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Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct

from a cosmological constant or “reasonable” canonical scalar fields.

Such dark energy can be

constrained tightly through investigation of the growth of structure, with limits of < 2% of total
energy density at z > 1 for many models. Intermediate dark energy can have effects distinct from
its energy density; the dark ages acceleration can be constrained to last less than 5% of a Hubble
e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently os,
and the shape and evolution of the nonlinear mass power spectrum for z < 2 (using the Linder-
White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak
gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark

energy behavior over the entire range z = 0 — 1100.

I. INTRODUCTION

At recent times the expansion of the universe has ac-
celerated and dark energy has dominated the total en-
ergy density. Earlier, the universe was in a matter domi-
nated, decelerating expansion epoch. This can be seen di-
rectly through precision distance-redshift measurements
of Type Ia supernovae (SN Ia) at redshifts z ~ 1 and
precision cosmic microwave background (CMB) measure-
ments at z ~ 1000, and indirectly through the presence
of large scale structure such as galaxies and clusters of
galaxies that require a matter dominated epoch in order
to form.

In this article we consider the extent of our knowledge
about the behavior of dark energy in the dark ages at
z &~ 2 —1000. This is sometimes phrased in terms of
“early dark energy” — the fraction of the total energy
density at the CMB last scattering surface due to dark
energy, though we will present a more general treatment.

While canonical dark energy models with near cosmo-
logical constant behavior do not predict any substantial
dark energy effect at z > 2, limits on early dark energy
are already important for cosmological parameter esti-
mation. For the parameter constraints by [l using weak
gravitational lensing data, [2] pointed out that a prior on
the early dark energy fraction is needed to remove a sec-
ond likelihood peak far from the concordance cosmology.

We look to the growth of structure to provide a third
window on the nature of dark energy, especially in the
intermediate epoch. We suppose that SN Ia will provide
accurate characterization of dark energy at z < 2, so our
focus is to probe for unexpected behavior at higher red-
shifts where canonical dark energy models have negligible
influence. High redshift distance measures are not the ap-
propriate probe for early dark energy, however, as even
a drastic jump from cosmological constant equation of
state behavior to matter behavior at z = 1.7 imparts less
than 1% effect to the distance measured to z = 3. Sim-
ilarly, the CMB temperature power spectrum does not
care about the dark energy density as such, but rather
the expansion history, so an early smooth dark compo-
nent with an equation of state acting like matter does

not disturb the CMB. Therefore we concentrate on the
growth of structure for probing dark energy in the dark
ages, since growth measurements at z < 2 are sensitive
to changes at z > 2, and to an early smooth dark com-
ponent regardless of equation of state.

In gIl we consider early dark energy where the contri-
bution to the total energy density at CMB last scattering
is much larger than the canonical 107 of the cosmolog-
ical constant case (ACDM). Intermediate redshift effects
of “dark age” dark energy are treated in [Tl We discuss
general limits on the dark energy contribution in §I[V]
along with assessment of the measurements needed for
such constraints.

II. EARLY DARK ENERGY

Constraints on the amount of dark energy at early
times necessarily depend on the dark energy model and
its evolution over a wide range of redshifts. This can
be approached through phenomenological parameteriza-
tions, e.g. along the lines of |3, 4, H]. For their specific
models they find limits of a few percent on the contribu-
tion of dark energy to the total energy density. We fol-
low this phemenological approach with some variations,
focusing on the physics where possible.

The major influence of early dark energy is on the
growth of matter density perturbations § = dp/p. (Note
we consider modes on scales below the horizon where
dark energy inhomogeneity is negligible due to the sound
speed for quintessence being the speed of light.) We
solve the linear growth equation for general dark en-
ergy evolution [d] with scale factor a = 1/(1 + z) by
a 4th order Runge-Kutta scheme to find the growth his-
tory g(a) = 6/a. A purely matter dominated universe
has ¢ = 1. Of particular interest are the quantities
go = g(a = 1), the total growth by the present, and the
ratio R = g(a = 0.35)/go. The first measures the linear
growth amplitude, proportional to the mass fluctuation
amplitude og, and the second provides an excellent in-
dicator of the nonlinear power spectrum [i], at least for
canonical dark energy.
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One approach to investigating variations in growth be-
havior from early dark energy is to take the z < 2 cos-
mology to be essentially fixed by accurate observations
such as SN Ia distance measurements; we denote this as
“with respect to A” and keep the matter density €2, (and
the present equation of state ratio wy where appropriate)
the same for the early dark energy and the fiducial (flat,
Q,, = 0.28) ACDM case. Another is to compare mod-
els where the distance to CMB last scattering, djss, is
held fixed, denoted “with respect to CMB” (so £, is
changed, and we can also alter the Hubble constant h so
as to preserve the quantity €,,h? and hence essentially
the CMB temperature power spectrum). We comment
on the differences between the two for each model class.

Note that the amplitude of growth today go is degen-
erate with the present mass fluctuation amplitude og, or
the primordial density perturbation amplitude dz. These
in turn are correlated with other CMB parameters such
as the scalar tilt and reionization optical depth, so this
points up the importance of CMB polarization measure-
ments for fuller understanding of dark energy.

A. Mocker models

The dark energy density evolution and equation of
state (EOS), or pressure to density ratio w(z) are tied to-
gether. To attain a substantial level of early dark energy
one requires the early equation of state not to be appre-
ciably negative, for a monotonic evolution. Rather than
parameterize directly in terms of the dark energy density,
we can adopt the physical characteristics of certain dark
energy equation of state models. Mocker models [§] of
dark energy have the requisite behavior, acting similar
to matter (w & 0) at early times before evolving to an
accelerating component and eventually cosmological con-
stant (w = —1) behavior. In the equation of state phase
plane of w and w’ = dw/dln a these have the dynamics
w' = Cw(1 + w) with solutions

wo C -1
w(a) = =14 [1— 1+w0a ] , (1)
pae(@) = pac(1) [(1+wo)a_c—wo]3/c- (2)

At early times in the matter dominated era, the mocker
models have an energy density that scales as matter and
so contribute a fixed fraction 2. of the total energy den-
sity (the dark energy fraction as a function of redshift is
shown in Fig. M for the three classes of models considered
in this section). Rather than using {Qge, wo, C} as the
parameters we can use {Qm, wo, Qe} and investigate the
effects of €2, or the nearly equivalent Q4e(2155), on obser-
vational quantities. We find that for 107¢ < Q. < 0.1,
the value of C' =~ 0.5 — 2. Interestingly, this puts the
mocker model squarely within the freezing region of the
phase space [9].

Figure B shows the impact on the growth measures
as a function of the early dark energy density. We com-
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FIG. 1: The dark energy density, and equation of state, shown
as a function of redshift for the three classes of models con-
sidered here. The fraction of dark energy density today and
at the CMB last scattering surface (z = 1089) are held fixed.

pare the growth to the cosmological constant case, for the
fixed low redshift cosmology and fixed CMB approaches.
The greatest deviation is in gg, but this total growth can
be renormalized by a shift in the mass fluctuation ampli-
tude og (see [L0] for a detailed discussion of og in early
dark energy models). Still, values of gg or og differing
from the ACDM value by more than 10% are already dis-
favored [[11, 12, 13], and future observations should limit
the uncertainty to less than 3%. The dark energy den-
sity for a mocker model is thus currently limited to less
than 1.5% of the total for wy > —0.95 (as wy approaches
—1, the mocker model looks more and more like a cos-
mological constant for the entire matter domination era
and constraints vanish). If wg = —0.85, then the den-
sity would be bounded below 0.4% to give less than 10%
growth deviation.

Note that using the CMB matching rather than the
low redshift matching does not significantly affect the
amount of early dark energy density tolerated for the
growth. The low z matching in turn still gives diss within
1.7% for 2, = 0.02 (current constraints are 1.8%, derived
here from [14]). The mocker models can also be distin-
guished relative to the constant EOS models with the
same present value wg. (Even for Q. = 1072°, C = 0.15,
not 0, so the mocker model approaches the constant EOS
limit very slowly.)

In the absence of bounds on gy or og, the constraints
from R and the nonlinear power spectrum have a shal-
lower dependence on .. The deviation in R is at the
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FIG. 2: Increasing the dark energy density at high redshifts
causes strong deviations in the total linear growth achieved
by today, go, as well as changes in the evolution parameter R,
for mocker dark energy (here with Q,, = 0.28, wo = —0.95).
Solid curves show deviations with respect to the ACDM case
with the same low redshift expansion (i.e. ., ), while dotted
curves have the same distance to last scattering as the ACDM
case.

2-6% level (for wg = —0.95), or roughly a 4-12% effect in
the nonlinear power spectrum. From the Linder-White
1] nonlinear mapping prescription, a variation AR/R
around ACDM translates as

AR/R ~ —0.75 AQ,, + 0.21 Awg + 0.052 Aw,,  (3)

where w(a) = wp + we(l — a) is the standard EOS
parametrization. So a measured deviation of 2% in R
has the equivalent effect as a change in the cosmological
model by 0.027 in Q,,, or 0.095 in wg, or 0.38 in wy,.
Such a deviation again gives limits around the 2% level
in early dark energy density.

While we have assumed that z < 2 cosmology will be
accurately mapped by SN Ia distance measurements, one
should check that uncertainties in §2,, and wg do not sig-
nificantly blur the bounds on Q.. In fact, allowing for
covariance between the parameters degrades the estima-
tion of . by less than 50%: €. is very weakly correlated
with the other parameters (for example the correlation
coefficient with €2, is 0.12). As discussed in §IV] we make
no claims for high precision in constraining 2., our aim
is factor of two, or even order of magnitude constraints,
on non-canonical dark energy.

B. Standard models

One can attain early dark energy within the standard
parametrization w(a) = wo + wq (1 — @), which has been
shown to fit wide varieties of dark energy models, in-
cluding early dark energy [15]. When the early EOS
w(a < 1) = wy + w, approaches zero, the early dark
energy density can contribute a non-negligible fraction.
Note that this is not a constant fraction at high redshift,
unlike the mocker case, so we quote Q40(2155). Here, a
10% deviation in g is attained for a much lower Q. than
in the mocker case (due to the evolution of the density
fraction, or conversely longer persistence of acceleration
effects), except in the CMB-matched approach where €2,
is again near 1%. (With the low z cosmology match-
ing instead, diss deviates by 2.3% from the A case, for
w, = 0.6.) Because of the increased dynamic range of
Q., we illustrate the growth deviations in go and R as
a function of w, in Figure B It is the presence of early
dark energy density that causes the deviation, not any
“breakdown” in the w, parametrization.
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FIG. 3: Dark energy with EOS of the standard form w(a) =
wo+waq(1—a) can have a significant effect on growth even with
small energy density at high redshift. The dark energy not
only does not contribute to clumping, but opposes it through
a negative EOS (here wo = —1). The influence on growth
comes from both effects. Values of Q4e(21s5) are indicated at
the red x’s.

Recall that in Eq. @) we discussed the change in the
key growth ratio R arising from a change in the cosmo-
logical parameters; here we see that the change AR/R
is linear for a wide range of Aw,, not just a small per-
turbation around w, = 0. We also very clearly see one
of the advantages of the Linder-White prescription [1],



that matching the growth matches the CMB tempera-
ture power spectrum. They arranged the canonical w,
model such that the growth ratio R stayed fixed (and
hence obtained a highly accurate nonlinear mass power
spectrum) and found that the distance to CMB last scat-
tering automatically was nearly perfectly preserved. Here
we show the converse, that matching djss almost perfectly
matches the growth ratio R, as illustrated by the upper
dotted line in Fig.

C. Step models

The tight bounds on early dark energy density in the
previous two models could be a product of the slow evolu-
tion of the dark energy properties from matter-like to cos-
mological constant-like. Here we consider a rapid transi-
tion, in the form of a step function where w(z > z.) =0
and w(z < z.) = —1. This will preserve the property that
Q. is a constant at high redshift in the matter dominated
era. (Note that if one makes a step in Q4c(2) instead, one
will have a singularity in w(z).)

Restricting the allowed deviation in gg to below 10%
implies that Q. < 2.5%, similar to the mocker models.
This also corresponds to requiring z. > 3.65. Figure H
plots the deviations in go and R with respect to ACDM,
and with respect to the ACDM model when djs is held
fixed. Note that in the former case (matching low redshift
cosmology) the deviations in R are negligible for a tran-
sition z. > 2 since R involves the ratio between growth
at z = 1.86 and 0. Aside from this, the constraints on
Q. from the two approaches are very similar. The red x’s
are labeled with z. (purely a function of €.), for the low
redshift cosmology matching model.

Note that even when the dark energy has w = 0, it
is not equivalent to matter because it is not allowed to
clump. This brings up an interesting point about the im-
pact of dark energy on reducing the source term in the
matter growth equation vs. its impact through acceler-
ating the expansion. We address this distinction in the
next section.

III. INTERMEDIATE DARK ENERGY

Dark energy has two distinct effects on growth — it
changes the Hubble friction term by accelerating the ex-
pansion, and it changes the source term by reducing the
fraction of the total energy density subject to gravita-
tional clumping and structure formation (recall we as-
sume it itself does not clump). A more subtle conse-
quence of these effects involves the indirect influence of
dark energy on the growth “velocity”

dlno
dlna

dlng

= dlna’

(4)

This last effect effectively resets the boundary conditions,
meaning an intermediate, even transient, period of accel-
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FIG. 4: As Fig. Bl but for stepped dark energy. The EOS
jumps from —1 at z < z. to 0 at z > z; this gives a conserva-
tive limit relative to a smoother transition or more negative
early EOS. The values of z. corresponding to Qge(z1ss) are
indicated at the red x’s.

eration can strongly influence later growth.

The models of the previous section affected growth
by possessing a substantial dark energy density at early
times — where substantial is relative to the Qge(z1ss) ~
1079 level of ACDM. Without early dark energy it is dif-
ficult to significantly affect growth through the first two
effects. For example, if we adapt the step model to form
a box model, where we take ACDM but have a jump to
w(z) = 0 (the matter value) between z, and z4, then
we have a period where we diminish the source term of
energy density that can clump. This will still have an
early dark energy density that is much smaller than one
(1076—1077), and the growth is negligibly affected!. For
example, with w(z) = 0 between z = 2—20, the deviation
of go is less than 10% (recall that for the step model with
2. = 2 the deviation was 33% and 2, = 0.087). This sort
of intermediate epoch transition has little observational
influence.

We can attain strong deviation in the growth with-
out early dark energy through the velocity effect. To
investigate this we take a box model of dark energy, but
in terms of the total equation of state. This acts like

1 An early, general analysis of negative equation of state and
smooth components appears in [1€], extending [17]. The an-

alytic formula for an additional smooth matter component is
g ~ al=5HVZE=2A00) /4 oy =30 /5,



ACDM everywhere except that between z, and zg4 the
total equation of state of the universe is set to -1. This
gives a transient epoch of strong acceleration that will
shut down matter perturbation growth. Once the period
is over, the perturbations are free to grow again, but
from a state where the growth velocity f had decayed
from the matter dominated value of unity. For one indi-
cation of how important the growth velocity is, note that
cold dark matter perturbations can grow in the radiation
dominated epoch if given initial velocity: ¢ ~ Ina (and
indeed § ~ a if wioy = +1).

Figure | shows that the length of this transient accel-
eration epoch can be quite short, a fraction of an e-fold
Alna (= In[(1+24)/(142,)]), and still cause appreciable
deviation in growth behavior. For a transition at z, > 4,
a duration of Alna > 0.05, i.e. 5% of that epoch’s Hub-
ble time, changes the present growth by more than 10%.
This tightly constrains models of oscillating or stochastic
dark energy [18, [19], which have intermediate epochs of
dark age dark energy domination?. Even recent transi-
tions, z, > 0.5, would still show 10% deviations for what
might be considered short durations Alna = 0.3 <« 1.
Constraints from R can be even tighter and give direct
limits on the length of dark energy domination Alna.
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2 Such models attempt to ameliorate the coincidence problem
(that dark energy is dominating during our one e-fold epoch
of observations out of the perhaps 10°¢ times expansion since
the beginning of inflation) by saying that acceleration happens
periodically.

FIG. 5: An intermediate period of domination by dark energy
in the dark ages can have a significant effect on growth. This
model takes a LCDM universe and steps the total equation of
state down to —1 for a period Alna ending at a,. This halts
the growth of structure, and even when the universe returns
to matter domination the growth is slower than dp/p ~ a.
This shows the influence of the “velocity” of growth rather
than of dark energy density.

IV. CONCLUSION

The nature of dark energy is so little known that we
should test its behavior however possible, even in the
“dark ages” z ~ 2 — 1000 where standard models predict
no effect. The growth of large scale structure provides
key windows on this epoch and has the potential to see
early dark energy density or transitions in its equation of
state. Because of the uncertainty in the mass fluctuation
amplitude, i.e. og, we should employ not only the total
growth factor but the growth rate, through the evolution
of the mass power spectrum.

For measurements of 10% precision in total growth or,
say, 5% in the power spectrum evolution — the latter re-
lated to the growth ratio R = g(a = 0.35)/g(1) through
the Linder-White nonlinear mapping prescription — the
analysis for a variety of physical behaviors indicates that
early dark energy density of less than ~ 2% of the to-
tal energy density does not affect observations. This
is a fairly conservative limit, as we have considered the
extreme cases of dark energy behavior, e.g. both slow
and instantaneous transitions, and parameter degenera-
cies will also degrade limits (though we find this is to be
a surprisingly weak effect).

Early dark energy can also affect the details of non-
linear structure, such as halo formation, concentration,
cluster abundances, and lensing statistics — see [20] and
references therein. The cosmic microwave background
can be sensitive to early dark energy (if it does not act
like matter), but not necessarily dark age dark energy
(at z < 1000), since the CMB relies on the integrated
dark energy density, which is generally dominated by low
redshifts (an exception is the early time Sachs-Wolfe ef-
fect). The CMB plays an important complementary role
through constraining og for use of the total growth fac-
tor. Apart from this, we find that fixing the distance
to CMB last scattering does not greatly affect growth
deviations (except for standard dark energy where this
matching was pointed out by [1]).

Intermediate dark energy, where there is insignificant
early dark energy density but a dark ages period of accel-
eration, can be tightly constrained. This impacts models
that try to solve the coincidence problem through peri-
odic episodes of dark energy domination. Such periods
must last a seemingly unnatural 5% or less of a Hubble
(e-fold) time.



These analyses of physical behaviors of dark energy in
the dark ages indicate that one can quantitatively use
the observations of the growth of structure, in conjunc-
tion with accurate supernovae distance and CMB mea-
surements, to have confidence that the usual scenario of
dark energy as a late time phenomenon is valid.
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