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Coloring Geographical Threshold Graphs 

Milan Bradonjic ': Tobias Mullert Allon G. Percus+ 

Abstract 

We propose a coloring algorithm for sparse random graphs generated by the geographical 
threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, 
nodes are distributed in a Euclidean space, and edges are assigned according to a threshold 
function involving the distance between nodes as well as randomly chosen node weights. The 
motivation for analyzing this model is that many real networks wireless networks, the 
Internet, etc.) need to be studied by using a "richer" stochastic model (which in this case 
includes both a distance between nodes and weights on the nodes). Here, we analyze the 
GTG coloring algorithm together with the graph's clique number, showing formally that in 
spite of the differences in structure between GTG and RGG, the asymptotic behavior of the 
chromatic number is identical: X = l~~:n (1 +o(1) ). Finally, we consider the leading corrections 
to this expression, again using the coloring algorithm and clique number to provide bounds on 
the chromatic number. We show that the gap between the lower and upper bound is within 
Clnn/(lnlnn)2, and specify the constant C. 

Introduction 

Numerous approaches have been proposed in recent years to study the structure of large real-world 
technological and social networks, and to optimize processes on these networks. A particularly 
fertile approach has been to consider the network as an instance of an ensemble, arising from a 
suitable random generative model. One straightforward example is the random geometric graphs 
(RGG) model, where nodes are placed uniformly at random in a Euclidean space and edges are 
placed between any two nodes within a threshold distance. This has the advantage of describing 
many aspects of systems such as sensor networks, while avoiding unnecessary detail. Even though 
geometric correlations in RGGs complicate the probabilistic analysis of the model, recent work has 
clarified many of its structural properties including threshold behavior [Pen03, GK98, GRK04], 
random walk behavior [AE07] and chromatic number [MM, Mtil, Pen03]. 

RGGs fail, however, to capture heterogeneity in the network. Geographical threshold graphs 
(GTG) aim at generalizing RGGs, providing this heterogeneity via a richer stochastic model that 
nevertheless preserves much of the simplicity of the RGG model. GTGs assign to nodes both a 
location and a weight, which may represent a quantity such as transmission power in a wireless 
network or influence in a social network. Edges are placed between two nodes if a symmetric 
function of their weights and the distance between them exceeds a certain threshold [BK07j. 
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Recent work has analyzed structural properties of GTGs, such as connectivity, clustering coeffi­
cient, degree distribution, diameter, existence and absence of the giant component [BHP08, BHP07]. 
These properties are not merely of theoretical importance, but also play an important role in ap­
plications. In communication networks, connectivity implies the ability to reach all parts of the 
network. In packet routing, diameter gives the minimal number of hops needed for transmission 
between two arbitrary nodes. And in the case of epidemics, the existence or absence of the giant 
component controls whether the epidemic spreads or is contained. 

When considering wireless networks, a natural quantity to study is the chromatic number. This 
is the minimum number of colors needed to color vertices, such that no two adjacent vertices in the 
graph receive the same color. Treating the colors as the different radio channels or frequencies, the 
chromatic number gives the minimal number of channels needed so that neighboring radios do not 
interfere with each other. In this paper we study the asymptotic behavior of the chromatic number 
for GTGs with constant mean degree. We propose a greedy coloring algorithm, and analyze the 
behavior of this algorithm along with the graph's clique number. This leads to lower and upper 
bounds on the chromatic number. 

The paper is organized as follows. Section 2 defines the GTG model. Section 3 presents our 
main asymptotic result, based on our analysis of the coloring algorithm. We show that for graphs 
G of constant mean degree, both the clique number w(G) and chromatic number X(G) are with 
high probability given by l~~:n (1 + 0(1)). Section 4 analyzes the gap between lower and upper 
bounds on the chromatic number, given respectively by the clique number and the greedy coloring 
algorithm. We show that this gap is within Clnnj(lnlnn)2, and specify the constant C. Finally, 
Section 5 concludes with open questions regarding the chromatic number for sparser and denser 
GTGs. 

2 Geographical Threshold Graph Model 

Given random points Xl, X 2 ,'" E [0,1]2, chosen iid. uniformly at random, and iid. nonnegative 
weights H'l, W 2 , •.. , we construct the random geographical threshold graphs Gn as follows. Let 
N 1:: Po(n) be the number of the nodes, independent of the Xi and Wi. Let en be a given threshold 
parameter that depends on the size of the graph. Then, Gn has vertex set V(Gn ) = {I, ... ,N}, 
and an edge ij E E(Gn ) iff 

Wi+Wj 
(1)IIXi Xjl12 ~ On· 

For technical convenience we identify opposite edges of [0, 1]2, making it into a torus. 
We will specifically analyze the regime of constant expected degree. If lEWi is a constant, then 

this occurs when the threshold parameter is linear in the expected number of nodes, en 8(n). 
For simplicity we take en = n, since if en = en for some constant e > 0, the weights can always be 
rescaled to 'Wi := Wi/c. 

3 Asymptotic Results 

If G is a graph then w(G) denotes its clique number and X(G) its chromatic number. We will show 
formally that the clique number and chromatic number of the geographical threshold graph are 
essentially the same as those for a random geometric graph with constant average degree: 
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Theorem 1. Suppose that JPl(Wl > x) = O(x-n) for some 0: > 1. Then 

w(Gn ) 
-----t 1 a.s.,

In n I lnln n 

and 
x(Gn ) -----t 1 a.s.,

In nl lnln n 
as n -----t 00. 

The rest of this section is devoted to proving the theorem. 

3.1 Lower bound 

Let 'Ii! E JR be such that JPl(Wl > 'Ii!) ~ ~. Then the probability that Gn contains less than ~ vertices 
with weight more than 'Ii! is exponentially small. Let G~ be the subgraph of Gn induced by ~ of the 
points with weight woo Note that if i, j E V(G~) and IIXi - Xj 112 < 2'Ii! In then certainly ij E E(G~). 
Thus G~ (and hence also Gn ) contains the ordinary random geometric graph G(~, J2'1i!ln) as a 
subgraph. It follows from computations done in [McD03] (see also McDiarmid+Miiller) that 

JPl(w(Gn ) < (1 - c) In nl lnln n) = exp[-O(n)]. 

3.2 Upper bound 

Let us define a "level" Lk as follows: 

L-l := {i :::;; N : Wi < I}, 
Lk := {i :::;; N : 4k :::;; Wi < 4k+ I } for k ~ O. 

Note that the set Xk := {Xi : i ELk} of the points of the Poisson process corresponding to level 
k is in fact a Poisson processes itself with intensity n . (F(4k+l) - F(4k)) (here F denotes the cdf 
of WI) on the unit square and intesity 0 elsewhere. Moreover, these Poisson processes (Xk)k are 
independent. 

For x E JR2 let us denote 

Mx := L
00 

I{i E Lk : IIXi - xii < 100· 2k+1/Jn}l, 
k=-1 

and let us set 
M:=maxMx · 

xElEt2 

Then we have the following: 

Lemma 2. The chromatic number satisfies X(Gn ) :::;; M. 

Proof: Let us order the vertices by nondecreasing weight and greedily color them. That is, we 
first color the vertex with smallest weight, then the vertex with second smallest weight and so on; 
and when we choose a color for a vertex we always pick the smallest possible color (ie. the smallest 
color that does not occur among the neighbours of the vertex that have already been colored). We 
claim that in this way we will never need more than M colors. 

For ease of notation let us assume (wlog.) that WI :::;; W2 :::;; ... :::;; WN. Let us define: 

Ndi) := {j < i : ij E E(Gn )}. 
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Note that if i E Lk and j E Ndi) then IIXi - Xj II < 2k+2 / Fn. For 1 ::; i ::; N let c(i) denote the 
color that the algorithm has assigned to vertex i. 

Now let i be an arbitrary vertex. Let us put jo i and let ko denote the level of i. For each 
of the colors 1, ... , c(i) 1 there is a j E Ndi) with c(j) equal to that color. Let CI < c(i) be the 
first color for which there is no j E Lk n N d i) with c(j) = CI. It is possible that no such CI exists, 
in which case 

c(i) 	 < ILko n Ndi)1 + 1 
< I{j E Lko : IIXj Xiii < 100· 2k / Fn}1 
< MXi::; M. 

If ci exists, then let us pick a ji E Ndi) \ Lko with C(jI) = q. Let kI denote the level of jI' All 
colors 1, ... ,q - 1 must occur in Ndjl). Let C2 < q be the largest color for which there is no 
j E Lkl n Ndjl) with c(j) C2. It is possible that now such C2 exists, in which case 

c(i) 	 < ILk n N«i)1 + ILkl n Ndjl) I+ 2 
< I{j ELk: IIXj Xj1 11 < 100· 2k / Fn}1 
+ I{j E Lkl : IIXi Xj111 < 100· 2kl / Fn}1 
< MXh::; M. 

Here the first line follows from the fact that each color::; c( i) must either occur as the color of i or 
j1 or of a neighbour of i of level k or as the color of a neighbour of ji of level kl; and for the second 
line we have used that IIXi Xj111 < 2k+2 / Fn and that IIXj - Xj1 11 < 2kl +2/Fn if j E N < (jI) n Lkl . 

Now suppose that iI > ... > jm and ki > ... > km have been defined in such a way that, 
for p = 0, ... , m, we have jp+l E Lkp n Ndjp) and c(jp+l) < c(jp) is the largest color that does 
not occur in {c(j) : j E Ndjp) n Lkp}. Let Cm+I be the largest color such that there is no 
j E N< (jm) n Lkm with c(j) Cm+l. If no such Cm+1 exists, then 

c(i) 	 < 2.:;0 ILkp nN<(jp)1 + m + 1 

< 2.:;=0 I{j E Lkp : IIXj Xjml1 2< 100· 2kp /Fn} I 
< MXjm::; M. 

The first line follows because necessarily {1, ... 'C"7n 1} ~ {c(j) : j E Ndjm) n L km } and c(jm) 
Cm, {cm + 1, ... ,Cm-I I} ~ {c(j): j E Ndjm-d n Lkm_l} and C(jm-I) Cm-I, and so on. The 
second line follows because, by the triangle inequality: 

m-I 	 m-I 

IIXjp - X j", II ::; ~ IIXjq - X jq+1 11 ::; In ~ 2kq+1 < 2kp
+3 / Fn, 

for all 1 ::; p ::; m. And hence, for any j E N< (jp) n Lkp' we have 

IIXj Xjm II 	 < IIXjp Xjm II + IIXj - Xjp II 
< (2kp+3 + 2kp+2)/Fn 
< 100 . 2kp / Fn. 

If Cm+l exists then we can choose jm+1 E Ndjm) \ Lkrn such that c(jm+l) Cm+l and set km+l 
equal to the level of jm+l, and continue by attempting to pick a Cm+2. It is clear that the process 
of picking new Cm's cannot continue indefinitely (certainly there can be no more than N steps), so 
we can conclude that c(i) ::; M. Since the vertex i was arbitrary, the claim follows. • 

To finish the proof of the theorem it now suffices to prove the following lemma: 
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Lemma 3. IJJlD(Wl > x) = O(x-a ) Jor some 0' > 1 then 

, M
11m sup / < 1 a,s. 

n---;oo In n Inln n ­

Proof: Let us set 


M~ := L
00 

I{i E Lk : IIXi - xii < 200· 2k+1/vin}l, 

k=-l 

and note that if A := {( fo' ..in) :0 ::; a, b ::; vin} then 

M::; maxM~. (2)
xEA 

Let x E ]R2 be arbitrary and note that M~4: L:r'=-l Zk, where the Zk are independent Poisson 
random variables, and lEZk ::; 1r(200)2 .4k+l·JlD(W1 2': 4k) = O(4k(1-a)). So in particular M~ is itself 
Poisson with a mean that is bounded above by some constant, JL say. Using a well known bound 
(see for instance [McD03]) we see that 

eJL ) (l+E)lnn/lnlnn 

JlD(M~ > (I+E)lnn/lnlnn) < (3)( (1 + E) In n/ In In n 
exp[-(1 + E + 0(1)) In n] 

Hence, by (2), (by applying the Union bound) 

JlD( Mx > (1 + E) In n/ In In n) ::; n exp[ - (1 + E+ 0(1)) In n] ::; n- ~ . (4) 

This shows that M / (In n/ In In n) is upper bounded by 1 + E whp. To prove an almost sure 
convergence result, it is possible to adapt a "subsequence trick" from [Pen03j, page 123. • 

4 Mind the Gap 

In this section we analyze the gap between lower and upper bounds on the chromatic number, 
given respectively by the clique number (Subsection 4.1) and the greedy coloring algorithm (Sub­
section 4.2). In the Subsection 4.3 we show that this gap is within Clnn/(Inlnn)2, and specify the 
constant C. 

4.1 Lower Bound 

In words, informally, we divide the space [0,1]2 into a number of disjoint balls. A clique number 
of nodes in each ball, is an lower bound on the chromatic number of the entire graph. A number 
of fixed balls, (that is the size of balls), is a parameter in our discussion. Formally, the argument 
is the following. 

For some threshold weight wo, let 0' be defined by JlD[W ::; wo] = 0'. We will appropriately choose 
constants Wo and 0' later. Let us define a radius r6 = ~. We consider b = 1/(2ro)2 disjoint balls 

with radii ro, and call these balls B i . For convenience, tile the square [0, If into b = 1/(2ro)2 sub­
squares of the size 2ro x 2ro, and within each of the squares inscribe a ball of radius ro. The number 
of nodes within Bi is given by Poisson distribution Po(nr61r). While the number of nodes with 
weights 2': Wo within Bi is given by Po((1-0')nr61r). And, we call its expectation A:= (1-0')nr61r. 
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Let us note that for On = n it follows b =:p-1 = 2(Jn (this is 8(n)) and), :!!.2 (1 - a)wo (this
TO WO 

is 8(1)). 
Let us now consider only nodes with weights :2: wo, that belong to the balls Bi. All nodes 

(W :2: wo) within a ball Bi form a clique, since each pair within Bi satisfies the connectivity 
relation Eq. (1). Let k be a positive integer to be specified later. The number of nodes within Bi 
satisfies 

J1D[Po().) 2': k] 2': (5)
k! ' 

and we denote p := e - >.. ).k / k!. For Ii being an indicator of the event {Po().) > k}, we have 
J1D[Ii = 1] :2: p. Let us define J Ii and show that J1D[J = 0] --t O. First, J 0 iff all Ii are O. 
Second, the indicators Ii are mutually independent, since the balls Bi are mutually disjoint. Then 
it follows, J1D[nIf] J1D[Iflb ~ (1 p)b exp(ln(1 - p)b). We already have b 8(n). Thus, let us 
choose p = In n/n, what implies J1D[J > 0] 2': 1 - exp(ln(1 p)b) = 1 - exp( -8(In n)) = 1 - n -8(1). 

Thus, we solve the following equation in k 

).k 
e->"IJb = 8(ln n) (6) 

By taking the logarithm, the Eq. (6) is equivalent to 

-). + kIn)' -Ink! + lnb In(8(lnn)). (7) 

The Stirling's Formula satisfies k! V27fkk+~ for some a E (0,1), and applying the 
logarithm on k! it follows In kl = ~ In 27rk + k(ln k 1) + 0(1/k). Now, the Eq.(7) is equivalent to 

1 1 
k(1 + In).) + Inn = (k + 2") Ink +). + 2"ln27r + In(wo/2) + 0(1/k) + 8(ln In n) (8) 

Calling A 1 + In). and '"Y = ). + ~ In 27r + In( wo/2) + 0(1/k) + 8(ln In n) the get the new equivalent 
equation in k 

k (9) 

Let us introduce the new variables y k/eA and x (Inn - A/2 - ,)/eA and the constant 
'fl = 1/(2eA). Then Eq. (9) is equivalent to 

x 
y = - - 'fl. (10)

In y 

For given x and 'fl, the Eq. (10) has the unique solution in y. It can be easily verified that the 
solution is given by 

x (InlnX )
Y In x 1 + ~ (1 + o(1)) . (11) 

Let us call 6 A/2 + '"Y. Since 6 = o(ln n), lnx can be expressed as 

lnx = In(e-A(lnn - 6)) 

= +Inlnn+ln(1-6/lnn)) 

lnlnn A - 0(1). (12) 

Since A is constant, it follows 

lnlnx In (ininn A 0(1)) 


InInlnn + 0(1). (13) 
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and furthermore 

Inlnx In In In n + o( 1) 
Inx Inlnn - A + 0(1) 

lnlnln n ( ))
II 1+01. (14) 
n nn 

Now, the Eq. (10) is equivalent to 

1 Inn ~ 1 
- 2eAIny 

Inn ~ 1
k (15)

lny 2' 
To proceed, let us calculate In y 

InlnX )Iny Inx -Ininx + In 1 + ~(1 + 0(1))( 

Inx -ininx + 0(1) 

lnln n -Inlnln n - A + 0(1) .. 

Plugging the last result into Eq. (15), the expression for k finally follows 

Inn - ~ 1 
k 

Inlnn -Inlnlnn A + 0(1) 2 

In n (1 _ ~) (1 + In In In n + A + o(1 / In In n)) 1 
In In n In n In In n 2 
In n ( In In In n + A + 1

1 + ---::--::------'---'­
In In n In In n 2 

~ (1 + Inininn + A + 0(1)). (16)
Inlnn Inln n 

Thus, there is a clique of the size at least k within some ball B i , with probability 2: 1 - n -8(1). 

Since k ~ w(Gn) ~ x(Gn), it follows 

~ ( In In In n + A + o(1) ) (G ) 1+ <X n'In In n In In n ­

4.2 Upper Bound 

In this subsection we derive an upper bound on the chromatic number, given by the greedy coloring 
algorithm Section 3. Let us consider the inequality (3). 

Inn < ( eJL )(l+E)lnn/lnlnn 
lP(M~ > (1 +E)I 1 

n nn (1 + E) In njInln n 

exp { ( B - In (( 1 + In n / In In n) ) (1 + E) In n / In In n) } 

- (In(1 +E) +Ininn Inlnlnn)(1 +E)_I_)}exp { In n In In n Inlnn 
B(I+E) (1 + E) In(1 + E) (1 ) ( ) In In In n } 

exp { In n ( In In n I - +E + I+E 11nn n nn 

{
I (B BE Eel + 0(1)) _ 1 InIninn Inlnln n)} 

exp n n In In n + In In n In In n E + In In n + E In In n ' 
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where 	B In(pe). Let us choose E to be 

Inlnln n + 8 
E = --::--:--

Inlnn 

then it follows that 

JPl( M~ > 	(1 + E) In n / In In n) < exp { In n ( 1 + ~ In ~ + In ~l n ( In In In n + B 1 oC 1 ) ) } 

B-8+ 
exp { In n ( 1 + --:-:----'--'- }.

Inlnn 

Hence, by (2) and by taking 8 ~ B + d it follows that IP(A1x > (1 + E) In n/ In In n) with probability 
~ 1 e-I~~:n (6-0(1». Thus, for any positive d, with high probability, that is probability ~ 1 ­
e-I~~:n (6-0(1», the chromatic number satisfies 

x(G ):-:; Inn (I+InInlnn+B+d+o(I)). 
n In In n In In n 

4.3 Comparison of Bounds 

Let us now optimize the constants A = 1 + In A and B = In(ep) = 1 + In p to minimize the gap 
between lower and upper bounds on X(Gn ). We define 81 max A and 82 = minB. Thus 

81 	 1 + maxinA 


1 + max(1 - 0:)nr511" 

1I"n

l+maxln (10:)wo20n 
1I"n 

1 + In --0 + maxln(1 F(wo))wo from the definition of 0: 
2 n 

1 + In(1I"/2) + In ( sup wo(1 F(wo))). 	 (17) 
wo:::>:o 

On the other hand 82 1 + min In JL. The conditions imposed on the weight distribution in Lemma 3, 
are JPl(W > x) O(x-O

) for some 0: > 1. Thus, 1 F(4j ) 0(4-oj ):::; D4-oj , for an absolute 
constant D, given by D = maxj 40j (1 - F(4j)). Now, we obtain an upper bound on JL 

p < 	 L
00 

JE(Zj) 
j=-l 

< 11"(200)2 L
00 

(1 F(4j )) 
j=-l 

< 11"(200)2 L
00 

4j +lD4-oj 

j=-l 

1I"(200)24D L00 

4(1-0)j 

j=-l 

1I"(200)24D (40
-

1 + 1 1 )(1/4)0-1 . 

That is, 

(18) 
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Now the bounds on X(Gn ) 

Inn ( InInlnn + S1 	 In n ( In In In n + S2 
n-- 1 + --c:---::---- < X(G) < -- 1 + --:--:c--- (19)

lnln n lnln n - - In In n In In n 

give us the size of the gap 
C In n/ (In In n)2. (20) 

That is, the constant C, specified in the abstract, is 

where S1 	and S2 are given in Eq. (17) and Eq. (18), respectively. 

5 Conclusion 

In this work, we have derived the chromatic number and proposed a coloring algorithm on GTG, 
for the case of en = Sen), that is, when the mean degree is constant. It naturally arises, that we 
are interested into the values of the chromatic number for denser and sparser GTGs. A particularly 
interesting case would be to show X around the connectivity regime. The connectivity threshold 
has been derived to be en = S(n/lnn), [BHP07]. However, the methods that we have used here 
rely heavily on techniques that work for random geometric graphs of equivalent degree. It is 
unclear whether those techniqes would apply near the connectivity threshold, because the limiting 
connectivity regime in RGG, when the typical vertex degree grows logarithmically, is of special 
interest and is already 'hard' [Pen03]. 
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