nuclei, the number
density of ice particles produced by a cloud formation event first decreases to some
point where homogeneous nucleation is just suppressed, then increases linearly with ice
nuclei. In other words, the presence of ice nuclei can either decrease or increase the
number density of ice particles in a cirrus cloud; but before homogeneous nucleation
is completely suppressed, the number density of ice particles must be lower than
when there is pure homogeneous nucleation. This analysis provides a framework for,
amongst other things, the interpretation of model results. For example, the comparisons
of HN-ONLY runs (homogeneous nucleation only) and ALL-MODE simulations (both
heterogeneous and homogeneous nucleation allowed) by Lin et al. (2002) can, therefore,
be clarified by Fig. 5.
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Figure 5. Schematic of the determination of the number density of ice particles in a cirrus cloud that has been
newly formed by freezing aerosol droplets. The number density of ice nuclei is shown in the top row, the nucleation
regimes in the middle row, the number of ice particles in the bottom row. Vertical arrows represent controls. Dark
arrows mean strong control, hollow arrows means weak control, and the grey one means complex. Notations: IN
= the number density of ice nuclei; ni = the number density of ice particles formed by homogeneous nucleation;

Nc = the critical number density for ice nuclei.

(b) Secondary homogeneous nucleation
When the number density of ice nuclei is smaller than the critical value Nc, uptake

of water vapour onto ice particles activated from them is insufficient to prevent the
supersaturation ratio from reaching the critical value for homogeneous nucleation. In
such cases, this consumption of water vapour by existing ice particles, as well as the
number of ice particles, n′

i, formed by homogeneous nucleation, must also be taken
into account when calculating Ri. Ri defined by (A.1) now includes an additional term,
N(4π/ν)r2

u (tcr) dru/dt , contributed by ice particles previously activated by heteroge-
neous nucleation, as does the right-hand side of Eq. (A.5). Using the monodisperse
aerosol example, the balance at the peak of the saturation ratio is

a1Scr

a2 + a3Scr
w = n′

iRi,m(r0) + N
4π

ν
r2

u (tcr)
dru

dt
, (43)

where n′
i is the number density of additional ice particles generated by secondary

homogeneous nucleation, and N is the number density of ice particles previously
activated by heterogeneous nucleation.

Assuming b2ru(tcr) � 1 to simplify (34), together with the approximation used in
(25), we have

n′
i = ni − b2ru(tcr){

Ri,m(r0)
b2

2
b1

ν
4π

}N. (44)

Equation (44) clearly shows that, up to a certain limit, increasing the number density of
ice nuclei will decrease the number density of ice particles. We call the multiplier to N
in (44) the homogeneous-nucleation depression efficiency. Figure 6(a) and (b) show this
efficiency as a function of updraught velocities, temperatures, and the saturation ratios,
S0, at which ice nuclei activate. Figure 6 shows that one ice nucleus can prevent the
formation of up to 100 homogeneously-formed cirrus particles per unit volume. This
effect is strongest for high updraught velocities, low temperatures, and low ice-nuclei-
activation supersaturations, S0. For different S0, the efficiency can differ by up to an
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Figure 6. (a) The efficiency of an ice-nucleus-depressing homogeneous nucleation as a function of temperature
and updraught. S0 = 1.3. (b) The efficiency of an ice-nucleus-depressing homogeneous nucleation as a function
of updraught and S0 at T = 216.0 K. The saturation mixing ratio S0 at which the ice nucleus activates is the

parameter in the model that encapsulates the chemical composition of the ice nucleus.

order of magnitude. This demonstrates that different kinds of ice nuclei may radically
affect the number density of ice particles. The nonlinear response of the efficiency to
S0 means that it is more important to quantify the total number of ice nuclei with S0
less than a moderate value (1.3, say) than to define precisely the spectrum of activities
between 1.0 and 1.3 for these nuclei.

The physical requirement n′
i ≥ 0 for (44) leads to

N ≤ NC = NC1. (45)

This is the prerequisite to use (44). It’s not surprising that we find again that NC1 is the
critical value separating the nucleation regimes, since equivalent approximations have
been used. Numerical tests show that the error incurred by using NC1 for NC is of the
same order as uncertainties in water-vapour diffusivity. To the accuracy of the current
theory, Eq. (44) can be rewritten as

n′
i = ni

(
1 − N

NC1

)
. (46)

The sum of n′
i and N is the number density of ice particles generated by hybrid

nucleation, shown in Fig. 5. If, somehow, ri(tmax) is known, then a better result can be
achieved by using

∑
j Njri,j (tmax) in (44) accordingly, which is the effect of existing ice

particles, no matter whether they are generated by heterogeneous nucleation or are left
from a former cloud event. In practice, we can directly calculate n′

i before determining
whether the prerequisite (45) is satisfied or not. A negative value of n′

i indicates that
homogeneous nucleation is suppressed.

(c) The size distribution generated by hybrid nucleation
Bi-modal size distributions of ice particles are common (Ivanova et al. 2001;

Donovan and Lammeren 2002). This phenomenon can be attributed—at least in part—
to secondary homogeneous nucleation. Figure 7 shows size spectra from 26 September
1997 in the outflow from Hurricane Nora (Ivanova et al. 2001). We use this as a test case
to demonstrate use of our cirrus parametrizations. The main features of the observed size
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Figure 7. Size spectra on 26 September 1997 for the DOE–ARM Intensive Observing Period in the Hurricane
Nora outflow at 1909:15–1911:00 UTC, for temperatures −48.3 to −50.3 ◦C, and pressures 216.53 to 209.12 hPa.
The size distributions reconstructed by parametrizations are imposed by squares joined by the dashed line
(including heterogeneous nucleation) and circles joined by the dotted line (without heterogeneous nucleation).
Reprinted from Atmos. Res. 59–60, Ivanova et al., ‘A GCM parameterization for bimodal size spectra and ice

mass removal rates in mid-latitude cirrus clouds’, 89–113, Copyright (2001) with permission from Elsevier.

spectra are captured by the parametrization including heterogeneous nucleation using
a simple average of eight calculations (squares in Fig. 7). The calculations are done at
−49.2 ◦C and 220 hPa, with an adiabatic cooling rate of 0.0094 ◦C m−1. The updraughts
we use are 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, and 1.2 m s−1, respectively. Given the
activated ice nuclei as a function of supersaturation (Meyers et al. 1992; Pruppacher
and Klett 1997),

N = exp{−0.639 + 0.1296(S − 100)} − 0.5278 (47)

per litre. A correction term has been added to make the value zero at just-saturated
conditions. We find secondary homogeneous nucleation takes place when the updraught
is greater than 1 m s−1. The size distribution is reconstructed from various sizes of
ice particle using the parametrization developed in section 4(b). To do this, Eq. (47) is
sectioned as in Table 1. The size of secondary homogeneously-nucleated ice particles is
estimated by

n′
iρi

4π

3
r3

i +
∑
j

Njρi
4π

3
(ru,j + �j)

3 = (Scr − 1)es, i

RvT
, (48)

which keeps the conservation of mass at equilibrium. �j is an adjustment so that
heterogeneously nucleated ice particles are never smaller than homogeneously nucleated
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TABLE 1. ASSUMED NUMBER DENSITIES OF ICE NUCLEI ACCORDING TO
EQ. (47)

Section range of S 1.0–1.1 1.1–1.3 1.3–1.4 1.4–1.45 1.45–1.48
Number density (l−1) 1.40 23.8 68.4 85.9 100
Activation S0 1.0 1.1 1.3 1.4 1.45

ice particles. Also shown in Fig. 7 is the size distribution by the parametrization
without heterogeneous nucleation (circles in Fig. 7), otherwise the conditions are
same. Comparing with the observations, although the agreement is not quantitatively
precise, it evidently demonstrates that (secondary) homogeneous nucleation produces
the dominant mode of smaller size (about 15 µm diameter). On the other hand, a few
bigger ice particles are from ice nuclei (or existing ice particles).

The example is shown here only to demonstrate that hybrid nucleation can generate
bi-modal size distributions of ice particles. There is no further information to convince
us that we have assumed the proper ice-nuclei distribution. There are also other pro-
cesses (say, aggregation) which can also generate a bi-modal size distribution.

5. SUMMARY AND CONCLUSIONS

In the upper troposphere, ice crystals form by aerosol freezing, either homo-
geneously or heterogeneously (or both), in supersaturated conditions. Homogeneous
nucleation takes place only when saturation is above a critical value. Nucleation
regimes, i.e. either heterogeneous-dominant or homogeneous-dominant freezing, can
be differentiated by comparing virtual supersaturation mixing ratios with the critical
supersaturation mixing ratio required by homogeneous nucleation. The introduction of
an imaginary case—particle growth without vapour depletion—untangles the interaction
between the supersaturation change and the growth of ice crystals.

An existing parametrization of homogeneous nucleation has been improved by
using a theoretically determined timescale of homogeneous freezing, and has been made
practicable by providing a universal analytical expression. The improved parametriza-
tion works well, even when monodisperse aerosol particles are used in determining
cirrus ice-crystal number densities, if the aerosol distribution can be described ade-
quately by a single effective radius. The discrepancies between the parametrization and a
detailed model—in cirrus ice-crystal number densities at lower temperatures and higher
updraughts—are explained by the change of the nucleation timescale with respect to
time.

The number densities of ice particles in cirrus clouds formed by heterogeneous
freezing of aerosol particles are determined by the number density of ice nuclei con-
tained in an ascending air parcel, provided that the nuclei density exceeds a criti-
cal value, NC1. However, the critical value is dictated by the atmospheric conditions
(specifically the temperature, T , and the updraught velocity, w) and the ice-nucleation
properties of aerosol particles (i.e. the (super-)saturation at which the ice nuclei activate,
S0). If the number density of ice nuclei in an air parcel is lower than the critical value,
homogeneous nucleation will take place to compensate for this deficit, so that the critical
value is the minimum number of ice particles in a cirrus cloud formed from aerosol
freezing.

The analytical solution of homogeneous nucleation provides a parametrization
scheme for cirrus clouds in the upper troposphere. This nearly single-line parametriza-
tion merits potential applications in GCMs and climate models. On the other hand,
confident modelling taking the role of ice nuclei into consideration awaits more
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information on ice nuclei. Our analysis suggests that the critical information is the total
number density of ice nuclei with low-to-moderate activation supersaturations, rather
than details of the activation spectrum inside this supersaturation range, since all the
low-to-moderate activating ice nuclei have similar efficiencies in depressing homoge-
neously nucleated ice-particle number densities. Nevertheless, the critical value provides
a lower limit for the number density of ice particles in a cirrus cloud, and is helpful for
understanding the role of ice nuclei in climate.
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EVK2-CT-2001-00122). We thank B. Kärcher (Deutsche Zentrum für Luft- und Raum-
fahrt—DLR) for useful discussions and for the provision of the microphysical model
results shown in Fig. 3.

APPENDIX A

The water-vapour consumption term
This appendix gives the integral for water vapour consumed by all frozen aerosols,

shows how the number density of ice particles is separated from the integral with two
contradictory assumptions, and deduces the limiting cases.

The water-vapour consumption term in Eq. (23) is defined by

Ri = 1

ν

∫ ∞

rs

∫ t

−∞
4πr2

i (r0, t0, t)
dri

dt
(r0, t0, t)

dṅi

dr0
(r0, t0) dt0 dr0, (A.1)

where ν is the specific volume of a water molecule in ice. The number density of ice
particles can only be separated from Ri with two, contradictory, assumptions. Firstly, to
remove the nucleation rate from (A.1), Eq. (15) is assumed applicable to each size-bin
so that

dni

dr0
(r0, t) =

∫ t

−∞
dṅi

dr0
(r0, t0) dt0 = dṅi

dr0
(r0, t)τ. (A.2)

The assumption used to get (A.2) is that τ for each size-bin is a constant. To ensure τ
for each size-bin is a constant, from Eq. (18), we need

∂

∂t0

{
dna

dr0
(r0, t0)

}
= 0, (A.3)

where (dna/dr0)�r0 is the number concentration of aerosol particles in a bin of size r0.
Secondly, since larger aerosol particles have a higher probability of freezing, all

particles larger than rs are assumed to have been frozen at time t (although this is not
allowed by (A.3)), then

dni

dr0
(r0, t) = dna

dr0
(r0, t0 = −∞), (A.4)

where t0 = −∞ means the time when the aerosol particles have swollen but no freezing
has started. This assumption is later used to convert unknowns dni/dr0 for each size-bin
to one single unknown rs. It can be avoided by assuming monodisperse aerosol particles,
as given in section 3(c).
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Applying (15) to (A.1), then combining it with (A.2) and (A.4) gives

Ri =
∫ ∞

rs

Ri,m(r0)
dna

dr0
(r0, t0 = −∞) dr0, (A.5)

where the monodisperse (at radius of r0) freezing/growth term is defined by

Ri,m(r0) = 4π

ν

∫ t

−∞
1

τ
exp

(
− t − t0

τ

)
r2

i (r0, t0, t)
dri

dt
(r0, t0, t) dt0, (A.6)

and the integral limit rs, in (A.5), is the only unknown. When Eq. (A.5) is solved for
rs by the method of Kärcher and Lohmann (2002b), the total number of ice crystals is
given by

ni =
∫ ∞

rs

dna

dr0
(r0, t0 = −∞) dr0 ≤ na. (A.7)

The monodisperse freezing/growth term, after integration, is

Ri,m(r0) = 4π

ν

b1

b2
2

{(
1 + δ

2

√
κ + 1

1 + δ

1√
κ

)

× exp

(
1

κ

)√
π erfc

(
1√
κ

)
+ δ − 1

}
,

(A.8)

where b1, b2, δ, and κ follow the definitions given by Kärcher and Lohmann (2002b) and
appendix B. Inserting (24) into (A.8) produces an equation with an analytical solution
suitable for all cases, i.e.

Ri,m(r0) = 4π

ν

b1

b2
2


1 + δ

2


 3κ

2 +
√

1 + 9
π
κ




+ 1

1 + δ


 3

2 +
√

1 + 9
π
κ


+ δ − 1


 .

(A.9)

There are four limiting cases that can be deduced directly from the above all-case
equation.

When κ → ∞, (A.9) becomes

Ri,m(r0)|κ→∞ = 4π

ν

b1

b2
2

(
1 + δ

2

√
πκ

)
= 1

ν

(
2π

b1

b2

)3/2 √
τ , (A.10)

which is (13a) and (13b) of Kärcher and Lohmann (2002b).
When κ → 0, (A.9) becomes

Ri,m(r0)|κ→0 = 4π

ν

b1

b2
2

(
δ2

1 + δ

)
, (A.11)

which is Eq. (15c) of Kärcher and Lohmann (2002b).
When δ → ∞, (A.9) becomes

Ri,m(r0)|δ→∞ = 4π

ν

b1

b2
2


δ

2


 3κ

2 +
√

1 + 9
π
κ


+ δ


 , (A.12)
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which is superior to Eq. (15b) of Kärcher and Lohmann (2002b) in that it is always
valid, even when κ is big.

When δ → 0, (A.9) becomes

Ri,m(r0)|δ→0 = 4π

ν

b1

b2
2


 3

2κ + 3

2 +
√

1 + 9
π
κ

− 1


 , (A.13)

which is superior to Eq. (15a) of Kärcher and Lohmann (2002b) as it is always valid, no
matter what value κ is.

APPENDIX B

Notation
ak, bk coefficients defined as

a1 = Lsg

cpRvT
2

− g

RdT

a2 = MwRvT

Naes,i

a3 = εMwL2
s

NacppT

b = α

ρi

es,i√
2πRvT

b1 = b(S − 1)

b2 = α

D

√
RvT

2π
C freezing timescale coefficient
D diffusivity of water molecules in air
δ = b2r0, dimensionless aerosol radius
�aw excess of water activity
e water-vapour pressure
es,i saturation water-vapour pressure over ice
J homogeneous-nucleation rate coefficient

κ = 2b1b2τ

(1 + δ)2
dimensionless freezing timescale

Ls latent heat of water sublimation
na (total) number density of aerosol particles
ni (total) number density of ice particles
n′

i number density of additional ice particles generated by secondary
homogeneous nucleation

ṅi nucleation rate
N number density of ice nuclei
NC critical value for the number density of ice nuclei
ν specific volume of a water molecule in ice
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p air pressure
r0 aerosol radius or ice-particle radius at time t0
ri ice-particle radius
ru time-dependent upper limit for ice-particle radius
rs radius of the smallest aerosol particles that freeze
r∞ absolute upper limit for ice-particle radius
Rd gas constant of air
Ri depositing rate of number density of water molecules
Ri,m monodisperse freezing/growth integral
Rv gas constant of water vapour
ρi mass density of ice
S saturation ratio
S0 saturation ratio at which ice nuclei activate
Scr saturation ratio above which significant homogeneous freezing takes place
Smax the highest saturation ratio an ascending air-parcel experiences
Su updraught-only controlled saturation
t time (usually at present tense, at which Ri is calculated)
t0 time (usually at past tense, at which particles freeze)
tmax time when saturation is at peak
tcr time required for an updraught to increase saturation from S0 to Scr
T temperature
τ freezing timescale
τg depositional timescale for saturation change
τu thermodynamical timescale for saturation change
V total volume density of liquid aerosols
w vertical velocity
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