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1.  Executive Summary 

In search of new sources of water supply, saltwater desalination is 

increasingly recognized as a viable option.  Costs of desalination have 

declined substantially throughout recent decades.  In terms of cost 

competitiveness, desalination is catching up fast to alternative options for 

boosting water supply, namely water reclamation and water transport.  This 

review on the state of desalination tries to provide a comprehensive insight 

into the main issues of desalination: differences in the processes, their 

respective costs, energy dependence, and environmental issues. In addition 

this paper compares the two dominant technologies for desalination, 

distillation and membrane processes, and assesses their respective potential.  

Distillation or thermal processes on the one hand desalinate using the 

principle of evaporation.  The membrane processes on the other hand employ 

the concept of filtration.  Of the worldwide more than 15,000 industrial scale 

desalination plants that had been installed or contracted by the year 2002, 

reverse osmosis (RO), the leading membrane process, provides 44 percent of 

total capacity while the leading thermal process, multi stage flash (MSF), 

accounts for 40 percent.  Both approaches still face considerable hurdles, 

such as high energy consumption and needed continuation of research in 

membranes at the molecular level, but the industry has demonstrated a 

strong commitment to addressing these challenges.  The result has been a 

growing acceptance of desalination as a viable option for water supply 

augmentation.  

Despite the many impressive achievements accomplished by the 

desalination industry, disadvantages in cost competitiveness relative to other 

sources of water supply still represent the most widely cited obstacle the 

desalination industry has to overcome.  However, this argument may soon be 

rendered obsolete.  The desalination industry shows an impressive record of 

lowering unit cost, reducing them by an average 44 percent per decade over 

the past fifty years1.  This trend will continue to rapidly enhance the 

                                                 
1 This statistic refers to the most widely used thermal process, multi stage flash, which has been in use the 
longest out of all desalination technologies. 
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industry’s cost competitiveness relative to other prevailing water supply 

sources.  In fact, an increasing number of large-scale plants with unit cost as 

low as $ 0.0017 per gallon begin to be considered legitimate competitors to 

conventional sources of water supply.  This particularly holds true in places 

that are inclined to acknowledge the scarcity value of water due to competing 

demands for limited existing supplies.  Planners and policy makers in 

populous and water scarce states like Texas and California have assigned a 

prime role to desalination in securing water supply for increasingly competing 

needs.  A closer look at recent desalination initiatives in these states can be 

found in Appendix 1 of this paper.  Appendix 2 provides a brief description of 

two very valuable sources of information found during this research.  One 

source, the Desalination Economic Evaluation Program (DEEP) analyzes the 

feasibility of integrating desalination with nuclear power generation while the 

second source comprises the most comprehensive inventory assessment of 

global desalination infrastructure, composed by Wangnick Consulting. 
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2.  Introduction 

With the need to fill present or future gaps between demand and 

supply of water, policymakers have traditionally chosen the approach that 

promises fewer objections: extending the available water supply.  This kind 

of water policy has persisted despite readily attainable water savings on the 

demand side.  From the small pool of options to increase water supply, 

desalination has moved to the forefront as its economic feasibility has 

improved radically in recent decades.  Desalination produces potable water 

from desalinating brackish groundwater or seawater.  Both exist in abundant 

amounts with seawater accounting for 97 percent of the world’s water.  

Worldwide more than 15,000 industrial scale desalination units had 

been installed or contracted by the year 2002.  These plants account for a 

total capacity of 8.5 billion gallons/day.  Total production capacity is split in 

non-seawater desalination and seawater desalination plants with a capacity 

of 3.5 billion gallons/day and 5 billion gallons/day respectively (IDA, 2002).  

Both seawater and brackish groundwater are purified by use of two 

entirely different approaches.  Distillation or thermal processes on the one 

hand desalinate through evaporation while membrane processes on the other 

hand employ the concept of filtration.  In the market place, when judged by 

installed capacity, the membrane desalination process reverse osmosis (RO) 

leads with 44 percent of total capacity, closely followed by a thermal process 

called multi stage flash (MSF) with 40 percent of total capacity.  The 

remaining 12 percent are divided between other thermal processes, such as 

electro dialysis (ED, 5%)and vapor compression (VC, 3%), a membrane 

process called multiple effect evaporation (MEE, 2%), and other partially new 

concepts.  Figure 1 provides a graphical illustration of the process 

distribution.  
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Figure 1. Installed Desalting Capacity by Process. 

 
Source: IDA, 2002. 

 

The main sources of feed water for desalination are seawater at 58 

percent and brackish groundwater, which accounts for 23 percent. Figure 2 

illustrates the distribution of feed water sources. 

 

Figure 2. Installed Capacity by Raw Water Quality. 

 
 Source: IDA, 2002. 

 

MSF 
40% 

RO 
44% 

OTHER
2%

MEE
2%

VC
3%ED 

5% 

RIVER 
7% 

WATER 
5% 

SEA
58%

PURE
5%

BRACKISH 
23% 

OTHER
1%



 - 5 -

 

The cost of obtaining potable water by using desalination processes 

has decreased substantially and at a consistently fast annual rate throughout 

recent decades. Over the past 50 years, per unit cost of MSF, a distillation 

desalination technology that has used for centuries in one way or another, 

have decreased by an average of 44 percent per decade as shown in Figure 3 

below. 

 

Figure 3. MSF Product Unit Cost Over Time 
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In addition to lower unit cost of desalination, increasing cost of 

conventional water supplies due to overexploitation and scarcity have aided 

desalination in becoming one of the top options for boosting potable water 

supply. 

The following discussion provides insights into the various aspects of 

desalination.  A brief outline of the main desalination processes’ technical 

side is followed by an assessment of their respective advantages and 

disadvantages.  The text then delineates a general economic assessment of 

desalination which includes a range of cost estimates of competing processes 

as stated in the literature and how they compare to alternative sources of 

water supply.  In addition, this text attempts to give an idea of the broad 

scientific opinion regarding the potential of desalination in general and versus 
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other sources of water supply.  It also includes a brief synopsis of potential 

environmental issues, for which only limited research is available due to the 

industry’s infant stage.  Furthermore, this discussion entails a brief 

description of actual experiences made with the largest ever US desalination 

project, the Tampa Bay seawater reverse osmosis plant.  
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3.  Discussion 

3.1 Operational Concept and Technology of Main Desalination 

Processes 

3.1.1 Terse Technical Description: Membrane Desalination 

The fastest growing desalination process is a membrane process called 

reverse osmosis (RO). Apart from RO, there is no other membrane based 

process installed at a large enough capacity to be relevant for this discussion. 

RO employs dynamic pressure to overcome the osmotic pressure of the salt 

solution, hence causing water-selective permeation from the saline side of a 

membrane to the freshwater side (Faller, 1999). Salts are rejected by the 

membrane, which is how the separation of saltwater and fresh water is 

accomplished.  The RO membranes used are semi-permeable polymeric thin 

layers, which hold on to a thick support layer.  Membranes are usually made 

of cellulose acetates, polyamides, polyamides, and polysulfones.  They differ 

between symmetric, asymmetric, and thin film composite membranes (Zhou, 

2004).  

 

3.1.2 Terse Technical Description: Thermal Desalination 

In MSF, MEE, and MVC there are three advanced thermal processes. In 

MSF and MEE, steam extracted from low- and medium-pressure turbine lines 

provides the heat necessary for flashing or evaporation.  In MSF, pressurized 

seawater flows through closed pipes in which it exchanges heat, with vapor 

condensing in the upper sections of the flash chambers.  Water is then 

heated to a high temperature level, using burnt fuel or external steam, which 

allows flashing along the lower part of the chambers, from chamber to 

chamber under reduced pressure conditions.  The vapor that is generated 

flows through a mist eliminator to meet the condensing tubes, where heat is 

transferred to the heating feed seawater.  The condensate drips into 

collectors and is pumped out as the plant product. Exhausted brine, 

concentrated in salt, is pumped out and rejected to the sea (Semiat, 2002).  

In MEE, the heating steam is routed to the first evaporating effect. The 

MSF process operates with a top brine temperature in the range of 90–110°C 
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while the MEE and MVC processes are operated with lower top brine 

temperatures in the range of 64–70°C. MVC is distinguished from the other 

processes by the presence of a mechanical vapor compressor, which 

compresses the vapor formed within the evaporator to the desired pressure 

and temperature.  The system also includes plate heat exchangers for 

preheating the feed water using heat recovered from the brine lowdown 

stream and the distillate product.  

  

3.2 Feasibility Match Up of Main Desalination Processes   

 This section discusses the main aspects and issues involved with 

various desalination processes, but remains mostly limited to the two 

dominant desalination concepts membrane and thermal desalination. 

Analogous to comparisons of most other commercially employed competing 

processes or concepts, much of this discussion pertains to differences in cost 

of production.  It will nevertheless cover other critical issues, such as product 

quality or environmental issues to the appropriate extent. A general 

economic assessment of desalination follows in section 3.2. 

 

3.2.1 Energy 

Comprising the main cost driver for both processes, energy 

consumption is probably the most crucial criterion on which membrane and 

thermal desalination processes are compared.  Due to the nature of its 

membrane filtration concept, RO uses considerably less energy than thermal 

processes.  In turn, energy accounts for a much higher percentage of total 

operating cost for thermal desalination plants than for plants using 

membrane technology.  Comparing the cost composition of two seawater 

desalination plants of almost equal capacity of roughly 10 million gpd, a MSF 

plant called Tripoli West II in Libya and a RO plant called Sabha A in Israel, 

shows energy’s share of total operating cost at 41 percent for the former and 

only 26 percent for the latter facility.  Related figures for these statistics can 

be found in section 3.2.  The main reason for this discrepancy is due to the 

fact that thermal processes require a much higher operating temperature. 
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Based on the specific thermal process employed temperatures ranging from 

40 ° to 120 °  Celsius are required for distillation desalination while 

temperatures necessary for membrane desalination processes range between 

0 ° and 40 ° Celsius.  Hence, steam production represents the main energy 

consuming factor in thermal processes.  Many MSF desalination plants are 

therefore located near power plants supplying waste heat to enhance energy 

efficiency.  The large consumption of energy makes the economic feasibility 

of thermal processes extremely contingent upon energy prices or the 

availability of waste heat from thermal power plants (Lahmeyer, 2004). 

Membrane desalination plants on the other hand do not need to be linked to 

power plants for energy efficiency reasons for they have no use for purged 

steam.  Most of their energy consumption is attributable to the high pressure 

pump required to generate saltwater permeation through the membrane 

elements.  

 

3.2.2 Maintenance and Operation 

Maintenance and feed water treatment constitute another important 

cost driver for all desalination approaches.  Membranes’ pronounced 

sensitivity to their environment, such as changes in pH level, small 

concentrations of oxidized substances like chlorine and chlorine oxides, a 

wide range of organic materials, and the presence of algae and bacteria 

require careful feed water pretreatment in order to prevent membrane 

contamination and fouling (Zhou, 2004).  The extensive pre treatment 

required to make membranes compatible with the site and situation specific 

feed water conditions translates into significantly higher cost of chemicals, 

(membrane) maintenance, cleaning, and ultimately replacement as is 

incurred with thermal processes.  There are, however, ways to curb the 

extent of pretreatment efforts and associated expenses for seawater 

desalination plants.  Collocation with power plants using seawater for cooling 

purposes constitutes one such solution.  Since power plants have to treat the 

water they use for cooling to avoid pipe congestion, feed water cleaning 

expenditures can be shared by the two facilities.  The Big Bend Power Station 
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adjacent to one of the potential locations of the Tampa Bay RO plant was a 

major determinant in the final decision making on where to construct the 

facility.  Now, the feed water taken into the desalination plant has already 

gone through a cleaning process conducted by the power plant.  This 

convenient efficiency-enhancing arrangement could not, however, prevent 

the occurrence of a number of significant deficiencies that still exist in dealing 

with membrane sensitivity.  A more detailed discussion of the Tampa Bay 

experience is provided in subsequent section 3.3. Higher complexity of 

maintenance tasks requires membrane desalination plants to shut down 

more frequently than their thermal counterparts further adding to the cost of 

maintenance.  Thermal processes on the other hand have to apply 

significantly less treatment to the feed water intake due to the nature of the 

distillation concept.  Also, lack of replaceable material keeps maintenance 

cost at comparatively lower levels.  

Start and stop operation of membrane desalination processes is less 

costly and more immediate than for thermal processes.  This explains the 

frequent use of RO on stand by mode to enhance water supply during periods 

of drought.  An example of such a plant is the Key West, FL, plant with a 

capacity of 3 million gpd, which is turned on and off frequently throughout 

the year depending on the magnitude of demand.  Membrane technology has 

also accomplished tremendous success in improving membrane material. 

Productivity has increased by 94 percent between 1990 and 2000 while costs 

have declined by 86 percent over the same period (Chaudhry, 2004). 

 

3.2.3 Output Quality 

Thermal processes perform better than membrane processes when it 

comes to the product’s purity.  While RO’s output can be considered fair at 

values between 100-600 ppm of total dissolved solids (TDS), thermal 

processes are capable of producing much purer water at values between 5 

and 50 ppm of TDS.  A great deal of purity variation in RO’s output is highly 

correlated to feed water quality.  A costly, hence infrequently implemented 

option for improving output quality of RO consists of using a secondary stage 
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at considerable additional cost.  However, it is important to note that in 

contrast to its comparatively meager performance in salt removal, the 

membrane process allows for removal of unwanted contaminants, such as 

pesticides and certain bacteria.  

 

3.2.4 Environmental Impacts 

Absolute environmental impacts of desalination plants and the 

respective processes are largely unknown due to still sporadic application and 

limited public attention.  Since this lack of public exposure is in the process 

of changing considerably, more information will be available soon with regard 

to environmental impacts.  Most environmental concerns that are raised 

relate to both air and saltwater emissions.  Air emissions are due to the 

desalination industry’s heavy energy consumption and involve the commonly 

named pollutants carbon dioxide and sulfur dioxide.  In light of their 

substantially higher energy consumption, thermal processes are inferior to 

membrane processes when it comes to air pollution. 

The other form of emission from desalination raising environmental 

concerns comprises the discharge of concentrated saltwater after the 

desalination process is completed.  The effluent is approximately twice as 

concentrated as the original sea water solution.  Additionally, it contains 

chemicals used in the pretreatment of feed water, such as anti-scalants, 

surfactants, and acid.  Speed of dilution, once brine is released into the 

ocean, depends largely on depth and flow rates at the release location.  To 

our knowledge, no empirical results from comprehensive studies 

investigating the impact on sea life around the brine outlet have been 

published.  Many experts argue that the amount of brine release is too 

insignificant to pose a burden on ocean ecology against prevailing opinion 

among environmental activists.  

The left-over concentrate from desalinating brackish groundwater 

appears to pose greater disposal problems.  Without access to the sea the 

brine may significantly augment groundwater salinity once released into the 

ground.  Storage of the concentrate on the other hand requires large 
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amounts of space and measures to prevent saltwater penetrating the earth. 

Compliance with environmental standards for inland disposal of brine may 

entail substantial expenses for the desalination industry.  A similar outcome 

in terms of extra cost could arise for seawater desalination if results of 

pending scientific studies find detrimental effects on ocean ecology from 

brine release. 

The third critical environmental concern pertaining to desalination 

besides air emissions and brine discharge consists of the use of valuable 

coastal lands (These areas are extremely valuable from both an economic 

and environmental perspective).  Membrane processes take up less surface 

area than distillation plants.   

 

3.3 General Economic Assessment of Desalination 

 The economies of desalination and the decision as to which approach 

to select are contingent on situation-specific parameters.  Since energy is the 

main cost driver in the cost of operation, economic feasibility of either 

approach to desalination is highly correlated to the location specific-cost and 

availability of energy.  Figures 4 and 5 provide a comparative illustration of 

energy’s share of total operational cost for two desalination plants of 

comparable capacity.  Figure 4 illustrates the cost composition of an average 

sized 10 mgpd seawater RO plant.  Cost of energy make up 26 percent of 

total operating cost, which is second to fixed charges that are mainly 

composed of the cost of capital.  Figure 5 illustrates the cost composition of a 

seawater MSF plant producing approximately 10 mgpd shows energy’s share 

of total operating cost at 41 percent, roughly equal to the main cost driver 

capital cost.  
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Figure 4. Cost Composition for a Typical Seawater RO Plant1 
 

 
   
 

Figure 5. Cost Composition for a Representative Seawater MSF Plant2 
 

 
  Based on a seawater MSF plant located in Libya. 

 

 In the representative example given above, cost of capital is 

considerably higher for the thermal than for the membrane process.  This 

reflects the prevailing situation in the desalination industry in which 

                                                 
1 SWRO plant Sabha A, Israel. 
2 SWMSF plant Tripoli West II, Libya. 
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construction cost of thermal desalination plants exceed those of membrane 

plants.  All other main cost related to operating a desalination plant are 

usually higher for membrane processes due to the greater complexity of 

maintenance tasks and operation.  Accordingly, cost of chemicals are 7 

versus 2 percent, maintenance and parts are 14 versus 7 percent, and labor 

cost are 9 versus 7 percent of total operating cost for the representative RO 

and MSF plants respectively.  Membrane replacement, which is listed 

separately in Figure 4, adds further to maintenance cost for RO while this 

cost is obviously absent for thermal processes.  

Strong inter-firm competition and advances in technology have 

resulted in average annual unit cost reductions of close to 6 percent for MSF 

processes since 1970.  In addition, many MSF desalination plants, which are 

mostly located in the Middle East, have increasingly taken advantage of 

economies of scale.  RO, which has been used commercially only since 1982, 

has seen even steeper cost declines since its beginning. Membrane costs 

have fallen by 86 percent between 1990 and 2002 (Chaudhry, 2004).  

Steeply declining maintenance cost in combination with relatively low capital 

cost have contributed much to the rapidly growing success of membrane 

technology.  In fact, as Figure 6 shows for select plants, 2005 unit cost of 

SWRO are only about a third of 1995 unit cost.  
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Figure 6. Cost Evolution of the SWRO Process  
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Source: Estimates prepared from various sources by CRWPPC 

* Projected estimate 

  

Of course, the decrease in unit cost shown in Figure 5 is not only due 

to the rapid advancement in membrane technology.  Economies of scale also 

contribute considerably to cutting unit cost.  The magnitude of the respective 

effects of improved membranes and economies of scale are difficult to 

measure as they take place concurrently.  With respect to Figure 5, as unit 

cost drop to one third between 1995 to 2005, plant capacity of the particular 

plants shown increases by a factor of 10. 

While in Figure 6 the effect of economies of scale on cost is rather 

implicit and largely dominated by the effect of improved membrane 

technology over time, it can be clearly identified in Table 1 below.  It displays 

unit cost of desalination for various processes when conducted at different 

plant capacities.  All data shown pertain to plants operating in the year 2001, 

which reduces the diminishing effect on unit cost exerted by rapid 

improvements in membrane technology.  Again, plants for which numbers 

are shown are not representative for all plants using their desalination 

approach or operating at their capacity and their unit cost are highly 
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contingent upon location-specific factors, such as cost of energy or capital. 

Nonetheless, the inverse relationship between capacity and unit cost can 

easily be identified, particularly for processes, such as RO for which a wide 

range of data is available.  While unit cost for a plant with a capacity of 1 

mgpd are 0.75 US cents/gallons, they fall to about a third of that cost for a 

12 mgpd plant and by another 20 percent for a 30 mgpd plant.  The reader 

should also note the efficiencies attained from integrating power production 

by some desalination facilities.  These plants, called dual purpose plants, 

manage to cut unit cost by about 50 percent as can be seen for three types 

of distillation processes. 
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Table 1. Unit Product Costs for Conventional and Novel Desalination  

Processes by Capacity, Plants Operating in 2001. 

Type of System: Capacity, in millions of 

gallons per day 

Unit Product Cost,  

$ Cent/gallon 
Novel Processes 

MEE-VS, 30eftects,Aluminum alloy, Fluted tubes: 90.53  0.182 
MEE-ABS, Absorption heat pump and gas turbine: 2.5  0.133 

Mechanical Vapor Compression (MVC) 
0.03 1.894 
0.13 1.220 
1.06 0.939 
1.20 0.920 
5.28 0.174 

Reverse Osmosis 
5.28 (single stage) 0.242 
5.28 (two stage) 0.288 

0.03 0.898 
1.06 0.750 
1.20 0.489 
9.99 0.413 
10.56 0.314 
12.00 0.258 
30.00 0.208 

Multistage Flash Desalination (MSF) 
7.13 (Dual-purpose)1 0.292 
7.13 (Single-purpose) 0.621 

8.45 (Gas turbine, waste-heat boiler) 0.545 
7.13 0.595 
9.99 0.473 

Multiple-Effect Evaporation (MEE) 
6 (Dual-purpose) 0.330 

6 (Single-purpose) 0.739 
6 0.529 
6 0.470 

9.99 0.409 
9.99 (Gas turbine, waste-heat boiler) 0.496 

MEE-TVC 
5.85 (Single-purpose) 0.886 
5.85 (Dual-purpose) 0.496 

5.85 0.587 

Source: Ettouney, 2002. 

 

Product unit prices shown generally take into account all relevant cost 

originating from direct capital, indirect capital, and annual operating cost. 

                                                 
1 A dual-purpose plant provides both water desalination and electric power generation, whereas a single-

purpose plant produces only desalinated water (its boiler is used to generate only heating steam). 
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Table 2 breaks down cost figures for various plant sizes by major cost 

components capital, energy, and chemical cost.  While estimates within each 

category vary significantly with plant capacity and characteristics, the 

processes’ respective overall cost advantages and disadvantages become 

clear upon closer examination.  Of the two main processes employed 

worldwide, RO and MSF, the former is more competitive in both capital and 

energy cost while the latter involves lower chemical and maintenance cost. 

 

Table 2. Capital, Energy and Chemical Costs for Various Desalination 

Processes. 

Capacity 

Total 
Capital 

Cost 
Unit Cost of

Capital 

Annual 
Energy 

Cost 
Unit Cost of

Energy 
Unit Cost of
Chemicals 

Total Unit 
Cost 

Process 
  million gpd  $/yr cent/g/day Cost, $/yr cent/g/day cent/g/day

 
cent/g/day 

RO 0.3 924,000 0.048 1,710,000 0.018 0.042 0.107 

RO 8.4 53,300,000 0.086 6,261,000 0.002 0.125 0.213 

RO 10.0 49,700,000 0.068 4,300,000 0.001 0.027 0.096 

RO 25.0 98,000,000 0.054 5475000 0.001 0.020 0.074 

MVC 0.3 894,000 0.046 152,000 0.002 0.008 0.056 

MVC 0.3 1,586,000 0.069 140,000 0.001 0.008 0.078 

MVC 5.3 56,000,000 0.145 2,690,000 0.001 0.019 0.166 

MSF 8.4 72,600,000 0.118 11,539,000 0.004 0.078 0.200 

MSF 10.0 60,500,000 0.083 4,300,000 0.001 0.009 0.093 

MSF 12.0 76,817,000 0.088 12,453,000 0.003 0.022 0.112 

MEE 6.0 35,050,000 0.080 3,719,000 0.002 0.023 0.105 

MEE 8.4 67,200,000 0.109 12,059,000 0.004 0.078 0.191 

MEE 10.0 70,400,000 0.097 1,000,000 0.000 0.009 0.106 

MEE- TVC 
6.0 34,650,000 0.079 5,658,000 0.003 0.022 0.104 

MEE-VS 90.0 187,100,000 0.028 13,650,000 0.000 0.015 0.044 

 

Source: Ettouney, 2002. 
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3.4 Experiences with the Tampa Bay Desalination Project 

 With a planned initial output of approximately 25 million gpd, the 

Tampa Bay desalination project, a seawater reverse osmosis plant, is the 

largest desalination project of its kind in the United States.  Construction of 

the project, which was started in 1997, was taken up in August 2001 and 

water was first produced in March 2003.  Unit cost were projected to be the 

world’s least expensive for desalinated water at $ 0.0025/gallon, dropping 

even lower to $0.0017/gallon once initial problems were eliminated. 

Desalination cost projections of ultimately roughly $ 0.0019/gallon compare 

to Tampa Bay Water’s groundwater costs of about $ 0.001/gallon.  

The various contractors ran into a number of difficulties both during 

the construction period and the project’s initial operating phase.  These 

issues were of technical as well as financial nature.  In fact, three firms were 

forced to declare bankruptcy and cease involvement in the project.  In May 

2003, two months after production had started, a performance test 

uncovered 31 deficiencies in the plant allowing the plant to run only 

“intermittently” (Tampa Bay Water, 2004) since then.  Publicized major 

problems involve the cartridge filters used to catch large particles before the 

water permeates the delicate reverse-osmosis membranes.  These were 

clogged after just a week - instead of the expected 90 days.  Also, the 

10,000 reverse-osmosis membranes, used in the final steps of water 

treatment to filter out the finest of salts and minerals, had to be cleaned of 

algae and bacteria every two weeks compared to an anticipated cleaning 

interval of two to six times a year (St. Petersburg Times, 2004).  The current 

time table projects the plant to be fixed and taken off its current stand-by 

mode by spring 2006, roughly three years after the plant’s first run. 

 

3.5 How Desalination Compares to Alternative Sources of Water 

Supply 

 Continued demographic and economic growth result in increasingly 

strong competition for the available water supply.  Making matters worse, 

water supply is shrinking for reasons like surface water pollution, 
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groundwater depletion, or saltwater intrusion.  Out of the two options to deal 

with the problem, increasing supply or curtailing demand, the former is 

pursued with much greater intensity.  But, the array of means to enlarge the 

amount of drinking water for public use is fairly limited in scope and in some 

cases not practicable; for instance, it is not feasible to deplete ground or 

surface water reservoirs above the rate of natural replenishment for years 

and decades to come without a readily available alternative at hand that 

could reliably sustain entire region’s demographic and economic needs.  Thus 

enhanced depletion of existing reservoirs does not represent a prudent 

option to increase water supply.  

 This leaves two alternatives against which desalination can be 

compared.  Practiced since thousands of years, predominantly in arid 

regions, water transport from places with excess supply to places in need 

represents the first alternative.  Relatively little empirical work has been 

published on this subject although water transport is undertaken in many 

locations all over the world (Zhou, 2004).  Cost vary enormously and are 

highly dependent on case specific conditions.  

It is critical to keep in mind when comparing water transport and 

seawater desalination that the latter actually augments total available supply 

of freshwater whereas the former only shifts water from a location with 

excess supply to a location in need of water.  Thus in the long run only 

desalination can be considered a viable source of additional fresh water in 

contrast to the intermediate solution water transport. 

The other more promising option to augment the available water 

supply consists of wastewater reclamation.  As with water transportation, 

published empirical data is limited.  A current high-profile case of wastewater 

reclamation is the Orange County, California, Regional Water Reclamation 

Project.  The project’s unit cost of water supply is estimated to be slightly 

lower at $ 0.0015/gallon than those of large scale desalination projects.  The 

majority of studies on wastewater reclamation pertain to reclamation of 

water withdrawn by the largest water user, agriculture.  Haruvy et. al. 

(2001) estimate the direct cost of agricultural effluent reuse at $ 
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0.001/gallon.  Interestingly, there are substantial synergies between 

wastewater reclamation and the RO desalination process because both use 

membrane technology.  Both approaches also increase total available water 

supply. 

 

3.6 Outlook  

Rising water scarcity in many parts of the United States have begun to 

expose the potential of desalination to a larger audience.  The 2004 

Desalination Energy Assistance Act proposal entails incentive payments for 

qualifying desalination facilities to partially offset the cost of electricity. 

Despite its considerable energy dependence, desalination, particularly of 

seawater, is backed by a number of strong arguments.  Seawater is available 

in sheer limitless supply, which is in stark contrast to ground and surface 

water supplies in many regions.  Supported by the evidence of declining 

criticism regarding the industry’s cost competitiveness in producing additional 

water supplies, the desalination industry is capable of producing water on a 

commercial basis even at the industry’s still early development stage.  

Finally, planners and policy makers are in the process of acknowledging that 

existing water supplies in most places do not suffice to sustain robust 

population and economic growth in the long run, particularly in light of 

numerous scientific studies stating that not even current withdrawal rates are 

long-term sustainable.  

On the other hand, the case of the Tampa Bay plant shows that at the 

cutting edge of implementing new technologies many deficiencies still remain 

to be overcome.  For instance, the mechanism of water transfer and salt 

rejection in RO membranes is not clearly understood. Better understanding 

at the molecular level, however, will lead to new membranes that may show 

higher fluxes and better salt rejection for it is critical to improve both water 

recovery and quality.  

For both membrane and particularly for thermal processes, it is crucial 

to enhance energy efficiency and create partnerships with power plants.  By 

using heat recovery from a nearby power plant, energy consumption of 



 - 22 -

thermal desalination processes is reduced by a factor of eight compared to a 

single stage process without heat recovery.  

However, the feasibility of partnerships between power plants and 

desalination plants presently faces major obstacles.  First, presently in the 

US, facilities are typically owned and operated by separate entities contrary 

to Saudi Arabia, the country with the world’s largest desalination capacity. 

Second, power plants typically purge waste heat at temperatures of 30 

degree Celsius, well below the temperatures required for thermal processes. 

However, Semiat (2000) has called for an entirely different approach.  He 

suggests the construction of desalination dedicated power plants as energy 

sources.  The heat produced would be used by thermal processes while 

electricity would be employed by membrane processes.  This hybrid approach 

is very similar to hybrid processes already employed in the chemical 

industry.  While this solution would clearly enhance efficiency, it would not 

solve the problem that volatile energy prices pose for long term desalination 

planning.  
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4. Conclusion 

The desalination industry has aggressively sought to implement more 

efficient technologies with the result that the cost of desalination is declining 

rapidly while the value of water is slowly but steadily increasing.  In addition, 

the industry can claim the unmatched benefit of a seemingly limitless and 

cost free input: seawater.  These two arguments make for a strong case to 

declare desalination the main option for boosting water supply in the future. 

This holds true despite the strong dependence on energy.  In fact, some Arab 

countries already supply 90 percent of their water needs through desalination 

(Lahmeyer, 2004).  Although it currently appears to be thermal processes 

that have the upper hand in seawater desalination, RO is progressing fast.  It 

has the advantage of consuming substantially less energy.  Hence, after 

reducing energy dependence, the second highest priority for the desalination 

industry is the advancement of membrane technology to make it more 

compatible with seawater desalination.  Generally speaking, all desalination 

approaches need to become more independent of situation-specific 

characteristics, which will ultimately have the beneficial effect of fueling 

competition between the membrane and thermal approaches and stimulating 

innovation.  

States like Florida, Texas, and California facing rapid population 

growth with ready access to seawater have clearly committed to the pursuit 

of desalination options to augment water supplies.  From the industry side 

there is also a substantial commitment to aggressive research and 

development.  This has produced rapidly declining prices despite rising 

energy costs.  

Georgia shares with Florida, Texas, and California the need to supply a 

rapidly growing population.  Between 1980 and 2000 the state grew by 50 

percent from 5.5 to 8.2 million people.  Over the same time period 

population in Coastal Georgia grew by 40 percent1.  Counties in neighboring 

                                                 
1 By our definition Coastal Georgia comprises nine counties: Bryan, Bulloch, Camden Chatham, 
Effingham, Glynn, Liberty, Long, McIntosh. 
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states South Carolina and Florida exhibited substantial growth as well with 

three neighboring South Carolina counties growing 66 percent1 between 1980 

and 2000.  Population in Florida Counties Nassau and Duval in the South has 

increased by a combined 38 percent.  Projections for Coastal Georgia predict 

its population to reach 664,000 by 2020 and 732,000 by 2030, increases of 

22 and 34 percent over the baseline year 2000. Population forecasts for 

bordering counties in South Carolina are 237,500 by 2020 and 279,000 by 

2030, projected increases of 45 and 70 percent on the year 2000. Florida’s 

Duval and Nassau Counties are forecast to grow from 780,000 and 58,000 

respectively in 2000 to 1.1 million and 101,000 in 2030, reflecting increases 

of 42 and 76 percent.  The combined increase in population is projected at 29 

percent for the twenty year period between 2020 and 20302 and 44 percent 

by 2030.   

Coastal Georgia is facing a near term need to decide how to meet the 

growing demand for water in the region.  It is expected that the Sound 

Science study, due out in 2005, will recommend decreased dependence on 

groundwater, particularly in the Savannah and Brunswick areas.  While it 

would seem that the region’s rivers would make surface water an easily 

accessible option, the coastal geography actually makes surface water a 

relatively complicated option.  For example, salinity levels in the Savannah 

River only drop to approximately 0.5 ppt at a distance of roughly 20 river 

miles upstream3.  Therefore, surface water intake for treatment and release 

into public drinking water supply occurs roughly 25 miles upstream or 

approximately 20 miles away from the center of population.  In the 

Brunswick area the Satilla River is subject to a great deal of variability of 

saltwater propogation due to the river’s specific flow characteristics.  Lower 

flow coastal plain rivers are generally more susceptible to large upstream 

migration of salt, which can, for instance, vary significantly between dry and 

wet periods.  Saltwater penetration for the coastal rivers Ogeechee and 

Altamaha under normal conditions is estimated at 22 and 7 miles 

                                                 
1 These counties are Beaufort, Hampton, and Jasper. 
2 Projections are based on Woods and Poole economic and demographic forecasting. 
3 Information provided by John Sawyer with the City of Savannah’s Water and Sewer Bureau 
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respectively.  In any case, surface water sources for water supply in Coastal 

Georgia entail substantial transportation cost to deliver the water to the 

population centers as intakes have to be located sufficiently far upstream to 

evade salty surface water.  

This begs the question, with declining costs from the increasing 

economies of scale and rapidly falling prices for desalination of saltwater, 

might desalination be a competitive water supply augmentation.   
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Appendix 1 

 
A Look at Developments in States Leading the Way in Seawater 

Desalination 

Even with the challenges faced by those implementing desalination, 

new large scale projects are in the process of being launched in Florida, 

Texas, and California1.  

 
California 

Agencies throughout California are planning to make seawater 

desalination part of a diversified water supply portfolio.  As of March 2004, 

the Seawater Desalination and California Coastal Act lists 11 seawater 

desalination plants in operation producing a combined 3 mgpd.  Meanwhile, 

21 seawater desalination facilities are proposed and expected to generate a 

combined production of 240 mgpd upon completion.  The San Diego County 

Water Authority, which sells about 600,000 acre-feet of water each year, has 

been working on a 2030 Regional Water Facilities Master Plan that has 

seawater desalination as its preferred supply alternative.  The Authority plans 

to obtain from 50,000 acre-feet per year to as much as 140,000 acre-feet 

per year from desalinated seawater by 2020.  This range would provide 

between 6 and 15 percent of the region’s water supply in 2020.  The entire 

Coastal Southern California region is expected to serve 3-4% of total water 

supply from desalinated seawater by 2020.  

 

 Texas 

Texas currently has 80 brackish water desalination plants while it does 

not have any seawater desalination operations.  It is, however, aggressively 

pursuing this additional source of water supply as a viable option to 

counteract shrinking ground and surface water supplies.  In 2003, the state 

legislature directed the Texas Water Development Board (TWDB) to allocate 

$ 1.5 million for feasibility studies to determine the technical and economic 
                                                 
1It is estimated that 50 percent of the future population growth will occur in the coastal states of California, 
Texas, and Florida. These three states are leading the nation in pursuing seawater desalination. 
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viability of three proposed desalination projects.  In 2004, the TWDB issued a 

two volume report “The Future of Desalination in Texas.”  The report outlines 

comprehensive policies and strategies to further the development of 

desalination in Texas.  Among the key findings and recommendations are: 

• desalination is technically viable but projects will require 

considerable financial assistance; 

• that $ 2.4 million be provided for advancing proposed large-

scale seawater desalination pilot plant studies; 

• that research will continue to play a vital role in developing 

efficient, cost-competitive, and environmentally sound seawater 

desalination projects in Texas; 

• that $ 900,000 be provided for technical assistance and 

outreach for developing demonstration brackish desalination 

projects for small to medium size communities; and  

• that the legislature considers the benefits to the state of 

demonstrating the feasibility of a new, substantial, sustainable, 

and  drought-proof water supply.  

 

Currently, there are two seawater desalination projects that have 

already gotten far into the planning process.  On the Texas Gulf Coast near 

Freeport, two private companies collaborate on a 25 mgpd seawater 

desalination plant, which is planned to be upgradeable to 100 mgpd.  

Another plant presently in the planning process near Brownsville, TX, is 

designed to produce 25 mgpd from seawater desalination. 

 

Florida 

 Of the three states discussed here Florida appears to have the most 

extensive experience with desalination.  According to the last comprehensive 

publicly accessible survey on desalination plants in the United States, 

conducted by the Bureau of Reclamation in 1997, Floridian desalination 

plants accounted for about half of the total number of plants surveyed and 

more than two thirds of total capacity. Presently, the Tampa Bay desalination 
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plant represents the largest US saltwater desalination facility in operation by 

a wide margin. 
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Appendix 2 

 
Valuable Informational Resources on Desalination 

Desalination Economic Evaluation Program (DEEP)  

SINCE 1989, the International Atomic Energy Agency (IAEA) has been 

exploring the possibilities of large and small seawater-desalination plants 

powered by nuclear reactors.  One of the most important issues for large-

scale implementation of nuclear desalination is the need to demonstrate its 

economic competitiveness with alternative energy supply options.  To this 

end, the IAEA has developed the Desalination Economic Evaluation Program 

(DEEP).  DEEP is based on a hybrid Microsoft Excel spreadsheet and Visual 

Basic methodology, and is suitable for economic evaluations and screening 

analyses of various desalination and energy source options.  It comprises 

simplified models of several types of nuclear and fossil-fuel power plants, 

nuclear and fossil-fuel heat sources, and both thermal and membrane 

desalination plants. Current cost and performance data are incorporated.  

The output of DEEP includes per unit cost of water and power, breakdowns of 

cost components, energy consumption and net saleable power for each 

selected option. Specific power plants can be modeled by adjusting input 

data such as design power, power cycle parameters and costs.  Version 2.0 

of the DEEP software (issued in 2000) is available from the IAEA on CD-ROM, 

with an upgrade to Version 2.1 (issued in 2002) on a floppy disk.  The 

software is free, but each institutional or individual user needs to establish a 

license agreement. (IAE, 2004) 

 

Wangnick Global Assessment 

Wangnick Consulting GMBH is a private consulting firm providing 

consulting services for seawater and brackish water desalination.  It compiles 

on regular basis the most comprehensive inventory assessment of global 

desalination infrastructure.  The database is called PAM.  It supplies 

information on more than 16,000 land-based desalting units rated at more 

than 26,400 gpd per unit and contracted, delivered or under construction, 
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with a total capacity of more than 9,250 million gpd. The data is as recent as 

December 2003.  
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