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ABSTRACT

Development of enhanced geothermal
systems (EGS) will require creation of a
reservoir of sufficient volume to enable
commercial-scale heat transfer from the
reservoir rocks to the working fluid. A key
assumption associated with  reservoir
creation/stimulation is that sufficient rock
volumes can be hydraulically fractured via
both tensile and shear failure, and more
importantly by reactivation of naturally
existing fractures (by shearing), to create the
reservoir. The advancement of EGS greatly
depends on our understanding of the
dynamics of the intimately coupled rock-
fracture-fluid-heat system and our ability to
reliably predict how reservoirs behave under
stimulation and production.

In order to advance our understanding of
how reservoirs behave under these
conditions, we are developing a physics-
based rock deformation and fracture
propagation simulator by coupling a discrete
element model (DEM) for fracturing with a
continuum multiphase flow and heat
transport model. In this approach, the
continuum flow and heat transport equations
are solved on an underlying finite element
mesh  with  evolving porosity and
permeability for each element that depends

on the local structure of the discrete element
network.

This paper describes the first phase of
development of the simulator, detailing the
development of a parallel, fully coupled,
implicit, multiscale geothermal-
geomechanical simulation code. The initial
code development is being conducted
considering only single-phase  (water
saturated) flow coupled with continuum heat
transport and rock mechanics models. DEM
and fracture propagating capabilities will be
added in the next phase of the code
development.

INTRODUCTION

Reliable reservoir performance predictions
of enhanced geothermal reservoir systems
require accurate and robust modeling for the
coupled  thermal-hydrological-mechanical
processes. Conventionally, these types of
problems are solved using operator splitting
methods, usually by coupling a subsurface
flow and heat transport simulator with a
solid mechanics simulator via input files.
One example of such an approach is
presented by Rutquist et al. (2002), where a
widely wused flow and heat transport
simulator TOUGH2 (Pruess et al., 1999) is
coupled to the commercial rock mechanics
simulator FLAC (ltasca Consulting Group




Inc, 1997) via input files. During each time
step, TOUGH2 and FLAC run sequentially
with the output from one code as input to the
other one. Iterations between the codes
during each step might be necessary if there
is a strong dependence among processes.
However, such operator splitting approaches
are applicable only to “loosely coupled”
problems and usually converge very slowly
if at all. For most enhanced geothermal
systems, fluid flow, heat transport, and rock
deformation  are  typically  strongly
nonlinearly coupled.

An alternative is to solve the system of
nonlinear partial differential equations that
govern fluid flow, heat transport, and solid
mechanics simultaneously using a fully
coupled solution procedure. This procedure
solves for all solution variables (fluid
pressure, temperature and rock displacement
fields) simultaneously, which leads to one
large nonlinear algebraic system that is
solved using a strongly convergent nonlinear
solver. Developments over the past 10 years
in the area of physics-based conditioning,
strongly convergent nonlinear solvers (such
as Jacobian Free Newton methods) and
efficient linear solvers, such as GMRES,
make such an approach competitive (Knoll
and Keyes, 2004).

The overall goal of the project is to develop
a parallel physics-based, fully coupled,
multiscale modeling tool for predicting the
dynamics of fracture stimulation, fluid flow,
rock deformation, and heat transport in a
single integrated code (i.e., it will eliminate
the need for multiple simulations codes to
model this tightly coupled process) named
FALCON  (Fracturing And  Liquid
CONvection). The code is developed upon a
parallel computational framework developed
at Idaho National Laboratory (INL) for
solving coupled systems of nonlinear
equations (Gaston et al., 2009), known as
MOOSE (Multiphysics Object Oriented
Simulation Environment), which was

originally =~ developed for  modeling
multiphysics problems often encountered in
nuclear reactor fuel performance analysis.
This computational framework allows for
rapid development of multi-dimensional,
parallel, implicit, fully coupled, nonlinear
simulation capabilities and employs a
modular, pluggable architecture that greatly
simplifies the process of adding new
physical phenomena and coupling of
different physics.

As a first step in the development of the
code, governing equations for single-phase
flow and transport of heat are being coupled
with linear elastic equations. The basic
architecture of the code allow convenient
coupling of different processes and
incorporation of new physics , such as stress
dependent  permeability-porosity, phase
change, implicit fracturing and so on
without the added difficulty. The following
sections present the governing equations
used to describe coupled fluid flow, heat
transport, and rock mechanics; briefly
describe numerical methods, focusing on the
Jacobian Free Newton Krylov nonlinear
solver; and present a number of simulation
results for problems of different level of
complexities, followed by discussions and
concluding remarks.

MATHEMATICAL MODELS AND
GOVERNING EQUATIONS

Mathematical models describing geothermal
systems and geomechanics can be found in
the literature. This section will only briefly
summarize the derivations described in
detail in the literature for geothermal
systems (e.g., Faust and Mercer 1979a,b;
Brownell, et al., 1977) and geomechanics
(see Jaeger at al, 2007). Here, we will focus
our discussion on the unique aspects of
coupling the governing equations for fully
coupled implicit solutions.




The following subsections briefly present
conservation equations for the mass,
momentum, and energy.

Fluid Mass Balance

The mass balance for the fluid may be
written as:

O(Ppw) .
ot + V'(pwuw) qw =0

(1)

where V is the vector differential operator.
uvis the flux vector, while p.is the density
of the fluid, respectively. ¢ is the porosity of
the reservoir.

Fluid Momentum Balance

We assume that Darcy’s Law is valid. Thus
the momentum balance for the fluid is
described as:

k
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where k is the intrinsic permeability of the
reservoir, uwis the viscosity of the fluid, g is
the acceleration due to gravity, and Vz is a
vector of components (0,0,1) when gravity is
taken to be aligned in the negative vertical
direction.

Energy Balance

The energy balance in the system can be
described as follows:
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for the reservoir rock matrix, where 4 is the
specific enthalpy, A. is the heat conduction
vector, and /A; is the dispersion vector.
Accented terms represent sources and/or
sinks in Eqns. 3 and 4.

Constitutive Relations

For our simplified single-phase system
(water is the model fluid in this paper),
constitutive relations are being used to
describe the fluid density and viscosity
dependence on the temperature.

The density dependence on temperature is
described by Graf (2009)
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T + 68.12963
(5)

where 7 is the temperature in degrees
Celsius.

Fluid viscosity is represented by the

following set of equations, also presented by
Graf (2009)
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0°C < T < 40°C
for< 40°C < T < 10°C
100°C < T < 300°C (6)



THREE DIMENSIONAL EQUATIONS

Combining Eqns. 1 and 2 yields the
following for single-phase flow of water in a
deformable, compressible geologic medium.

SB[ 2E2 . (Vg - pugV2)
i [T
gu =10
(7)
In keeping with our objective of developing
a simplified first version of the simulation
code, the Broussinesq Approximation (Garg
and Kassoy, 1981) and thermal equilibrium
assumption between fluid and rock were
used when combining Eqn. 7 with Eqn. 3, to
arrive at the following to describe the

transport of heat in the system.
oT
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where ¢, and ¢, are the specific heat
capacities of the water and rock phases,
respectively, and K,, is the medium average
thermal conductivity.

Geomechanics of the system is described as
follows (Jaeger et al, 2007)
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where u is the displacement vector; ¢ is the
biot effective stress coefficient and B is the
thermal expansion coefficient. Eq. (9)
provides stress equilibrium for a coupled
hydro-thermal-mechanical problem.

NUMERICAL METHODOLOGY

MOOSE

FALCON has been developed using the
MOOSE library (Gaston et al., 2009). This
framework provides a strong numerical
foundation for rapid development of multi-

dimensional, parallel, implicit, fully coupled,
nonlinear simulation capabilities. MOOSE is
based on a finite element discretization
strategy and utilizes state of the art
preconditioned  Jacobian-Free = Newton-
Krylov solution methods.

Among the many capabilities MOOSE
provides, FALCON makes direct use of the
following:

* Flexible, modular systems for
defining physics, material properties,
boundary conditions, etc.

* Physics based preconditioning.

* Unstructured grid with many element
types.

* Hybrid parallelism (threading and
MPI) that scales.

* Error estimation.

* Adaptive mesh
coarsening.

* Ability to read and write numerous
solution formats for pre- and post-
analysis.

refinement/

MOOSE itself is based on libMesh a finite
element library developed at the University
of Texas in Austin. (Kirk et al., 2006)

Finite Element Discretization

MOOSE utilizes a Galerkin finite element
based solution method.  Finite element
schemes are a subset of the method of
weighted residuals in which a particular
function space is chosen to represent both
the function to solve for and the function to
weight against. The input that must be
supplied for this method is what’s known as
the “weak form” of partial differential
equations. Weak forms are generated by
multiplying a PDE by a weighting function
(also called a “test function” that we denote
¢) and then integrating over the domain.
Further manipulation is often necessary to
reduce the order of derivatives present in the
problem, allowing more flexibility in the




choice of function space used to represent
the solution and the test function.

Taking the flow equation defined above
(Eqn. 7), multiplying by ¢; integrating over
the domain (denoted by “(,)”), applying the
Gauss divergence theorem to reduce the
derivative order of the equation (generating
a boundary integral denoted by “<,>") and
setting the it equal to zero the following
weak form is found:

(C-f pu@Pt @z)

k w ,
i)

(i vona)
(i
=

VpuwgVz, Vo, )

>=c

(10)

Applying a similar process to Eqns. 8, 9 we
can find the weak forms:
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where u, v and w are component variables of
the displacement vector.

Jacobian-Free Newton-Krylov

The previous section developed a set of
discretized, coupled, nonlinear weak form
equations. FALCON, through MOOSE,
utilizes a Newton solution method for this
system of equations that endeavors to solve
for:

F(U) =0, (13)

where F() represents the residual and U is
the  full  solution vector U ={P,
T, u, v, w}r. Note that this is a fully-coupled
scheme, simultaneously reducing the non-
linear residual for all solution variables.
Application of Newton’s method to the
discretized form of the equations naturally
leads to a linear algebraic system to solve
for each Newton iteration:

JsU* = —F(U*), (14)

where k denotes the iteration number, oU is
the Newton update to solve for and J is the
Jacobian matrix:

OF;(U)

J(U) = ,
©) Iy, (15)




i.e., the partial derivative of each residual (7)
with respect to each solution variable (j).

After Eq. 14 has been solved for 6Ux, U is
then updated by:

Ukl = UF 4 5U*, (16)

The new iterate (Ux+1) is then used in Eq. 14

and the process starts over again until F(Uw:1)
is within a specified tolerance of zero.

Typically a tolerance such as 10° is

sufficient.

The solution of the linear system in Eq. 14 is,
in this work, found using a Krylov method
(such as GMRES). This forms a Newton-
Krylov method, where the inner linear
systems are approximately solved (within a
tolerance) using a Krylov method. Efficient
solution of linear systems using Krylov
methods demands the development of an
effective preconditioner, which we will
describe in the following section.

Often it is the case that the Jacobian matrix
(Eq. 15) is expensive to form, requires a
large amount of memory to store and is
difficult to find (due to the need to calculate
analytic derivatives). In part because of
these concerns, the present work utilizes the
Jacobian-Free-Newton-Krylov (JFNK)
method (Brown and Saad, 1990; Knoll and
Keyes, 2004). JFNK alleviates the need to
form Jacobian (Eq. 15) by recognizing that
Krylov methods work through the repeated
application of Jacobian-vector products and
never utilize the Jacobian by itself. The
action of the Jacobian in a Krylov method
can be approximated using the finite
difference form:

Jy = F(U+hv) ~F(U)

h

(17)

where 4 is a perturbation parameter and v is
provided by the Krylov method. Several
methods exist for computing 4, but in

general, it is chosen to avoid problems with
machine precision.

Preconditioning

Utilizing Eq. 17, Eq. 14 can now be solved
without the need to develop both the
mathematical expressions for the true
Jacobian or fill the Jacobian matrix; the
former saving development effort and the
latter execution time. However, execution
speedup is not  guaranteed.  The
computational burden has now shifted from
Jacobian formation to residual computation.
In a Krylov solver, Eq. 17 must be evaluated
during each linear iteration. If a large
number of linear iterations are necessary to
solve Eq. 14 this burden might overshadow
Jacobian formation and inversion. To
combat this, preconditioning must be
applied.

Preconditioning attempts to lower the
condition number of a linear system, making
it more amiable to solution using iterative
methods such as a Krylov method. In the
present work right preconditioning is
employed, augmenting Eqs. 14 and 17:

IP~Y(PsU*) = —F(U¥), (18)

F(U 4 hP~1v) — F(U)
h " (19)

JP v ~

where P represents a preconditioning matrix.
Note that if P = J then the system reduces to
IdUx = —F(Ux) and is trivial to solve.
Unfortunately, this still requires finding P-1=
J-1, thus nothing has been gained. The idea is
to find P = J such that P -1is computationally
advantageous to find while still significantly
improving the conditioning of the system.

One possibility for P is to fill the diagonal
blocks with the diagonal blocks of J. This
has the effect of developing a matrix that
looks like a decoupled Jacobian, capturing a
lot of the behavior of the true-coupled



system without all of the complexity. This
block diagonal matrix can then be partially
inverted using methods like ILU, Jacobi, and
multigrid. ~ Multigrid ~ methods,  and
specifically Algebraic Multigrid (AMG)
methods, are particularly interesting because
of their ability to provide a good
approximation to the inverse of a matrix that
is dominated by elliptic looking operators
(Henson and Yang, 2002). Considering
several governing equations include
prominent elliptic components the choice of
a block diagonal P being partially inverted
by AMG was the most frequently used
approach for this study.

MOOSE also provides the ability to perform
physics-based preconditioning, where each
physics is targeted with a different
preconditioning  method.  Physics-based
preconditioning allows for more efficient
and  simultaneously = more  effective
preconditioning. For more information on
physics-based preconditioning and its use
within the MOOSE framework, see (Park et
al., 2010). The use of physics-based
preconditioning within FALCON is an
ongoing area of research.

MODEL APPLICATION

One-dimensional (1D) flow and heat
transport, comparison with analytical
solution

Our first example is to solve a simple one-
dimensional heat conduction-convection
problem using FALCON and compare the
numerical solution with the analytical
solution. In this particular example, only two
equations, fluid flow and heat transport, are
solved. Furthermore, for simplicity, we
assumed constant fluid density and
viscosity. Figure 1 shows problem
geometry, the mesh used in the simulation
and simulation results at three different
stages.

Time = 4.3200e+05

|
100.00

Time = 8.6400e+06

Time = 2.1600e+07

Figure 1.Three-dimensional mesh for a 1D
cylindrical column and simulation
results.

Figure 2 shows the comparison between
numerical and analytical solutions at two
different times. It is very clear that the
numerical solution agrees very well with the
analytical solution.

. Comparsion of nuemrical and analytical solutions

90 4
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Figure 2. Comparison of the numerical and

analytical solutions for 1D heat
conduction-convection problem.

Two-Dimensional Thermal Induced

Convection and Instability

The second example examines a case of
density driven free thermal convection,
similar to that detailed by Elder (1967), in
which a water saturated homogeneous



isotropic medium is heated from the bottom
causing a large density change (>5%) and
leads to unstable flow. This example was
chosen to  demonstrate FALCON’s
capabilities for fully coupling the fluid flow
and heat transport equations along with the
temperature-dependent constitutive relations
for fluid density and viscosity, as well as
adaptive mesh refinement (AMR).

The simulation domain and boundary
condition locations chosen for the problem
follows those detailed by Oldenberg and
Pruess (1995), using symmetry about the
midpoint of the x-axis of the Elder problem,
reducing the domain size to 300 meters by
150 meters. Initial conditions chosen for the
problem are a hydrostatic pressure
distribution and a uniform 12° C over the
entirc domain. The bottom left (x = 0 to
150m) boundary condition imposed at
startup applies a constant temperature of
20°C, and initiates a density driven
instability into the system. Relevant
material properties used in the simulation
are an intrinsic permeability of 1x10™"" m?,
porosity of 0.40, rock specific heat of 920.0
J/kg ©C, and a rock density of 2,500 kg/m’.
Fluid density and viscosity are initialized at
values provided from the constitutive
relations provided above. The problem was
specifically parameterized to be convection
dominated and have a large Rayleigh
number, testing the stability and efficacy of
the code.

Oldenberg and Pruess (1995) showed that
the results of this problem are strongly grid
dependent, with a relatively coarse grid
returning [upward] flows concentrated along
the axis of symmetry in their simulations.
When a finer grid was used an area of
downwelling was predicted along the axis of
symmetry.

Three simulation cases were tested with
FALCON focusing on fine mesh scenarios
and adaptive mesh refinement. The cases

were 1) a uniform 1m by Im mesh, 2) a
uniform 10m by 10m mesh with aggressive
adaptive mesh refinement, and 3) a uniform
10m by 10m mesh with conservative
adaptive mesh refinement. Shown on Figure
3 is the temperature distribution after twenty
years of simulated time. The red color
represents a temperature of 20°C, whereas
the blue color represents 12°C. The meshes
used in the simulations are shown on Figure
4.

As can be seen on Figure 3, the results for
the two adaptive mesh simulations return
similar results, whereas there is a difference
when compared to the static fine mesh
simulation.  Frolkovic and DeSchepper
(2000), when comparing the results of fine
grid simulations and adaptive mesh
applications, reported that adaptive mesh
results being identical to those obtained with
an extremely fine mesh. While our fine
mesh test cases do not directly compare with
those of Frolkovic and DeSchepper (2000),
examination and comparison of the
simulation case results are illustrative of the
potential gains in computational capability
obtained with FALCON.

The first simulation case using a uniform 1m
by Im grid (45,000 grid blocks), shown in
the top frame on Figure 3, predicted a large
central upwelling zone and three additional
upwelling fingers. The 20-year simulation
required approximately 2,100 seconds for
the calculations using a MPI scheme with 8
processors and a uniform timestep of 10
days. The second and third cases, both
using an initial 10m by 10m mesh and
adaptive mesh refinement, produced very
similar results. For the second (aggressive
adaptive mesh refinement) case, the mesh
refinement was allowed to reduce the grid
cells to 0.15m by 0.15m, and forced the
refined areas to persist over a large area of
the simulated domain. As the mesh evolved
over the duration of the simulation, the
simulation time actually suffer when



compared to the uniform mesh case,
requiring a total of 4,077 seconds to
simulate 20 years of convection. The
aggressive mesh refinement resulted in the
existence of 37,047 grid cells at the
conclusion of the simulation. The third test
case produced similar results as the second
case (see Figure 3), but with much less
computational burden. Allowing the grid
only to refine to a uniform 1.25m cell size,
and relaxing the grid after perturbations
passed by, reduced the computational time
to 434 seconds to complete the simulation.
5,826 grid cells existed at the conclusion of
the run.

While our results are preliminary and
qualitative in nature, they are very
promising.  Significant  reductions in
computational time were achieved using
adaptive meshing capabilities. Questions
remain however, regarding quantification of
the simulation results and predicted
temperature distribution. Work is currently
ongoing to quantify the solution of the
problems and benchmark the code
performance against existing simulators.

Figure 3.Simulated temperature distribution
for unstable thermal convection
using a fixed mesh (top),
aggressive adaptive mesh (middle),
and conservative adaptive mesh
(bottom).



Figure 4. Mesh corresponding to simulation
cases shown in Figure 3.

Three-Dimensional Wellbore-scale
Coupled Thermal-Hydro-Mechanical
Problems

Here we consider modeling a more complex
coupled thermoporoelastic problem in the
vicinity of injection well due to injection of
cold water into an initially hot reservoir in
order to demonstrate the capability of our
fully coupled modeling approach. Firstly,
we consider only fluid-rock interaction and
ignore the thermal-induced rock deformation
effect (a classical poroelasticity problem).
Figure 5 shows the problem geometry and
finite element mesh used in this simulation.
Both lateral and bottom boundaries are
confined (with prescribed zero lateral
displacement).

Figure 5. Three-dimensional mesh in the
vicinity of an injection well. Notice
that in this problem, the wellbore
is explicitly meshed.

Water is injected via the injection well in the
middle of the domain at a constant rate.
Figure 6 shows the simulation results of the
final steady-state 3D pressure and rock
displacement fields. The simulation results
clearly show the coupling of fluid injection
and rock deformation and are qualitatively
reasonable. The rock bulging out across the
top surface due to the lateral confinement
boundary condition used in this simulation.
This is very similar to thermal expansion
near a heater well. Readers also need to
notice that the vertical displacement has
been largely exaggerated in order to
visualize the bulging effect. The actual
vertical and lateral displacements are indeed
very small. The lateral displacement field
indicates that the rock is “pushed” away
from the injection well, also a clear evidence
of fluid-rock interaction. Also notice that in
this simulation, only fluid to rock
displacement is modeled for simplicity. The
effect of rock deformation on fluid flow can
be easily incorporated into the simulation.

A more complex problem is to add heat
transport and couple all three processes—
fluid flow, heat transport, and rock
deformation due to both fluid injection and



Figure 6. Simulation results of the poroelastic problem-steady-state solution: (left) pressure
field in Pascal; (mid) lateral (x-component) displacement field in meters and (right)
vertical (z-component) displacement field in meters. Note that displacement fields are

exaggerated for visualization purpose.
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thermal-induced stress—together by solving
all three governing equations (Eqns. 7-9)
simultaneously. Figure 7 shows the
simulation results for such a problem. In this
simulation, cold water at 20°C is injected
into the reservoir that is initially at a
temperature of 100°C, which leads to
decreasing reservoir temperature (as shown
in Figure 7). Therefore the rock near the
wellbore tends to shrink toward the injection
well due to cooling, a processes similar to
land  subsidence due to  excessive
groundwater pumping. A close comparison
between Figures 6 and 7 on the magnitudes
and displacement directions for the lateral
and vertical displacements indicates that in
this particular example, the deformation of
rock due to reservoir cooling is far more
significant that that due to injection of water.
Thus the rock near the wellbore is under
tension. One immediate application of the
simulation results is to evaluate the stress
state near the wellbore and potential of rock
failure.

DISCUSSION AND CONCLUSIONS

Commercial scale deployment of EGS
greatly depends on our understanding of the
dynamics of the coupled rock-fracture-fluid-
heat system and our ability to reliably
predict how reservoirs behave under

stimulation and production. A  key
assumption associated with  reservoir
creation is that the reservoir rock can be
hydraulically  fractured in  quantities
sufficient to allow for commercial levels of
heat transfer.

The work detailed in the paper documented
the development of a parallel, fully coupled,
implicit, multiscale geothermal-
geomechanical simulation code. While this
is just the initial code development, focusing
only on a single-phase, continuum based
description of the processes, further work is
underway to extend the processes described
to multiphase flow and couple the
continuum mechanical equations with
mesos-scale  DEM descriptions of rock
failure and fracture propagation.

The framework developed for the code to
date provides a strong numerical foundation
for further development of more complex
problems, utilizing the MOOSE library for a
finite element discretization strategy and
state of the art preconditioned Jacobian-Free
Newton-Krylov — solution methods and
multiscale coupling .

Testing the code against a one-dimensional
analytical solution for single-phase flow and
heat transport in porous media showed that



T'ime = 2.1600e 105

Figure 7. Simulation results of the thermoporoelastic problem- solution after two days of
injection of cold water into a hot reservoir: (left) temperature field in °C; (mid)
lateral (x-component) displacement field in meters and (right) vertical (z-component)

displacement field in meters.

the predicted temperatures agreed very well
with the analytical solution. Testing a more
challenging, two-dimensional fully coupled
example, similar to that described by Elder
(1967), demonstrated the adaptive mesh
capabilities of the code. While the two-
dimensional results are preliminary and
qualitative in nature, they are very
promising.  Significant  reductions in
computational time were achieved using
adaptive meshing capabilities. Questions do
remain however, especially regarding grid
sensitivity and the effect of adaptive
meshing schemes on predicted temperature
distributions. These topics have been the
focus of significant research in the past, and
are a fertile area for future work.

Simulation of coupled thermoporoelastic
processes in the vicinity of injection well
due to injection of cold water into an
initially hot reservoir demonstrated the
capability of our fully coupled modeling
approach. Two cases were examined, 1) a
classical poroelasticity problem which
considered only fluid-rock interactions, and
2) a fully coupled case where fluid flow,
heat transport, and rock deformation due to
both fluid injection and thermal-induced
stress  (coupling all three governing
equations), were solved simultaneously. The
magnitudes and displacement directions

predicted for this example are reasonable
and qualitatively agree with many previous
studies. The preliminary results clearly
demonstrate the potential of applying
physics-based, fully coupled numerical
models to advance the understandings of
strongly nonlinear, tightly coupled thermal-
hydro-mechanical  processes that are
extremely difficult to study via physical
experiments.
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