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Testing Summary 

The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is 
being designed and built to pre-treat and then vitrify a large portion of the wastes in Hanford’s 177 
underground waste storage tanks.  The WTP consists of three primary facilities—pretreatment, low-
activity waste (LAW) vitrification, and high-level waste (HLW) vitrification.  The pretreatment facility 
will receive waste piped from the Hanford tank farms and separate it into a high-volume, low-activity 
liquid stream stripped of most solids and radionuclides and a much smaller volume of HLW slurry 
containing most of the solids and most of the radioactivity. 

Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJM) that will provide 
some or all of the mixing in the vessels.  Pulse jet mixer technology was selected for use in black cell 
regions of the WTP, where maintenance cannot be performed once hot testing and operations commence.  
The PJMs have no moving mechanical parts that require maintenance.  The vessels with the most 
concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing 
provided by the PJMs. 

Pulse jet mixers are susceptible to overblows that can generate large hydrodynamic forces, forces that 
can damage mixing vessels or their internal parts.  The probability of an overblow increases if a PJM does 
not fill completely.  The purpose of the testing performed for this report was to determine how reliable 
and repeatable the primary and safety (or backup) PJM control systems are at detecting drive overblows 
(DOB) and charge vessel full (CVF) conditions. 

Testing was performed on the ABB 800xA1 and Triconex2 control systems.  The controllers operated 
an array of four PJMs installed in an approximately 13 ft diameter × 15 ft tall tank located in the high bay 
of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility.  The PJMs were fitted 
with 4 inch diameter discharge nozzles representative of the nozzles to be used in the WTP.  This work 
supplemented earlier controller tests done on PJMs with 2 inch nozzles (Bontha et al. 2007).  Those 
earlier tests enabled the selection of appropriate pressure transmitters with associated piping and resulted 
in an alternate overblow detection algorithm that uses data from pressure transmitters mounted in a water 
flush line on the PJM airlines.  Much of that earlier work was only qualitative, however, due to a data 
logger equipment failure that occurred during the 2007 testing.  The objectives of the current work 
focused on providing quantitative determinations of the ability of the BNI controllers to detect DOB and 
CVF conditions. 

On both control systems, a DOB or CVF is indicated when the values of particular internal functions, 
called confidence values, cross predetermined thresholds.  There are two types of confidence values; one 
based on a transformation of jet pump pair (JPP) drive and suction pressures, the other based on the 
pressure in the flush line.  In the present testing, we collected confidence levels output from the ABB and 
Triconex controllers.  These data were analyzed in terms of the true and noise confidence peaks generated 
during multiple cycles of DOB and CVF events.  The distributions of peak and noise amplitudes were 
compared to see if thresholds could be set that would enable the detection of DOB and CVF events at 

                                                      
1 ABB Ltd, Zurich, Switzerland. 
2 IPS, Plano, Texas. 
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high probabilities, while keeping false detections to low probabilities.  Supporting data were also 
collected on PJM operation, including data on PJM pressures and levels, to provide direct experimental 
evidence of when PJMs were filling, full, driving, or overblowing. 

Objectives 

Table S.1.1 summarizes objectives and results of the PJM controller testing. 

Table S.1.1.  Summary of Test Objectives and Results 

Test Objective 
Objective 

Met? 
Discussion 

Establish reliability of the 
ABB and Triconex control 
systems to detect overblows. 

Yes The ability of the ABB and Triconex controllers to detect drive overblows 
was evaluated at three levels (low, mid, high) using two simulant types to 
bound the upper and lower range of the WTP waste rheology and vessel 
operating conditions.  Tests were run for single PJM and multiple PJM 
operations using both the flush line algorithm and the normal algorithm. 

The reliability and repeatability of each controller in detecting drive 
overblows with one, and with all four PJMs operating at a time was 
determined by causing PJM#A to repeatedly overblow over approximately 
300 cycles at each test condition (as specified in TP-RPP-WTP-604 Rev.0). 

Overblows were observed under three different operating scenarios, 1) All 
four PJMs running and all filling (overblow of PJM#A occurred because of 
excessive drive time), 2) Only one PJM operating and it filled completely 
(overblow of PJM#A occurred because of excessive drive time), and 3) All 
four PJMs operating but one does not fill completely (overblow of the 
incompletely filled PJM occurred because it emptied sooner than expected). 

Confidence level data were collected and analyzed to determine if DOB can 
be detected at a 99% probability, assuming a maximum allowed false alarm 
probability of 1% of operating cycles. 

The results of the testing presented in Section 6 indicate that the BNI 
controllers are not capable of detecting drive overblows under all 
circumstances.  Both the ABB and Triconex controllers failed to reliably 
detect overblows under the scenario where a PJM overblow occurred because 
the pulse tube was not completely full before the start of the drive phase.  
Under such conditions the peak amplitudes of the flush line confidence levels 
were small and their distribution significantly overlapped the distribution of 
noise peaks.  Thus the overblow signal was often indistinguishable from 
normal operating noise. However, PJM overblow was successfully detected 
with both controllers when the charge vessel was completely full prior to the 
start of the drive phase. 

Establish ability of the 
Triconex system to control 
the PJMs in normal 
operation. 

Yes The Triconex system successfully operated the PJMs under all normal test 
conditions.  These results are presented in Sections 6 and 7, in terms of the 
Triconex controller’s ability to detect DOB and CVF events. 

Verify ability to detect 
charge vessel full using 
4-inch nozzles. 

Yes With each controller and at each test condition, the ability of the controllers 
to successfully detect PJM#A CVF was verified by collecting confidence 
data on PNNL Data acquisition Systems for approximately 100 cycles (as 
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Test Objective 
Objective 

Met? 
Discussion 

specified in TP-RPP-WTP-604 Rev.0).  For each test, the controller settings 
for PJM#A were set such that PJM#A charge vessel was full before the start 
of the drive cycle. 

The recorded PJM#A confidence data were analyzed to determine the 
effectiveness of the controller to detect CVF.  Again, the analysis was to 
determine if a 99% probability of detection could be achieved at a 1% false 
alarm probability. 

The results of CVF detection are presented in Section 7.  Both controllers 
could detect CVF above baseline noise during normal operation when the 
PJMs were allowed to fill completely.  However, the testing reported here did 
not challenge the CVF detection algorithm with abnormal PJM operation and 
did not assess false positive rates.  In other words, conditions that might 
cause false CVF detection were not the primary focus of the present study. 

Determine optimal 
controller scan rate for 
overblow detection using the 
WTP Flush line algorithm. 

Yes Drive overblows were detected using the WTP flush line algorithm at 50ms, 
100ms, 150ms and 250ms controller scan periods.  The influence of the scan 
rate on DOB detection was determined at an H/D = 0.8 with water simulant 
only and approximately 20 cycles at each test condition. 

Both ABB and Triconex controllers were so tested, as per TI-RPP-WTP-639.

The results of the effect of scan rate on controller performance are presented 
in Section 10.  Faster scan rates seemed to improve DOB detection. We 
recommend however that more research be done on this topic due to the 
small number of PJM cycles sampled in this study. 

Collect data for time to 
overblow given the waste 
density-gravity-height (rho-
g-h) characteristics for each 
waste type. 

Yes Collected time-to-overblow at all three levels (low, mid, high) using both 
simulant types with all four PJMs operating.  Times-to-overblow were 
estimated from PJM#A levels, headspace pressures, and JPP pressures.  
Estimates were made for approximately 30 cycles at each test condition (as 
specified in TP-RPP-WTP-604 Rev.0). 

The times-to-overblow were related to the headspace pressure minus the 
liquid head above the nozzle. 

The time-to-overblow results are presented in Section 8. 

Determine how long it takes 
for the PJM to refill at high 
water and clay levels after 
an 80% - 85% stroke with 
no suction (gravity re-fill). 

Yes These determinations were made with both clay and water simulants at the 
high fill level (H/D = 0.8).  The time to gravity refill the PJM was estimated 
from PJM level and pressure data acquired for approximately 30 cycles for 
each simulant.  The PJM was considered full when the level reached 99% of 
the final steady state value. 

The gravity refill test results are presented in Section 9. 
 

 

Test Exceptions 

No test exceptions applied to these PJM controller tests. 
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Table S.1.2.  Test Exceptions 

Test Exceptions Description of Test Exceptions 
None N/A 

 

 
Results and Performance Against Success Criteria 

The research and technology success criteria are discussed in Table S.1.3. 

Table S.1.3.  Success Criteria 

Success Criterion How Testing Did or Did Not Meet Success Criterion 

The success criteria of the PJM 
overblow testing was to provide the 
suction, drive, and flush line 
pressures, vessel level and density, 
and calculated confidence values, 
with supporting data and testing 
documentation for each set of 
conditions tested. 
 

All data called for in the Bechtel National, Inc.  (BNI) approved Test 
Specification, Test Plan, and Test Exceptions have been delivered to BNI as 
electronic data files.  Data were collected at 20Hz or greater as required by 
the Test Specification. 

Supporting data in the form of instrument and equipment descriptions, 
dimensions, experimental conditions and run parameters are included in this 
report.  This report also provides an analysis of the confidence value data. 

Instrument calibrations, analysis spreadsheets and software, bench sheets and 
laboratory record books have been documented, crosschecked, and reviewed 
as specified in the QA requirements listed below. 

 

Quality Requirements 

The Pacific Northwest National Laboratory (PNNL) Quality Assurance Program is based upon the 
requirements defined in the United States Department of Energy (USDOE) Order 414.1C, Quality 
Assurance and 10 CFR 830, Energy/Nuclear Safety Management, Subpart A -- Quality Assurance 
Requirements (a.k.a. the Quality Rule).  PNNL has chosen to implement the following consensus 
standards in a graded approach: 

 ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications, Part 1, 
Requirements for Quality Assurance Programs for Nuclear Facilities. 

 ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer Software 
for Nuclear Facility Applications. 

 ASME NQA-1-2000, Part IV, Subpart 4.2, Graded Approach Application of Quality Assurance 
Requirements for Research and Development. 

The procedures necessary to implement the requirements are documented through PNNL's Standards-
Based Management System (SBMS). 

Pacific Northwest National Laboratory implements the River Protection Project – Waste Treatment 
Plant (RPP-WTP) quality requirements by performing work in accordance with RPP-WTP-QA-001, 
QAP, River Protection Project – Waste Treatment Plant Support Program (RPP-WTP) Quality 
Assurance Plan.  Work was performed to the quality requirements of NQA-1-1989 Part I, Basic and 
Supplementary Requirements, NQA-2a-1990, Part 2.7, and DOE/RW-0333P, Rev 13, Quality Assurance 
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Requirements and Descriptions (QARD).  These quality requirements are implemented through 
RPP-WTP-QA-003, QAM, River Protection Project – Waste Treatment Plant Support Program 
(RPP-WTP) Quality Assurance Manual. 

General laboratory procedures and calibration experiments were performed in accordance with 
RPP-WTP procedures QA-RPP-WTP-1101, Scientific Investigations, and QA-RPP-WTP-1201, 
Calibration Control System, ensuring that sufficient data are taken with properly calibrated measuring and 
test equipment to obtain quality results.  The requirements of DOE/RW-0333P Rev 13were not required 
for this work because the work is not high-level-waste quality affecting. 

Reportable measurements of distance were made using standard commercially available equipment 
(e.g., tape measure) and needed no traceable calibration requirements.  All other test equipment 
generating reportable data were calibrated according to PNWD’s Waste Treatment Plant Support Program 
Quality Assurance program. 

River Protection Project – Waste Treatment Plant addresses internal verification and validation 
activities by conducting an Independent Technical Review of the final data report in accordance with 
RPP-WTP procedure QA-RPP-WTP-604.  This review verifies that the reported results are traceable, that 
inferences and conclusions are soundly based, and the reported work satisfies the Test Plan objectives.  
This review procedure is part of PNNL's RPP-WTP Quality Assurance Manual. 
 

Test Conditions 

The test conditions listed in Table S.1.4 are described in detail in Sections 5.7 and 5.8. 

Table S.1.4.  R&T Test Conditions 

List R&T Test Conditions Were Test Conditions Followed? 

See Sections 5.7, General Conditions, 5.8, Test 
Matrix, and Table 5.3. 

Yes 

 

Simulant Use 

Two simulants were used in this testing and were selected to bound the expected rheological 
properties to be encountered in the WTP.  Water was used to provide a fluid with rheological properties at 
the lower bound.  A kaolin-bentonite clay mixture was selected to provide a fluid with rheological 
properties at the upper bound.  The clay simulant used was selected based on actual waste slurry rheology 
measurements that indicate the WTP, non-Newtonian waste stream can be represented by a Bingham 
plastic rheology model, which is represented by: 
 

 y      (S.1) 

where  = shear stress,  = consistency factor, = shear rate or strain rate, and y = Bingham yield stress 
(the assumed minimum stress required to initiate fluid movement as determined by a flow curve obtained 
by fitting rheological data using a Bingham plastic rheological model). 
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The non-Newtonian waste stream upper bounding rheological value of y = 30 Pa was identified using 
limited data from actual waste slurries that can be represented by a Bingham plastic rheology model 
(Poloski et al. 2006).  These values provide the basis for the simulant used for this testing.  Additional 
information on the selection and development of the kaolin-bentonite clay simulant may be found in 
Poloski et al. (2004). 
 

Discrepancies and Follow-on Tests 

The experiments to determine the optimal scan rate were conducted with the water simulant, instead 
of the clay simulant specified in the Test Plan.  The change to water was made in consultation with BNI 
staff after the Test Plan was written.  There were no other deviations from the Test Plan.  There were no 
equipment or instrument failures during these tests. 

An unavoidable consequence of including a level probe to measure the level of the slurry inside the 
PJM is a reduction of the effective diameter of the airline at the top of the PJM by 0.75-inches.  For 
23.5-inch pulse tube diameter with a schedule 40 air-link pipe, this results in a 16% increase in the area 
ratio of the PJM to the air-link line.  The net result is that the observed controller confidence levels, 
particularly for CVF, may be stronger in the present study that those which will be observed in the real 
plant.  This is because the CVF confidence signal results from rapid change in the PJM pressure decreases 
due to the sudden reduction in the pipe diameter between the pulse tube and the air link line.  The drive 
overblow detection, on the other hand, should have minimal impact since this signal is caused by a 
decrease in the PJM pressure as a result of the air exiting the nozzle. 

The results from the present testing indicate that during normal operation, the BNI controllers are not 
capable of detecting overblows under all circumstances.  In particular, both the ABB and Triconex 
controllers failed to reliably detect overblows under the scenario where a PJM overblow occurred because 
the pulse tube was not completely full before the start of the drive phase.  Under conditions where the 
PJM is partially full, the amplitudes of the flush line confidence levels were small and their distribution 
significantly overlapped the noise distribution observed under the conditions when the PJMs were 
completely full.  The results of the testing indicate that, in the WTP, reliable and repeatable CVF 
detection will be required at all times to enable reliable and repeatable overblow detection.  The present 
testing cannot completely answer whether the BNI controllers are able to reliably and repeatedly detect 
CVF because the testing did not focus on conditions that can cause CVF failure (for example, conditions 
such as the blockage of the PJM nozzle).  Additional testing is required to address issues that can lead to 
false CVF conditions. It is also recommended that such tests should also focus on eliminating the PJM 
level probe influence on the CVF results by eliminating the level probes in the air-link line. 

The study of the effect of scan rate on overblow detection relied on only 20 PJM cycles at each scan 
rate.  Although the results indicate that the scan rate has a significant effect on the controllers’ ability to 
detect overblows, we are unable to make a firm recommendation since the amount of data collected for 
such purposes was insignificant.  However, the controllers’ confidence output at various scan rates can be 
simulated using the pressure data we acquired at 100Hz during all of the other experiments.  From such 
simulated controller responses, the optimal scan rate can be estimated more precisely.  We recommend 
such simulations as an alternative to doing additional experiments on the effect of scan rate on overblow 
detection. 
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1.1 

 

1.0 Introduction 

1.1 Pulse Jet Mixers and Waste Treatment Plant Mixing 

The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is 
being designed and built to pre-treat and then vitrify a large portion of the wastes in Hanford’s 177 
underground waste storage tanks.  The WTP consists of three primary facilities—pretreatment, low-
activity waste (LAW) vitrification, and high-level waste (HLW) vitrification.  The pretreatment facility 
receives waste piped from the Hanford tank farms and separates it into a high-volume, low-activity liquid 
stream stripped of most solids and radionuclides, and a much smaller volume HLW slurry containing 
most of the solids and most of the radioactivity. 

Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJM) that will provide 
some or all of the mixing in the vessels.  Pulse jet mixer technology was selected for use in black cell 
regions of the WTP, where maintenance cannot be performed once hot testing and operations commence.  
The PJMs have no moving mechanical parts that require maintenance.  The vessels with the most 
concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing 
provided by the PJMs. 

Pulse jet mixers consist of several pulse tubes that are large, cylindrical tubes with one end tapered 
down to a nozzle with a diameter smaller than that of the tube.  The other end of the pulse tube is 
connected by an airline to a Jet Pump Pair (JPP).  The JPP enables the regulation of fill and discharge of 
the pulse tube during the PJM operation.  In slurry mixing applications, several of these pulse tubes are 
incorporated into the mixing vessel and operated either in series or in parallel to achieve the desired 
mixing.  Pulse jet mixing technology represents a simple method for mixing slurries using compressed 
air. 

The WTP vessels with PJMs are expected to contain tank waste slurries with a range of solids 
concentrations.  The dilute slurries are expected to exhibit a Newtonian rheology.  The most concentrated 
slurries are expected to exhibit a non-Newtonian rheology, which is generally characterized with a 
Bingham plastic model. 

1.2 Issues Pertinent to Control of PJMs 

Figure 1.1 illustrates PJM operation in a single pulse tube system.  The PJM cycle consists of three 
phases—1) suction, where slurry is withdrawn from the mixing vessel into the pulse tube by application 
of a vacuum, 2) drive, where slurry is ejected back into the mixing vessel under pressure, and 3) vent, 
where the compressed air inside the pulse tube is released by venting to the atmosphere.  This cycle is 
repeated until the tank contents are adequately mixed. 

Pulse jet mixer operation is controlled by opening and closing the valves supplying air to the jet pump 
pairs, which in turn control the air flow to the pulse tube.  Of the various events associated with PJM 
operation, the two events that are of utmost importance when considering a control system for the PJMs 
are 1) charge vessel full and 2) drive overblow.  These events are discussed below. 
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Figure 1.1.  Schematic of the Different Phases in a PJM Cycle Control of PJM Operation 

1.2.1 Charge Vessel Full 

Charge vessel full (CVF) detection corresponds to the event in a PJM operational cycle when the 
pulse tube is full and the suction phase can be terminated.  Accurate CVF detection is important in PJM 
operation because 1) it ensures that the PJMs are full before the drive phase begins, 2) it minimizes the 
amount of slurry being drawn into the air lines above the PJMs, thereby reducing slurry creep,1 (Bontha et 
al. 2007) and 3) it ensures that all PJMs are full prior to the drive phase.  In addition to minimizing the 
amount of slurry in the drive/suction lines, early CVF detection also helps reduce compressed air use and 
maximizes the time the PJMs are engaged in mixing. 

                                                      
1  Slurry creep represents the phenomenon of slurry slowly creeping up the air lines and eventually into the JPPs and 
associated vent systems.  Reducing slurry creep is of critical importance to plant operation because the faster the 
material creeps up the air lines, the more frequently actions will need to be taken (such as washing down the air 
lines) to prevent the migration of waste out of the hot cells. 

COMPRESSED AIR 

 
 SUCTION PHASE DRIVE PHASE VENT PHASE 

= Valve Closed = Valve Open = JPP 
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1.2.2 Drive Overblow 

A drive overblow (DOB) event represents the condition when a PJM is in the drive phase and the 
slurry and liquids are completely expelled from the pulse tube.  This allows a significant volume of 
pressurized air to escape from the pulse tube nozzle.  Drive overblow detection is critical to PJM 
operation because the pressurized air escaping from the PJM will create a significant pressure pulse inside 
the tank.  Such pressure pulses have the potential to affect the lifetime of the tank internals.  
Consequently, it is important to have a PJM control system that minimizes the possibility of drive 
overblows. 

There is another type of overblow event – a vent overblow.  Vent overblows occur after the drive 
phase is complete, during the time when the controller is venting positive pressure from the PJM.  The 
PJM continues to empty during the early part of the vent phase because of the continued elevated pressure 
and the downward momentum of the PJM’s contents.  If the drive phase ends too late, the PJM can empty 
completely before the pressure is relieved, resulting in a vent overblow.  In general, vent overblows are 
less severe than drive overblows because the volume and pressure of the expelled air are both low.  All of 
the overblows analyzed for this report were drive overblows.  All references to an overblow in this report 
pertain to a drive overblow. 

1.3 Summary of Earlier Controller Testing Results 

In 2006, testing was done by Pacific Northwest National Laboratory (PNNL) (Bontha et al. 2007) to 
assess the performance of the BNI’s ABB control system to detect CVF and DOB conditions during the 
PJM operation.  The testing was conducted using the half-scale lag storage configuration that consisted of 
PJMs that were half the typical scale of the PJMs in the WTP.  This, along with some data logging issues 
associated with the BNI controller, resulted in only a qualitative assessment of the controller performance.  
The qualitative results indicated that the controller could detect CVF under its planned configuration with 
the pressure transmitter located 50 ft up the piping from the drive leg of the jet pump pair.  On the other 
hand, the results also indicated that DOB detection was not possible using the pressure transmitter located 
approximately 125 feet down the suction leg of the JPP.  The results also indicated that DOB detection 
could be achieved by the direct measurement of the pressure inside the PJMs using a pressure transmitter 
mounted approximately 100 ft up the pipe used to the flush the PJMs. 

The half-scale test configuration and the qualitative nature of the results obtained in 2006 combined 
with the need to also test the Triconex control system (that is planned for use as the backup or 
programmable protection system) necessitated repeating the testing using prototypic PJMs. 

1.4 Objectives of Testing 

The objectives of the PJM control system tests were to generate experimental data using a prototypic 
PJM configuration to: 

 Establish reliability of the ABB and Triconex control systems to detect overblows. 

 Establish ability of the Triconex system to control the PJMs in normal operation. 

 Verify the ability to detect charge vessel full using the 4-inch nozzles. 
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 Determine optimal controller scan rate for overblow detection using the WTP flush line 
algorithm. 

 Collect data for time-to-overblow given the waste density-gravity-height (rho-g-h) characteristics 
for each waste type. 

 Determine how long it takes for the PJM to refill at high levels of water and clay after an 80% - 
85% stroke with no suction (gravity re-fill). 
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2.0 Quality Requirements 

2.1 Application of RPP-WTP Quality Assurance Requirements 

The PNNL Quality Assurance Program is based upon the requirements defined in the DOE Order 
414.1C, Quality Assurance and 10 CFR 830, Energy/Nuclear Safety Management, Subpart A -- Quality 
Assurance Requirements (a.k.a. the Quality Rule).  Pacific Northwest National Laboratory has chosen to 
implement the following consensus standards in a graded approach: 

 ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications, Part 1, 
Requirements for Quality Assurance Programs for Nuclear Facilities. 

 ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer 
Software for Nuclear Facility Applications. 

 ASME NQA-1-2000, Part IV, Subpart 4.2, Graded Approach Application of Quality Assurance 
Requirements for Research and Development. 

The procedures necessary to implement the requirements are documented through PNNL's Standards-
Based Management System (SBMS). 

PNNL implements the RPP-WTP quality requirements by performing work in accordance with the 
River Protection Project – Waste Treatment Plant Support Program Quality Assurance Plan 
(RPP-WTP-QA-001, QAP).  Work was performed to the quality requirements of NQA-1-1989 Part I, 
Basic and Supplementary Requirements, NQA-2a-1990, Part 2.7, and DOE/RW-0333P, Rev 13, Quality 
Assurance Requirements and Descriptions.  These quality requirements are implemented through 
RPP-WTP-QA-003, QAM, Quality Assurance Manual). 

The work discussed in this report was planned, executed, reviewed, and documented in accord with 
the above noted requirements. 

2.2 Conduct of Experimental and Analytical Work 

Test requirements specific to the controller testing are listed in Test Specification 24590-WTP-TSP-
RT-08-001, Pulse Jet Mixer Controller Testing, and in TP RPP-WTP-604, Test Plan for PJM Controller 
Testing with 4PJM System. 

General laboratory procedures and calibration experiments were performed in accordance with 
QA-RPP-WTP-1101, Scientific Investigations, and QA-RPP-WTP-1201, Calibration Control System, 
ensuring that data are taken with properly calibrated measuring and test equipment to obtain quality 
results.  The requirements of DOE/RW-0333P Rev 13 were not required for this work. 

Additional equipment used included a thermometer, clock, and balances.  The thermometer, for 
monitoring simulant temperature, and the clock were standard laboratory equipment used as indicators 
only.  Balances are calibrated yearly by a qualified contractor, QC Services, Portland, Oregon, per quality 
assurance requirements. 
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2.3 Internal Data Verification and Validation 

The RPP-WTP addresses internal verification and validation activities by conducting an Independent 
Technical Review (ITR) of the final data report in accordance with QA-RPP-WTP-604.  This review 
verifies that the reported results are traceable, inferences and conclusions are soundly based, and the 
reported work satisfies the Test Plan objectives.  This review procedure is part of PNNL's RPP-WTP 
Quality Assurance Manual.  For this project, ITRs were conducted on laboratory record books, bench data 
sheets, experimental checklists, and run logs.  Reviews were also conducted on data acquisition computer 
programs and on data processing software and spreadsheets. 

Electronic data are not considered records under the RPP-WTP QA Program.  However, the accuracy 
of electronic file data transfers to portable (DVD and portable hard disk drives) media was verified. 
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3.0 PJM Control Approach 

The method used to control the operation of the PJMs was developed primarily by the Atomic Energy 
Authority of the United Kingdom (UKAEA).  It has been adapted to meet the WTP operational and safety 
requirements.  Also, based on the results obtained in 2006 (Bontha et al. 2007), the control method was 
modified to include overblow detection using the pressure measured in the PJM water flush line.  This 
section presents the basic concepts for PJM control. 

3.1 Controls Concept 

The PJM control strategy is shown schematically in Figure 3.1.  Here, depending on the stage of the 
PJM cycle, the controller opens or closes the drive and the suction valves, Vd and Vs, respectively.  This 
in turn affects the pressure measured on the drive (Pj) and suction (Pr) side of the JPP and in the water 
flush line (Pf) of the PJM, as shown below. 

 

 

Figure 3.1.  Schematic of the PJM Controller Implementation Arrangement 
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During PJM operation, the transient pressures, Pj and Pf, exhibit characteristic changes that were 
indicative of the occurrence of the CVF and drive overblow events, respectively.  The BNI control system 
is designed to recognize the occurrence of these events through the use of a statistical parameter called 
confidence. 

In the following sections, typical profiles for the suction and flush line pressures and the computed 
confidence during the events of CVF and DOB are presented. 

3.1.1 Suction Phase and Charge Vessel Full 

During the suction phase, the drive valve (Vd) is closed, and the suction valve (Vs) is open.  
Therefore, Pr measures the supply pressure and Pj detects the pressure in the air link line to the pulse tube.  
Figure 3.2 shows an example1 of the resultant transients, Pr and Pj, measured during a typical PJM suction 
phase.  The suction pressure is shown on the primary y-axis, while the drive pressure is shown on the 
secondary y-axis. 

Figure 3.3 shows the calculated confidence profile.  It can be seen that during the suction phase, the 
suction pressure (Pr) remains fairly constant throughout, and the drive side pressure (Pj) gradually 
decreases as a vacuum builds up in the pulse tube.  As the liquid level in the pulse tube rises above the top 
of the pulse tube and into the air link line, the drive pressure decreases more rapidly because of a sudden 
reduction in the pipe diameter between the pulse tube and the air link line.  This translates into a sharp 
increase in the calculated confidence, as shown in Figure 3.3. 

 

 

Figure 3.2.  An Example of Typical Drive and Suction Pressure Profiles During the Suction Phase 

                                                      
1 Examples used in Section 3 are taken from PRESCON Control Algorithm Design Guide, by A. Dean.  2004.  
24590-QL-POA-MPEO-00002-14-01 Rev. 0.0, UKAEA, UK. 
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Figure 3.3.  An Example of the Typical Confidence Profiles During the Suction Phase 

The control algorithm looks for the peak in the confidence to determine that the charge vessel is full 
and to terminate the suction phase.2  Ideally, the controller would signal CVF when the slurry level in the 
pulse tube is at the connection between the air-supply line and top dish-head of the PJM.  In this study we 
did not examine the correlation between the peak confidence and the level in the pulse tube and we did 
not estimate the lead or lag of the signal in relation to the ideal target fill level. 

3.1.2 Drive Phase and Drive Overblow Detection 

During the drive phase, the drive valve (Vd) is open, and the suction valve (Vs) is closed.  In this 
situation, Pj measures the supply pressure.  Figure 3.4 shows an example of the resultant transient 
pressures on the drive side of the JPP (Pj) and flush line (Pf) measured during a typical drive phase.  Also 
shown in Figure 3.4 is the pressure inside the PJM.  In this figure, the drive pressure is shown on the 
primary y-axis while the flush line and PJM pressures are shown on the secondary y-axis.  Figure 3.5 
shows the calculated confidence during the same period. 

As discussed in the introduction, a drive overblow refers to an overblow that occurs when the drive 
valve is still open when all the liquid is gone from the charge vessel.  When a drive overblow occurs, 
there is a sharp drop in the pressure inside the PJM.  Since the transmitter in the flush line measures the 
pressure inside the PJM (minus head loss in the line), the flush line exhibits an almost similar profile.  
The sudden drop in the flush line pressure during an overblow translates into a sharp increase in the 

                                                      
2 In actuality, the confidence value is compared to a confidence threshold value determined during the PJM tuning 
process.  If the confidence is greater than the threshold, the CVF is ascertained.  Otherwise, the suction valve 
remains open until the confidence threshold value has been reached or the gain value reaches a percent of the 
maximum gain calculated during the first suction phase (i.e., a maximum gain is attained). 



 

3.4 

calculated confidence, as shown in Figure 3.5.  The overblow corresponds to the larger of the two peaks 
in the Figure.  The earlier, smaller peak is a noise or false peak in the flush line confidence that typically 
appears during the drive phase. 

 

Figure 3.4.  Example of Typical Drive and Suction Pressure Profiles During the Drive Phase with Drive 
Overblow 

 

Figure 3.5.  Example of Typical Flush Line Confidence Profile During Drive Phase with Drive Overblow 
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4.0 Equipment Description 

The controller tests were performed using the four PJM test stand available in PNNL's 336 Building 
test facility.  A detailed description of the existing test equipment and configuration is presented in 
Bontha et al. (2003) and Pfund et al. (2008), and a brief summary is presented in this section. 

4.1 Supernate Tank and 4PJM Assembly 

The supernate tank housing the four PJM assemblies was a cylindrical, stainless steel vessel of 12.75 
ft inner diameter (ID) and approximately 15 ft height (H).1  The bottom of the tank was a 2:1 ellipse with 
minor and major IDs of approximately 3 ft and 12.75 ft, respectively.  The four PJMs were located at the 
center of the four quadrants of the tank as shown in Figure 4.1. 
 

 

Figure 4.1.  Plan View of the Four PJM Configuration (Bontha et al. 2003b) 

                                                      
1 The actual operating height of the tank was 14 ft, 10 inches (or 178 inches) due to an approximate 2 inch wall 
thickness. 
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A plan view of the vessel showing the location of the PJMs is presented in Figure 4.2.  Also shown in 
this figure, for comparison purposes, are the high, mid, and low fill levels at which the testing with clay 
and water simulants were performed. 
 

 

Figure 4.2.  Plan View of Test Vessel with Fill Heights 

A catwalk was present about 3 ft above the top of the tank.  Another catwalk approximately 40 ft 
above the top of the tank supported the air hoses to the PJMs.  The catwalks were not attached to the tank.  
There was an observation deck along a 60º section of the circumference of the tank approximately 3 ft 
below the rim of the tank.  The tank was positioned on three load gauges to monitor the weight of the tank 
and its contents. 

4.2 JPP Rack Modification 

During operation of the PJMs, a venturi-created vacuum was applied to fill the pulse tubes with 
simulant.  The slurry was then expelled from the pulse tubes with compressed air.  The suction and 
discharge of the simulant to and from each of the four pulse tubes was regulated by a set of four JPPs 
mounted on a skid located at ground level beside the tank.2 In order to facilitate the prototypical 
representation of the extension piping between the JPP and the pressure transducers monitored by the 

                                                      
2.  In actuality, there were two racks with four JPPs per rack in the test assembly but only the bottom rack with four 
JPPs was used in testing. 
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PJM controller, the JPP on PJM#A was reconfigured such that 50±5 feet of extension piping was included 
on the drive side and 130± 5 feet of extension piping was included on the suction side.3  The 
modifications are schematically shown in Figure 4.3.  Both sets of extension piping consisted of 2 inch ID 
(nominal) wire reinforced PVC tubing.  The tubing was coiled and located near the JPP rack. 

4.3 Pressure Transmitter in the Flush Line 

In addition to testing the five pressure transmitters mounted on the extension pipe of the JPP, a 
Druck4 PTX-611 pressure transmitter mounted at the end of a 100±5 feet section of 1inch ID PVC tubing 
connected to the air supply line of PJM #A was used to monitor the flush line pressure.5  This is shown 
schematically in Figure 4.3.  The flush line installation was unchanged from that reported in Bontha et al.  
2007. 

4.4 Air Supply System 

The air supply system consisted of a 1600 cfm compressor (delivering an outlet pressure of 150 psig) 
connected to six 250 gal air receiver tanks.  The air from the receiver tanks passed through an air filter to 
feed the JPP skid.  Part of the air from the filter was also routed to a 50 cfm air dryer that fed the air 
actuated valves on the JPP skids and the BNI bubbler system also located in the tank (not shown in 
Figure 4.1). 

                                                      
3 The 50 ft and 125 ft of extension tubing on the drive and suction side of the JPP were considered to represent the 
maximum length of tubing in the WTP plant (see Bontha et al. 2007). 
4 GE Sensing.  Billerica, MA. 
5 The 100 ft length represents the expected maximum length of the PJM water flush line in the WTP design (see 
Bontha et al. 2007). 
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Figure 4.3.  Schematic of the Modification to the JPP/Airline of PJM#A to Include the Extension Piping 
and the Flush Line 
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5.0 Experimental Approach 

The controller testing was performed with clay and water simulants to encompass the upper and lower 
bounds of the waste streams that could be encountered in the WTP.  In addition, with both simulants, tests 
were performed at high, mid, and low fill levels in the tank to simulate the expected operating range of 
the PJMs.  This section describes the simulants and the various instruments and data acquisition systems 
(DAS) used to collect and log the experimental data. 

5.1 Clay Simulant 

The upper range of the WTP waste stream rheology was bounded using a clay simulant consisting of 
80% kaolin clay (EPK Feldspar pulverized) and 20% bentonite clay (WYO-Ben Big Horn CH-200) 
mixed at a solids loading of approximately 29 wt%.  This simulant had a Bingham yield stress of 30±5 Pa 
and a consistency of approximately 30 cP.  The technical basis for the development and selection of this 
simulant is provided in Poloski et al. (2004).  This simulant mix has been used successfully in previous 
PJM/sparger testing in the Applied Process Engineering Laboratory and 336 Building test stands (Poloski 
et al. 2004, Bontha et al. 2005). 

Before the start of a test, it was ensured that the simulant rheology had been measured at most three 
days prior to the test date and that the yield stress was within the target range of 30 ± 5 Pa, as specified in 
the test plan.  If the simulant rheology was verified more than three days before the test, the simulant was 
thoroughly mixed by overblowing one PJM at a time for a few minutes.  Then a sample was taken and the 
rheology verified.  If the rheology of the sample was greater than the target range of 30 ± 5 Pa, the 
required amount of dilution water to bring the rheology to within the target range was added, and the tank 
was again mixed for about 30 minutes with all PJMs.1  After dilution, another sample was taken to verify 
that the rheology was within the target range. 

The simulant rheology was measured using a TA Instruments (New Castle, DE) Model AR 2000 
rheometer with a concentric cylinder sensor.  This model is a controlled stress rheometer equipped with 
an air bearing and a Peltier plate for temperature control.  All rheograms were obtained at 25oC.  The 
instrument was performance checked with calibration standard oils at least once a month.  During 
controller testing, this was performed three times, and each time the instrument tested well within the 
required ±10% of the known standard value. 

5.2 Water Simulant 

Water was used to encompass the lower range of the WTP waste stream.  This water was essentially 
from the third rinse of the tank after the clay was removed and the tank was rinsed thoroughly with water 
containing small traces of clay (estimated at <0.01%). 

                                                      
1  The required amount of dilution water was determined from past experience with the same simulant and was equal 
to 500 lb of water for an approximately 2 Pa drop in approximately 100,000 lb of clay simulant. 
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5.3 Analytical Instruments 

Table 5.1 lists the various analytical instruments used to collect and record data during the testing.  
Unless otherwise noted in the Table 5.1, all instruments that provided NQA-1 reportable data were 
calibrated according to PNNL’s WTP Support Project QA requirements (see Section 2.0 for more details). 

Table 5.1.  List of the Various Analytical Instruments Used in the Controller Testing 

Parameter Types & Manufacturer Model Qty Data Quality

JPP Drive Press. Press.  Transmitter Druck PTX-611 4 NQA-1(a, b) 

JPP Suction Press. Press.  Transmitter Druck PTX-611 4 NQA-1(a, b) 

Flush Pressure Press.  Transmitter Druck PTX-611 1 NQA-1(a, b) 

PJM Pressure Press.  Transmitter E+H PMP 135-A4G01R4R 4 NQA-1(a) 

Tk.  Sim.  Density Bubbler Foxboro IDP10-T22B21F-M1L1B1T 1 NQA-1(a) 

Tank Level Bubbler Foxboro IDP10-T22C21F-M1L1B1T 1 NQA-1(a) 

PJM Level Cap.  Level.  Probe Drexelbrook 700-0002-057 4 NQA-1(a) 

Tank Level Laser Level Sensor Optech Sentinel 3100 3 For Info Only

Tank Temp Type T TC Eustis  MCT41U6 2 For Info Only

a.  All instruments collecting NQA-1 reportable data were calibrated by PNNL’s calibration services 

b.  Although these pressure transducers have a range of 0 to 10 bar-a, they were calibrated between 0 - 7 bar-a 
in order to maintain the 4:1 turndown ratio with available standards while achieving the manufacturer specified
accuracy. 

5.4 Instrument Description and Manufacturer Specified Accuracies 

The following is a description of the various sensors, their ranges, and the manufacturer’s specified 
accuracy. 

Note:  The accuracies stated below do not include errors associated with the transmission line length, 
noise from the data acquisition system interfaces, etc.  These errors were rolled into the acceptable 
tolerances (for the various sensors generating NQA-1 data) presented in Section 5.5. 

5.4.1 JPP Suction, Drive, and Flush Line Pressure 

The suction and drive pressures of the JPPs on all PJMs and the pressure in the flush line were 
monitored using Druck Model PTX-611 sensors.  Based on a discussion with BNI’s Controls & 
Instrumentation (C&I) project leads, the Druck pressure transmitters are the WTP project approved 
pressure transmitters for use in all of non-safety related, PJM control systems.  BNI plans on using 
pressure transmitters made by AMETEK - U.S. Gauge in all its backup or safety related PJM control 
systems.  (PNNL has not evaluated the AMETEK pressure transmitters to be used in the safety related 
PJM control systems.)  The Druck pressure transmitters have a range of 0 to 10 bar-a and an accuracy of 
±0.008 bar.  The data from this sensor were NQA-1 reportable data.  Although the range of these pressure 
transmitters is -1 to 9 bar-g, they were calibrated between 0 - 7 bar-a in order to maintain the 4:1 
turndown ratio and still achieve the desired accuracy range of ±0.008 bar using the available calibration 
standards.  The calibration range was considered sufficient since the testing was conducted with the drive 
and suction pressures at the JPPs set to <5 bar-g. 
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5.4.2 PJM Pressures 

The pressure inside each PJM was measured using an Endress+Hauser PMP Model 135-A4G01R4R2 
pressure transducer having a range of 0 to 150 psia and an accuracy of ±0.75 psia.  The data from these 
sensors were NQA-1 reportable. 

5.4.3 Tank Level 

The tank level was measured using a Foxboro Model IDP10-T22C21F3 differential pressure 
transmitter having a range of 0 to 350 inches of H2O and an accuracy of ±0.21 inches of H2O.  The data 
from this sensor were NQA-1 reportable data.  The tank level was also measured using three Optech 
Model Sentinel 31004 laser level sensors having a range of 0 to 150 m and an accuracy of ±5 mm.  The 
information from these laser level sensors was for information only.  The laser level sensors do not work 
with transparent fluids such as water. 

5.4.4 Simulant Density 

The density of the simulant in the tank was measured using a Foxboro Model IDP10-T22B21F 
differential pressure transmitter having a range of 15 to 40 inches of H2O and an accuracy of ±0.015 
inches of H2O.  The data from this sensor were NQA-1 reportable data. 

5.4.5 PJM Level 

The level of the fluid in the PJMs were measured using a Drexelbrook Model 700-0002-0575 
capacitance level probes having a range of 0 to 144 inches and an accuracy of ±1.4 inches.  The data from 
these sensors were NQA-1 reportable data. 

It should be noted that the PJM level probes were inserted into the PJMs through a cross connection 
mounted on top of the PJM as shown in Figure 5.1.  The distance from the top of the dish-head of the 
PJM to the top of the level probe is estimated to be ~24-inches or ~2-ft. In other words, when interpreting 
the PJM level data presented in this report, the top of the PJM corresponds to a level probe reading of 
~120 inches. 
 

                                                      
2 Endress+Hauser, Inc.  Greenwood, IN. 
3 IPS.  Plano, TX. 
4 Optech, Inc.  Vaughan, Ontario, Canada. 
5 AMETEK Drexelbrook, Horsham, PA. 
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Figure 5.1.  Method of Inserting Level Probe into PJM 

It should also be noted that an unavoidable consequence of including a level probe to measure the 
level of the slurry inside the PJM is a reduction of the effective diameter of the airline at the top of the 
PJM by 0.75 inches.  For a 23.5 inch pulse tube diameter with a Schedule 40 air-link pipe, this results in a 
16% increase in the area ratio of the PJM to the air-link line.  The net result is that the observed controller 
confidence levels, particularly for CVF, may be stronger in the present study that those which will be 
observed in the real plant.  This is because the CVF confidence signal results from rapid change in the 
PJM pressure decreases due to the sudden reduction in the pipe diameter between the pulse tube and the 
air link line.  The drive overblow detection, on the other hand, should have minimal impact since this 
signal is caused by a decrease in the PJM pressure as a result of the air exiting the nozzle. 

5.4.6 Tank Temperature 

The temperature of the simulant in the tank was measured using a Eustis Model MCT41U66 
thermocouple (Type J) with a range of ±0 to 50C and an accuracy of ±2C.  The temperature information 
from the thermocouple in the tank was for information only. 

5.5 PNNL Data Acquisition System 

During the testing conducted under this test plan, data from the field instruments (i.e., JPP drive and 
suction pressures, flush line pressure, bubbler level and density, PJM pressure, PJM level, and tank level) 
along with the confidence values calculated by the BNI controllers were recorded digitally on a computer 
using DASYLab, Version 8.0 DACS software.7 

                                                      
6 Eustis Co., Inc.  Mukilteo, WA. 
7 National Instruments Ireland Resources Limited.  Dublin, Ireland. 
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Table 5.2.  Acceptable Tolerances for the Various NQA-1 Reportable Data Logged on the PNNL DAS 
Calibration 

Measured Variable Sensor Range Acceptable Tolerance 
JPP Drive Pressure Druck PTX-611 -1 to 9 bar-g(c) ±0.2 bar(a) 
JPP Suction Pressure Druck PTX-611 -1 to 9 bar-g(c) ±0.2 bar(a) 
Flushline Pressure Druck PTX-611 -1 to 9 bar-g(c) ±0.2 bar(a) 
Tank Level Foxboro IDP10-T22C21F 0 to 350 in H2O 

differential 
±3.5 in H2O

(a) 

Tank Simulant Density Foxboro IDP10-T22B21F 15 to 40 in H2O 
differential 

±0.5 in H2O
(a) 

Confidence Level Output from BNI Controller -10 to 100 ±2.0(a) 
PJM Pressure E+H 135-A4G01R4R 0 to 150 psia ±3.0 psia(b) 
PJM Level Drexelbrook 700-0002-057 0 to 144 in ±2 in 
(a) Tolerance ranges provided by BNI. 
(b) Tolerance range estimated based on the ±2% uncertainty used by BNI in determining the acceptable tolerance 
for the Druck and Foxboro transmitters and the controller generated confidence values. 
(c) The Druck transmitters are used in the study measure the absolute pressure. This pressure was converted to 
gauge pressure by the BNI controllers.  

Before the start of reportable data collection, the DAS software was verified and validated according 
to procedures approved by BNI (in Bechtel memoranda CCN 191725 and CCN 191726 and their 
attachments).  The verification and validation included ensuring that the signal from the field transmitters 
and the confidence values from the BNI controllers were being accurately logged on the PNNL DAS.  
Table 5.2 lists the accuracy ranges that were used for the ensuring the logged data were within the 
acceptable tolerance limits.  This information was provided by BNI’s C&I staff prior to the start of the 
testing. 

All data were sampled at a rate of 100 Hz and logged at a rate of 20 Hz (i.e., one out of every five 
data points was logged).  In addition to the 20 Hz data files, data were also logged at a sampling rate of 
100Hz; this data was for information only and was not used in any of the analysis presented in this report.  
All data logged on PNNL DAS were time stamped with the date and time of sampling. 
 

5.6 Testing Approach 

The following approach was used for determining the performance of the BNI controllers: 

 Repeatability was determined by analyzing the controller generated confidence data under a 
given set of conditions to establish whether the true event (CVF or DOB) can be clearly 
distinguished from the false event arising from the noise associated with the pressure transducer 
signals. 

 Reliability was determined by conducting multiple cycles of the PJM operation at several test 
conditions to ensure that a threshold confidence level can be clearly identified to enable CVF or 
DOB detection over the range of conditions tested. 

The number of repeated cycles of data collected during each test condition are listed with the 
experimental results in Sections 6 – 10 below. 



 

5.6 

5.7 General Conditions 

The following general conditions applied to the various tests discussed in this report. 

1. All tests were performed with 50±5 feet of 2 inch reinforced PVC tubing on the drive leg of the 
JPP of PJM#A, 130±5 feet of 2 inch reinforced PVC tubing on the suction leg of the JPP of 
PJM#A, and 100±5 feet of 1 inch flush line reinforced PVC tubing on the air supply line of 
PJM#A.  No extension piping and flush line piping was used with any of the other PJMs. 

2. The focus of all testing and analysis presented in this report was PJM#A, which has the 
prototypic piping included between the JPP & pressure transmitter on the drive and suction legs, 
and on the flush line. 

3. All tests presented in this report were conducted at a single set point for the JPP drive and suction 
pressures of 4±0.2 bar-g as specified by BNI. 

4. All tests were conducted at ambient conditions. 

5. There were no spargers present in the four PJM configuration. 

5.8 Test Matrix 

The test parameters that were investigated to determine the ability of the ABB and Triconex 
controllers to detect CVF and DOB are shown in Table 5.3.  The parameters investigated included 
simulant type (clay/water), fill height (high/mid/low), number of PJMs operating, PJM fill level (only for 
DOB tests).  In addition to these, tests were also performed to determine the time to gravity fill the PJMs 
and the effect of density-gravity-height on the time to overblow.  The list of the various data files 
generated for the different tests performed are listed in Appendix A. 

Table 5.3.  Controller Test Matrix 

Test System Simulant Fill Level (H/D) Description 
System 
Tuning 

ABB 
Triconex 

Clay (30 ±5 Pa) High (0.80) Tune algorithm to detect 
overblows, charge vessel full, etc. 

Drive 
Overblow 
Scan Times 

ABB 
Triconex 

Water (30 ±5 
Pa) 

High (0.80) Detect drive overblow using the 
WTP flush line algorithm at 50ms, 
100ms, 150ms, and 250ms 
controller scan periods to 
determine optimal controller scan 
rate for overblow detection. 

Drive 
Overblow 
Detection  

ABB 
Triconex 

Clay (30 ±5 Pa) 
Water 

High (0.80) 
Mid (0.55) 
Low (0.30) 

Detect overblows at all three levels 
(low, mid, high) using both 
simulant types.  Tests run for single 
PJM and multiple PJM operations 
using both the flush line algorithm 
and normal PRESCON control 
algorithm (as designed by 
NuVision Engineering). 
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Test System Simulant Fill Level (H/D) Description 
CVF 
Detection 

ABB 
Triconex 

Clay (30 ±5 Pa) 
Water 

High (0.80) 
Mid (0.55) 
Low (0.30) 

Verify no change in charge vessel 
full indication with 4 nozzles (as 
opposed to the 2 nozzles). 

Rho-g-h Data 
Collection 

ABB Clay (30 ±5 Pa) 
Water 

High (0.80) 
Mid (0.55) 
Low (0.30) 

Collect time-to-overblow given -
g-h waste characteristics at all three 
levels (low, mid, high) using both 
simulant types. 

Gravity Re-fill ABB Clay (30 ±5 Pa) 
Water 

High (0.8) Determine how long it takes for the 
PJM to refill at high level water 
and clay with no suction (gravity 
re-fill). 
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6.0 Drive Overblow Detection 

The ability of BNI′s primary (ABB) and safety (Triconex) control systems to detect drive overblows 
was evaluated at multiple vessel fill levels using clay and water simulants to bound the upper and lower 
rheological limits of the waste streams that could be encountered in the WTP.  In addition, the PJM 
operation conditions were chosen to encompass the anticipated scenarios for PJM overblow to occur.  
These included, 1) an overblow occurring due to a stuck drive valve, 2) an intentional overblow during 
the scout mode of PJM operation where each PJM is operated by itself to determine the tuning parameters 
for the controller, and 3) an overblow occurring due to a PJM not completely filling during the suction 
phase. 

In Scenarios 1 and 2, both controllers provided reliable overblow detection.  For Scenario 3, neither 
controller could detect overblows over drive phase background noise peaks.  Reliable detection of 
overblows is therefore contingent on avoiding an incompletely filled PJM condition. 

6.1 Experimental Conditions 

The PJM operation for the different scenarios was achieved in the following manner: 

 Scenario 1, PJM overblow caused by a stuck valve.  Simulated by setting the drive time of one of 
the PJMs to a value such that the PJM overblew while the rest operated normally during the 
cycle.  This case is also referred to as the 4PJM-Full case. 

 Scenario 2, single PJM operation with overblow.  Simulated by turning off the other PJMs on the 
controller and setting the drive time for the one PJM such that it overblew during the drive phase.  
This case is also referred to as the 1PJM-Full case. 

 Scenario 3, overblow of an incompletely filled PJM.  Simulated by setting the CVF detection 
parameters of the controller such that the controller detects CVF before the pulse tube is actually 
full.  This case is also referred to as the 4PJM-Partial case. 

The overblow tests with Scenarios 1, 2, and 3 were performed with both clay and water simulants.  In 
all cases, only PJM#A, with the prototypic tubing, was overblown.  Scenarios 1 and 2 were performed at 

three simulant fill levels corresponding to Height to Diameter (H/D) ratios of 0.8, 0.55, and 0.3.
1
  For 

Scenario 3, however, due to difficulty in preventing PJM filling during the refill phase at the low H/D 
ratio of 0.3, testing was only conducted at H/D ratios of 0.8 and 0.55.  During testing, the clay simulant 
rheology was tested frequently and adjusted, if necessary, to keep it within the target range of 30±5 Pa. 

Each experiment consisted of between 100 and 300 PJM cycles.  The recorded confidence levels 
obtained from each experiment were examined and the peak values near overblow and the peak noise 
values during the pre-overblow drive were identified for every cycle.  The distributions of true and false 
(noise) peak values are displayed in the sections below in the form of histograms for each experiment.   
As confidence levels ranged between 0 and 100 (dimensionless), we divided the recorded confidence 

                                                      
1 For the 336 test vessel with an internal diameter of 153 inches, these H/Ds correspond to fill levels of 122.4, 84, 
and 46 inches, respectively, as measured from the tank centerline.  During testing, the fill level in the tank was 
maintained within ±2 inches of the target. 
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values into 80 bins that were 1.25 confidence units wide and counted the number of cycles for which the 
true confidence peak value fell within each bin.  We did likewise for the false peak values.  The 
histograms presented below are plots of those frequencies versus confidence value.  In each such plot the 
sum of bar heights in a distribution equals 1. 

We consider the detection of DOB to be repeatable for a given experiment if there is a clear 
separation between the true and false peak histograms.  Under such conditions a threshold confidence 
level for DOB detection could have been set for that experiment such that a large percentage of the cycles 
had false peak confidences below the threshold value and another large percentage had true peak values 
above the threshold.  We consider DOB detection to be reliable if such a conclusion holds for all three 
scenarios with both simulants at all three levels. 

The ability of the ABB and Triconex controllers to detect drive overblows is discussed in Sections 6.2 
and 6.3, respectively.  The responses of the two systems to overblows were different.  As tested, the ABB 
system sampled pressures every 50ms.  The Triconex sampled pressures every 250ms.  The differing scan 
rates resulted in differing distributions of confidence levels for the two systems.  The effect of scan rate is 
discussed in more detail in Section 10. 

6.2 Drive Overblow Detection with the ABB Controller 

The results of DOB testing with the ABB controller for Scenarios 1, 2, and 3 are presented in the 
following sections. 

6.2.1 Scenario 1: Clay Simulant 

Figure 6.1 shows the histograms for the true (Light shaded)2 and false (Dark shaded)3 peaks of flush 
line confidence levels for DOB detection with clay simulant under Scenario 1 where all PJMs are full 
prior to the start of the drive phase.  The upper, middle, and lower plots in this figure show the data for 
the high, mid, and low fill level of the simulant.  Each plot in this figure represents a minimum of 101 
cycles for a total of 314 cycles for the three fill heights. 

It can be seen in Figure 6.1 that for the high, mid, and low fill level in clay simulant, the true 
overblow confidence peak range is 69 - 89 while the false peak range is 18 - 47.  Also, for the clay 
simulant, the fill level seemed to have minor impact on the ranges of the true and false peaks observed.  
Finally, the true and false peaks appear to be well separated over the entire range of fill levels as shown in 
Figure 6.2.  This lack of overlap of the peaks indicates that a detection threshold value can be set for this 
simulant that will ensure a high probability that a drive overblow will be detected when one occurs and a 
low probability of a false detection when one doesn’t. 

Modeling the true and false overblow peaks under the assumption of normal distributions allows 
thresholds for overblow detection to be estimated for Scenario 1 with clay.  False alarms can be limited to 
1% or less with a threshold of 47.8 or greater.  The probability of overblow detection will be 99% or 

                                                      
2 A “true” peak corresponds to the peak (or maximum) value of the confidence anytime after the PJM overblow has 
occurred.   
3 A “false” peak corresponds to the peak (or maximum) value of the confidence anytime during the drive phase prior 
to the PJM overblow. 
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greater with a threshold of 70.2 or less.  A working threshold for clay can be chosen anywhere within the 
range of 47.8 to 70.2. 

An example segment of the time series of flush line confidence levels for Scenario 1 with clay 
simulant is plotted in Figure 6.3.  The data shown were obtained at the high liquid level.  The plot clearly 
shows the false peaks during the drive phase and the true peaks near overblow.  The ABB controller often 
produced baseline shifts during the suction phase as shown on the graph.  The baseline shifts in the 
controller values for the ABB controller at the end of a drive phase are attributed to the fact that the 
controller resets the confidence values to a preset value during the vent and refill phases. 

 
Figure 6.1.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 1 

(4PJM-Full Case) with ABB Controller in Clay Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 
(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=106 cycles) 

(N=101 cycles) 

(N=107 cycles) 

(a)

(b)

(c)
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Figure 6.2.  Histograms Over All Fill Levels of the True and False Overblow Peaks for DOB Detection 
Scenario 1 (4PJM-Full Case) with ABB Controller in Clay Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

 

Figure 6.3.  Flush Line Confidence Values for DOB Detection Scenario 1 (4PJM-Full Case)  
with ABB Controller in Clay Simulant at the High Fill Level 

(N=314 cycles) 
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6.2.2 Scenario 1: Water Simulant 

Figure 6.4 shows the histograms for the true and false peaks for DOB detection with water simulant 
under Scenario 1 where all PJMs were full prior to the start of the drive phase.  The upper, middle, and 
lower plots in this figure show the data for the high, mid, and low fill level of the simulant.  Similar to the 
clay data, each plot in this figure represents a minimum of 104 cycles and a total 513 cycles for the three 
fill heights. 

It can be seen in Figure 6.4 that for the high, mid, and low fill level in water simulant, the true 
overblow confidence peak range is 66 - 94 while the false peak range is 18 - 50.  Additionally, the 
simulant fill level seemed to have a more pronounced effect than that observed with the clay simulant.  
The true and false overblow confidence peaks are still well separated for all three fill levels, as shown in 
Figure 6.5.  This, once again, indicates that a detection threshold value can be set for water simulant that 
will ensure a high probability of true overblow detection and a low probability of false detections. 
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Figure 6.4.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 1 
(4PJM-Full Case) with ABB Controller in Water Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

Modeling the true and false overblow peaks under the assumption of normal distributions allows 
thresholds for overblow detection to be estimated for Scenario 1 with water.  False alarms can be limited 

(N=105 cycles) 

(N=104 cycles) 

(N=304 cycles) 
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to 1% or less with a threshold of 50.2 or greater.  The probability of overblow detection will be 99% or 
greater with a threshold of 67.9 or less.  A working threshold for water can be chosen anywhere within 
the range of 50.2 to 67.9. 

An example segment of the time series of flush line confidence levels for Scenario 1 with water 
simulant is plotted in Figure 6.6.  The true and false peaks and baseline noise during the drive phase are 
similar to the results obtained with clay. 
 

 

Figure 6.5.  Histograms Over All Fill Levels of the True and False Overblow Peaks for DOB Detection 
Scenario 1 (4PJM-Full Case) with ABB Controller in Water Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
 

 

Figure 6.6.  Flush Line Confidence Values for DOB Detection Scenario 1 (4PJM-Full Case)  
with ABB Controller in Water Simulant at the High Fill Level 

(N=513 cycles) 
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6.2.3 Scenario 2: Clay Simulant 

Figure 6.7 shows the histograms for the true and false peaks of flush line confidence levels for DOB 
detection with clay simulant under Scenario 2 where only PJM#A was operating.  The upper, middle, and 
lower plots in this figure show the data for the high, mid, and low fill level of the simulant.  Each plot in 
this figure represents a minimum of 306 cycles for a total of 924 cycles for the three fill heights. 
 

 

Figure 6.7.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 2 (1PJM-
Full Case) with ABB Controller in Clay Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=308 cycles) 

(N=310 cycles) 

(N=306 cycles) (c) 
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It can be seen in Figure 6.7 that for the high, mid, and low fill level in clay simulant, the true 
overblow confidence peak range is 77 - 100 while the false peak range is 7 - 22.  Also, for the clay 
simulant, the fill level seemed to have minor impact on the ranges of the true and false peaks observed.  
Finally, the true and false peaks appear to be well separated over the entire range of fill levels as shown in 
Figure 6.8.  This lack of overlap of the peaks indicates that a detection threshold value can be set for this 
simulant that will ensure a high probability of correct overblow detections. 

Modeling the true and false overblow peaks under the assumption of normal distributions allows 
thresholds for overblow detection to be estimated for Scenario 2 with clay.  False alarms will be limited to 
1% or less with a threshold of 16.7 or greater.  The probability of overblow detection will be 99% or 
greater with a threshold of 76.9 or less.  A working threshold for clay can be chosen anywhere within the 
range of 16.7 to 76.9. 

An example segment of the time series of flush line confidence levels for Scenario 2 with clay 
simulant is plotted in Figure 6.9. 
 

 

Figure 6.8.  Histograms Over All Fill Levels of the True and False Overblow Peaks for DOB Detection 
Scenario 2 (1PJM-Full Case) with ABB Controller in Clay Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=924 cycles) 
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Figure 6.9.  Flush Line Confidence Values for DOB Detection Scenario 2 (1PJM-Full Case) with ABB 
Controller in Clay Simulant at the Low Fill Level 
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6.2.4 Scenario 2: Water Simulant 

Figure 6.10 shows the histograms for the true and false peaks for DOB detection with water simulant 
under Scenario 2 where only PJM A is operating.  The upper, middle, and lower plots in this figure show 
the data for the high, mid, and low fill level of the simulant.  Each plot in this figure represents a 
minimum of 305 cycles for a total of 916 cycles for the three fill heights. 
 

 

Figure 6.10.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 2 
(1PJM-Full Case) with ABB Controller in Water Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=305 cycles) 

(N=306 cycles)

(N=305 cycles) 
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It can be seen in Figure 6.10 that for the high, mid, and low fill level in water simulant, the true overblow 
confidence peak range is 78 to 100 while the false peak range is 7 to 32.  The true and false overblow 
confidence peaks are again well separated for all three fill levels, as shown in Figure 6.11.  This, once 
again, indicates that a detection threshold value can be set for water simulant that will ensure a high 
probability of true overblow detection and a low probability of false detections. 

Modeling the true and false overblow peaks under the assumption of normal distributions allows 
thresholds for overblow detection to be estimated for Scenario 2 with water.  False alarms will be limited 
to 1% or less with a threshold of 28.1 or greater.  The probability of overblow detection will be 99% or 
greater with a threshold of 78.9 or less.  A working threshold for clay can be chosen anywhere within the 
range of 28.1 to 78.9. 

An example segment of the time series of flush line confidence levels for Scenario 2 with water 
simulant is plotted in Figure 6.12. 
 

 

Figure 6.11.  Histograms Over All Fill Levels of the True and False Overblow Peaks for DOB Detection 
Scenario 2 (1PJM-Full Case) with ABB Controller in Water Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

 

(N=916 cycles) 
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Figure 6.12.  Flush Line Confidence Values for DOB Detection Scenario 2 (1PJM-Full Case) with ABB 
Controller in Water Simulant at the Low Fill Level 
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6.2.5 Scenario 3: Clay Simulant 

For Scenario 3, overblow of PJM#A occurred because it was allowed to fill only partially before the 
start of the drive phase.  The other PJMs were operated normally.  Figure 6.13 shows the histograms for 
the true and false peaks for DOB detection with clay simulant under Scenario 3.  The upper and lower 
plots in this figure show the data for the high and mid fill levels of the simulant, respectively.  (As noted 
in Section 6.1 above, the lower fill level was not used with Scenario 3.)  The high level data were 
collected over 305 cycles and the mid level data were collected over 288 cycles. 
 

 

Figure 6.13.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 3 
(4PJM-Partial Case) with ABB Controller in Clay Simulant at (a) High and (b) Mid Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

It can be seen in Figure 6.13 that the true overblow confidence peak range is 15 - 62 while the false 
peak range is 0 - 23.  In this case, the fill level had a great impact on the magnitudes of the true peaks.  
The true and false peaks were not separated over the range of fill levels as shown in Figure 6.14.  It was 
not possible to set a general detection threshold for Scenario 3 that would separate the true and false 
peaks.  Also, it was not possible to estimate the probabilities of various degrees of PJM underfilling in the 

(N=305 cycles) 

(N=288 cycles) 
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WTP application, thus it is impossible to truly assess false alarm probabilities versus threshold.  
Therefore, it is not possible to have reliable detection of overblows in this case. 

Example segments of the time series of flush line confidence levels for Scenario 3 with clay simulant 
are plotted in Figure 6.15.  The values at high liquid level are plotted in the upper half of the figure and 
the values at mid level in the lower half.  The false peaks during the drive phase had similar magnitudes 
to those observed for the other scenarios (for example, see Figure 6.9).  The true peaks, however, had a 
greatly reduced magnitude.  Perhaps this was caused by the relatively low PJM pressures just before 
overblows, resulting in much lower or less abrupt dips in pressure when overblows occurred.  At mid 
level, the noise in the confidence level early in the drive blended with the reduced response at overblow, 
yielding a broad indistinct overblow peak.  Flush line pressures are also plotted in Figure 6.15.  At mid 
level, the flush pressure did not reach its ultimate value for the drive phase before each overblow 
occurred. 
 

 

Figure 6.14.  Histograms Over High and Mid Level Data Combined for the True and False Overblow 
Peaks for DOB Detection Scenario 3 (4PJM-Partial Case) with ABB Controller in Clay Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

6.2.6 Scenario 3: Water Simulant 

For Scenario 3, overblow of PJM#A occurred because it was allowed to fill only partially before the 
start of the drive phase.  The other PJMs were operated normally.  Figure 6.16 shows the histograms for 
the true and false peaks for DOB detection with water simulant under Scenario 3.  The upper and lower 
plots in this figure show the data for the high and mid fill levels of the simulant, respectively.  (As noted 
in Section 6.1 above, the lower fill level was not used with Scenario 3.)  Data were collected for 306 
cycles at both the high and mid simulant levels. 

It can be seen in Figure 6.16 that the true overblow confidence peak range is 11 - 44 while the false 
peak range is 0 - 23.  Again, the fill level had a great impact on the magnitudes of the true peaks.  The 
true and false peaks were not separated over the range of fill levels as shown in Figure 6.17.  It was not 
possible to set a general detection threshold for Scenario 3 that would separate the true and false peaks 
and so it was not possible to have reliable detection of overblows in this case. 

(N=593 cycles) 
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Example segments of the time series of flush line confidence levels for Scenario 3 with water 
simulant are plotted in Figure 6.18.  The values at high liquid level are plotted in the upper half of the 
figure and the values at mid level in the lower half.  The false peaks during the drive phase again had 
similar magnitudes to those observed for the other scenarios.  As with the clay simulant, the true peaks 
had a greatly reduced magnitude.  With water, the true confidence peaks tended to be even lower than the 
values obtained under Scenario 3 with clay. 
 

 

Figure 6.15.  Flush Line Confidence Values for DOB Detection Scenario 3 (4PJM-Partial Case) with 
ABB Controller in Clay Simulant at the High Fill (top) and Mid (bottom) Levels 
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Figure 6.16.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 3 
(4PJM-Partial Case) with ABB Controller in Water Simulant at (a) High and (b) Mid Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
 

 

Figure 6.17.  Histograms Over High and Mid Level Data Combined for the True and False Overblow 
Peaks for DOB Detection Scenario 3 (4PJM-Partial Case) with ABB Controller in Water Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
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Figure 6.18.  Flush Line Confidence Values for DOB Detection Scenario 3 (4PJM-Partial Case) with 
ABB Controller in Water Simulant at the High Fill (top) and Mid (bottom) Levels 
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6.2.7 Overall Results for DOB Detection with the ABB Controller 

If we ignore scenario 3, where overblow detection was not reliable, we can set reliable detection 
thresholds for operation with either simulant at any level, under the assumption that CVF will be 
guaranteed by other means.  Plotted in Figure 6.19 are true peak and false peak histograms for all 
Scenario 1 and 2 cases combined.  The distributions for the true and false peaks are significantly 
separated, so a detection threshold can be set to give a high probability of detection and a low false alarm 
rate. 

In determining the lower and upper limits of the true and false confidence peaks, here and in other 
sections of this report, we used only the data set from the worst case scenario.  For the ABB controller the 
maximum likely (at frequencies at least than 1%) false confidence values occurred during Scenario 1 with 
water at the low liquid level (see Figure 6.4 (c) above).  The minimum true confidences (at frequencies at 
most 1%) were also occurred Scenario 1 with water at low level, which was therefore the worst case 
scenario that resulted in the minimum separation between the distributions.  The histograms for that case 
are plotted again below in Figure 6.20, overlaid with approximating normal distributions.  From those 
normal distributions, it was estimated that approximately 99% of false peaks would fall under a 
confidence level of 50.2 (marked by the dashed line in the upper half of the figure), and approximately 
99% of true peaks would be above a confidence level of 67.9 (marked by the dashed line in the lower 
half).  A reliable detection threshold for ABB operation under most conditions (excluding failure to 
completely fill a PJM) could be anywhere between 50.2 and 67.9. 

As discussed above, we set tolerance limits based on worst case scenarios.  Alternatively, we could 
have combined all the data from all the experimental conditions.  Including cycles run under relatively 
benign experimental conditions in the analysis does increase the overall variability of the data, but this 
doesn’t really change by a significant amount the upper tail of false peaks, or the lower tail of true peaks.  
Including more benign cycles has the effect of somewhat artificially increasing statistical sample sizes 
that estimate the tails of the distributions and could lead to less conservative  statements about separation 
than were made using the current approach.  For this reason only the worst case distributions are used to 
derive the tolerance limits. 
 

 

Figure 6.19.  Combined Histograms for the True and False Overblow Peaks Over All Scenario 1 (4-PJM 
Full) and Scenario 2 (1PJM-Full) Cases (both simulants, all levels) for DOB Detection with ABB 

Controller (Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=2667 cycles) 
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Peak=False 

Number of cycles: 304 Mean confidence level: 40.805763 Standard deviation: 4.503538 
  

 
Peak=True 

Number of cycles: 304 Mean confidence level: 72.797877 Standard deviation: 2.3515439 

Figure 6.20.  Limiting Case Histograms for True and False Overblow Peaks for DOB Detection with 
ABB Controller and Approximating Normal Distributions 
(Light shaded – true peaks.  Dark shaded – false peaks.) 

6.3 DOB Detection with the Triconex Controller 

The results of DOB testing with the Triconex controller for Scenarios 1, 2, and 3 are presented in the 
following sections. 

6.3.1 Scenario 1: Clay Simulant 

Figure 6.21 shows the histograms for the true and false peaks of flush line confidence level for DOB 
detection with clay simulant under Scenario 1 where all PJMs were full prior to the start of the drive 
phase.  The upper, middle, and lower plots in this figure show the data for the high, mid, and low fill level 
of the simulant.  Each plot in this figure represents a minimum of 105 cycles for a total of 517 cycles for 
the three fill heights. 

It can be seen in Figure 6.21 that for the high, mid, and low fill level in clay simulant, the true 
overblow confidence peak range is 34 - 50 while the false peak range is 2 - 24.  The true and false peaks 
appear to be well separated over the entire range of fill levels as shown in Figure 6.22.  This lack of 
overlap of the peaks indicates that a detection threshold value can be set for this simulant that will ensure 
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a high probability that a drive overblow will be detected when one occurs and a low probability of a false 
detection when one doesn’t. 
 

 

Figure 6.21.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 1 (4-PJM 
Full) with Triconex Controller in Clay Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=107 cycles) 

(N=105 cycles) 

(N=305 cycles) 
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Figure 6.22.  Histograms Over All Fill Levels of the True and False Overblow Peaks for DOB Detection 
Scenario 1 (4-PJM Full) with Triconex Controller in Clay Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

The separation in the true and noise confidence distributions for DOB detection was less for the 
Triconex controller than for the ABB controller under Scenario 1 with clay simulant (see Figure 6.21).  
Similar is the case with the water simulant and all of the DOB conditions tested.  The difference in the 
amplitude of the confidence peaks and the separation of the true and false distributions is attributed 
primarily to the fact that the Triconex controller scans the pressure transmitter data at 250 ms intervals as 
opposed to the scan time of 50 ms for the ABB controller.  As shown in Section 10, the decrease in scan 
time (and the increase in scan rate) resulted in an increase in both the peak magnitudes and the separation 
of the true and noise distributions. 

Modeling the true and false overblow peaks under the assumption of normal distributions allows 
thresholds for overblow detection to be estimated for Scenario 1 with clay.  False alarms can be limited to 
1% or less with a threshold of 18.8 or greater.  The probability of overblow detection will be 99% or 
greater with a threshold of 33.3 or less.  A working threshold for clay can be chosen anywhere within the 
range of 18.8 to 33.3. 

An example segment of the time series of flush line confidence levels for Scenario 1 with clay 
simulant are plotted in Figure 6.23.  The values at high, mid, and low liquid levels are plotted in the 
upper, middle, and bottom sections of the figure, respectively.  The plots clearly show the very large CVF 
detection peaks near the end of the suction phase, one or two false peaks during each drive phase, and the 
true overblow detection peaks near overblow.  The Triconex controller often produced high, decaying 
baseline shifts at mid liquid level during the suction phase—a behavior that does not harm overblow 
detection.  That behavior at mid level may have been a function of the gain used for those cases. 

 

(N=517 cycles) 
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Figure 6.23.  Flush Line Confidence Values for DOB Detection Scenario 1 (4-PJM Full) with Triconex 
Controller with Clay Simulant at the High (top), Mid (middle), and Low (bottom) Levels 
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6.3.2 Scenario 1: Water Simulant 

Figure 6.24 shows the histograms for the true and false peaks for DOB detection with water simulant 
under Scenario 1 where all PJMs were full prior to the start of the drive phase.  The upper, middle, and 
lower plots in this figure show the data for the high, mid, and low fill level of the simulant.  Similar to the 
clay data, each plot in this figure represents a minimum of 107 cycles and a total 533 cycles for the three 
fill heights. 
 

 

Figure 6.24.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 1 (4-PJM 
Full) with Triconex Controller in Water Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
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Figure 6.25.  Histograms Over All Fill Levels of the True and False Overblow Peaks for DOB Detection 
Scenario 1 (4-PJM Full) with Triconex Controller in Water Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
 

 

Figure 6.26.  Flush Line Confidence Values for DOB Detection Scenario 1 (4-PJM Full) with Triconex 
Controller with Water Simulant at the Mid (top) and Low (bottom) Levels 

(N=533 cycles) 
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6.3.3 Scenario 2: Clay Simulant 

Figure 6.27 shows the histograms for the true and false peaks of flush line confidence levels for DOB 
detection with clay simulant under Scenario 2 where only PJM#A is operating.  The upper, middle, and 
lower plots in this figure show the data for the high, mid, and low fill level of the simulant.  Each plot in 
this figure represents a minimum of 303 cycles for a total of 913 cycles for the three fill heights. 
 

 

Figure 6.27.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 2 (1-PJM 
Full) with Triconex Controller in Clay Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=305 cycles) 

(N=303 cycles) 

(N=305 cycles) 
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It can be seen in Figure 6.27 that for the high, mid, and low fill level in clay simulant, the true 
overblow confidence peak range is 34 - 51 while the false peak range is 2 - 22.  The true and false peaks 
appear to be sufficiently separated over the entire range of fill levels as shown in Figure 6.28.  This lack 
of overlap of the peaks indicates that a detection threshold value can be set for this simulant that will 
ensure a high probability of correct overblow detections. 

Modeling the true and false overblow peaks under the assumption of normal distributions allows 
thresholds for overblow detection to be estimated for Scenario 2 with clay.  False alarms can be limited to 
1% or less with a threshold of 17.6 or greater.  The probability of overblow detection will be 99% or 
greater with a threshold of 34.2 or less.  A working threshold for clay can be chosen anywhere within the 
range of 17.6 - 34.2. An example segment of the time series of flush line confidence levels for Scenario 2 
with clay simulant is plotted in Figure 6.29. 
 

 

Figure 6.28.  Histograms Over All Fill Levels of the True and False Overblow Peaks for DOB Detection 
Scenario 2 with Triconex Controller in Clay Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

 

 

(N=913 cycles) 
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Figure 6.29.  Flush Line Confidence Values for DOB Detection Scenario 2 (1-PJM Full)  
with Triconex Controller in Clay Simulant at the Mid Fill Level 
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6.3.4 Scenario 2: Water Simulant 

Figure 6.30 shows the histograms for the true and false peaks for DOB detection with water simulant 
under Scenario 2 where only PJM#A is operating.  The upper, middle, and lower plots in this figure show 
the data for the high, mid, and low fill level of the simulant.  Each plot in this figure represents a 
minimum of 304 cycles for a total of 916 cycles for the three fill heights. 
 

 

Figure 6.30.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 2 (1-PJM 
Full) with Triconex Controller in Water Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
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It can be seen in Figure 6.30 that for the high, mid, and low fill level in water simulant, the true 
overblow confidence peak range is 28 - 45 while the false peak range is 1 - 6.  The true and false 
overblow confidence peaks are again well separated for all three fill levels, as shown in Figure 6.31.  
This, once again, indicates that a detection threshold value can be set for water simulant that will ensure a 
high probability of true overblow detection and a low probability of false detections. 

Modeling the true and false overblow peaks under the assumption of normal distributions allows 
thresholds for overblow detection to be estimated for Scenario 2 with water.  False alarms can be limited 
to 1% or less with a threshold of 3.8 or greater.  The probability of overblow detection will be 99% or 
greater with a threshold of 29.8 or less.  A working threshold for clay can be chosen anywhere within the 
range of 3.8 - 29.8. An example segment of the time series of flush line confidence levels for Scenario 2 
with water simulant is plotted in Figure 6.32.  Significant false peaks before the overblow peaks were not 
present. 
 

 

Figure 6.31.  Histograms Over All Fill Levels of the True and False Overblow Peaks for DOB Detection 
Scenario 2 (1-PJM Full) with Triconex Controller in Water Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

 

(N=916 cycles) 
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Figure 6.32.  Flush Line Confidence Values for DOB Detection Scenario 2 (1-PJM Full)  
with Triconex Controller in Water Simulant at the Mid Fill Level 

6.3.5 Scenario 3: Clay Simulant 

For Scenario 3, overblow of PJM#A occurred because it was allowed to only partially fill before the 
start of the drive phase.  The other PJMs were operated normally.  Figure 6.33 shows the histograms for 
the true and false peaks for DOB detection with clay simulant under Scenario 3.  The upper and lower 
plots in this figure show the data for the high and mid fill levels of the simulant, respectively.  (As noted 
in Section 6.1 above, the lower fill level was not used with Scenario 3.)  The high level data were 
collected over 327 cycles and the mid level data were collected over 305 cycles. 

It can be seen in Figure 6.33 that the true overblow confidence peak range is 9 - 29 while the false 
peak range is 3 - 13.  In this case, the fill level had a great impact on the magnitudes of the true peaks.  
The true and false peaks were not separated over the range of fill levels as shown in Figure 6.34.  It was 
not possible to set a general detection threshold for Scenario 3 that would separate the true and false peaks 
and so it was not possible to have reliable detection of overblows in this case. 

Example segments of the time series of flush line confidence levels for Scenario 3 with clay simulant 
at the mid level are plotted in Figure 6.35.  The overblow peak was not distinct from the false peak and its 
amplitude was small. 
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Figure 6.33.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 3  
(4-PJM Partial) with Triconex Controller in Clay Simulant at (a) High and (b) Mid Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
 

 

Figure 6.34.  Histograms Over High and Mid Level Data Combined for the True and False Overblow 
Peaks for DOB Detection Scenario 3 (4-PJM Partial) with Triconex Controller in Clay Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=327 cycles) 
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(N=632 cycles) 
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Figure 6.35.  Flush Line Confidence Values for DOB Detection Scenario 3 (4-PJM Partial)  
with Triconex Controller in Clay Simulant at the Mid Level 

6.3.6 Scenario 3: Water Simulant 

For Scenario 3, overblow of PJM#A occurred because it was allowed to only partially fill before the 
start of the drive phase.  The other PJMs were operated normally.  Figure 6.36 shows the histograms for 
the true and false peaks for DOB detection with water simulant under Scenario 3.  The upper and lower 
plots in this figure show the data for the high and mid fill levels of the simulant, respectively.  (As noted 
in Section 6.1 above, the lower fill level was not used with Scenario 3.)  Data were collected for 306 
cycles at the high simulant level and for 305 cycles at the mid level. 

It can be seen in Figure 6.36 that the true overblow confidence peak range is 8 - 25 while the false 
peak range is 3 - 12.  Again, the fill level had a great impact on the magnitudes of the true peaks.  The 
true and false peaks were not separated over the range of fill levels as shown in Figure 6.37.  It was not 
possible to set a general detection threshold for Scenario 3 that would separate the true and false peaks 
and so it was not possible to have reliable detection of overblows in this case. 
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Figure 6.36.  Histograms of the True and False Overblow Peaks for DOB Detection Scenario 3 with 
Triconex Controller in Water Simulant at (a) High and (b) Mid Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

 

Figure 6.37.  Histograms over High and Mid Level Data Combined for the True and False Overblow 
Peaks for DOB Detection Scenario 3 with Triconex Controller in Water Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
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An example segment of the time series of flush line confidence levels for Scenario 3 with water 
simulant at mid level is plotted in Figure 6.38.  The false peaks during the drive phase again had similar 
magnitudes to those observed for the other scenarios.  As with the clay simulant, the true peaks had a 
greatly reduced magnitude.  With water, the true confidence peaks tended to be even lower than the 
values obtained under Scenario 3 with clay. 
 

 

Figure 6.38.  Flush Line Confidence Values for DOB Detection Scenario 3  
with Triconex Controller in Water Simulant at the Mid Fill Level 

6.3.7 Overall Results for DOB Detection with the Triconex Controller 

As with the ABB controller, Scenario 3 was not handled well by the Triconex controller.  If we ignore 
that scenario, we can set reliable detection thresholds for operation with either simulant at any level, 
under the assumption that CVF will be guaranteed by other means.  Plotted in Figure 6.39 are true peak 
and false peak histograms for all Scenario 1 and 2 cases combined.  The distributions for the true and 
false peaks are significantly separated, so a detection threshold can be set to give a high probability of 
detection and a low false alarm rate. 

For the Triconex controller, the minimum separation between the distributions did not come from one 
limiting experimental condition (as was the case with the ABB controller).  True peak confidence levels 
were lowest for Scenario 2 with water at the high and mid levels and for Scenario 1 with water at the mid 
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level.  False peak levels were highest for the clay simulant in Scenarios 1 and 2 at low level.  The 
histograms for those cases were combined and are plotted below in Figure 6.40, overlaid with 
approximating normal distributions.  From those normal distributions, it was estimated that approximately 
99% of false peaks would fall under a confidence level of 18.8 (marked by the dashed line in the upper 
half of the figure), and approximately 99% of true peaks would be above a confidence level of 30.6 
(marked by the dashed line in the lower half).  A reliable detection threshold for Triconex operation under 
most conditions (excluding failure to completely fill a PJM) could be anywhere between 18.8 and 30.6. 
 

 

Figure 6.39.  Combined Histograms for the True and False Overblow Peaks Over All Scenario 1  
(4-PJM Full) and Scenario 2 (1PJM-Full) Cases (Both Simulants, All Levels)  

for DOB Detection with Triconex Controller 
(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=2879 cycles) 
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Peak=False 

Number of cycles: 610 Mean confidence level: 11.702252 Standard deviation: 3.2771729 

 

 
Peak=True 

Number of cycles: 731 Mean confidence level: 37.516035 Standard deviation: 3.2022017 

Figure 6.40.  Limiting Histograms for True and False Overblow Peaks for DOB Detection with Triconex 
Controller and Approximating Normal Distributions 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
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7.0 CVF Detection 

In this section, we discuss the ability of the BNI controllers to detect the charge vessel full condition.  
Unlike the tests of DOB detection, where different possible scenarios of DOB failure were investigated, 
the CVF tests were primarily focused on normal operation.  In other words, scenarios that can affect CVF 
detection (for example, a blocked PJM nozzle) were not investigated. 

The ability of ABB Controller and Triconex Controller control systems to detect CVF was evaluated 
at multiple vessel fill levels using clay and water simulants to bound the upper and lower rheological 
limits of the waste streams encountered in the WTP.  The PJMs were cycled normally at each level and 
the resulting confidence levels observed.  As mentioned above, no attempt was made to defeat the 
controller algorithms.  Thresholds for CVF detection were estimated by comparing the peak confidence 
values in the neighborhood of the CVF to the noise values that appeared before the CVF.  Noise values 
from early in the fill were removed from the analysis through the use of a mask.  The mask was used in 
the analysis to simulate masking functions within the controllers.  This section presents the results of the 
CVF detection experiments. 

7.1 Experimental Conditions 

During these experiments, all four PJMs were allowed to fill completely and drive normally.  This set 
of experiments was done in conjunction with the Scenario 1 overblow experiments (see Section 6.1), so 
PJM#A overblew on each cycle.  The PJM#A confidence level determined from the pressure transmitter 
on the drive and suction legs of the JPP were used in the analysis.  The maximum, or true, value near the 
CVF point was measured for each cycle, as was the false peak that occurred late in the fill (after the mask 
period).  In order to study the effect of mask period on the statistics for the false peak, two different mask 
times of 10 and 15 seconds (times from the start of the suction phase) were used in the analysis.  The tests 
were performed with both clay and water simulants at three simulant fill levels corresponding to H/D 
ratios of 0.8, 0.55, and 0.3.1  During testing, the clay simulant rheology was tested frequently and 
adjusted, if necessary, to keep it within the target range of 30±5 Pa. 

7.2 CVF Detection with the ABB Controller 

The results of CVF testing with the ABB controller are presented in the following sections.  Identical 
distributions for the true and false peaks were obtained using the 10 second wide and 15 second wide 
masks.  Thus the results below refer to both of these post-processing conditions. 

7.2.1 Clay Simulant 

Figure 7.1 shows the histograms for the true and false (pre-CVF) peaks of the PJM#A confidence 
level for CVF detection with clay simulant.  The upper, middle, and lower plots in this figure show the 

                                                      
1 For the 336 test vessel with an internal diameter of 153 inches, these H/Ds correspond to fill levels of 122.4, 84, 
and 46 inches, respectively, as measured from the tank centerline.  During testing, the fill level in the tank was 
maintained within  ±2 inches of the target. 
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data for the high, mid, and low fill level of the simulant.  Each plot in this figure represents a minimum of 
101 cycles for a total of 314 cycles for the three fill heights. 
 

 

Figure 7.1.  Histograms of the True and False Peaks for CVF Detection with ABB Controller in Clay 
Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
 

(N=106 cycles) 

(N=101 cycles) 

(N=107 cycles) (c) 

(b) 

(a) 
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Figure 7.2.  Histograms Over All Fill Levels of the True and False Peaks for CVF  
with ABB Controller in Clay Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 
 

 

\  

Figure 7.3.  PJM#A Confidence Values for CVF Detection with ABB Controller in Clay Simulant at the 
Mid (top) and Low (Bottom) Fill Levels 

(N=314 cycles) 
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It can be seen in Figure 7.1 that for the high, mid, and low fill level in clay simulant, the true 
overblow confidence peak range is 37 - 88 while the false peak range is 3 - 13.  The fill level had an 
impact on the ranges of the true peaks; the confidence values tending to decrease with decreasing 
simulant level.  However, the true and false peaks were always well separated over the range of fill levels 
as shown in Figure 7.2.  This lack of overlap of the peaks indicates that a detection threshold value can be 
set for this simulant that will ensure a high probability that CVF will be detected at the correct time in a 
normal PJM cycle. 

Modeling the true and false CVF peaks under the assumption of normal distributions allows 
thresholds for CVF detection to be estimated for the ABB controller with clay.  False alarms can be 
limited to 1% or less with a threshold of 11.3 or greater.  The probability of CVF detection will be 99% or 
greater with a threshold of 37.8 or less.  A working threshold for clay can be chosen anywhere within the 
range of 11.3 to 37.8. 

Example time series of PJM#A confidence levels for the ABB controller with clay simulant for each 
fill level are plotted in Figure 7.3.  The confidence levels before CVF were essentially baseline noise 
without distinct false peaks.  For the ABB controller the peak in confidence near CVF typically occurred 
roughly 1 second after the drop in JPP drive pressure discussed in Section 3.1.1. 

7.2.2 Water Simulant 

Figure 7.4 shows the histograms for the true and false peaks of the PJM#A confidence level for CVF 
detection with water simulant.  The upper, middle, and lower plots in this figure show the data for the 
high, mid, and low fill level of the simulant.  Each plot in this figure represents a minimum of 104 cycles 
for a total of 513 cycles for the three fill heights. 

It can be seen in Figure 7.4 that for the high, mid, and low fill level in water simulant, the true 
overblow confidence peak range is 39 - 71 while the false peak range is 2 - 7.  Again, the fill level had an 
impact on the ranges of the true peaks, the confidence values tending to decrease with decreasing 
simulant level.  The true and false peaks were always well separated over the range of fill levels however, 
as shown in Figure 7.5.  This lack of overlap of the peaks once again indicates that a detection threshold 
value can be set for this simulant that will ensure a high probability that CVF will be detected at the 
correct time in a normal PJM cycle. 

Modeling the true and false CVF peaks under the assumption of normal distributions allows 
thresholds for CVF detection to be estimated for the ABB controller with water.  False alarms can be 
limited to 1% or less with a threshold of 6.3 or greater.  The probability of CVF detection will be 99% or 
greater with a threshold of 40.0 or less.  A working threshold for clay can be chosen anywhere within the 
range of 6.3 to 40.0. 



 

7.5 

 

Figure 7.4.  Histograms of the True and False Peaks for CVF Detection with ABB Controller 
in Water Simulant at (a) High, (b) Mid, and (c) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

 

(N=105 cycles) 

(N=104 cycles) 

(N=304 cycles) 

(a) 

(b) 

(c) 



 

7.6 

 

Figure 7.5.  Histograms Over All Fill Levels of the True and False Peaks for CVF 
with ABB Controller in Water Simulant 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

7.2.3 Overall Results for CVF Detection with the ABB Controller 

Plotted in Figure 7.6 are true peak and false (pre-CVF) peak histograms for all cases (both simulants 
and all levels) combined.  The distributions for the true and false peaks are significantly separated, so an 
overall detection threshold can be set to give a high probability of CVF detection at approximately the 
correct time in the PJM cycle. 

For the ABB controller, the true peak confidence levels were lowest for clay simulant at the low 
liquid level.  The false peak levels were highest for the clay simulant in at high level.  The histograms for 
those cases were combined and are plotted below in Figure 7.7, overlaid with approximating normal 
distributions.  From those normal distributions, it was estimated that approximately 99% of false peaks 
would fall under a confidence level of 11.3 (marked by the dashed line in the upper half of the figure), 
and approximately 99% of true peaks would be above a confidence level of 37.8 (marked by the dashed 
line in the lower half).  A reliable CVF detection threshold for ABB operation could be anywhere 
between 11.3 and 37.8. 
 

 

Figure 7.6.  Combined Histograms for the True and False Peaks Over All Cases (both simulants, all 
levels) for CVF Detection with ABB Controller 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=513 cycles) 

(N=827 cycles) 
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Peak=False 

Number of cycles: 106 Mean confidence level: 9.0136887 Standard deviation: 1.1739139 

 

 
Peak=True 

Number of cycles: 107 Mean confidence level: 39.951356 Standard deviation: 1.1207059 

Figure 7.7.  Limiting Histograms for True and False Peaks for CVF Detection with ABB Controller and 
Approximating Normal Distributions 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

7.3 CVF Detection with the Triconex Controller 

The results of CVF testing with the Triconex controller are presented in the following sections.  
Identical distributions for the true and false peaks were obtained using the 10 second wide and 15 second 
wide masks at the high and low simulant levels.  Thus the high and low level results below refer to both 
of these post-processing conditions. 

7.3.1 Clay Simulant 

Figure 7.8 shows the histograms for the true and false (pre-CVF) peaks of the PJM#A confidence 
level for CVF detection with clay simulant.  The upper, middle, and lower plots in this figure show the 
data for the high, mid, and low fill level of the simulant.  Each plot in this figure represents a minimum of 
105 cycles for a total of 517 cycles for the three fill heights.  Two groups of histograms are presented for 
the mid level data—one set obtained with the 10 second wide mask and another set obtained with the 15 
second wide mask.  The wider mask reduced the width of the distribution of false peaks obtained at mid 
level, for reasons discussed below. 
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Figure 7.8.  Histograms of the True and False Peaks for CVF Detection with Triconex Controller in Clay 
Simulant at (a) High, (b) Mid (10 second mask), (c) Mid (15 second mask) and (d) Low Fill Levels 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

It can be seen in Figure 7.8 that for the high, mid, and low fill level in clay simulant, the true 
overblow confidence peak range is 50 - 100 while the false peak range is 4 - 17 (with the 15 second wide 
mask; 25 with the 10 second mask).  The mid-level confidence data had spurious peaks near the start of 
each fill; peaks that were mostly eliminated from the distributions of false peaks with the masks.  
However, the true and false peaks were always well separated over the range of fill levels as shown in 
Figure 7.9.  This lack of overlap of the peaks indicates that a detection threshold value can be set for this 
simulant that will ensure a high probability that CVF will be detected at the correct time in a normal PJM 
cycle. 
 

(N=107 cycles) 

(N=105 cycles) (N=105 cycles) 

(N=305 cycles) 

(c)

(d)

(b)

(a)
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Figure 7.9.  Histograms Over All Fill Levels of the True and False Peaks for CVF with Triconex 
Controller in Clay Simulant (obtained with the 15 second mask on the  

PJM#A confidence data near the start of the fill) 
(Light shaded – true peaks.  Dark shaded – false peaks.) 

Modeling the true and false CVF peaks under the assumption of normal distributions allows 
thresholds for CVF detection to be estimated for the Triconex controller with clay.  False alarms can be 
limited to 1% or less with a threshold of 15.4 (with the 15-second wide mask; 21.9 with the 10-second 
mask) or greater.  The probability of CVF detection will be 99% or greater with a threshold of 50.6 or 
less.  A working threshold for clay can be chosen anywhere within the range of 15.4 to 50.6. 

Example time series of PJM#A confidence levels for the Triconex controller with clay simulant for 
each fill level are plotted in Figure 7.10.  For the Triconex controller the peak in confidence near CVF 
typically occurred roughly 1 second after the drop in JPP drive pressure discussed in Section 3.1.1.  The 
mid level data shows characteristic peaks early in the fill; peaks that seem to be roughly correlated with 
rising of the liquid level above the nozzle transition in the PJM.  Their presence in the mid-level data, and 
not at the high or low levels, may be a function of the controller tuning for this case.  The masks were 
intended to eliminate these peaks and most of their decay tails from the determination of the false peak 
values. 

7.3.2 Water Simulant 

Figure 7.11 shows the histograms for the true and false peaks of the PJM A confidence level for CVF 
detection with water simulant.  The upper, middle, and lower plots in this figure show the data for the 
high, mid, and low fill level of the simulant.  Each plot in this figure represents a minimum of 107 cycles 
for a total of 533 cycles for the three fill heights.  Two groups of histograms are presented for the mid 
level data—one set obtained with the 10 second wide mask and another set obtained with the 15 second 
wide mask. 

(N=517 cycles) 
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It can be seen in Figure 7.11 that for the high, mid, and low fill level in water simulant, the true 
overblow confidence peak range is 49 - 100 while the false peak range is 3 - 16 (with the 15 second wide 
mask; 3 - 19 with the 10 second mask).  The true and false peaks were again always well separated over 
the range of fill levels as shown in Figure 7.12.  This lack of overlap of the peaks once again indicates 
that a detection threshold value can be set for this simulant that will ensure a high probability that CVF 
will be detected at the correct time in a normal PJM cycle. 
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Figure 7.10.  PJM#A Confidence Values for CVF Detection with Triconex Controller in Clay Simulant at 
the High (top), Mid (middle) and Low (bottom) Fill Levels 
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Modeling the true and false CVF peaks under the assumption of normal distributions allows 
thresholds for CVF detection to be estimated for the Triconex controller with water.  False alarms can be 
limited to 1% or less with a threshold of 13.8 (with the 15 second wide mask, 15.3 with the 10 second 
mask) or greater.  The probability of CVF detection will be 99% or greater with a threshold of 50.7 or 
less.  A working threshold for clay can be chosen anywhere within the range of 13.8 to 50.7. 
 

 

 

Figure 7.11.  Histograms of the True and False Peaks for CVF Detection with Triconex Controller in 
Water Simulant at (a) High, (b) Mid (10 second mask), (c) Mid (15 second mask)  

and (d) Low Fill Levels 
(Light shaded – true peaks.  Dark shaded – false peaks.) 

(N=107 cycles) 

(N=120 cycles) (N=120 cycles) 

(N=306 cycles) 

(a)

(b) (c)

(d)
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Figure 7.12.  Histograms Over All Fill Levels of the True and False Peaks for CVF with Triconex 
Controller in Water Simulant (obtained with the 15 second mask on the PJM#A confidence data near the 

start of the fill) 
(Light shaded – true peaks.  Dark shaded – false peaks.) 

7.3.3 Overall Results for CVF Detection with the Triconex Controller 

Plotted in Figure 7.13 are true peak and false (pre-CVF) peak histograms for all cases (both simulants 
and all levels) combined.  The distributions for the true and false peaks are significantly separated, so an 
overall detection threshold can be set to give a high probability of CVF detection at approximately the 
correct time in the PJM cycle. 
 

(N=533 cycles) 
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Figure 7.13.  Combined Histograms for the True and False Peaks Over All Cases (both simulants, all 
levels) for CVF Detection with Triconex Controller with the 10 Second- (top)  

and 15 Second-wide (bottom) Masks 
(Light shaded – true peaks.  Dark shaded – false peaks.) 

For the Triconex controller, the true peak confidence levels were lowest for both clay and water 
simulants at the low liquid level.  The false peak levels were highest for the clay simulant at the mid level.  
The histograms for those cases were combined and are plotted below in Figure 7.14, overlaid with 
approximating normal distributions.  From those normal distributions, it was estimated that approximately 
99% of false peaks would fall under a confidence level of 15.4 (with the 15 second wide mask, 21.9 with 
the 10 second mask) and approximately 99% of true peaks would be above a confidence level of 50.5 
(with either mask width).  A reliable CVF detection threshold for Triconex operation could be anywhere 
between 15.4 and 50.5 (these confidence levels are marked with dashed lines in the upper right and lower 
panels of Fig.  7.14). 

 

(N=1050 cycles) 

(N=1050 cycles) 

(a) 

(b) 
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Peak=False, 10-second wide mask 

Number of cycles: 105 Mean confidence level: 16.778619 Standard deviation: 2.6568293 

 

 
Peak=False, 15-second wide mask 

Number of cycles: 105 Mean confidence level: 12.775633 Standard deviation: 1.3435587 

 

 
Peak=True (either mask) 

Number of cycles: 611 Mean confidence level: 55.834629 Standard deviation: 2.4878938 

Figure 7.14.  Limiting Histograms for “True and False Peaks for CVF Detection with Triconex 
Controller and Approximating Normal Distributions 

(Light shaded – true peaks.  Dark shaded – false peaks.) 

 





 

8.1 

8.0 Predicting Time-to-Overblow 

Development of a correlation between time-to-overblow and drive pressure, fill height, and simulant 
density may allow the prediction of a maximum drive time (for the process conditions) to be incorporated 
into the PJM control strategy, minimizing the frequency of overblows.  In the first part of this section we 
present the experimentally determined time-to-overblow for the two simulants and the three fill levels 
studied in the present testing.  In Section 8.2 we present the results of correlating the data using the 
time-to-overblow model previously developed (see Section 12 of Bontha et al. 2007). 

8.1 Determination of Time-To-Overblow 

The time-to-overblow tests were performed with all four PJMs operating while varying the fill height 
and the simulant type.  The experimental set-up and all other parameters, the nominal JPP drive and 
suction pressures in particular, were kept constant.  During the tests, each drive was continued until there 
was an overblow to ensure that the total volume of the PJM was expelled.  The time-to-overblow 
experiments were conducted in conjunction with the Scenario 1 overblow detection experiments 
discussed in Section 6.  Refer to that section for more discussion of the operating conditions during the 
tests. 

The time-to-overblow for a PJM cycle is defined as the difference between the starting time of the 
drive phase and the starting time of the overblow.  The former was estimated from the time the JPP drive 
pressure began to rise after the end of the suction.  The latter was estimated from the time the PJM#A 
flush line pressure dropped precipitously just before the end of the drive.  Plotted in Figure 8.1 are the 
flush line and drive pressures for a portion of a typical PJM cycle.  The approximate starting points of the 
drive and the overblow are marked on the figure. 
 

 

Figure 8.1.  Illustration of the Drive Phase During a PJM Cycle 
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Aggregate time-to-overblow data are listed in Table 8.1 for the water and clay simulants at the three 
fill heights.  Each data point in the table represents an average of approximately 30 cycles of data.  For a 
given simulant, the time-to-overblow increased with increasing fill height.  For a given fill height, it 
increased with increasing density of the simulant (for example, when the simulant was changed from 
water to clay). 

Table 8.1.  Time-to-Overblow Data 

 Simulant   tob, seconds 
Experiment(1) Type Level, 

inches(2)
Number 

of 
cycles 

Avg.  
headspace 
pressure, 

psia(3) 

Min Max Average 

080519_ABB_4PJM_CVF_20Hz Clay 55 31 26.8 17.7 17.9 17.8 
080521_ABB_4PJM_CVF_20Hz Clay 94 30 26.1 16.2 16.4 16.2 
080527_ABB_4PJM_CVF_20Hz Clay 132 30 25.4 15.5 15.8 15.6 
080603_ABB_4PJM_CVF_20Hz Water 55 30 26.4 16.5 16.7 16.6 
080609_ABB_4PJM_CVF_20Hz Water 94 30 25.7 15.7 15.9 15.8 
080613_ABB_4PJM_CVF_20Hz Water 132 30 25.4 15.0 15.1 15.0 
Notes: 

(1) Represents the experimental data set used to determine the time-to-overblow 
(2) Liquid level below the rim of the tank – an average of measurements before and after the run.  Level above the nozzle = 

162.5 inches – (level below the rim). 
(3) The result shown is the average over the cycles of the headspace pressure just before start of each overblow. 

8.2 Modeling of the Time-to-Overblow  

Bontha et al. (2005) derived and verified a Bernoulli-based model that describes the dynamic height 
of a non-Newtonian fluid in a PJM vessel during operation.  The approach allows tob values to be 
correlated in terms of an excess headspace pressure u (Bontha et al.  2007). 

 tob  C1
u

g
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where: 

 

u

g
 P1 P2

g
 z20

,

P1  PJM headspace pressure (assumed constant),

P2 1 atm.  Pressure in the tank above the liquid,

z20
 the liquid level in the tank above the nozzle at the instant of overblow,

C1, C2 are constants for a given PJM configuration.

 

The headspace pressure (P1) was approximated by the pressure inside the pulse tube just before overblow. 

The above expression was derived assuming quasi-steady (neglecting fluid acceleration) PJM 
operation during the drive phase, constant headspace and tank pressures, and constant PJM diameter 
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down to but not including the nozzle.  Under such assumptions, constants C1 and C2 can be formally 
related to nozzle, PJM, and tank cross-sections and to the nozzle loss coefficient.  In this report, we treat 
them as empirical parameters.  In the PJM configuration used for these tests (see Section 3 of this report), 
the liquid level above the nozzle at overblow when all four PJMs are operating is approximately, 

 z20
 162.5 inches -

Simulant level

from Table 9.1
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with APJM = 433.3 in2 and Atank = 16575.8 in2. 

There are two primary, independent variables, the drive head (P1-P2)/g and hydrostatic head z2o.  
These are combined in Equation 8.1 as the excess head u/g.  These two factors are plotted against each 
other in Figure 8.2 for all the PJM cycles examined.  There is one point plotted for each cycle in each 
experiment listed in Table 8.1.  During these experiments, we systematically varied the hydrostatic head 
over a range of about 85 inches.  The drive pressure (P1) was not deliberately changed.  The changes in 
the drive head that occurred were due to either fluctuations in P1 or were incidental to changes in the 
simulant density.  Because the drive pressure was not changed, u/g varied only about 100 inches 
(between 160 inches and 260 inches). 
 

 

Figure 8.2.  Factors that Influence the Time-to-Overblow 

Equation 8.1 suggests that, for a given tank geometry and constant pressure inside the pulse tube 
during the drive phase, the time-to-overblow is a well-behaved function of the excess head u/g, 
independent of the properties of the fluid, allowing all of the time-to-overblow data obtained from the 
same PJM configuration to be described by a single master curve.  Plotted in Figure 8.3 are the time-to-
overblow values versus u/g for all 181 PJM cycles of the experiments listed Table 8.1.  A regression fit 
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was used to estimate the parameters C1 and C2 (in Eq. 8.1) that provided the best fit to the overblow data, 
yielding: 

 
C1  4.01 

sec2

inch
1.44

C2 1194 sec2 167.

  (8.3) 

Here, the estimated uncertainties in the parameters are at the 95% confidence level (the uncertainties are 
presented for information only).  The resulting model is plotted with the data in Figure 8.3.  Also plotted 
in the figure is the 95% confidence interval for predicting the observed overblow time for an arbitrary 
PJM cycle with the model.  The model with the above parameters predicts the data to within  
+/- 0.72 seconds (the uncertainty is for information only).  The values of the constants, their uncertainties, 
and those of the time-to-overblow predictions are valid only for the equipment and range of u/g used in 
these tests. 
 

 

Figure 8.3.  Time-to-Overblow Data in the 4PJM Configuration 

The data in Figure 8.3 indicate that, provided the pressure inside the PJM is known, a single curve 
with independent variable u/g that depends only upon the tank and PJM geometry could be sufficient to 
correlate variations in the time-to-overblow with changes in simulant density and fill level in the vessel.  
The scatter in the experimental time-to-overblow versus the simple model prediction is attributed to the 
fact that in the real operation, the PJM pressure is not truly constant and acceleration effects do contribute 
to the time-to-overblow. 
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9.0 Time for Gravity Refill 

The time it takes a PJM to refill under gravity conditions is an important parameter, particularly 
during PJM operations at the elevated temperatures encountered in the ultra–filtration, feed preparation 
vessel where it is not possible to refill the PJMs using vacuum due to problems associated with flashing 
of the simulant at elevated temperatures and low pressures. 

Gravity refill is compared to normal suction refill in Figure 9.1.  In the figure the level in PJM#A is 
plotted versus time (in units of 0.05 seconds) for the two refill methods, using clay at a level H/D of 0.8.  
At low levels the PJM fills at comparable rates in the two cases.  However, with gravity refill the 
available liquid head in the tank limits the ultimate fill rate and level in the PJM.  From the data in Figure 
9.1 and the data in Table 9.1, it can be seen that it took about 20 seconds to fill the PJM to 88 inches 
under vacuum and it took ~ 45 seconds to fill under gravity to the hydrostatic height of fluid in the PJM.  
It is also apparent in the figure that time at which the PJM is considered to be full in the gravity refill case 
is not sharply defined. 

 

 

Figure 9.1.  Typical PJM#A Levels During Gravity Fill and Suction Fill  
Using Clay Simulant at the High Fill Level 

The time it took the PJM to refill by gravity was determined as the time from the point when the drive 
phase ends to the point when the pulse tube is completely full.  The time that the drive phase ends was 
determined from the pressure on the drive side of the JPP as shown in Figure 9.2.  During the drive phase, 
the pressure on the drive side of the JPP remains constant until the drive valve is closed, after which the 

(Drive has started) 
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pressure rapidly decreases.  Therefore, the end of the drive phase was determined from the time at which 
the drive pressure begins to rapidly decline, as indicated in the figure below. 
 

 

Figure 9.2.  Typical PJM#A Drive Pressure at the JPP Showing the End of the Drive Phase 

During gravity refill, there is a significant length of time between when the drive valve is closed and 
when the PJM stops emptying and starts filling.  During normal operation with suction fill, a vent phase 
occurs after the drive, typically lasting 2 to 4 seconds, after which the vacuum is applied.  This tends to 
reduce the apparent duration of the fill phase down to the duration of applied vacuum.  However, with 
gravity refill, the entire fill phase is conducted with the pulse tube venting.  Under such conditions, it 
takes much longer for fluid in the pulse tube to stop descending and start rising. 

The time the PJM was completely full was determined from the PJM level data.  In the present 
analysis, the time the PJM was considered full was determined as the point when the PJM level was the 
same as the average level after the tube was full.  Typical PJM level probe data during the gravity refill 
test is shown in Figure 9.3.  It can be seen that unlike the JPP drive pressure data (see Figure 9.2) that 
showed a sharp transition once the drive valve was closed, the end of the refill phase was more difficult to 
determine from the PJM level data due to signal noise.  The vertical lines in the figure show the typical 
uncertainty in determining the end time of the refill phase, which was roughly ±two seconds (the 
uncertainty is presented For Information Only). 
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Figure 9.3.  Typical PJM#A Level Probe Data at the End of the Refill Phase 

The time to refill the PJM was determined at the high fill level (H/D = 0.8) for both clay and water 
simulants.  The gravity refill tests were performed using the ABB controller to operate PJM #A  (the other 
three PJMs were not operated).  During these runs, the suction phase was turned off in the controller and 
PJM drive time of PJM #A was adjusted such that the drive corresponded to approximately 85% of the 
PJM volume.  The time to refill under gravity conditions for the clay and water simulants is shown in 
Table 9.1.  Each data point in this table was an average of approximately 30 cycles of data.  It can be seen 
that, contrary to expectation, the pulse tube fills faster with the clay simulant than with water.  However, 
the difference in the refill times was not significant.  This is probably because the major driving force for 
refill is the hydrostatic head outside the PJM, which is larger in the case of the clay simulant with a 
specific gravity of approximately 1.2 compared to water.  Another possibility is the differences in the 
stroke lengths during the two tests.  A comparison of the stroke lengths in clay and water simulants for a 
single cycle and multiple cycles is shown in Figure 9.4 and Figure 9.5.  It can be seen that there is very 
little difference in the stroke lengths to contribute to the slight difference in the refill times. 

Table 9.1.  Gravity Refill Times for Clay and Water Simulants at an H/D = 0.8 

Simulant Time to Refill (sec) Error (sec) 
Water 49.1 ±1.6 
Clay 46.1 ±1.7 
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Figure 9.4.  Comparison of a Single Cycle of PJM Level Data in the Gravity Refill Tests  
with Clay and Water Simulants 

 

Figure 9.5.  Comparison of a Single Cycle of PJM Level Data in the Gravity Refill Tests  
with Clay and Water Simulants 
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10.0 Effect of Scan Time 

The rate at which the PJM controller samples the signal from the pressure transmitter is an important 
parameter that controls the controller performance.  Scanning at a slow speed reduces the processing 
requirements for the controller but could also result in the controller missing the true event of a DOB.  On 
the other hand, increasing the scan rate could result in an increased likelihood of an event being observed 
but at a significant increase in the processing speeds/capacity of the controlling software. 

10.1 Experimental Conditions 

The effect of the scan rate on the ABB and Triconex controllers’ ability to detect overblows was 
evaluated at four different scan times of 50, 100, 150, and 250 ms.  These scan times correspond to a scan 
rate of 20, 10, 6.7, and 4 samples per second (or Hz).  All tests to determine the scan rate effect were 
performed with the water simulant at a high fill level (h/d = 0.8).  In addition, during each scan rate run, 
the four PJMs were operated in such a manner that each cycle started with all four PJMs completely full 
and PJM#A overblows at the end of the drive phase for a minimum of 3 seconds.  Finally, for each scan 
rate run, a minimum of 20 cycles of data were collected. 

10.2 Results 

Figure 10.1 shows the effect of scan time on the performance of the ABB controller in terms of the 
true and noise peaks for DOB detection.  Similarly, the effect of scan time on the Triconex controller is 
shown in Figure 10.2.  In these figures, the shaded bars represent the true overblow confidence peak while 
the unfilled bars represent the maximum noise peak observed during the cycle prior to the overblow. 

10.3 Discussion 

It can be seen in Figure 10.1 and Figure 10.2 that, for both the ABB controller and the Triconex 
controller, as the scan time decreases from 250 ms to 50 ms, the magnitude of the true overblow peak 
shows a far greater increase than the noise peak.  In both figures, the open bars represent the maximum 
noise peak during the cycle prior to an overblow and the filled bars represent the confidence peak during a 
drive overblow. From the data in the figures, it is clear that the lower the scan time (or higher the scan 
rate), the better the controller’s ability to detect overblows.  Also, it appears from the data in the figures 
that the scan time has a slightly more pronounced effect on the ABB controller than the Triconex 
controller.  This difference may be associated with the slight differences in the algorithm and to the 
differences in the types of hardware (signal conditioning boards, filters, etc.) used by the two controllers. 

Despite the significant improvement in both the ABB and Triconex controller performance at faster 
scan rates, care should be taken to extrapolate from the data presented in this section because an 
insufficient number of cycles of data were taken.  Since, during all of the controller testing performed 
during this period of testing, raw data from the pressure transmitters was recorded by the PNNL DAS at a 
sampling rate of 100 Hz, it is recommended that these data be used to simulate the different sampling 
rates by the controller to obtain sufficient data to make a statistical determination of the effect scan time. 
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Figure 10.1.  Effect of Scan Time on ABB Controller’s Ability to Detect a Drive Overblow.  The area 
under each distribution equals the total number of PJM cycles sampled, N 
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Figure 10.2.  Effect of Scan Time on Triconex Controller’s Ability to Detect a Drive Overblow.  The area 
under each distribution equals the total number of PJM cycles sampled, N 
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11.0 Conclusions 

The results of the testing indicate drive overblow detection is possible with both the ABB and 
Triconex controllers that only under conditions when CVF can be detected at all times and under all 
circumstances.  Under such conditions, the distributions of confidence levels during a drive overblow 
were well separated from the distribution of noise.  Therefore it should be possible to set a detection 
threshold for overblows that gives a high probability of detection (>99%) and a low probability of false 
alarms (<1%). 

Under conditions where absolute CVF detection cannot be guaranteed, both BNI controllers are not 
capable of detecting drive overblows. Both the ABB and Triconex controllers failed to reliably detect 
overblows under the scenario where a PJM overblow occurred because the pulse tube was not completely 
full before the start of the drive phase.  Under such conditions the peak amplitudes of the flush line 
confidence levels were small and their distribution significantly overlapped the distribution of noise 
peaks.  Thus the overblow signal was often indistinguishable from normal operating noise.  Highly 
reliable detection of the charge vessel full condition is required in order to operate the PJMs with a very 
low probability of an overblow occurring. 

Our overblow experiments were conducted at a single nominal drive pressure (which corresponds to a 
single nominal drive velocity).  The repeatability and reliability of overblow detection at other drive 
pressures is unknown. 

In these tests, both controllers reliably detected the CVF condition during normal PJM operation.  It 
was demonstrated that a detection threshold for CVF could be set that would give a 99% or higher 
probability of detection of CVF at approximately the correct point in time and a 1% percent or less 
probability of a false CVF detection signal before the PJM is truly full. 

Although the results of the present study indicate reliable CVF detection under normal PJM 
operation, it should be noted that the CVF results obtained in the present study may be more positively 
biased than the signals that will be observed in the actual plant.  This was an unavoidable consequence of 
including the level probe to measure the level of the slurry inside the PJM, which reduced the effective 
diameter of the airline at the top of the PJM by 0.75 inches.  For a 23.5 inch pulse tube diameter with a 
Schedule 40 air-link pipe, this results in a 16% increase in the area ratio of the PJM to the air-link line.  
The net result is that the observed controller confidence levels, particularly for CVF, being stronger in the 
present study that those which will be observed in the real plant. 

In the experiments to test the CVF detection ability, the PJMs were always filled completely.  We did 
not assess the probability of a false detection of CVF when in fact the PJM did not fill completely (as 
could have been caused by an obstruction to the PJM nozzle).  We did not evaluate different scenarios 
(other than varying the simulant type and tank fill level) and did not attempt to defeat the CVF algorithm. 

We demonstrated that variations in the time-to-overblow with tank level and simulant density could 
be described by a relationship developed from the Bernoulli equation.  So, time-to-overblow exhibited the 
expected dependence on back pressure at the nozzles due to the liquid head in the tank.  The expression 
worked well for the current configuration with 4 inch diameter nozzles, as it did in earlier work with 2 
inch nozzles. 
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The Bernoulli-based expression could conceivably be used to describe how time-to-overblow varies 
with PJM headspace or drive pressure.  As all of the experiments were conducted at one nominal drive 
pressure, we did not test how well the expression described time-to-overblow for various drive pressures. 

The time required to refill the PJMs by gravity was estimated with both clay and water simulants at 
the high liquid level.  The average refill times were 46.1 sec for clay and 48.1 sec for water to within an 
uncertainty of about +/- 2 seconds.  The higher hydrostatic head in the tank for the clay simulant probably 
caused the shorter fill time for clay. 

The effect of scan rate on the ability to detect overblows was tested with both controllers.  In general, 
the amplitudes of the true overblow peaks, and the separations between the distributions of true and false 
peaks increased with increasing scan rate.  Changing the scan rate had a greater effect on the ABB 
controller than on the Triconex.  For both controllers, the separation between the true and false peak 
distributions at a 50ms scan time was only slightly better (wider) than the separation at a 100ms scan 
time. 

Despite the significant improvement in both the ABB and Triconex controller performance at faster 
scan rates, care should be taken when extrapolating from the data presented because an insufficient 
number of cycles of data were taken.  The study of the effect of scan rate on overblow detection relied on 
only 20 PJM cycles at each scan rate.  We recommend that the pressure data we acquired at 100Hz during 
all of the other experiments be used to simulate confidence levels at various scan rates.  The optimal scan 
rate can be estimated more precisely from such simulated controller responses. 

The performance of the ABB and Triconex controllers was evaluated at three different conditions of 
vessel fill and with two different simulant rheologies.  In addition, for each test condition, a minimum of 
100 and a maximum of over 300 PJM cycles of data were obtained to assess the controllers' ability to 
detect CVF and DOB conditions.  These data were statistically analyzed to illustrate the repeatability of 
controller-calculated confidence levels over the length of time it took to run that many cycles.  Despite the 
broad range of conditions used to assess the controllers’ performance, these testing conditions are 
somewhat idealized in that they do not represent the long-term variability in the process and process 
measuring equipment.  For example, the present study does not address changes in the instrument and 
equipment performance over time, nor does it address the effects of mixing inhomogenities within the 
vessel, the influence of slurry build up in the airlines to the PJMs, etc.  The variability in the process and 
process measuring equipment or system in the long term were beyond the scope of the present work and 
cannot be addressed much beyond the test conditions and duration of this study.  In addition, we cannot 
draw conclusions about reliability under unforeseen and unexamined contingencies.  Therefore, any 
extrapolation of the data above and beyond the scope of the present work should be done with extreme 
caution. 
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Appendix A:  Testing Log Run 

Simulant 

Run Designation DAS-1 Files Start Time End Time Type 
Ht. from 

Rim H/D Tys(Pa)

LRB 
59943 
Pages

Test 
Instruction 

CLAY TESTING 

ABB High Level 

ABB HI: DOB - 4 PJM (300 Cycles) 080516_ABB_4PJM_DOB May 16, 2008 10:05 AM May 16, 2008 02:02 PM Clay 55.8 0.80 32.82 90-91 TI-RPP-WTP-632 

ABB HI: DOB - PJM A (300 Cycles) 080516_ABB_PJMA_DOB May 16, 2008 03:05 PM May 16, 2008 07:57 PM Clay 55.8 0.80 32.82 92 TI-RPP-WTP-632 

ABB HI: CVF (100 Cycles) 080519_ABB_4PJM_CVF May 19, 2008 02:15 PM May 19, 2008 04:12 PM Clay 55 0.81 30.9 95 TI-RPP-WTP-632 

ABB HI: Gravity Refill 080521_Gravity_Refill May 21, 2008 09:46 AM May 21, 2008 10:36 AM Clay 55.5 0.80 30.9 105 TI-RPP-WTP-635 

Triconex High Level 

TRI HI: DOB - 4 PJM (300 Cycles) 080520_TC_4PJM_DOB May 20, 2008 10:03 AM May 20, 2008 02:34 PM Clay 55.3 0.80 30.9 99-101 TI-RPP-WTP-632 

TRI HI: DOB - PJM A (300 Cycles) 080520_TC_PJMA_DOB May 20, 2008 03:13 PM Not Available Clay 55.3 0.80 30.9 104 TI-RPP-WTP-634 

TRI HI: CVF (100 Cycles) 080519_TC_4PJM_CVF May 19, 2008 06:21 PM May 19, 2008 08:09 PM Clay 55 0.81 30.9 96-98 TI-RPP-WTP-632 

Drop Tank Level 

ABB Mid-Level 

ABB MID: DOB - 4 PJM (300 Cycles) 080521_ABB_4PJM_DOB May 21, 2008 12:18 PM May 21, 2008 04:26 PM Clay 94 0.55 30.9 106-107 TI-RPP-WTP-634 

ABB MID: DOB - PJM A (300 Cycles) 080522_ABB_PJMA_DOB May 22, 2008 08:50 AM May 22, 2008 01:43 PM Clay 94.4 0.55 30.42 108 TI-RPP-WTP-634 

ABB MID: CVF (100 Cycles) 080521_ABB_4PJM_CVF May 21, 2008 05:00 PM May 21, 2008 06:49 PM Clay 94 0.55 30.9 107 TI-RPP-WTP-634 

Triconex Mid-Level 

TRI MID: DOB - 4 PJM (300 Cycles) 080522_TC_4PJM_DOB May 22, 2008 03:13 PM May 22, 2008 07:25 PM Clay 94.4 0.55 30.42 109 TI-RPP-WTP-634 

TRI MID: DOB - PJM A (300 Cycles) 080523_TC_1PJM_DOB May 23, 2008 08:28 AM May 23, 2008 01:11 PM Clay 94.8 0.55 30.42 110 TI-RPP-WTP-634 

TRI MID: CVF (100 Cycles) 080523_TC_4PJM_CVF May 23, 2008 01:42 PM May 23, 2008 03:30 PM Clay 94.8 0.55 30.42 110 TI-RPP-WTP-634 

Drop Tank Level 

ABB Low Level 

ABB LOW: DOB - PJM A (300 Cycles) 080527_ABB_PJMA_DOB May 27, 2008 09:59 AM May 27, 2008 03:04 PM Clay 132 0.30 29.87 113 TI-RPP-WTP-634 

ABB LOW: CVF (100 Cycles) 080527_ABB_CVF May 27, 2008 03:49 PM May 27, 2008 08:21 PM Clay 132 0.30 29.87 113-114 TI-RPP-WTP-634 

Triconex Low Level 

TRI LOW: DOB - PJM A (300 Cycles) 080528_TC_PJMA_DOB May 28, 2008 08:50 AM May 28, 2008 01:42 PM Clay 131.6 0.30 29.87 115 TI-RPP-WTP-634 

TRI LOW: CVF (300 Cycles) 080528_TC_4PJM_CVF May 28, 2008 03:22 PM May 28, 2008 09:51 PM Clay 131.6 0.30 29.87 116 TI-RPP-WTP-634 

 
 



 

A.2 

Appendix A:  Testing Log Run 

Simulant 

Run Designation DAS-1 Files Start Time End Time Type 

Ht. 
from 
Rim H/D Tys(Pa)

LRB 
59943 
Pages 

Test 
Instruction 

WATER TESTING 

ABB High Level 

ABB HI: DOB - 4 PJM (300 Cycles) 080603_ABB_4PJM_DOB June 03, 2008 08:45 AM June 03, 2008 12:34 PM Water 55 0.81 N/A 126 TI-RPP-WTP-638 

ABB HI: DOB - PJM A (300 Cycles) 080604_ABB_PJMA_DOB June 04, 2008 08:52 AM June 04, 2008 01:26 PM Water 55.1 0.80 N/A 128 TI-RPP-WTP-638 

ABB HI: CVF (100 Cycles) 080603_ABB_4PJM_CVF June 03, 2008 01:13 PM June 03, 2008 03:01 PM Water 55 0.81 N/A 127 TI-RPP-WTP-638 

ABB HI: Gravity Refill 080606_Gravity_Refill June 06, 2008 02:42 PM June 06, 2008 03:24 PM Water 55.2 0.80 N/A 138 TI-RPP-WTP-635 

ABB HI: Scan Rate 250ms 080605_ABB_250_SR June 05, 2008 04:41 PM June 05, 2008 05:05 PM Water 55.1 0.80 N/A 134-135 TI-RPP-WTP-639 

ABB HI: Scan Rate 150ms 080605_ABB_150_SR June 05, 2008 05:10 PM June 05, 2008 05:33 PM Water 55.1 0.80 N/A 134-135 TI-RPP-WTP-639 

ABB HI: Scan Rate 100ms 080605_ABB_100_SR June 05, 2008 05:37 PM June 05, 2008 06:00 PM Water 55.1 0.80 N/A 134-135 TI-RPP-WTP-639 

ABB HI: Scan Rate 50ms 080605_ABB_050_SR June 05, 2008 06:03 PM June 05, 2008 06:26 PM Water 55.1 0.80 N/A 134-135 TI-RPP-WTP-639 

Triconex High Level 

TRI HI: DOB - 4 PJM (300 Cycles) 080606_TK_4PJM_DOB June 06, 2008 08:33 AM June 06, 2008 12:35 PM Water 55.2 0.80 N/A 136 TI-RPP-WTP-638 

TRI HI: DOB - PJM A (300 Cycles) 080605_TC_PJMA_DOB June 05, 2008 08:44 AM June 05, 2008 01:18 PM Water 55.1 0.80 N/A 130-131 TI-RPP-WTP-638 

TRI HI: CVF (100 Cycles) 080604_TC_4PJM_CVF June 04, 2008 02:31 PM June 04, 2008 04:13 PM Water 55.1 0.80 N/A 129 TI-RPP-WTP-638 

TRI HI: Scan Rate 250ms 080605_TC_250_SR June 05, 2008 01:46 PM June 05, 2008 02:09 PM Water 55.1 0.80 N/A 131-132 TI-RPP-WTP-639 

TRI HI: Scan Rate 150ms 080605_TC_150_SR June 05, 2008 02:13 PM June 05, 2008 02:37 PM Water 55.1 0.80 N/A 131-132 TI-RPP-WTP-639 

TRI HI: Scan Rate 100ms 080605_TC_100_SR June 05, 2008 02:40 PM June 05, 2008 03:03 PM Water 55.1 0.80 N/A 131-132 TI-RPP-WTP-639 

TRI HI: Scan Rate 50ms 080605_TC_050_SR June 05, 2008 03:05 PM June 05, 2008 03:27 PM Water 55.1 0.80 N/A 131-132 TI-RPP-WTP-639 

Drop Tank Level 

ABB Mid-Level 

ABB MID: DOB - 4 PJM (300 Cycles) 080609_ABB_4PJM_DOB June 09, 2008 08:41 AM June 09, 2008 12:40 PM Water 94 0.55 N/A 139 TI-RPP-WTP-638 

ABB MID: DOB - PJM A (300 Cycles) 080610_ABB_PJMA_DOB June 10, 2008 08:25 AM June 10, 2008 01:10 PM Water 94 0.55 N/A 141-142 TI-RPP-WTP-638 

ABB MID: CVF (100 Cycles) 080609_ABB_4PJM_CVF June 09, 2008 01:21 PM June 09, 2008 03:10 PM Water 94 0.55 N/A 140 TI-RPP-WTP-638 

ABB Mid-Level 

TRI MID: DOB - 4 PJM (300 Cycles) 080610_TK_4PJM_DOB June 10, 2008 02:01 PM June 10, 2008 06:10 PM Water 94 0.55 N/A 143 TI-RPP-WTP-638 

TRI MID: DOB - PJM A (300 Cycles) 080611_TC_PJMA_DOB June 11, 2008 08:37 AM June 11, 2008 01:11 PM Water 94.2 0.55 N/A 144 TI-RPP-WTP-638 

TRI MID: CVF (100 Cycles) 080611_TC_4PJM_CVF June 11, 2008 02:22 PM June 11, 2008 04:22 PM Water 94.2 0.55 N/A 145 TI-RPP-WTP-638 

          

          

Drop Tank Level 
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Simulant 

Run Designation DAS-1 Files Start Time End Time Type 

Ht. 
from 
Rim H/D Tys(Pa)

LRB 
59943 
Pages 

Test 
Instruction 

ABB Low Level 

ABB LOW: DOB - PJM A (300 Cycles) 080612_ABB_PJMA_DOB June 12, 2008 09:19 AM June 12, 2008 02:12 PM Water 131.8 0.30 N/A 147 TI-RPP-WTP-638 

ABB LOW: CVF (300 Cycles) 080613_ABB_4PJM_CVF June 13, 2008 10:05 AM June 13, 2008 03:33 PM Water 131.8 0.30 N/A 149 TI-RPP-WTP-638 

Triconex Low Level 

TRI LOW: DOB - PJM A (300 Cycles) 080616_TC_PJMA_DOB June 16, 2008 11:10 AM June 16, 2008 03:55 PM Water 131.8 0.30 N/A 150-151 TI-RPP-WTP-638 

TRI LOW: CVF (300 Cycles) 080617_TC_4PJM_CVF June 17, 2008 09:00 AM June 17, 2008 02:23 PM Water 131.8 0.30 N/A 152 TI-RPP-WTP-638 
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