INVESTIGATIONS INTO THE EARLY LIFE HISTORY OF NATURALLY PRODUCED SPRING CHINOOK SALMON AND SUMMER STEELHEAD IN THE GRANDE RONDE RIVER SUBBASIN

ANNUAL REPORT 2008

Project Period: 1 February 2008 to 31 January 2009

Prepared by:

Jeffrey A. Yanke
Brian M. Alfonse
Kyle W. Bratcher
Scott D. Favrot
Jacob P. Kimbro
Jesse W. Steele
Ian P. Wilson
Brian C. Jonasson
Richard W. Carmichael

Oregon Department of Fish and Wildlife La Grande, OR

Funded by:

U. S. Department of Energy Bonneville Power Administration Division of Fish and Wildlife Portland, OR 97208-3621

Project Number 1992-026-04 Contract Number 00041002

July 2009

ABSTRACT

This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon *Oncorhynchus tshawytscha* and summer steelhead *O. mykiss* in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia River hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.

CONTENTS

	<u>Page</u>
ABSTRACT	i
EXECUTIVE SUMMARY	1
Objectives	1
Accomplishments	1
Findings	
Spring Chinook Salmon	
Summer Steelhead	
Stream Condition	
Management Implications and Recommendations	4
INTRODUCTION	5
SPRING CHINOOK SALMON INVESTIGATIONS	8
Methods	8
In-Basin Migration Timing and Abundance	
Migration Timing and Survival to Lower Granite Dam	11
Results and Discussion	16
In-Basin Migration Timing and Abundance	
Migration Timing and Survival to Lower Granite Dam	17
SUMMER STEELHEAD INVESTIGATIONS	21
Methods	21
In-Basin Migration Timing and Abundance	
Migration Timing and Survival to Lower Granite Dam	
Results and Discussion	23
In-Basin Migration Timing and Abundance	
Migration Timing and Survival to Lower Granite Dam	

CONTENTS (continued)

	<u>Page</u>
STREAM CONDITION INVESTIGATIONS	26
Methods	26
Stream Temperature and Flow	26
Results and Discussion	26
Stream Temperature and Flow	26
FUTURE DIRECTIONS	29
REFERENCES	30
APPENDIX A. A Compilation of Spring Chinook Salmon Data	60
APPENDIX B. A Compilation of Steelhead Data	83

TABLES

Number	• •	<u>Page</u>
1.	Dates of tagging and number of spring Chinook salmon parr PIT-tagged in various northeast Oregon streams during the summers of 2006 and 2007	
2.	Catch of juvenile spring Chinook salmon at four trap locations in the Grande Ronde River Subbasin during MY 2008	34
3.	Fork lengths of juvenile spring Chinook salmon collected from the study streams during MY 2008	35
4.	Weights of juvenile spring Chinook salmon collected from the study streams during MY 2008	36
5.	Survival probability to Lower Granite Dam for spring Chinook salmon part tagged in summer 2007 and detected at Columbia and Snake River dams in 2008.	1
6.	Juvenile spring Chinook salmon survival probability by location and tag group from time of tagging to Lower Granite Dam	37
7.	Catch of juvenile steelhead at four trap locations in the Grande Ronde River Subbasin during MY 2008	38
8.	Age structure of early and late steelhead migrants collected at trap sites during MY 2008	39
9.	Travel time to Lower Granite Dam of wild steelhead PIT tagged at screw traps during spring 2008 and subsequently arriving at Lower Granite Dam in 2008	39
10.	Probability of surviving and migrating in the first year to Lower Granite Dam of steelhead PIT tagged at screw traps on Catherine Creek and the upper Grande Ronde, Lostine, and Minam rivers during fall 2007 and spring 2008.	40
11.	Age structure of PIT tagged early migrating steelhead with known age information, and the subset subsequently detected at downstream dams the following spring	40

FIGURES

Number	· ·	<u>Page</u>
1.	Locations of fish traps in the Grande Ronde River Subbasin during the study period	41
2.	Estimated migration timing and abundance of juvenile spring Chinook salmon migrants captured by rotary screw traps during MY 2008	42
3.	Length frequency distribution of early and late migrating juvenile spring Chinook salmon captured at the upper Grande Ronde River, Catherine Creek, Lostine River, and Minam River traps during MY 2008	43
4.	Weekly mean fork lengths with standard error for spring Chinook salmon captured by rotary screw traps in the Grande Ronde River Subbasin during MY 2008.	
5.	Dates of arrival, in 2008, at Lower Granite Dam of spring Chinook salmon PIT-tagged as parr in Catherine Creek and the Imnaha, Lostine, Minam, and upper Grande Ronde Rivers during the summer of 2007	
6.	Dates of arrival in 2008 at Lower Granite Dam for fall, winter, and spring tag groups of juvenile spring Chinook salmon PIT-tagged in the upper Grande Ronde River, expressed as a percentage of the total detected for each group.	46
7.	Dates of arrival, in 2008, at Lower Granite Dam for fall, winter, and spring tag groups of juvenile spring Chinook salmon PIT-tagged in Catherine Creek, expressed as a percentage of the total detected for each group	
8.	Dates of arrival, in 2008, at Lower Granite Dam for fall, winter, and spring tag groups of juvenile spring Chinook salmon PIT-tagged in the Lostine River, expressed as a percentage of the total detected for each group	
9.	Dates of arrival, in 2008, at Lower Granite Dam for fall, winter, and spring tag groups of juvenile spring Chinook salmon PIT-tagged in the Minam River, expressed as a percentage of the total detected for each group	
10.	Estimated abundance and migration timing of steelhead migrants captured by rotary screw traps, during MY 2008	50

FIGURES (continued)

Number		<u>Page</u>
11.	Dates of arrival, in 2008, at Lower Granite Dam for fall and spring tag groups of steelhead PIT-tagged in the upper Grande Ronde River, expressed as a percentage of the total detected for each group	51
12.	Dates of arrival, in 2008, at Lower Granite Dam for fall and spring tag groups of steelhead PIT-tagged in the upper Grande Ronde River, expressed as a percentage of the total detected for each group	52
13.	Dates of arrival, in 2008, at Lower Granite Dam for fall and spring tag groups of steelhead PIT-tagged in the Lostine River, expressed as a percentage of the total detected for each group	53
14.	Dates of arrival, in 2008, at Lower Granite Dam for fall and spring tag groups of steelhead PIT-tagged in the Minam River, and expressed as a percentage of the total detected for each group	54
15.	Length frequency distributions for all steelhead PIT-tagged at screw traps during fall 2007 and those subsequently observed at Snake River or Columbia River dams during spring 2008	55
16.	Length frequency distributions for all steelhead PIT-tagged at screw traps during fall 2006, and those subsequently observed at Snake River or Columbia River dams in 2007 and 2008.	56
17.	Length frequency distributions for all steelhead PIT-tagged at screw traps during spring 2008, and those subsequently observed at Snake River or Columbia River dams during the spring of 2008	57
18.	Moving mean of maximum water temperature during the in-basin life stages of egg-to-emigrant for juvenile spring Chinook salmon that migrated from four study streams in the Grande Ronde River basin during migration year 2008	
19.	Average daily discharge during the in-basin life stages of egg-to-emigrant for juvenile spring Chinook salmon that migrated from four study streams in the Grande Ronde River basin during migration year 2008	59

APPENDIX TABLES

Number	<u>r</u>	<u>Page</u>
A-1.	Population estimates, median migration dates, and percentages of juvenile spring Chinook salmon population moving as late migrants past trap sites, 1994–2008.	61
A-2.	Dates of arrival at Lower Granite Dam of spring Chinook salmon smolts PIT-tagged in upper rearing areas during the summer and winter, and at screw traps as early and late migrants during migratory years 1993–2008	63
A-3.	The number of PIT tagged spring Chinook salmon released by tag group and stream, and survival probability to Lower Granite Dam during migratory years 1993–2008	69
A-4.	Travel time to Lower Granite Dam of juvenile spring Chinook salmon PIT tagged at screw traps in spring and arriving at Lower Granite Dam the same year	
A-5.	Overwinter survival rates of spring Chinook salmon parr overwintering upstream of screw traps on Catherine Creek and the Lostine and Grande Ronde rivers	78
A-6.	Comparisons of overwinter survival of spring Chinook salmon parr in rearing areas upstream and downstream on the upper Grande Ronde River, Catherine Creek and the Lostine River	
A-7.	Estimated number of wild spring Chinook salmon smolt equivalents leaving tributaries in spring, and at Lower Granite Dam	80
B-1.	Population estimates, median migration dates, and percentage of steelhead population moving as late migrants past trap sites, 1997–2008 migratory years.	84
B-2.	Dates of arrival at Lower Granite Dam of steelhead PIT tagged upstream of the screw trap in Catherine Creek and tributaries during summer, and at screw traps in the fall and spring during the same migratory year, 2000–2008	
B-3.	Probability of surviving and migrating in the first year to Lower Granite Dam for steelhead PIT tagged in the upper rearing areas of Catherine Creel during summer and at screw traps during fall and spring	

APPENDIX TABLES (continued)

<u>Numbei</u>	<u>[</u>	<u>Page</u>
B-4.	Fork lengths of steelhead at the time they were PIT-tagged at screw traps on Catherine Creek and the upper Grande Ronde, Lostine, and Minam rivers during the early migration period 1999–2008, summarized by dam detection history	93
B-5.	Fork lengths of steelhead at the time they were PIT-tagged at screw traps on Catherine Creek and the upper Grande Ronde, Lostine, and Minam rivers during the late migration period 2000–2008, summarized by dam detection history	96
B-6.	Fork lengths of steelhead at the time they were PIT-tagged in rearing areas upstream of the screw trap on Catherine Creek and its tributaries during summer 2000–2008, summarized by migration history	99

EXECUTIVE SUMMARY

Objectives

- 1. Document the in-basin migration patterns and estimate egg-to-migrant survival for spring Chinook salmon juveniles in Catherine Creek and the upper Grande Ronde, Minam, and Lostine rivers.
- 2. Determine overwinter mortality and the relative success of fall (early) migrant and spring (late) migrant life history strategies for spring Chinook salmon from tributary populations in Catherine Creek and the upper Grande Ronde, and Lostine rivers, and the relative success of fall (early) migrant and spring (late) migrant life history strategies for spring Chinook salmon from the Minam River.
- 3. Estimate and compare smolt survival probabilities at main stem Columbia and Snake River dams for migrants from four local, natural populations of spring Chinook salmon in the Grande Ronde River and Imnaha River subbasins.
- 4. Document the annual migration patterns for spring Chinook salmon juveniles from four local, natural populations in the Grande Ronde River and Imnaha River subbasins: Catherine Creek, Lostine, Minam, and Imnaha rivers.
- 5. Document patterns of movement for juvenile steelhead from tributary populations in Catherine Creek, the upper Grande Ronde, Lostine and the Minam rivers including data on migration timing, duration, and smolt abundance.
- 6. Estimate and compare survival probabilities to main stem Columbia and Snake River dams for summer steelhead from four tributary populations: Catherine Creek and the upper Grande Ronde, Lostine, and Minam rivers.
- 7. Evaluate methods to estimate the proportion of steelhead captured during fall trapping that are migrating out of rearing areas and will undertake a smolt migration the following spring.

Accomplishments

We accomplished all of our objectives in 2008.

Findings

Spring Chinook Salmon

We determined migration timing and abundance of juvenile spring Chinook salmon *Oncorhynchus tshawytscha* using rotary screw traps on four streams in the Grande Ronde River Subbasin from 24 September 2007 through 30 June 2008. Based on migration timing and abundance, we distinguished two distinct life history strategies of juvenile spring Chinook salmon. 'Early' migrants left upper rearing areas from 24 September 2007 to 16 January 2008 with a peak in the fall. 'Late' migrants left upper rearing areas from 29 January 2008 to 30 June 2008 with a peak in the spring. At the upper Grande Ronde River trap, we estimated 11,684 juvenile spring Chinook salmon migrated out of upper rearing areas with approximately 39% leaving as early migrants. At the Catherine Creek trap, we estimated 26,151 juvenile spring Chinook salmon migrated out of upper rearing areas with 78% leaving as early migrants. At the Lostine River trap, we estimated 26,117 juvenile spring Chinook salmon migrated out of upper rearing areas with 59% leaving as early migrants. At the Minam River trap, we estimated 77,301 juvenile spring Chinook salmon migrated out of the river with 43% leaving as early migrants.

Juvenile spring Chinook salmon that were PIT-tagged in natal rearing areas of Catherine Creek and the upper Grande Ronde, Imnaha, Lostine, and Minam rivers during the summer of 2007 were detected at Lower Granite Dam between 8 April and 23 June 2008. Median dates of arrival at Lower Granite Dam for populations from the Wallowa watershed of the Grande Ronde (Lostine and Minam Rivers), and the Imnaha River were not significantly different during MY 2008 (Kruskal–Wallis, P > 0.05). Populations from Catherine Creek and the upper Grande Ronde River arrived at Lower Granite Dam significantly later than all other populations studied (Kruskal–Wallis, P < 0.05). Median arrival dates at Lower Granite Dam ranged from 7 May to 29 May. Survival probabilities to Lower Granite Dam for parr tagged in the summer of 2007 were 0.264 for the upper Grande Ronde River, 0.08 for Catherine Creek, 0.183 for the Lostine River, 0.193 for the Minam River, and 0.189 for the Imnaha River population.

Chinook salmon tagged at the traps were detected at Lower Granite Dam between 2 April and 25 June 2008. Although there was overlap in arrival dates, median arrival dates for early migrants were before that of late migrants for all four streams. Early migrant survival probabilities to Lower Granite Dam ranged from 0.153 to 0.338, and late migrants ranged from 0.380 to 0.683. Survival probabilities fall within ranges previously observed for all populations.

During migratory year (MY) 2008, upper Grande Ronde, and Lostine rivers and Catherine Creek juvenile spring Chinook salmon that overwintered downstream of trap sites (early migrants) survived at equivalent rates of juveniles that overwintered upstream of the traps (late migrants).

Summer Steelhead

We determined migration timing and abundance of juvenile steelhead/rainbow trout (*O. mykiss*) using rotary screw traps on four streams in the Grande Ronde River Subbasin during MY 2008. Based on migration timing and abundance, we distinguished early and late migration patterns, similar to those of spring Chinook salmon. For MY 2008, we estimated 7,296 steelhead migrants left upper rearing areas of the upper Grande Ronde River with 5% of these fish leaving as early migrants. We estimated 24,011 steelhead migrants left upper rearing areas in Catherine Creek with 36% of these fish leaving as early migrants. We estimated 21,493 steelhead migrated out of the Lostine River, with approximately 57% of these fish leaving as early migrants. We estimated 62,675 steelhead migrated from the Minam River with 19% of these fish leaving as early migrants.

The steelhead collected at trap sites during MY 2008 were comprised of five age groups. Early migrants ranged from 0 to 4 years of age, whereas late migrants ranged from 1 to 4 years of age. Smolts detected at Snake River and lower Columbia River dams ranged from 1 to 3 years of age with age-2 fish making up the highest percentage of seaward migrants.

Juvenile steelhead PIT-tagged at screw traps on Catherine Creek, and the upper Grande Ronde, Lostine, and Minam rivers were detected at Lower Granite Dam from 19 April to 4 July 2008. Median arrival dates for early migrants ranged from 13 May to 17 May. Median arrival dates for late migrants ranged from 11 May to 19 May.

Probabilities of surviving and migrating in the first year to Lower Granite Dam for early migrating steelhead ranged from 0.079 (Catherine Creek) to 0.420 (upper Grande Ronde River). Probabilities of surviving and migrating in the first year to Lower Granite Dam for late migrants greater than 115mm in length ranged from 0.520 (Catherine Creek) to 0.819 (Minam River). Two of the four groups of smaller late-migrating fish (<115mm) had enough detections at Lower Granite dam to calculate a probability of migrating and surviving in spring 2008 (0.009 and 0.019). It should be noted that lower probabilities for the smaller groups (<115mm) are not necessarily due to lower survival but more likely due to the fact that these fish are less likely to migrate in the first year.

Stream Condition

Daily mean water temperature typically fell within DEQ standards in all four study streams while the 2006 BY of spring Chinook salmon occupied the Grande Ronde River Subbasin (1 August 2006–30 June 2008). The 2006 BY encountered daily mean water temperatures in excess of the DEQ standard (17.8°C) for 33 of 654 days in the upper Grande Ronde River, 44 of 650 days for Catherine Creek, and 78 of 697 days for the Minam River. Daily mean water temperatures in excess of 17.8°C occurred in all four study streams except the Lostine River

while eggs may have been being deposited in redds (August 2006), intermittently during parr rearing stages in all four study streams (June–August 2007), and for several days during early dispersal (August-September 2007) in the upper Grande Ronde River, Catherine Creek and the Minam River. Temperatures preferred by juvenile Chinook salmon (10–15.6°C) occurred for 13% of the hours logged for the upper Grande Ronde River, 16% for Catherine Creek, 21% for the Lostine River and 16% for the Minam River. These optimal temperatures tended to occur April–June and August–October in all four study streams. Maximum water temperature considered lethal to Chinook salmon (25°C) was encountered 18 of 654 days in the upper Grande Ronde River, less than 2 of 662 days in Catherine Creek, and 15 of 697 days in the Minam River. The moving mean of maximum daily water temperature showed that temperatures below the limit for healthy growth (4.4°C) occurred more often than temperature above the limit for healthy growth (18.9°C) in all four study streams. With the exception of the Lostine and Minam Rivers during November of 2006, stream discharge was relatively low and stable from August through March. Spring run-off typically occurred April–July with peak flows occurring from late-May to early-June in all four study streams.

Management Implications and Recommendations

Rearing of juvenile spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin is not confined to the areas in which the adults spawn. Some of the juvenile spring Chinook salmon and steelhead from each of the study streams move out of natal rearing areas to overwinter in downstream areas of the subbasin before migrating toward the ocean as smolts the following spring or later. These movements of spring Chinook salmon and steelhead show that lower river reaches in the subbasin are used for more than migratory corridors, and point to a need for adequate habitat protection in all areas of the subbasin. Migration timing continues to vary between years and populations; therefore the need exists to manage the hydrosystem to maximize survival throughout the entire migratory period for Snake River spring/summer Chinook salmon and steelhead smolts.

INTRODUCTION

The Grande Ronde River originates in the Blue Mountains of northeast Oregon and flows 334 km to its confluence with the Snake River near Rogersburg, Washington. The Grande Ronde River Subbasin is divided into three watershed areas: the Upper Grande Ronde River Watershed, the Lower Grande River Watershed, and the Wallowa River Watershed. The Upper Grande Ronde River Watershed includes the Grande Ronde River and tributaries from the headwaters to the confluence with the Wallowa River. The Lower Grande Ronde River Watershed includes the Grande Ronde River and tributaries, excluding the Wallowa River, from the Wallowa River to the confluence with the Snake River. The Wallowa River Watershed includes the Wallowa River and tributaries, including the Lostine and Minam rivers, from the headwaters to its confluence with the Grande Ronde River.

Historically, the Grande Ronde River Subbasin produced an abundance of salmonids including spring, summer and fall Chinook salmon, sockeye salmon, coho salmon, and summer steelhead (ODFW 1990). During the past century, numerous factors have led to a reduction in salmonid stocks such that the only viable populations remaining are spring Chinook salmon and summer steelhead. Snake River spring/summer Chinook salmon, including Grande Ronde River spring Chinook salmon, were listed as threatened under the Endangered Species Act (ESA) in 1992. Snake River steelhead, including Grande Ronde River summer steelhead, were listed as threatened under the ESA in 1997. Six spring Chinook salmon populations have been identified in the subbasin (TRT 2003): Wenaha River; Wallowa-Lostine River (includes Wallowa River, Lostine River, Bear Creek and Hurricane Creek); Minam River; Catherine Creek (includes Catherine and Indian creeks); Upper Grande Ronde River (includes the upper Grande Ronde River and Sheep Creek); and Lookingglass Creek, of which the endemic spring Chinook salmon population is considered extinct. Four summer steelhead populations have been identified in the subbasin (TRT 2003): Lower Grande Ronde River (includes the main stem Grande Ronde River and all tributaries, except Joseph Creek, upstream to the confluence of the Wallowa River); Joseph Creek; Wallowa River (includes Minam and Lostine rivers); and Upper Grande Ronde River (includes the main stem upper Grande Ronde River, Lookingglass Creek, Catherine Creek, Indian Creek, and tributaries).

Anadromous fish production in the subbasin is limited by two overarching factors (Nowak 2004). Adult escapement of salmon and steelhead is limited by out-of-subbasin issues, such as juvenile and adult passage problems at Columbia and Snake River dams and out-of-subbasin overharvest, and is insufficient to fully seed the available habitat (Nowak 2004). The carrying capacity of the habitat has been reduced within the subbasin by land management activities which have contributed to riparian and instream habitat degradation. Impacts to fish and aquatic habitat have included water withdrawal for irrigated agriculture, human residential development, livestock overgrazing, mining, channelization, low stream flows, poor water quality, mountain pine beetle damage, logging activity, and road construction (Nowak 2004). Many of these impacts have been

reduced in recent years as management practices become more sensitive to fish and aquatic habitats, but the effects of past management remain (Nowak 2004).

Development of sound recovery strategies for these salmon stocks requires knowledge of stock-specific life history strategies and critical habitats for spawning, rearing, and downstream migration (Snake River Recovery Team 1993; NWPPC 1992; ODFW 1990). This project is acquiring knowledge of juvenile migration patterns, smolt production, rates of survival, and juvenile winter rearing habitat within the subbasin. This project collects data to obtain life stage specific survival estimates (egg-to-parr, parr-to-smolt, and smolt-to-adult), and includes an evaluation of the importance and frequency at which alternative life history tactics are utilized by spring Chinook salmon populations in northeast Oregon.

The spring Chinook salmon and summer steelhead smolt migration from the Grande Ronde River Subbasin occurs during spring. Data from Lookingglass Creek (Burck 1993), Catherine Creek, Grande Ronde River, and Lostine River (Keefe et al. 1994, 1995; Jonasson et al. 1997, Van Dyke et al. 2001) indicate a substantial number of juveniles move out of upper rearing areas during fall and overwinter downstream within the Grande Ronde River Subbasin. The proportion of the total migrant population these early migrants represent, and their survival to Snake and Columbia River dams varies among years and streams.

Juvenile Chinook salmon that leave upper rearing areas in Catherine Creek and the upper Grande Ronde River during fall overwinter in the Grande Ronde Valley. Much of the habitat in these mid-reaches of the Grande Ronde River is degraded. Stream conditions in the Grande Ronde River below the city of La Grande consist of both meandering and channeled sections of stream, which run through agricultural land. Riparian vegetation in this area is sparse and provides little shade or instream cover. The river is heavily silted due to extensive erosion associated with agricultural and forest management practices and mining activities. It is reasonable to suggest that salmon overwintering in degraded habitat may be subject to increased mortality due to the limited ability of the habitat to buffer against environmental extremes. The fall migration from upper rearing areas in Catherine Creek constitutes a substantial portion of the juvenile production (Jonasson et al. 2006): therefore, winter rearing habitat quantity and quality in the Grande Ronde Valley may be important factors limiting spring Chinook salmon smolt production in the Grande Ronde River.

Juvenile steelhead that leave upper rearing areas during fall and spring may continue rearing within the subbasin for an extended period of time (6 months to several years) before resuming smolt migration during spring. Therefore, rearing habitat is not limited to the areas where steelhead are spawned.

Numerous enhancement activities have been undertaken in an effort to recover spring Chinook salmon populations in the Grande Ronde River Subbasin. Supplementation programs have been initiated by the Oregon Department of Fish and Wildlife, the Confederated Tribes of the Umatilla Indian Reservation, and the Nez Perce Tribe using endemic broodstock from the upper Grande Ronde River, Catherine Creek, and the Lostine River. Information collected by this project will serve as the foundation for assessing the effectiveness of these programs to increase the natural production of spring Chinook salmon in the Grande Ronde River Subbasin.

SPRING CHINOOK SALMON INVESTIGATIONS

Methods

For the purpose of this report, we assume all juvenile spring Chinook salmon captured in traps were downstream "migrants". A migratory year (MY) in the Grande Ronde River Subbasin begins on 1 July, which is the earliest calendar date juvenile spring Chinook salmon are expected to begin their migration to the ocean. The migratory year ends on 30 June the following calendar year. The term "brood year" (BY) refers to the calendar year in which eggs were fertilized. All spring Chinook salmon referred to in this report were naturally produced unless noted otherwise.

In-Basin Migration Timing and Abundance

We determined the in-basin migration timing and abundance of juvenile spring Chinook salmon in the upper Grande Ronde River, Catherine Creek, and the Lostine and Minam rivers by operating rotary screw traps during MY 2008. Spring Chinook salmon in each study stream exhibit two migratory life history patterns. Early migrants leave upper rearing areas in fall to overwinter in downstream reaches before continuing their seaward migration out of the subbasin the following spring. Late migrants exhibit another life history strategy whereby they overwinter in the upper rearing areas prior to initiating their seaward migration in spring. Designations of early and late migration periods were based on trends in capture rates at trap sites. A common period of diminished capture rates occurs at all four trap sites during winter and was used to separate fish into early and late migration periods. We determined migration timing and abundance for both of these periods.

In the Grande Ronde River Subbasin, we operated four rotary screw traps (Figure 1). In the Upper Grande Ronde River Watershed, one rotary screw trap was located below spawning and upper rearing areas in the upper Grande Ronde River near the town of Starkey at rkm 299, and a second trap was located in Catherine Creek below spawning and upper rearing areas near the town of Union at rkm 32. In the Wallowa River Watershed, one rotary screw trap was located below the majority of spawning and upper rearing areas on the Lostine River near the town of Lostine at rkm 3, and another trap was located on the Minam River below spawning and rearing areas at rkm 0. Although the intent was to operate the traps continuously through the year, there were times when a trap could not be operated due to high or low river flows or freezing conditions. There were also instances when traps were not operating due to debris blockage and mechanical breakdowns. No attempt was made to adjust population estimates for periods when traps were not operating. For this reason, estimates represent a minimum number of migrants.

Sampling and Marking: The rotary screw traps were equipped with live-boxes that safely held hundreds of juvenile spring Chinook salmon trapped over 24–72 h periods. The traps were generally checked daily, but were checked as infrequently as every third day when few fish were captured per day and environmental conditions were not severe. All juvenile spring Chinook salmon captured in traps were removed for enumeration and scanned for PIT tags. Before scanning or marking, fish were anesthetized in an aerated solution containing 40–50 mg/L of tricaine methanesulfonate (MS-222). PIT tags were injected manually with a modified hypodermic syringe as described by Prentice et al. (1986, 1990) and Matthews et al. (1990, 1992) for fish with fork length (FL) greater than 54 mm. Syringes were disinfected for 10 min in 70% isopropyl alcohol and allowed to dry between each use. A portable tagging station that consisted of a computer, PIT tag reader, measuring board, and electronic balance was used to record the tag code, fork length (± 1 mm), and weight (± 0.1 g) of tagged fish. Fork lengths (mm) and weights (g) were measured from at least 100 juvenile spring Chinook salmon each week when possible. All fish were handled and marked at stream temperatures of 16°C or less and released within 24 hours of being tagged. River height was recorded daily from permanent staff gauges and water temperatures were recorded daily at each trap location using thermographs or hand held thermometers.

Migrant abundance was estimated by conducting weekly trap efficiency tests throughout the migratory year at each trap site. Chinook salmon fry and sexually mature parr were not included in migrant abundance estimates. Trap efficiency was determined by releasing a known number of marked fish above each trap and enumerating recaptures. Immature parr that exceeded 54 mm in FL were either caudal fin-clipped or PIT-tagged, whereas fish less than 55 mm in FL were marked with a caudal fin clip only. On days when a trap stopped operating, the number of recaptured fish and the number of marked fish released the previous day were subtracted from the weekly totals. Trap efficiency was estimated by

$$\hat{E}_j = R_j / M_j \,, \tag{1}$$

where \hat{E}_j is the estimated trap efficiency for week j, R_j is the number of marked fish recaptured during week j, and M_j is the number of marked fish released upstream during week j.

The weekly abundance of migrants that passed each trap site was estimated by
$$\hat{N}_j = U_j / \hat{E}_j , \qquad (2)$$

where \hat{N}_j is the estimated number of fish migrating past the trap for week j, U_j is the total number of unmarked fish captured that week, and \hat{E}_j is the estimated trap efficiency for week j. Total migrant abundance was estimated as the sum of weekly abundance estimates.

Variance of each weekly \hat{N} was estimated by the one-sample bootstrap method (Efron and Tibshirani 1986; Thedinga et al. 1994) with 1,000 iterations. Preliminary analysis indicated that when less than 10 fish were recaptured in a week, bootstrap

variance estimates were greatly expanded. For this reason, consecutive weeks were combined when there were fewer than 10 recaptures until total recaptures were greater or equal to 10 fish. This combined trap efficiency estimate was used in the bootstrap procedure to estimate variance of weekly population estimates. Each bootstrap iteration calculated weekly \hat{N}_{i}^{*} from equations (1 and 2) drawing R_{i}^{*} and U_{i}^{*} from the binomial distribution, where asterisks denote bootstrap values. Variance of \hat{N}_{i}^{*} was calculated from the 1,000 iterations. Weekly variance estimates were summed to obtain an estimated variance for the total migrant abundance. Confidence intervals for total migrant abundance were calculated by

$$95\% CI = 1.96\sqrt{V} \,\,\,(3)$$

where *V* is the estimated total variance determined from the bootstrap.

The upper Grande Ronde River, Catherine Creek, and Lostine River traps were located below hatchery spring Chinook salmon release sites. The magnitude of hatchery spring Chinook salmon releases into these streams during the spring required modifications to the methods used for estimating migrant abundance of wild spring Chinook salmon at the trap sites. During low hatchery spring Chinook salmon catch periods; the trap was fished continuously throughout a 24 h period as described above. During high catch periods, the trap was fished systematically for a 1 to 4 h interval using systematic two-stage sampling. Systematic sampling allowed us to reduce fish handling and overcrowding in the live-box, and avoid labor-intensive 24 h trap monitoring.

Systematic sampling required estimating the proportion of the total daily catch captured during each sampling interval. This proportion was estimated by fishing the trap over several 24 h periods prior to systematic sampling. The number of fish trapped during the 1 to 4 h sampling interval and the number in the remaining interval within each 24 h period were counted. The proportion of the total daily catch captured during the sampling interval (*i*) was estimated by

$$\hat{P}_i = S_i/C \,, \tag{4}$$

where \hat{P}_i is the estimated proportion of the total daily catch for sampling interval i, S_i is the total number of fish caught during sampling interval i, and C is the total number of fish caught throughout the 24 h sampling periods.

Estimates of trap efficiency could not be obtained during systematic sampling, so trap efficiency was calculated using mark—recapture numbers from 3 to 5 d before and after the systematic sampling period. Abundance of wild juvenile spring Chinook salmon at each trap during the systematic sampling period was estimated by

$$\hat{N}_s = \left(U_i/\hat{P}_i\right)/\hat{E} \,, \tag{5}$$

where \hat{N}_s is the estimated number of fish migrating past the trap during systematic sampling, U_i is the total number of fish captured during interval i, \hat{P}_i is the proportion of daily catch from equation (9), and \hat{E} is the estimated trap efficiency. Abundance for the total migration at the Catherine Creek, upper Grande Ronde, and Lostine river traps was determined by summing the continuous and systematic sampling estimates.

Variance for \hat{N}_s at each trap during systematic sampling was estimated by the one-sample bootstrap method (Efron and Tibshirani 1986; Thedinga et al. 1994) with 1,000 iterations. Each bootstrap iteration calculated \hat{N}_s from equations (1, 4, and 5) drawing R and S_i from the binomial distribution and U_i from the Poisson distribution. Variance of total migrant abundance was determined by summing the variance from the continuous and systematic sampling estimates.

Migration Timing and Survival to Lower Granite Dam

Detections of PIT tagged fish at Lower Granite Dam (the first Snake River dam encountered) were used to estimate migration timing, while survival probabilities to Lower Granite Dam were estimated using detections of PIT tagged fish at Snake and Columbia River dams. Both estimates were calculated for summer, fall, winter, and spring tag groups.

The summer tag groups consisted of age-0 parr tagged during July and August 2007 in their upstream rearing areas. This group included fish that moved out of upper rearing areas either as early or late migrants, and consequently overwintered either in the lower or the upper rearing areas, respectively, before continuing their downstream migration. Therefore, the summer tag group represented timing and survival for the population as a whole.

Summer tag group fish were captured using snorkel-seining methods, whereby 2 or 3 snorkelers herded parr downstream into a seine held perpendicular to flow. Traditional beach seining was also used in a few areas. Captured fish were held in aerated, 19-L buckets and transferred periodically to live cages anchored in shaded areas of the stream near marking stations. The goal was to PIT-tag 1,000 parr per stream on Catherine Creek and the Lostine, Minam, upper Grande Ronde and Imnaha rivers for the summer tag groups.

The fall tag groups represented early migrants that left the upstream rearing areas in the fall and overwintered downstream of screw traps. For consistency with previous years' data, fish tagged as they moved downstream past the upper trap sites between 1 September 2007 and 28 January 2008 were designated the fall tag group. Early migrants were captured, tagged, and released at the screw traps on the upper Grande Ronde River, Catherine Creek, Lostine River, and Minam River. The goal was to PIT-tag 500 fish at each trap throughout the early migration, yet only 159 fish were tagged at the upper Grande Ronde trap due to low catch.

Both the winter and spring tag groups represented late migrants that overwintered as parr upstream of the screw traps and migrated downstream in the spring. The winter group was tagged earlier in the upper rearing areas (December 2007) than the spring group, which were tagged at the screw trap as migrants (29 January–30 June 2008). Therefore, the winter tag group experienced overwinter mortality after tagging while the spring tag group did not. Winter tag group fish were caught, tagged, and released a

minimum of 8 km above the trap sites to minimize the chance they would pass the trap sites while making localized movements during winter. Fish were caught using dip nets while snorkeling at night. The goal was to PIT-tag 500 fish in the upper Grande Ronde River, Catherine Creek, and the Lostine River for winter tag groups, yet only 83 fish were tagged at the upper Grande Ronde due to low concentrations of parr.

Spring migrants were captured, tagged, and released at the screw traps on the upper Grande Ronde River, Catherine Creek, Lostine River, and Minam River. The goal was to PIT-tag 500 fish at each trap throughout the spring migration.

During MY 2008, all fish were scanned for PIT tags upon capture in all screw traps. Additionally, PIT tag interrogation systems were used in juvenile bypass systems at seven of eight Snake River and Columbia River dams to monitor fish passage. All recaptured and interrogated fish were identified by their original tag group, insuring the independence of tag groups for analysis. At the completion of MY 2008, detection information was obtained from juvenile PIT tag interrogation sites at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville dams.

Calculations: Migration Timing: The timing of migration past Lower Granite Dam was estimated for each tag group by expanding total daily numbers of PIT tag detections relative to the proportion of river outflow and spill. This procedure was necessary because some fish may have passed undetected over the spillway and the amount of spill varies throughout the migration season. The proportion of fish that passed over the spillway was assumed to be directly related to the proportion of flow spilled. This assumption conforms fairly well to data obtained using non-species-specific hydroacoustic methods (Kuehl 1986). It was also assumed that there was no temporal variation either in the proportion of fish diverted from turbine intakes into the bypass system or in the proportion of fish that passed through the surface bypass collector. These assumptions were made in light of evidence to the contrary (Giorgi et al. 1988, Swan et al. 1986, Johnson et al. 1997) because the data required to account for such variation were unavailable. The extent to which the results may be biased would depend on the overall rates of fish passage via the bypass system and surface bypass collector, and on the degree to which daily rates of fish passage by these routes may have varied throughout the migration seasons. The number of fish in a particular tag group migrating past Lower Granite Dam by day (\hat{N}_d) was estimated by multiplying the number of fish from the tag group that were detected each day by a daily expansion factor calculated using Lower Granite Dam forebay water flow data obtained from the U.S. Army Corps of Engineers at the DART website (<u>www.cbr.washington.edu/dart/river.html</u>):

$$\hat{N}_d = D_d \times \frac{O_d + L_d}{O_d} \,, \tag{6}$$

where D_d is the number of PIT tagged fish from a tag group detected at Lower Granite Dam on day d, O_d is the outflow (kcfs) measured at Lower Granite Dam forebay on day d, and L_d is the spill at Lower Granite dam spill (kcfs) on day d. Each daily estimate was rounded to the nearest integer. Daily estimates were added for each week to obtain weekly migration timing estimates for each tag group. First and last arrival dates were

reported for each tag group. The median arrival date of each tag group was determined from daily estimates.

Late migrants are tagged while fish are actively migrating seaward, whereas PIT tagged early migrants stop migrating and overwinter prior to resuming seaward migration in the spring. Simulated chi-square tests using the number of PIT tag releases and the estimated number of migrants for each week have shown that these two variables are independent when both trap efficiency estimates and annual peaks in movement vary (random). Therefore, median arrival dates for the spring tag group may be biased on the distribution of PIT tag releases. In hopes of reducing this bias we used winter tag group to represent the late migrants when comparing migration timing differences with early migrants. The travel times for the spring tag groups, to reach Lower Granite Dam from the screw traps, were summarized for each location.

Survival Probabilities: The probability of survival to Lower Granite Dam for fish in each tag group was calculated using the Cormack–Jolly–Seber method in the SURPH 2.2b program (Lady et al. 2001). This method takes into account the probability of detection when calculating the probability of survival.

Overwinter Survival: Survival probabilities for the winter tag group and the spring tag group were used to indirectly estimate the overwinter survival ($\hat{S}_{s,overwinter}$) for late migrants in upstream rearing areas on the upper Grande Ronde River, Catherine Creek, and the Lostine River:

$$\hat{S}_{s,overwinter} = \frac{\hat{S}_{s,winter}}{\hat{S}_{s,spring}} \tag{7}$$

where $\hat{S}_{s,winter}$ is the survival probability to Lower Granite Dam for the winter tag group from stream s, and $\hat{S}_{s,spring}$ is the survival probability to Lower Granite Dam for the spring tag group from stream s.

Smolt Equivalents: Smolt equivalents are defined as an estimated number of smolts from a population that successfully emigrate from a specified area (Hesse et al. 2006). We used early and late migrant abundance estimates (see In-Basin Migration Timing and Abundance) and subsequent survival probabilities to Lower Granite Dam (see Migration Timing and Survival to Lower Granite Dam; Calculations; Survival probabilities) to estimate the number of smolt equivalents leaving their respective tributary in spring ($\hat{Q}_{s.tributary}$):

$$\hat{Q}_{s,tributary} = \left(\hat{N}_{s,early} \times \frac{\hat{S}_{s,early}}{\hat{S}_{s,late}}\right) + \left(\hat{N}_{s,late}\right), \tag{8}$$

and the number of smolt equivalents that reach Lower Granite Dam ($\hat{Q}_{s,LGD}$):

$$\hat{Q}_{s LGD} = (\hat{N}_{s early} \times \hat{S}_{s early}) + (\hat{N}_{s late} \times \hat{S}_{s late}), \tag{9}$$

where $\hat{N}_{s,early}$, $\hat{N}_{s,late}$ is the estimated number of early and late migrants, respectively, from stream s, and $\hat{S}_{s,early}$, $\hat{S}_{s,late}$ is the estimated survival probability to Lower Granite Dam for early and late migrants, respectively, from stream s.

Population Characteristics and Comparisons: The summer tag groups include the various life history patterns displayed by a population and provides information about the population's overall survival and timing past the dams. In the summer of 2006 and 2007, PIT tagged parr from populations in Catherine Creek and the Lostine, Minam, and Imnaha rivers were used to monitor and compare their migration timing as smolts to Lower Granite Dam and their survival probabilities from tagging to the dams on the Snake River. Tagging operations were conducted in late summer (Table 1) so that most fish would be large enough to tag ($FL \ge 55$ mm). Sampling occurred primarily in areas where spawning adults were concentrated the previous year.

Migration Timing: Differences in migration timing between populations were determined using a Kruskal–Wallis one-way ANOVA on ranks on dates of arrival, expressed as day of the year; of expanded total daily PIT tag detections (see expansion explanation in **Migration Timing and Survival to Lower Granite Dam:** Calculations: Migration Timing). When significant differences were found, the Dunn's pairwise multiple comparison procedure was used ($\alpha = 0.05$) to compare arrival dates among populations.

Comparison of Life History Strategies within Populations: Tests were performed to determine if the early or late migrant life histories were associated with differences in migration timing to Lower Granite Dam, and survival to main stem Snake and Columbia River dams.

Migration Timing: Timing of migration past Lower Granite Dam was compared between the fall (early migrants) and winter (late migrants) tag groups from upper Grande Ronde River, Catherine Creek, and the Lostine River to investigate differences in migration timing. Comparisons were made using the Mann–Whitney rank sum test on arrival dates. Spillway flow (and the passage of undetected PIT tagged fish at the dam) was taken into account when expanding daily detections (see expansion explanation in Migration Timing and Survival to Lower Granite Dam: Calculations: Migration Timing). A winter tag group was not available for the Minam River, so no comparison of median arrival dates were made for this population.

Survival Probabilities: Fish that moved out of upstream rearing areas (early migrants) overwintered in different stream reaches than fish that remained upstream (late migrants), possibly subjecting groups to different environmental conditions. Selecting different overwintering areas may have implications on overwinter survival. For each stream, relative success of early and late migrants was evaluated by using the Maximum Likelihood Ratio Test to test the null hypothesis that survival probabilities of the fall tag group (early migrants) and the winter tag group (late migrants) were the same. Any

difference in survival probabilities between these two groups was assumed to be due to differential survival in upstream (used by winter tag group) and downstream (used by fall tag group) overwintering stream reaches. Since the fall group was tagged before the winter group, a lower survival estimate for the fall tag group could be due to elapsed time rather than a difference in overwintering conditions.

Results and Discussion

In-Basin Migration Timing and Abundance

Upper Grande Ronde River: The upper Grande Ronde River trap fished for 138 d between 4 October 2007 and 30 June 2008 (Table 2). There was a distinct early and late migration exhibited by juvenile spring Chinook salmon at this trap site (Figure 2). Systematic subsampling comprised 17 of the 92 d the trap was fished during late migration period, and a total of 502 juvenile Chinook salmon were caught during this period. The median emigration date for early migrants passing the trap was 21 October 2007, and the median emigration date for late migrants passing the trap was 9 April 2008 (Appendix Table A-1). Both dates fall within the range of median dates previously recorded for this study.

We estimated a minimum of 11,684 (95% CI, \pm 3,310) juvenile spring Chinook salmon migrated out of the upper Grande Ronde River rearing areas during MY 2008 (Appendix Table A-1). Based on the total minimum estimate, 39% (4,576 \pm 1,721) of the juvenile spring Chinook salmon were early migrants and 61% (7,108 \pm 2,828) were late migrants. A dominant late migration in the upper Grande Ronde River is consistent with most migratory years studied (Appendix Table A-1).

Catherine Creek: The Catherine Creek trap fished for 171 d between 25 September 2007 and 30 June 2008 (Table 2). There was a distinct early and late migration exhibited by juvenile spring Chinook salmon at this trap site (Figure 2). Systematic subsampling comprised 9 of 112 d the trap was fished during the late migration period, and a total of 111 juvenile Chinook salmon were caught during this period. The median emigration date for early migrants passing the trap was 19 October 2007, and the median emigration date for late migrants was 30 March 2008 (Appendix Table A-1). Both dates fall within the range of median dates previously recorded for this study.

We estimated a minimum of $26,151 \pm 2,099$ juvenile spring Chinook salmon migrated out of the upper Catherine Creek rearing areas during MY 2008. This migrant estimate was within the range of population estimates previously reported for this study (Appendix Table A-1). Based on the total minimum estimate, 78% ($20,502 \pm 1,700$) migrated early and 22% ($5,649 \pm 1,231$) migrated late. In contrast with migrants from the upper Grande Ronde River, the principal migration from Catherine Creek has consistently been observed during the early migrant period.

Lostine River: The Lostine River trap fished for 204 d between 1 October 2007 and 16 June 2008 (Table 2). The trap was started later than usual for this study; therefore, estimates of migration timing may be biased. Distinct early and late migrations were evident at this trap site (Figure 2). Systematic subsampling comprised 15 of 114 d the trap was fished during the late migration period, and a total of 405 juvenile Chinook

salmon were caught during this period. The median emigration date for early migrants was 2 November 2007, and the median date for late migrants was 29 April 2008. The median date for early migrants fell within the range reported in previous years, but the median date for late migrants was the latest reported for this study (Appendix Table A-1).

We estimated a minimum of $26,117 \pm 3,516$ juvenile spring Chinook salmon migrated out of the Lostine River during MY 2008. Based on the minimum estimate, 59% ($15,354 \pm 2,601$) of the juvenile spring Chinook salmon migrated early and 41% ($10,763 \pm 2,366$) migrated late. The percentage of late migrants is within the range reported from previous years of this study (Appendix Table A-1). The Lostine River population appears to be similar to the Catherine Creek population in that the largest emigration has been observed during the early migrant period (Appendix Table A-1).

Minam River: The Minam River trap fished for 146 d between 24 September 2007 and 18 June 2008 (Table 2). Distinct early and late migrations were evident (Figure 2). The median emigration date of early migrants was 21 October 2007, and the median date for late migrants was 13 April 2008. The median date for early migrants fell within the range reported in previous years, but the median date for late migrants was the latest reported for this study (Appendix Table A-1).

We estimated a minimum of $77,301 \pm 11,997$ juvenile spring Chinook salmon migrated out of the Minam River during MY 2008. Based on the minimum estimate, 43.5% ($33,592 \pm 5,337$) of the juvenile spring Chinook salmon migrated early and 56.5% ($43,709 \pm 10,744$) migrated late. The percentage of late migrants is within the range reported from previous years of this study (Appendix Table A-1).

Size of Migrants: A comparison of mean lengths and weights of juvenile spring Chinook salmon captured in the traps as early and late migrants and in upper rearing areas in winter and those PIT-tagged and released are given in Tables 3 and 4. Length frequency distributions of juvenile spring Chinook salmon caught in all traps by migration period are shown in Figure 3. Weekly mean lengths of migrants generally increased over time at each of the traps, with exception of the Lostine River (Figure 4).

Migration Timing and Survival to Lower Granite Dam

Population Comparisons: During July–August 2007, Chinook salmon parr were PIT-tagged and released in upper rearing areas on Catherine Creek, the Lostine, Minam, upper Grande Ronde and Imnaha rivers (Table 1). Parr were captured in summer rearing areas upstream of screw traps. Information on the migration timing and survival of parr PIT-tagged in summer 2008 will be reported in 2009.

Migration Timing: Spring Chinook salmon parr PIT-tagged on Catherine Creek and the Imnaha, Lostine, upper Grande Ronde, and Minam rivers during summer 2007 were detected at Lower Granite Dam from 8 April to 23 June 2008 (Appendix Table A-2). The period of detection at Lower Granite Dam among the four populations ranged

from 48 d (Imnaha River) to 76 d (upper Grand Ronde). Median dates of arrival ranged from 7 May to 29 May (Figure 5). Median dates of arrival at Lower Granite Dam for the Minam, Lostine Imnaha and the upper Grande Ronde rivers were not significantly different for MY 2008 (Kruskal–Wallis, P > 0.05). Catherine Creek however did differ significantly in median arrival date from all other populations (Kruskal–Wallis, P < 0.05). All populations fell within previously observed ranges of median arrival at Lower Granite Dam (Appendix Table A-2).

Survival Probabilities: Survival probabilities to Lower Granite Dam for parr tagged in the summer of 2007 were 0.265 for the upper Grande Ronde River, 0.08 for Catherine Creek, 0.183 for the Lostine River, 0.193 for the Minam River, and 0.189 for the Imnaha River population. Generally, survival probabilities for all groups during MY 2008 fell within the ranges reported during recent years. We have not tagged a summer group in the upper Grande Ronde River since 1995, but survival probabilities in 2008 were within the range reported from 1993-1995 (Appendix Table A-3).

Comparison of Early Life History Strategies: Juvenile spring Chinook salmon that were not previously marked were PIT-tagged at screw traps on the upper Grande Ronde River, Catherine Creek, Lostine River, and Minam River. Parr were also tagged upstream of the screw traps on the upper Grande Ronde River, Catherine Creek, and Lostine River during the winter. Total numbers of fish tagged in each group for each study stream is provided in Table 6.

Migration Timing: Median arrival dates at Lower Granite Dam for the fall, winter and spring tag groups on the upper Grande Ronde River were 18 May, 3 June, and 30 May 2008, respectively (Figure 6). Median arrival dates at Lower Granite Dam for the fall, winter, and spring tag groups for Catherine Creek were 13 May, 18 May, and 20 May 2008, respectively (Figure 7). Median arrival dates at Lower Granite Dam for the fall, winter, and spring tag groups for Lostine River were 1 May, 19 May, and 12 May 2008, respectively (Figure 8). Median arrival dates at Lower Granite Dam for the fall and spring tag groups for Minam River were 2 May and 8 May 2008, respectively (Figure 9). Median arrival dates for fall tag groups from all populations were within the ranges previously observed (Appendix Table A-2).

As in past years, early migrants (fall tag group) reached Lower Granite Dam earlier than late migrants (winter tag group) for the upper Grande Ronde and Lostine rivers (Mann–Whitney rank-sum tests, $P \le 0.036$). The difference in arrival dates between early and late migrants from Catherine Creek was not significant (Mann–Whitney rank-sum test, P = 0.236). There was no winter tag group to compare with early migrants for the Minam River.

Upper Grande Ronde River late migrants took 37 to 92 d with a median of 59 d (n = 49) to travel from the screw trap to Lower Granite Dam. Travel time for Catherine

Creek late migrants ranged from 27 to 119 d with a median of 65 d (n = 45). Travel time for Lostine River late migrants ranged from 8 to 64 d with a median of 21 d (n = 130). Travel time for Minam River late migrants ranged from 8 to 74 d with a median of 43 d (n = 118). Median travel time during MY 2008 was slower in Catherine Creek than previously reported and has varied in recent years. Travel time in the Minam River was within the range previously observed. Travel time in the upper Grande Ronde was the second slowest observed during this study. Travel time for the Lostine River fell within the ranges previously observed yet was relatively faster than those in recent years (Appendix Table A-4).

Survival Probabilities: Survival probabilities to Lower Granite Dam for fall, winter, and spring tag groups from the upper Grande Ronde River were 0.338, 0.361, and 0.418, respectively. Survival probabilities to Lower Granite Dam for fall, winter and spring tag groups from Catherine Creek were 0.153, 0.144, and 0.380, respectively. Survival probabilities for fall, winter and spring tag groups from the Lostine River were 0.265, 0.328, and 0.683, respectively. Survival probabilities for fall and spring tag groups from the Minam River were 0.283 and 0.623, respectively. Survival probabilities are generally higher for spring tag groups because fish are not subject to the same overwinter mortality that other tag groups experience (Table 6).

Overwinter survival of BY 2006 (MY 2008) fish in upper rearing areas of the upper Grande Ronde River was 86%, and was the highest rate reported for this study (Appendix Table A-5). However, this may partially be attributed to a small sample size (n = 136), relative to our tag goal of 500 fish. During MY 2008, the difference in survival between fish that overwintered upstream and those downstream of the upper Grande Ronde River trap was not significant (Maximum Likelihood Ratio test, *P* = 0.931). We previously observed higher survival rates for fish overwintering downstream of the trap during MY 1995, 1998-2000, and 2007 (Appendix Table A-6). Upstream overwintering conferred better survival in MY 2004-2005, while survival rates were equivalent between overwintering areas for MY 1994 and MY 2006 (Appendix Table A-6).

Overwinter survival of BY 2006 fish in upper rearing areas of Catherine Creek was 38%, and was within ranges previously observed during this study (Appendix Table A-5). During MY 2008, the difference in survival between fish that overwintered upstream and those downstream of the Catherine Creek trap was not significant (Maximum Likelihood Ratio test, P = 0.800). We observed higher survival rates for fish overwintering downstream of the Catherine Creek trap in MY 1997, 1999-2000, and 2007 (Appendix Table A-6); however, overwinter survival has typically been equivalent between upstream and downstream reaches (8 of 14 migratory years).

Overwinter survival of BY 2006 fish in the upper rearing areas on the Lostine River was 48%, and was within ranges previously observed during this study (Appendix Table A-5). During MY 2008, survival between fish that overwintered upstream and downstream of the Lostine River trap was not significantly different (Maximum Likelihood Ratio test, P = 0.115). For the Lostine River, we have observed similar

survival for upstream and downstream overwintering areas for eight of eleven years analyzed. The remaining three comparisons indicated higher survival rates for downstream rearing fish (Appendix Table A-6).

Smolt Equivalents: We estimated 10,808 smolt equivalents left upper Grande Ronde River rearing areas in the spring of 2008, and 4,518 of those successfully migrated to Lower Granite Dam (LGD, Appendix Table A-7). Both estimates are within previously reported ranges of smolt equivalent estimates from MY 1994-2008. We documented the lowest smolt equivalent estimates leaving rearing areas for the upper Grande Ronde River in spring and at LGD during MY 2003 (4,198 and 1,666, respectively). The highest smolt equivalent estimates leaving rearing areas for the upper Grande Ronde River and at LGD occurred during MY 1995 (35,685 and 21,732, respectively). Smolt equivalents were not estimated in MY 1996, 1997, and 2001 because too few PIT tag releases yielded incomplete survival estimates for one or both migrant groups (Appendix Table A-7).

We estimated 13,904 smolt equivalents left both rearing areas for Catherine Creek during the spring of 2008, and 5,283 of those successfully migrated to LGD (Appendix Table A-7). Both estimates are within previously reported ranges of smolt equivalent estimates from MY 1995-2008. We observed the lowest estimates during MY 1997, when an estimated 3,974 smolt equivalents left upstream and downstream rearing areas for Catherine Creek, and an estimated 1,641 successfully reached LGD. The highest smolt equivalent estimates leaving rearing areas for Catherine Creek in spring and at LGD occurred during MY 2004 (26,687 and 11,022, respectively; Appendix Table A-7).

We estimated 16,720 smolt equivalents left Lostine River rearing areas in the spring of 2008, and 11,420 of those successfully migrated to LGD (Appendix Table A-7). Both estimates are within previously reported ranges of smolt equivalent estimates from MY 1997-2008. We documented the lowest smolt equivalent estimates leaving upstream and downstream rearing areas for the Lostine River in spring and successfully arriving at LGD during MY 1997 (3,203 and 2,463, respectively). The highest estimate for smolt equivalents leaving rearing areas for the Lostine River in spring was 33,349 during MY 2005, and for smolt equivalents successfully reaching LGD was 19,012 during MY 1999 (Appendix Table A-7). Access to the Lostine River trap site was denied during MY 2004, precluding estimating both migrant abundance and survival to LGD.

We estimated 58,968 smolt equivalents left Minam River rearing areas during spring 2008, and 36,737 of those successfully migrated to Lower Granite Dam (Appendix Table A-7). Both estimates are within previously reported ranges of smolt equivalent estimates from MY 2001-2008. We observed the lowest estimates during MY 2007, when an estimated 22,589 smolt equivalents left both Minam River rearing areas, and 13,599 successfully reached LGD. We observed the highest estimates during 2005, when an estimated 88,766 smolt equivalents left both Minam River rearing areas in spring, and an estimated 49,265 successfully reached LGD (Appendix Table A-7).

SUMMER STEELHEAD INVESTIGATIONS

Methods

In the Grande Ronde River Subbasin, most juvenile steelhead populations coexist with rainbow trout populations and only steelhead smolts and mature adults can be visually differentiated from resident rainbow trout. For this reason all *Oncorhynchus mykiss* are referred to as steelhead in this report, even though some of these fish may be resident rainbow trout. We used screw traps to study the movement of juvenile steelhead downstream from tributary reaches in Catherine Creek and the Lostine, Minam, and upper Grande Ronde rivers. We assumed all juvenile steelhead captured at trap sites were making directed downstream movements and not localized movements. Violation of this assumption would result in positively biased population estimates.

In-Basin Migration Timing and Abundance

Migration timing and abundance for steelhead in the upper Grande Ronde River, Catherine Creek, Lostine River, and Minam River were determined by operating rotary screw traps year round. As with spring Chinook salmon, summer steelhead exhibit two life history strategies in the Grande Ronde River Subbasin (Van Dyke et al. 2001), so the same methodology described for operating screw traps and analyzing data for spring Chinook salmon was used for steelhead (*see* **SPRING CHINOOK SALMON INVESTIGATIONS; Methods; In-Basin Migration Timing and Abundance**).

Fork length (mm) and weight (g) were measured from randomly-selected steelhead weekly throughout the migratory year. The same methodology described for spring Chinook salmon was used to sample and mark steelhead (*see* **SPRING CHINOOK SALMON INVESTIGATIONS; Methods; In-Basin Migration Timing and Abundance;** *Sampling and Marking*). In previous years, steelhead less than 115 mm (FL) were not tagged in spring because fish in this size range were not detected at Snake or Columbia River dams until the following year. Although this criteria targeted only seaward migrating steelhead for the spring tag group, it failed to characterize the migration behavior of all steelhead emigrating from natal rearing areas during spring. Beginning in MY 2004, we tagged all steelhead to fully document all life history strategies used by each of the four populations. In addition, scale samples were taken from a subsample of steelhead (10 fish/10 mm FL group) during both migration periods. Descriptive statistics and an age–length key were employed to describe the age structure of early and late migrants collected at each trap site.

Migration Timing and Survival to Lower Granite Dam

Migration Timing: Detections of PIT tagged steelhead at Lower Granite Dam were used to estimate migration timing in the same manner as described for spring Chinook salmon (see SPRING CHINOOK SALMON INVESTIGATIONS; Methods; Migration Timing and Survival to Lower Granite Dam). The summer tag group represents steelhead tagged upstream of the upper trap site in the Catherine Creek drainage at the beginning of a migratory year (July) and has not been conducted since

2006. The fall tag group represents fish that moved downstream of the upper trap sites between 1 September 2007 and 28 January 2008 (early migrants). The spring tag group represents fish that moved downstream of the upper trap sites between 29 January and 30 June 2009 (late migrants). During the summer of 2006, the goal was to PIT-tag 500 steelhead in the main stem of Catherine Creek, and 500 fish in Little Catherine Creek. At each trap site during MY 2008, the goal was to PIT-tag 600 steelhead during the fall and spring to assess migration timing of early and late migrants for each location.

Survival Probabilities: We monitored PIT tagged steelhead migration behavior the same as described for spring Chinook salmon (*see* SPRING CHINOOK SALMON INVESTIGATIONS; Methods; Migration Timing and Survival to Lower Granite Dam) using the three tag groups described above. Groups of PIT tagged juvenile steelhead represent an undetermined combination of resident rainbow trout and steelhead. Therefore, survival probabilities calculated from these groups incorporate an unknown probability of an individual selecting the anadromous life history. Steelhead tagged during each migratory year of the study have been detected at dams across more than one migratory year (Reischauer et al. 2003); however, calculating a survival estimate across multiple migration years violates the assumptions of the Cormack/Jolly-Seber model. For this study, only detections during the migration year of tagging (2008) were used to calculate probability of surviving and migrating to Lower Granite Dam. Survival probabilities were calculated using the SURPH2.2b program (Lady et al. 2001).

Length and Age Characterization of Smolt Detections: We compared steelhead lengths at tagging, grouped by dam detection history, to investigate the relationship between size, migration patterns, and survival to the dams. The fork lengths of all steelhead tagged in the fall of 2007 were compared to the fork lengths of those subsequently detected at the dams in 2008 using the Mann–Whitney rank-sum test. Fork lengths of all steelhead tagged in the fall of 2006 were compared to lengths of those subsequently detected in 2007 and 2008 using a Kruskal–Wallis one-way ANOVA on ranks. A Dunn multiple comparison test was performed when the Kruskal–Wallis test rejected the null hypothesis that all tag groups were the same. In addition, the fork lengths of steelhead tagged in the spring of 2008 were compared to the fork lengths of those subsequently detected at the dams in the spring of 2008 using a Mann–Whitney rank-sum test. The age structure of steelhead PIT-tagged at the traps and the age structure of the subset detected at the dams in the spring of 2008 were characterized. Only steelhead in which scale samples provided a known age at time of tagging were used for this analysis.

Results and Discussion

In-Basin Migration Timing and Abundance

Upper Grande Ronde River: The upper Grande Ronde River trap fished for 138 d between 4 October 2007 and 30 June 2008 (Table 7). Systematic subsampling comprised 17 of 92 d the trap was fished during the late migration period. A distinct early migration was not as evident at this trap site as most juvenile steelhead emigrated as late migrants during spring months, which is consistent with previous years of this study (Figure 10). The median emigration date for early migrants was 13 November 2007 and the median emigration date for late migrants was 28 April 2008. The median migration date for early migrants was the latest reported for this study, but the median migration date for late migrants was within ranges previously reported (Appendix Table B-1).

We estimated a minimum of 7,296 (95% CI, \pm 1,405) juvenile steelhead emigrated from upper rearing areas of the upper Grande Ronde River during MY 2008, which is within estimates from previous migratory years (Appendix Table B-1). Based on the total minimum abundance estimate, 5% (356 \pm 96) were early migrants and 95% (6,940 \pm 1,402) were late migrants. The pattern of a dominant late migration of juvenile steelhead in the upper Grande Ronde River is consistent for all migratory years studied to date (Appendix Table B-1).

Catherine Creek: The Catherine Creek trap fished for 171 d between 25 September 2007 and 30 June 2008 (Table 7). Systematic subsampling comprised 9 of 112 d the trap was fished during the late migration period. There were distinct early and late migrations exhibited by juvenile steelhead at this trap site (Figure 10). Median emigration date for early migrants was 19 October 2007, while the median emigration date for late migrants was 13 April 2008. Both median migration dates were within ranges previously reported for this study (Appendix Table B-1).

We estimated a minimum of $24,011 \pm 9,268$ juvenile steelhead migrated out of the upper rearing areas of Catherine Creek during MY 2008. Based on the total minimum abundance estimate, 36% ($8,651 \pm 1,497$) migrated early and 64% ($15,360 \pm 9,146$) migrated late. The proportion of juvenile steelhead leaving upper rearing areas as late migrants is consistent with the proportions from previous years of this study (Appendix Table B-1).

Lostine River: The Lostine River trap fished for 204 d between 1 October 2007 and 16 June 2008 (Table 7). Systematic subsampling comprised 15 of 114 d the trap was fished during the late migration period. Distinct early and late migrations were evident at this trap site (Figure 10). The median emigration date of early migrants was 6 October 2007, and the median emigration date for late migrants was 30 April 2008. The median date for early migrants fell within ranges reported in previous years, but the median date for late migrants was among the latest reported for this study (Appendix Table B-1).

We estimated a minimum of $21,493 \pm 4,087$ steelhead migrated out of the Lostine River during MY 2008. Based on the total minimum abundance estimate, 57% (12,244 \pm 2,264) of the juvenile steelhead migrated early and 43% (9,249 \pm 3,403) migrated late.

Minam River: The Minam River trap fished for 146 d between 24 September 2007 and 18 June 2008 (Table 7). Distinct early and late migrations were evident at this trap site (Figure 10). The median emigration date for early migrants was 19 October 2007, and the median emigration date for late migrants was 30 April 2008. Both median migration dates were within ranges previously reported for this study (Appendix Table B-1).

We estimated a minimum of $62,675 \pm 21,725$ juvenile steelhead migrated out of the Minam River during MY 2008. Based on the total minimum abundance estimate, $19\% (12,132 \pm 3,579)$ migrated early and $81\% (50,543 \pm 21,428)$ migrated late.

Age of Migrants at Traps: The steelhead collected at trap sites during MY 2008 comprised four age-groups. Early migrants generally ranged from 0 to 3 years of age, while late migrants generally ranged from 1 to 3 years of age (Table 8). The majority of upper Grande Ronde River (57.7%) early migrants were age 1, while the majority of Catherine Creek (71.3%), Lostine River (57.6%), and Minam River (91.5%) early migrants were age 0. The majority of upper Grande Ronde River (47.9%) late migrants were age 2, while the majority of Catherine Creek (78.0%), Lostine River (89.6%), and Minam River (53.2%) early migrants were age 1 (Table 8).

Migration Timing and Survival to Lower Granite Dam

The total number of steelhead tagged in each tag group for each study stream is provided in Appendix Table B-2. Detections of the summer tag group from Catherine Creek and tributaries represented an undetermined combination of the two migrant groups that originated from this drainage.

Migration Timing: The median arrival dates at Lower Granite Dam for fall and spring tag groups of the upper Grande Ronde River were 15 May and 11 May, respectively (Figure 11). The median arrival dates for fall and spring tag groups of Catherine Creek were 14 May, and 19 May, respectively (Figures 12). The median arrival dates for fall and spring tag groups of the Lostine River were 17 May and 12 May, respectively (Figure 13). The median arrival dates for fall and spring tag groups of Minam River were 13 May and 11 May, respectively (Figure 14).

Travel time from the screw trap to Lower Granite Dam for the spring tag group from the four study streams are presented in Table 9. Travel time to Lower Granite Dam for the spring tag group from the upper Grande Ronde River ranged from 4 to 68 d with a median of 15 d. Travel time to Lower Granite Dam for the spring tag group from Catherine Creek ranged from 7 to 112 d with a median of 31 d. Travel time to Lower Granite Dam for the spring tag group from Lostine River ranged from 5 to 70 d with a

median of 11 d. Travel time to Lower Granite Dam for the spring tag group from Minam River ranged from 3 to 75 d with a median of 12 d.

Survival Probabilities: The probability of surviving and migrating in the migration year of tagging to Lower Granite Dam for steelhead tagged in fall 2007 ranged from 0.079 to 0.420 for the four study streams (Table 9). Probabilities of migration and survival for larger steelhead ($FL \ge 115$ mm) tagged in the spring 2008 ranged from 0.520 to 0.819 for the four populations studied (Table 9). Generally, the probabilities of migration and survival during spring 2008 were relatively high for all study streams in Grande Ronde River Subbasin (Appendix Table B-3).

During the course of this study, at least one PIT tagged fish captured and released in the North, Middle, and South forks of Catherine Creek, Little Catherine Creek, and Milk Creek have been detected at the dams, indicating the anadromous life history strategy is present in all these tributaries (Appendix Table B-3).

Length and Age Characterization of Smolt Detections: Of all the early migrating steelhead tagged at all four traps in the fall of 2007, the larger individuals from each trap tended to be the ones detected at the dams in 2008 (Mann–Whitney, P < 0.05, Figure 15). This pattern was also observed the previous migratory year for early migrants tagged in fall 2006 at all traps. Of all the early migrating steelhead tagged at all four traps in the fall of 2006, the smaller individuals from each trap tended to be the ones detected at the dams in 2008 (Kruskal–Wallis, P < 0.05, Figure 16). The spring tag group of 2008 also showed a pattern of the larger individuals being detected at the dams that spring (Mann–Whitney, P < 0.05, Figure 17). Summaries of fork lengths at the time of tagging for all steelhead tagged for the various tag groups and for those detected at the dams are provided in Appendix Tables B-4, B-5, and B-6. While differences between medians of an entire tag group and those detected at dams could be the result of greater size-dependent mortality rate for smaller fish, there is evidence that smaller individuals passing the traps delay their migration past the dams until the subsequent migratory year (Appendix Tables B-4, B-5, and B-6).

Of the 586 early migrating age-0 fish tagged in the four study streams, 13 were observed at the dams the following spring, while 68 of the 332 age-1 and 35 of the 112 age-2 early migrants were observed the following spring at the dams. As in past years, age-2 smolts (age-1 early migrants) made up the highest weighted percentage of all observations in MY 2008 (Table 11). Late migrant smolts primary consisted of age 1 to 3 years in 2008, but data collected in previous years have indicated that steelhead smolts from the Grande Ronde River Subbasin more commonly range in age from 1 to 4 years. Peven et al. (1994) found that steelhead smolts from the mid-Columbia River ranged in age from 1 to 7 years with most occurring as age-2 and age-3 fish. Even though the proportion of steelhead smolts within age-groups has been shown to vary considerably between migratory years (Ward and Slaney 1988), results from all years of this study indicate that the majority of the steelhead originating from the subbasin smolt as age-2 fish.

STREAM CONDITION INVESTIGATIONS

Methods

Stream Temperature and Flow

An initial assessment of stream condition was conducted for all four study streams. General stream condition sampling was based on protocols described by The Oregon Plan for Salmon and Watersheds (OPSW 1999) and stream flow data provided by the United States Geologic Survey (USGS) and the Oregon Water Resources Department (OWRD) La Grande District Water Master. Stream temperature and stream flow was characterized for all four study streams constrained by the in-basin life history of juvenile spring Chinook salmon from BY 2006, which ranged from 1 August 2006 (spawning) to 1 July 2008 (the end of MY 2008).

Mean daily temperature was generated using hourly 24 h data recorded to the nearest 0.1° C using a temperature logger located at each trap site. Descriptive statistics were used to characterize water temperature in each study stream with standards of optimal and lethal temperature ranges for juvenile Chinook salmon (OPSW 1999). The cumulative effects from prolonged exposure to high water temperature were characterized using a seven-day moving mean of the daily maximum, and were calculated by averaging daily maximum temperature and maximum temperatures for the preceding three days and following three days (n = 7).

Stream discharge was obtained from data logged at upper Grande Ronde River (USGS station 13317850; rkm 321.9), Catherine Creek (USGS station 13320000; rkm 38.6), Lostine River (USGS station 13330300; rkm 1.6) and Minam River (USGS station 13331500; rkm 0.4) gauging stations that measured discharge (cubic foot per second, cfs) every 15 minutes. Average daily discharge was converted to the nearest 0.001 cubic meters per second (m³/s).

Results and Discussion

Stream Temperature and Flow

Upper Grande Ronde River: Water temperatures during the second year of the in-basin occupancy of BY-2006 upper Grande Ronde River Chinook salmon ranged from 0.0°C to 27.9°C. We were unable to characterize a 46 day period during the summer of 2007 (3 August 2007 - 17 September 2007). Daily mean water temperature exceeded the DEQ standard of 17.8°C 33 of 654 days in the upper Grande Ronde River. Water temperature was within the range preferred by juvenile Chinook salmon (10–15.6°C; OPSW 1999) 1,982 of 15,696 (12.6%) hours logged in the upper Grande Ronde River.

The DEQ lethal limit of 25°C was exceeded for 56 hours during 18 of 654 days. The seven-day moving mean of the maximum temperature showed that water temperatures, below the range expected to support healthy growth (4.4–18.9°C; OPSW 1999) were encountered for a longer duration than those that exceeded the healthy growth water temperature range (Figure 18). Moving mean temperatures exceeded 18.9°C 76 days. During this period, 32 days (4 August 2006-8 September 2006) occurred while parental fish were spawning and 44 days (17 June 2007-30 July 2007) occurred while parr were rearing. Moving mean temperatures were less than 4.4°C 281 days. During this period, 127 days (27 October 2006–8 March 2007) occurred during incubation and emergence from redds, and 154 days (30 October 2007-31 March 2008) occurred during dispersal and spring migration.

Average daily discharge (gage station located at the lower end of summer rearing distribution) during the entire in-basin life history of the 2006 cohort ranged from 0.102 to 9.515 m³/s (Figure 19). Discharge was less than 1.00 m³/s from August through early-April. Discharge exceeded 1.00 m³/s from late-April through June with annual peak flows occurring on 10 May 2007 and 29 May 2008.

Catherine Creek: Water temperatures during the majority of the in-basin occupancy of BY-2006 Catherine Creek Chinook salmon ranged from 0.0°C to 25.4°C. We were not able to characterize a 38 day (19 December 2006–28 January 2007) period in which this cohort was incubating. Daily mean water temperature exceeded the DEQ standard of 17.8°C 44 of 662 days for Catherine Creek. Water temperature was within the range preferred by juvenile Chinook salmon (10–15.6°C; OPSW 1999) 2,551 of 15,888 (16.1%) hours logged for Catherine Creek. The DEQ lethal limit of 25°C was exceeded for five hours during two of the 662 days. The seven-day moving mean of the maximum temperature showed that water temperatures, below the range expected to support healthy growth (4.4–18.9°C; OPSW 1999), were encountered for a longer duration than those that exceeded the healthy growth water temperature range (Figure 18). Moving mean temperatures exceeded 18.9°C 95 days during in-basin occupancy of this cohort. During this period, a total of 26 days (4 August-7 September 2006) occurred during parental spawning and 69 days (30 June–6 September 2007) occurred while the majority of young of year were rearing and dispersing. Moving mean temperatures were less than 4.4°C 64 days (12 November 2006–4 March 2007) during incubation and emergence, and 97 days (20 November 2007-24 February 2008) during dispersal and spring migration.

Average daily discharge (station located in the lower end of summer rearing distribution) during the entire in-basin life history of 2006 cohort Catherine Creek spring Chinook salmon ranged from 0.286 to 31.718 m³/s (Figure 19). Discharge exceeded 2.00 m³/s from mid-February to late-June with annual peak flows occurring 10 May 2007 and 18 May 2008. Discharge was less than 2.00 m³/s from August to mid-April. In addition to the usual spring discharge increase, stream discharge exceeded 2.00 m³/s for a four day period during early-November 2006 and from late-November 2007 to early-February 2008.

Lostine River: Water temperatures during the in-basin occupancy of BY-2006 Lostine River Chinook salmon ranged from 0.0°C to 20.4°C. Daily mean water temperature did not exceed the DEQ standard of 17.8°C during any of the 698 days logged for the Lostine River. Water temperature was within the juvenile Chinook salmon preferred range for (10–15.6°C; OPSW 1999) 3,509 of 16,752 (20.9%) hours logged for the Lostine River. The DEQ lethal limit of 25°C was not exceeded on any of the 698 days. The seven-day maximum temperature moving mean showed that water temperatures, below the range expected to support healthy growth (4.4–18.9°C; OPSW 1999), were encountered for a longer duration than those that exceeded the healthy growth water temperature range (Figure 18). Moving mean temperatures exceeded 18.9°C 28 days (6 July 2007-2 August 2007) during the period when the majority of young of year were rearing within spawning grounds. Moving mean temperatures were less than 4.4°C 90 days (25 November 2006–1 March 2007) while the 2006 cohort was incubating or emerging, and 76 days (20 November 2007–11 February 2008) during dispersal.

Average daily discharge (station located at the lower end of summer rearing distribution) during the entire in-basin life history of the 2006 cohort ranged from 0.187 to 41.347 m³/s (Figure 19). Discharge exceeded 7.5 m³/s from late-April to late-June, with annual peak flows occurring on 5 June 2007 and 22 June 2008. Discharge was less than 7.5 m³/s from early-July to late-April. In addition to the usual spring discharge increase, discharge exceeded 7.5 m³/s for a five day period in mid-November 2006.

Minam River: Water temperatures during in-basin occupancy of BY-2006 Minam River Chinook salmon ranged from 0.0°C to 27.5°C. Daily mean water temperature exceeded the DEQ standard of 17.8°C 78 of 697 days for the Minam River. Water temperature was within the juvenile Chinook salmon preferred range for (10– 15.6°C; OPSW 1999) 2,771 of 16,728 (16.6%) hours logged for the Minam River. The DEQ lethal limit of 25°C was exceeded for 72 h during 3 of 697 days (2 hours, 8 August 2006; 68 hours, 11–31 July 2007; and 2 hours, 8 August 2007). The seven-day maximum temperature moving mean revealed that water temperatures, below the range expected to support healthy growth (4.4–18.9°C; OPSW 1999), were encountered for a longer duration than those that exceeded the healthy growth water temperature range (Figure 18). Moving mean temperatures exceeded 18.9°C 39 days (4 August–11 September 2006) during BY-2006 cohort parental egg deposition in the spawning gravel, and 70 days (29 June–15 September 2007) during BY-2006 young of year rearing and dispersion. Moving mean temperatures were less than 4.4°C 108 days (30 October 2006– 1 March 2007) while the 2006 cohort was in redds or emerging, and 99 days (11 November 2007–22 February 2008) during parr dispersal and winter rearing.

Average daily discharge (station located at the lower end of summer rearing distribution) during the entire in-basin life history of the 2006 cohort ranged from 1.302 to 99.686 m³/s (Figure 19). Discharge exceeded 9.0 m³/s from mid-February to late-June, with annual peak flows occurring 13 May 2007 and 19 May 2008. Discharge was less than 9.0 m³/s from early-July to late-April. In addition to the usual spring discharge

increase, stream discharge exceeded 9.0 m³/s for a seven day period during mid-November 2006 and a three day period during mid-December 2006.

FUTURE DIRECTIONS

We will continue this early life history study of spring Chinook salmon and summer steelhead in Catherine Creek and the upper Grande Ronde, Lostine, and Minam rivers. This project will continue to provide key metrics to monitor and evaluate the success of restoration efforts for spring Chinook salmon and steelhead in the Grande Ronde Subbasin.

REFERENCES

- Burck, W. A. 1993. Life history of spring Chinook salmon in Lookingglass Creek, Oregon. Oregon Department of Fish and Wildlife, Information Reports 94-1, Portland.
- Efron, B., and R. Tibshirani. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1: 54–77.
- Giorgi, A. E., G. A. Swan, W. S. Zaugg, T. C. Corley and T. Y. Barila. 1988. The susceptibility of Chinook salmon smolts to bypass systems at hydroelectric dams. North American Journal of Fisheries Management 8:25–29.
- Hesse, J., J. Harbeck, and R. W. Carmichael. 2006. Monitoring and evaluation plan for northeast Oregon hatchery Imnaha and Grande Ronde Subbasin spring Chinook salmon. Technical Report 198805301. Bonneville Power Administration, Portland, OR.
- Johnson, G. E., R. L. Johnson, E. Kucera, and C. Sullivan. 1997. Fixed-location hydroacoustic evaluation of the prototype surface bypass and collector at Lower Granite Dam in 1996. Final Report. U.S. Army Corps of Engineers, Walla Walla, WA.
- Jonasson, B. C., J. V. Tranquilli, M. Keefe, and R. W. Carmichael. 1997. Investigations into the early life history of naturally produced spring Chinook salmon in the Grande Ronde River basin. Annual Progress Report 1997. Bonneville Power Administration, Portland, OR.
- Jonasson, B. C., A. G. Reischauer, F. R. Monzyk, E. S. Van Dyke, and R. W. Carmichael. 2006. Investigations into the early life history of naturally produced spring Chinook salmon in the Grande Ronde River basin. Annual Progress Report 2002. Bonneville Power Administration, Portland, OR.
- Keefe, M., R. W. Carmichael, B. C. Jonasson, R. T. Messmer, and T. A. Whitesel. 1994. Investigations into the life history of spring Chinook salmon in the Grande Ronde River basin. Annual Progress Report 1994. Bonneville Power Administration, Portland, OR.
- Keefe, M., D. J. Anderson, R. W. Carmichael, and B. C. Jonasson. 1995. Early life history study of Grande Ronde River basin Chinook salmon. Annual Progress Report 1995. Bonneville Power Administration, Portland, OR.
- Kuehl, S. 1986. Hydroacoustic evaluation of fish collection efficiency at Lower Granite Dam in spring 1985. Final Report to U.S. Army Corps of Engineers, Walla Walla, WA.

- Lady, J., P. Westhagen, and J. R. Skalski. 2001. SURPH.2 User Manual, SURPH 2.2b, SURvival under Proportional Hazards. School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA. Available: http://www.cbr.washington.edu/paramEst/SURPH (January 2008).
- Matthews, G. M., J. R. Harmon, S. Achord, O. W. Johnson, and L. A. Kubin. 1990. Evaluation of transportation of juvenile salmonids and related research on the Columbia and Snake rivers, 1989. Report of the U.S. Army Corps of Engineers, Contract DACW68-84-H0034. National Marine Fisheries Service, Seattle.
- Matthews, G. M., and eight coauthors. 1992. Evaluation of transportation of juvenile salmonids and related research on the Columbia and Snake rivers, 1990. Report of the U.S. Army Corps of Engineers, Contract DACW68-84-H0034. National Marine Fisheries Service, Seattle.
- Nowak, M. C., lead writer. 2004. Grande Ronde Subbasin Plan. Northwest Power and Conservation Council, Portland. Available: http://www.nwcouncil.org/fw/subbasinplanning/granderonde/plan/ (January 2008).
- NWPPC (Northwest Power Planning Council). 1992. Strategy for salmon, Volume VII.
- ODFW (Oregon Department of Fish and Wildlife). 1990. Grande Ronde River Subbasin Salmon and Steelhead Production Plan. Oregon Department of Fish and Wildlife, Portland, OR.
- OPSW (The Oregon Plan for Salmon and Watersheds). 1999. Water Quality Monitoring Technical Guide Book: version 2.0. Available: http://www.oregon.gov/OWEB/docs/pubs/wq_mon_guide.pdf (January 2008).
- Prentice, E. F., T. A. Flagg, C. S. McCutcheon, D. F. Brastow, and D. C. Cross. 1990. Equipment, methods, and an automated data-entry station for PIT tagging. American Fisheries Society Symposium 7: 335–340.
- Prentice, E. F., D. L. Park, T. A. Flagg, and S. McCutcheon. 1986. A study to determine the biological feasibility of a new fish tagging system, 1985–1986. Annual Progress Report. Bonneville Power Administration, Portland OR.
- Peven, C. M., R. R. Whitney, and K. R. Williams. 1994. Age and length of steelhead smolts from the mid-Columbia river basin, Washington. North American Journal of Fisheries Management 14:77–86
- Reischauer, A. G., F. R. Monzyk, E. S. Van Dyke, B. C. Jonasson, and R. W. Carmichael. 2003. Investigations into the early life history of naturally produced spring Chinook salmon in the Grande Ronde River basin. Annual Progress Report 2001. Bonneville Power Administration, Portland, OR.

- Snake River Recovery Team. 1993. Draft Snake River salmon recovery plan recommendations. National Marine Fisheries Service, Portland, OR.
- Swan, G. A., R. F. Krcma, and F. J. Ossiander. 1986. Continuing studies to improve and evaluate juvenile collection at Lower Granite Dam, 1985. Report to U.S. Army Corps of Engineers, Portland, OR.
- Thedinga, J. F., M. L. Murphy, S. W. Johnson, J. M. Lorenz, and K. V. Koski. 1994. Determination of salmonid smolt yield with rotary-screw traps in the Situk River, Alaska, to predict effects of glacial flooding. North American Journal of Fisheries Management 14: 837–851.
- TRT (Interior Columbia Basin Technical Recovery Team). 2003. Independent Populations of Chinook, Steelhead, and Sockeye for Listed Evolutionarily Significant Units within the Interior Columbia River Domain.
- Van Dyke, E. S., M. Keefe, B. C. Jonasson, and R. W. Carmichael. 2001. Aspects of life history and production of juvenile *Oncorhynchus mykiss* in the Grande Ronde River Basin, northeast Oregon. Summary Report. Bonneville Power Administration, Portland, OR.
- Ward, B. R., and P. A. Slaney. 1988. Life history and smolt-to-adult survival of Keogh River steelhead trout (*Salmo gairdneri*) and the relationship to smolt size. Canadian Journal of Fish and Aquatic Science 45: 1110–1122.

Table 1. Dates of tagging and number of spring Chinook salmon parr PIT-tagged in various northeast Oregon streams during the summers of 2006 and 2007.

MigrationYear, Stream	Dates of collection and tagging	Number PIT-tagged and released	Distance to Lower Granite Dam (km)
2007 (Summar 2006)			
2007 (Summer 2006)	0.4 0 T T 1	-0.4	2.62 2.02
Catherine Creek	24–27 Jul	501	363–383
Lostine River	7–10 Aug	500	271-308
Minam River	28–31 Aug	1,000	276-290
Imnaha River	5–6 Sep	1,000	221–233
2008 (Summer 2007)			
Upper Grande Ronde	27–29 Aug	1,000	418-428
Catherine Creek	30 Jul-2 Aug	1,000	363-383
Lostine River	14–17 Aug	1,000	271-308
Minam River	20–23 Aug	1,000	276-290
Imnaha River	4–6 Sep	1,000	221–233

Table 2. Catch of juvenile spring Chinook salmon at four trap locations in the Grande Ronde River Subbasin during MY 2008. The early migration period starts 1 July 2007 and ends 28 January 2008. The late migration period starts 29 January and ends 30 June 2008. The period a trap operated was used to identify the total number of days fished with percentage in parentheses during each migration period.

Trap site	Migration period	Period trap operated	Days fished / days operated	Trap catch
	_			
Upper Grande Ronde River	Early	4 Oct 07–21 Nov 07	46/49 (94)	176
	Late	4 Mar 08–30 Jun 08	75/119 (63)	769 ^a
		25 Mar 08–20 Apr 08	17/27 (63)	502 ^b
Catherine Creek	Early	25 Sep 07–21 Dec 07	59/88 (67)	13,105
	Late	12 Feb 08–30 Jun 08	103/140 (66)	1,238 ^a
		25 Mar 08–18 Apr 08	9/25 (36)	111 ^b
Lostine River	Early	1 Oct 07–16 Jan 08	90/108 (83)	5,421
	Late	29 Jan 08–16 Jun 08	99/140 (66)	$2,072^{a}$
		25 Mar 08–23 Apr 08	15/30 (50)	405 ^b
Minam River	Early	24 Sep 07–21 Nov 07	58/59 (98)	10,981
	Late	22 Feb 08–18 Jun 08	88/118 (75)	2,471

^a Continuous 24 h trapping
^b Sub-sampling with 1 to 4 h trapping.

Table 3. Fork lengths of juvenile spring Chinook salmon collected from the study streams during MY 2008. Early and late migrants were captured with a rotary screw trap on each study stream. Winter group fish were captured with dipnets upstream of the rotary screw traps. Min. = minimum, Max. = maximum.

		Lengths (mm) of fish collected					Lengths (mm) of fish tagged and released			
Stream, group	n	Mean	SE	Min.	Max.	\overline{n}	Mean	SE	Min.	Max.
V. G. 1 D. 1 D.										
Upper Grande Ronde River										
Early migrants	159	74.1	0.50	58	91	159	74.1	0.50	58	91
Winter group	83	75.9	0.63	60	87	83	75.9	0.63	60	87
Late migrants	716	82.4	0.25	64	112	510	81.9	0.28	65	109
Catherine Creek										
Early migrants	582	78.8	0.39	57	103	499	78.1	0.37	57	103
Winter group	503	79.5	0.35	55	101	500	79.6	0.35	55	101
Late migrants	661	86.0	0.29	54	114	484	85.8	0.32	63	114
Lostine River										
Early migrants	501	91.4	0.40	62	132	499	91.4	0.40	62	132
Winter group	500	78.2	0.37	56	110	500	78.2	0.37	56	110
Late migrants	948	94.4	0.30	67	140	498	95.6	0.41	74	140
Minam River										
Early migrants	500	80.3	0.39	56	103	500	80.3	0.39	56	103
Late migrants	1,053	89.0	0.22	63	114	494	89.6	0.33	66	114

Table 4. Weights of juvenile spring Chinook salmon collected from the study streams during MY 2008. Early and late migrants were captured with a rotary screw trap on each study stream. Winter group fish were captured with dip nets upstream of the rotary screw traps. Min. = minimum, Max. = maximum.

		Weights (g) of fish collected					Weights (g) of fish tagged and released			
Stream, group	n	Mean	SE	Min.	Max.	n	Mean	SE	Min.	Max.
Upper Grande Ronde River										
Early migrants	107	4.3	0.09	2.4	7.3	107	4.3	0.09	2.4	7.3
Winter group	76	4.6	0.15	2.1	7.6	76	4.6	0.15	2.1	7.6
Late migrants	687	5.3	0.06	2.3	16.8	483	5.2	0.06	2.3	11.9
Catherine Creek										
Early migrants	581	5.4	0.07	2.0	11.3	499	5.2	0.08	2.0	11.3
Winter group	503	5.4	0.07	1.9	11.1	500	5.4	0.07	1.9	11.1
Late migrants	657	6.8	0.08	1.9	15.0	481	6.6	0.08	2.8	14.8
Lostine River										
Early migrants	500	8.5	0.13	2.6	28.0	498	8.5	0.12	2.6	28.0
Winter group	497	5.2	0.08	2.0	16.0	497	5.2	0.08	2.0	16.0
Late migrants	928	9.4	0.10	3.0	29.1	487	9.8	0.13	4.3	29.1
Minam River										
Early migrants	491	6.3	0.09	1.9	12.6	491	6.3	0.09	1.9	12.6
Late migrants	1,012	7.4	0.06	2.8	15.2	483	7.6	0.08	3.2	15.2

Table 5. Survival probability to Lower Granite Dam for spring Chinook salmon parr tagged in summer 2007 and detected at Columbia and Snake River dams in 2008.

1	Number PIT-tagged ar	nd
Stream	released	Survival probability (95% CI)
Catherine Creek	1,000	0.08 (0.053-0.136)
Lostine River	1,000	0.183 (0.155–0.218)
Minam River	1,000	0.193 (0.166–0.224)
Imnaha River	1,000	0.189 (0.224–0.319)
Upper Grande Ronde River	1,000	0.264 (0.224–0.319)

Table 6. Juvenile spring Chinook salmon survival probability by location and tag group from time of tagging to Lower Granite Dam. Chinook salmon were tagged from fall 2007 to spring 2008 and detected at the dams during 2008.

Stream,	Number PIT-tagged	
Tag group	and released	Survival probability (95% CI)
Upper Grande Ronde River		
Fall (trap)	159	0.338 (0.257–0.450)
Winter (above trap)	83	0.361 (0.124–5.029)
Spring (trap)	510	0.418 (0.362–0.492)
Catherine Creek		
Fall (trap)	499	0.153 (0.109–0.256)
Winter (above trap)	500	0.144 (0.108–0.207)
Spring (trap)	484	0.380 (0.309–0.506)
Lostine River		
Fall (trap)	499	0.265 (0.221–0.317)
Winter (above trap)	500	0.328 (0.270–0.417)
Spring (trap)	499	0.683 (0.616–0.768)
Minam River		
Fall (trap)	500	0.283 (0.235-0.344)
Spring (trap)	496	0.623 (0.554–0.710)

Table 7. Catch of juvenile steelhead at four trap locations in the Grande Ronde River Subbasin during MY 2008. The early migration period starts 1 July 2007 and ends 28 January 2008. The late migration period starts 29 January and ends 30 June 2008. The period a trap operated was used to identify the total number of days fished with percentage in parentheses during each migration period.

Trap site	Migration period	Period trap operated	Days fished / days operated	Trap catch
Upper Grande Ronde River	Early	4 Oct 07–21 Nov 07	46/49 (94)	137
	Late	4 Mar 08–30 Jun 08	75/119 (63)	685 ^a
		25 Mar 08–20 Apr 08	17/27 (63)	130 ^b
Catherine Creek	Early	25 Sep 07–21 Dec 07	59/88 (67)	2,266
	Late	12 Feb 08–30 Jun 08	103/140 (66)	790 ^a
		25 Mar 08–18 Apr 08	9/25 (36)	74 ^b
Lostine River	Early	1 Oct 07–16 Jan 08	90/108 (83)	4,339
	Late	29 Jan 08–16 Jun 08	99/140 (66)	1,075 ^a
		25 Mar 08–23 Apr 08	15/30 (50)	79 ^b
Minam River	Early	24 Sep 07–21 Nov 07	58/59 (98)	1,372
	Late	22 Feb 08–18 Jun 08	88/118 (75)	1,505

^a Continuous 24 h trapping
^b Sub-sampling with 1 to 4 h trapping.

Table 8. Age structure of early and late steelhead migrants collected at trap sites during MY 2007. The same four cohorts were represented in each migration period but ages increased by one year from early migrants to late migrants (e.g. age-0 early migrants were same cohort as age-1 late migrants). Age structure was based on the frequency distribution of sampled lengths and allocated using an age—length key. Means were weighted by migrant abundance at trap sites.

Migration period,			Percent		
Trap Site	Age-0	Age-1	Age-2	Age-3	Age-4
Early					
Upper Grande Ronde River	2.2	57.7	38.7	0.7	0.7
Catherine Creek	71.3	26.1	2.6	0.0	0.0
Lostine River	57.6	35.9	6.5	0.0	0.0
Minam River	91.5	8.2	0.2	0.0	0.0
Mean	67.3	26.8	5.8	0.1	0.1
CV (%)	56.9	76.9	311.3	701.5	701.5
Late					
Upper Grande Ronde River	0.0	21.8	47.9	29.2	1.1
Catherine Creek	0.0	78.0	19.6	2.5	0.0
Lostine River	0.0	89.6	7.7	2.6	0.0
Minam River	0.0	53.2	28.6	18.1	0.2
Mean	0.0	59.6	26.6	13.5	0.3
CV (%)		50.4	63.7	96.5	155.7

Table 9. Travel time to Lower Granite Dam (LGD) of wild steelhead PIT tagged at screw traps during spring 2008 and subsequently arriving at Lower Granite Dam in 2008.

	Distance to	Number	Travel time (d)		
Stream	LGD (km)	detected	Median	Min.	Max.
Upper Grande Ronde River	397	110	15.4	4	68
Catherine Creek	362	21	31.2	7	112
Lostine River	274	31	11.2	5	70
Minam River	245	53	11.5	3	75

Table 10. Probability of surviving and migrating in the first year to Lower Granite Dam of steelhead PIT tagged at screw traps on Catherine Creek and the upper Grande Ronde, Lostine, and Minam rivers during fall 2007 and spring 2008 (MY 2008).

Cassan	Name le ou	Nameloga	Probability of surviving and
Season,	Number	Number	migrating in the first year
Location tagged	tagged	detected	(95% CI)
Fall			
Upper Grande Ronde River	136	41	0.420 (0.294–0.657)
Catherine Creek	600	37	0.079 (0.052–0.142)
Lostine River	599	49	0.082 (SE=0.011)
Minam River	495	33	0.090 (0.057–0.173)
Spring (FL \geq 115 mm)			
Upper Grande Ronde River	518	263	0.626 (0.558–0.708)
Catherine Creek	128	48	0.520 (0.358–1.002)
Lostine River	128	76	0.714 (0.576–0.967)
Minam River	291	175	0.819 (0.689–1.027)

Table 11. Age structure of PIT-tagged early migrating steelhead sampled by screw trap in the Grande Ronde Basin, and the subset subsequently detected at Snake and Columbia river dams the following spring. Italicized headings represent smolt age at the time detections were subsequently recorded at a dam. Means are weighted by sample size (n).

			Pero	ent	
		Age-0	Age-1	Age-2	Age-3
Trap site	n	Age-1 smolt	Age-2 smolt	Age-3 smolt	Age-4 smolt
		P	T-tagged fish	with known ag	ge
Upper Grande Ronde River	83	2	56	40	2
Catherine Creek	295	61	35	4	0
Lostine River	293	56	34	10	0
Minam River	362	66	23	11	0
Mean		56.7	32.1	10.8	0.3
CV (%)		52.5	42.9	149.4	333.3
		PI	T-tagged fish o	detected at dar	ns
Upper Grande Ronde River	25	0	60	40	0
Catherine Creek	23	31	65	4	0
Lostine River	36	11	58	31	0
Minam River	32	6	53	41	0
Mean		11.2	58.6	30.2	0.0
CV (%)		120.0	8.5	57.2	_

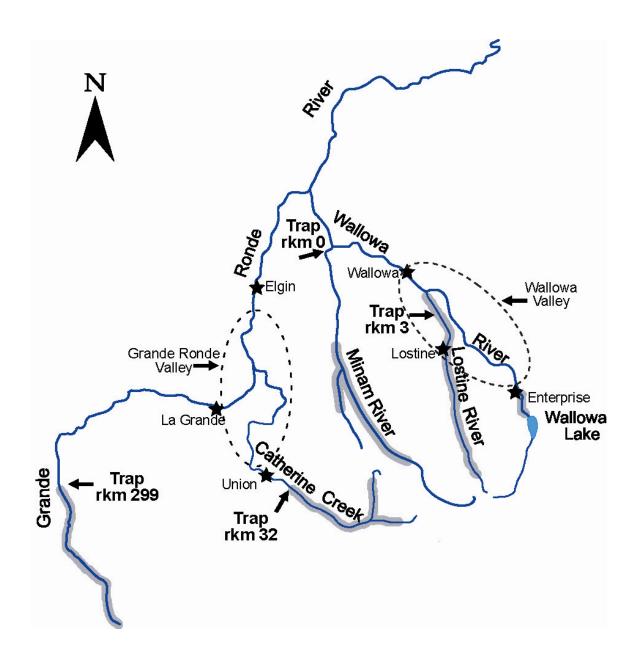


Figure 1. Locations of fish traps in the Grande Ronde River Subbasin during the study period. Shaded areas delineate spring Chinook salmon spawning and upper rearing areas in each study stream. Dashed lines indicate the Grande Ronde River and Wallowa River valleys.

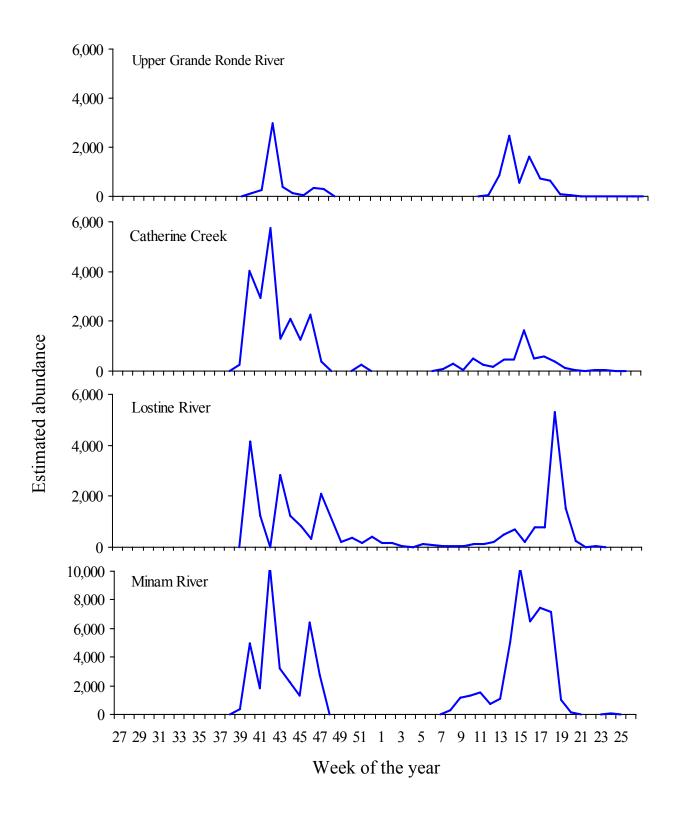


Figure 2. Estimated migration timing and abundance of juvenile spring Chinook salmon migrants captured by rotary screw traps during MY 2008. Traps were located at rkm 299 of the Grande Ronde River, rkm 32 of Catherine Creek, rkm 3 of the Lostine River, and rkm 0 of the Minam River.

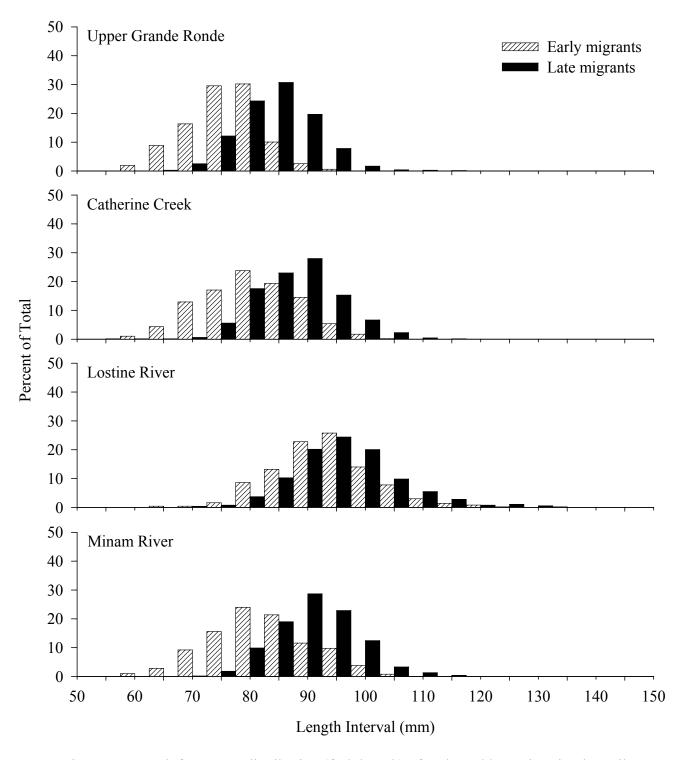


Figure 3. Length frequency distribution (fork length) of early and late migrating juvenile spring Chinook salmon captured at the upper Grande Ronde River (rkm 299), Catherine Creek (rkm 32), Lostine River (rkm 3), and Minam River (rkm 0) traps during MY 2008.

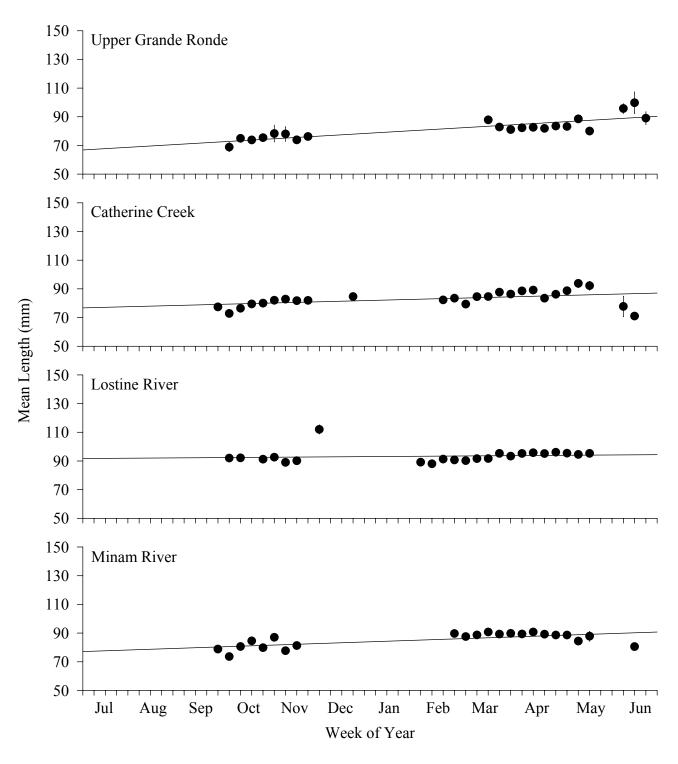


Figure 4. Weekly mean fork lengths (mm) with standard error for spring Chinook salmon captured by rotary screw traps in the Grande Ronde River Subbasin during MY 2008.

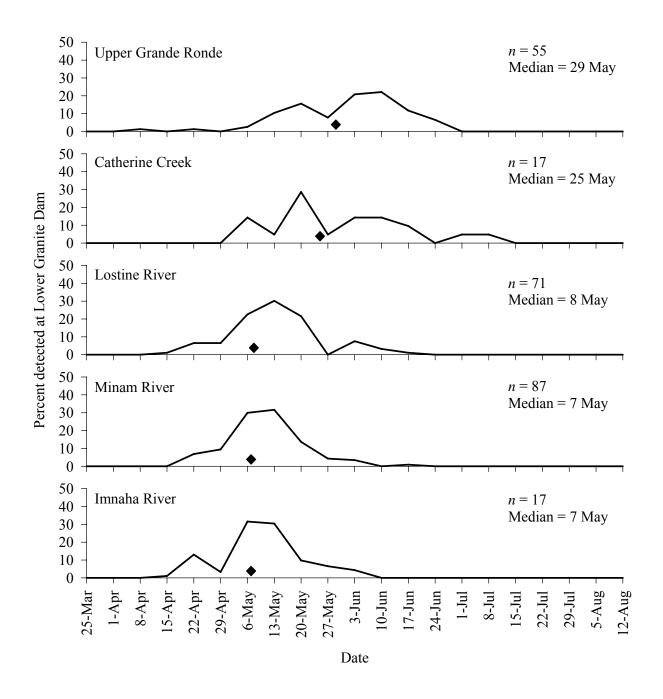


Figure 5. Dates of arrival, in 2008, at Lower Granite Dam of spring Chinook salmon PIT-tagged as parr in Catherine Creek and the Imnaha, Lostine, Minam, and upper Grande Ronde Rivers during the summer of 2007. Data summarized by week and expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

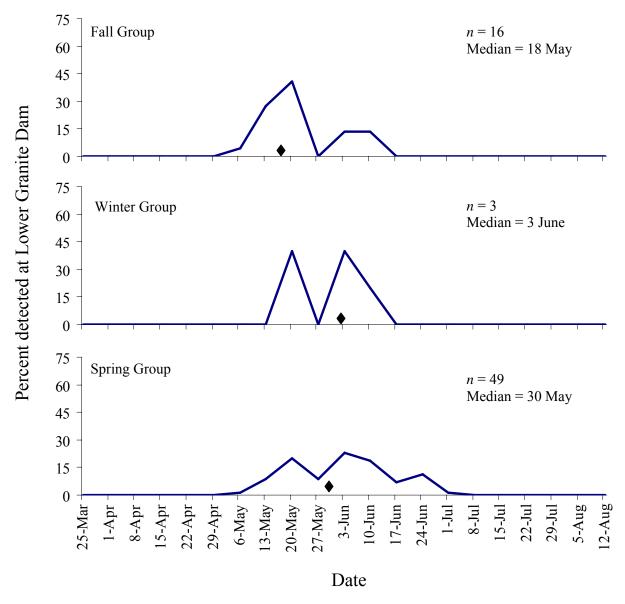


Figure 6. Dates of arrival in 2008 at Lower Granite Dam for fall, winter, and spring tag groups of juvenile spring Chinook salmon PIT-tagged in the upper Grande Ronde River, expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

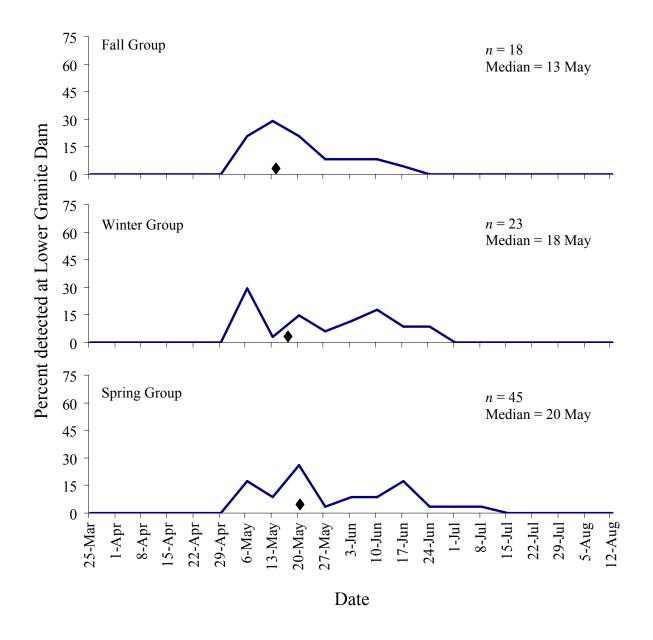


Figure 7. Dates of arrival, in 2008, at Lower Granite Dam for fall, winter, and spring tag groups of juvenile spring Chinook salmon PIT-tagged in Catherine Creek, expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

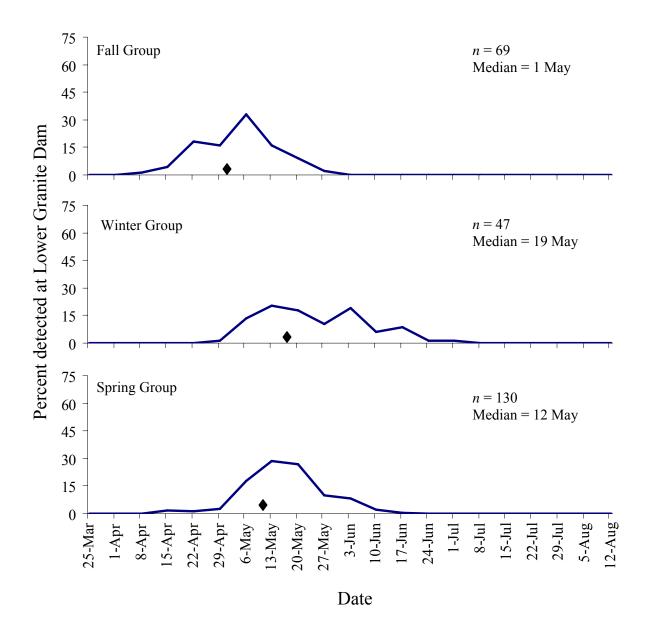


Figure 8. Dates of arrival, in 2008, at Lower Granite Dam for fall, winter, and spring tag groups of juvenile spring Chinook salmon PIT-tagged in the Lostine River, expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

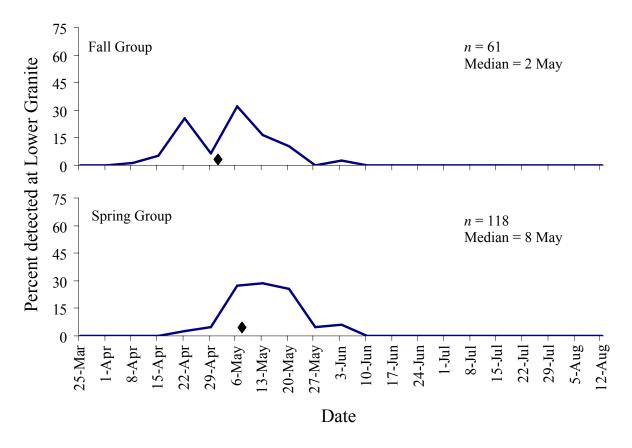


Figure 9. Dates of arrival, in 2008, at Lower Granite Dam for fall, winter, and spring tag groups of juvenile spring Chinook salmon PIT-tagged in the Minam River, expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

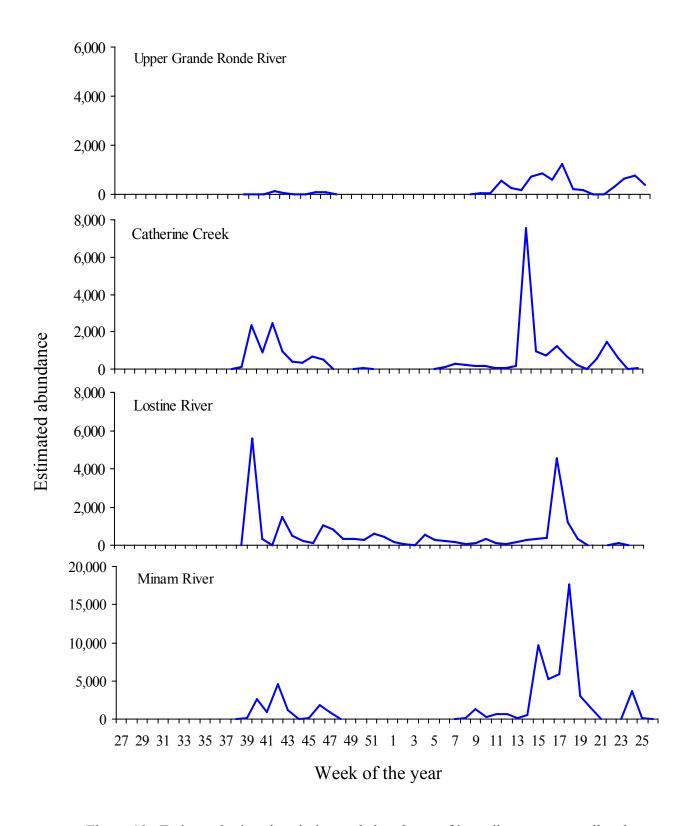


Figure 10. Estimated migration timing and abundance of juvenile summer steelhead migrants captured by rotary screw traps during MY 2008. Traps were located at rkm 299 of the Grande Ronde River, rkm 32 of Catherine Creek, rkm 3 of the Lostine River, and rkm 0 of the Minam River.

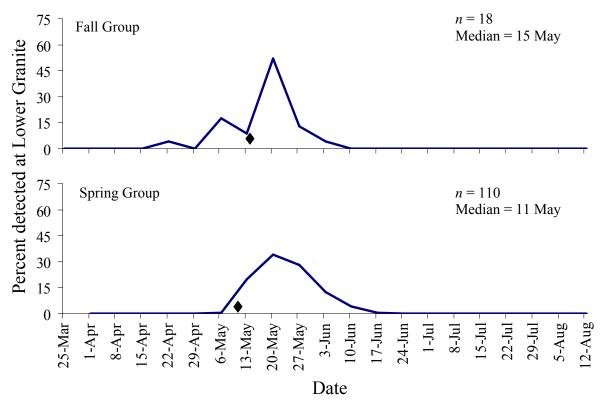


Figure 11. Dates of arrival, in 2008, at Lower Granite Dam for fall and spring tag groups of steelhead PIT-tagged in the upper Grande Ronde River, expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

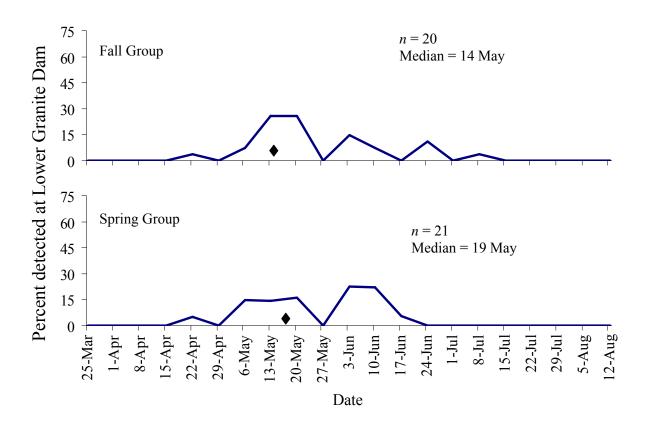


Figure 12. Dates of arrival, in 2008, at Lower Granite Dam for summer, fall, and spring tag groups of steelhead PIT-tagged in Catherine Creek, expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

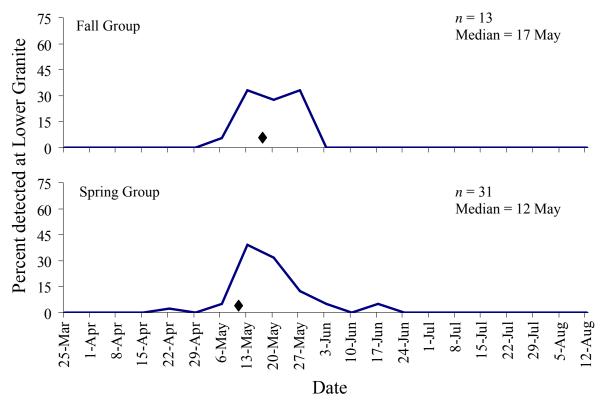


Figure 13. Dates of arrival, in 2008, at Lower Granite Dam for fall and spring tag groups of steelhead PIT-tagged in the Lostine River, expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

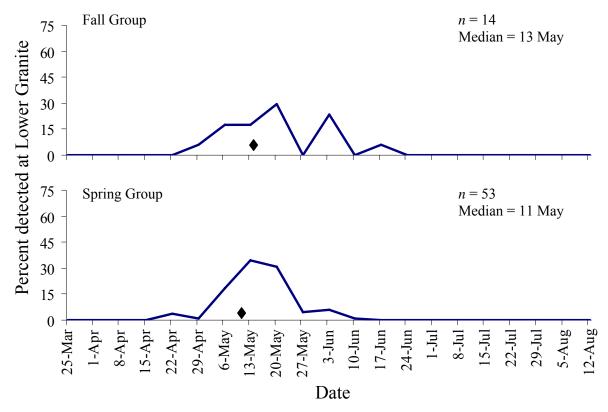


Figure 14. Dates of arrival, in 2008, at Lower Granite Dam for fall and spring tag groups of steelhead PIT-tagged in the Minam River, and expressed as a percentage of the total detected for each group. ◆ = median arrival date. Detections were expanded for spillway flow.

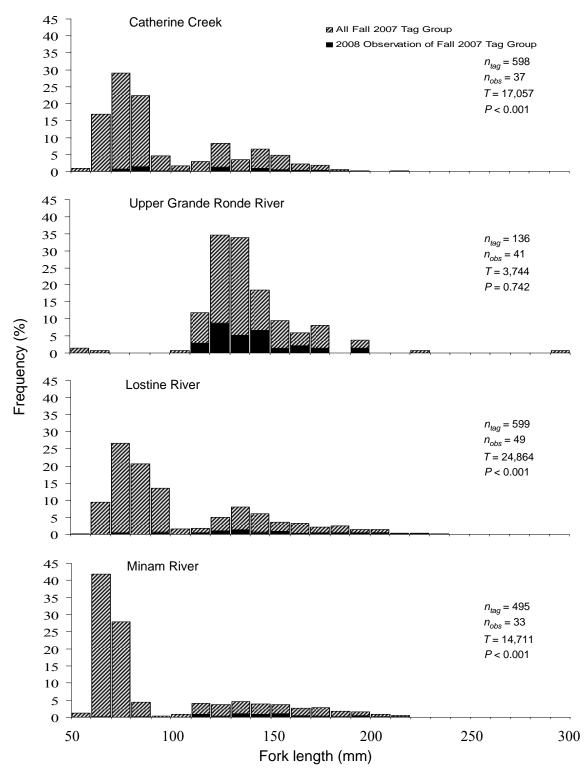


Figure 15. Length frequency distributions for all steelhead PIT-tagged at screw traps during fall 2007 and those subsequently observed at Snake River or Columbia River dams during spring 2008. Fork lengths are based on measurements taken at the time of tagging. Frequency is expressed as the percent of the total number tagged (n_{tag}). ' n_{obs} ' is the number detected.

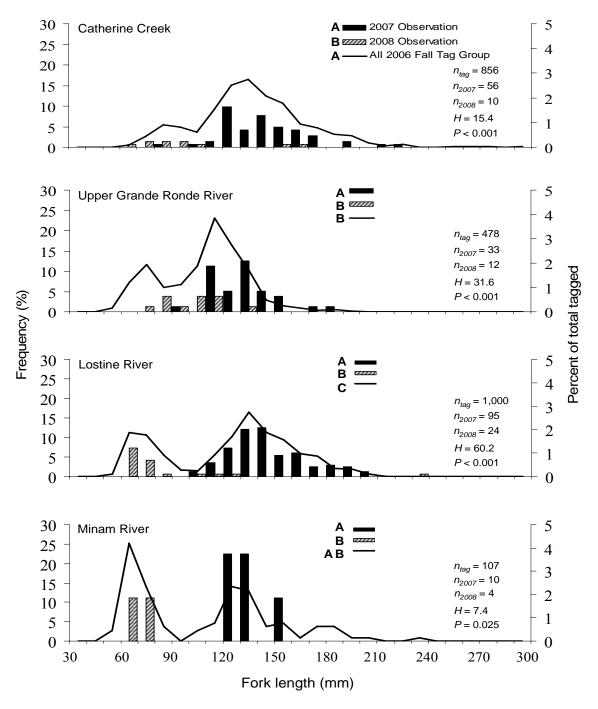


Figure 16. Length frequency distributions for all steelhead PIT-tagged at screw traps during fall 2006, and those subsequently observed at Snake River or Columbia River dams in 2007 and 2008. Fork lengths are based on measurements taken at the time of tagging. Frequency is expressed as the percent of the total number tagged. 'H' is the test statistic for the Kruskal–Wallis one-way ANOVA on ranks of the lengths. Dunn's all pair-wise multiple comparison procedure was employed to distinguish difference among al tag groups for Catherine Creek and upper Grande Ronde, Lostine, and Minam rivers ($\alpha = 0.05$).

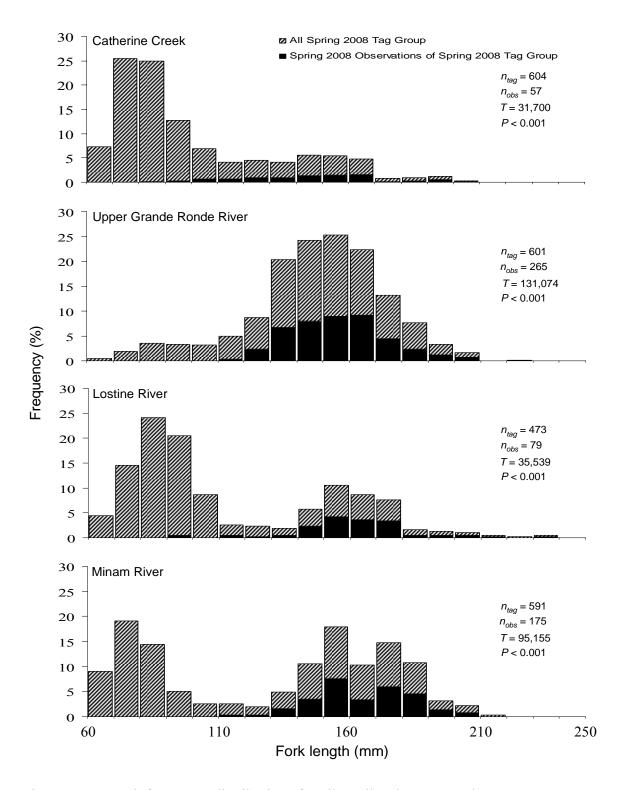


Figure 17. Length frequency distributions for all steelhead PIT-tagged at screw traps during spring 2008, and those subsequently observed at Snake River or Columbia River dams during the spring of 2008. Fork lengths are based on measurements taken at the time of tagging. Frequency is expressed as the percent of the total number tagged (n_{tag}), and ' n_{obs} ' is the number detected.

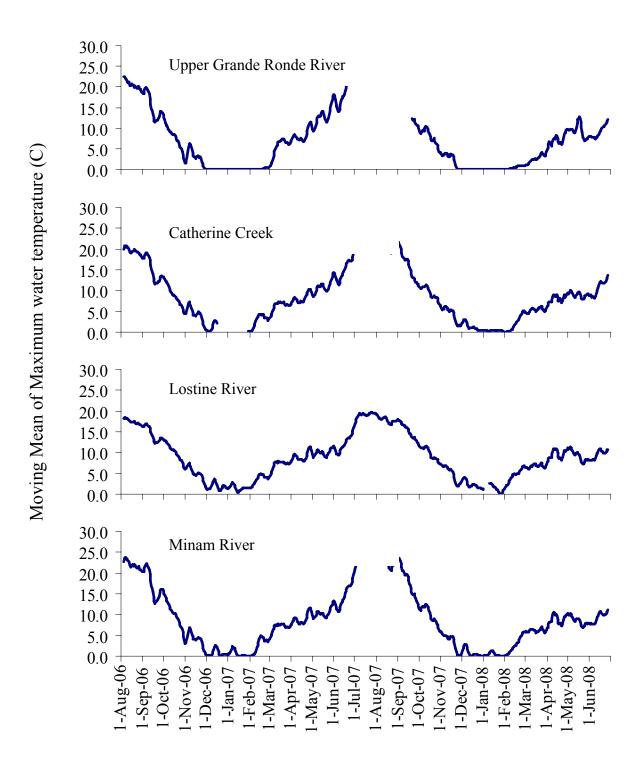


Figure 18. Moving mean of maximum water temperature during the in-basin life stages of egg-to-emigrant for juvenile spring Chinook salmon that migrated from four study streams in the Grande Ronde River basin during migration year 2008. Missing portions of a trend line represent periods where data were not available.

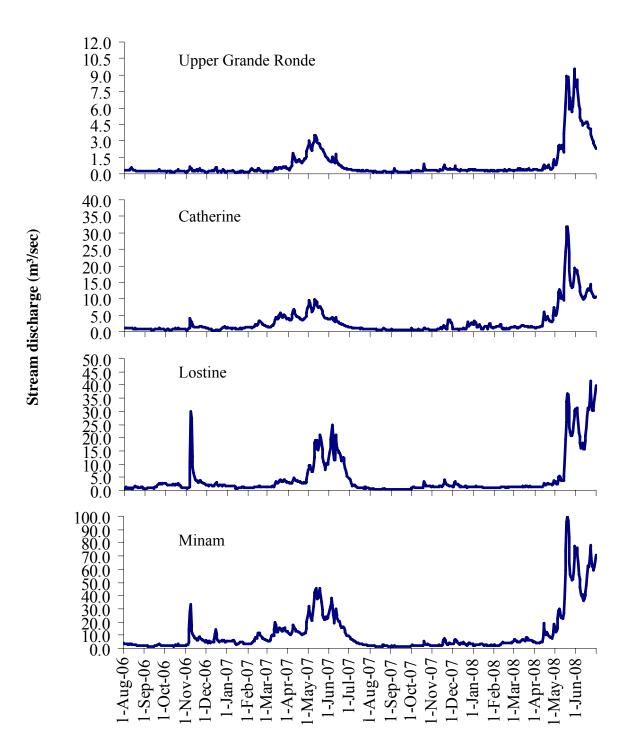


Figure 19. Average daily discharge during the in-basin life stages of egg-to-emigrant for juvenile spring Chinook salmon that migrated from four study streams in the Grande Ronde River basin during migration year 2008.

APPENDIX A

A Compilation of Spring Chinook Salmon Data

Appendix Table A-1. Population estimates, median migration dates, and percentages of juvenile spring Chinook salmon population moving as late migrants past trap sites, 1994– 2008. The early migratory period begins 1 July and ends 28 January, while the late migratory period begins 29 January and ends 30 June.

_		Median migration date					
Stream,	Population			_	Percentage		
MY	estimate	95% CI	Early migrants	Late migrants	migrating late		
Upper Grande Ronde	River						
1994	24,791	3,193	14 Oct ^a	1 Apr	89^a		
1995	38,725	12,690	30 Oct ^b	31 Mar ^b	87 ^b		
1996	1,118	192	10 Oct ^c	16 Mar	99 ^c		
1997	82	30	12 Nov	26 Apr ^c	17 ^c		
1998	6,922	622	31 Oct	23 Mar	66		
1999	14,858	3,122	16 Nov	31 Mar	84		
2000	14,780	2,070	30 Oct	3 Apr	74		
2001	51	31	1 Sep ^c	10 Apr	88°		
2002	9,133	1,545	24 Oct	1 Apr	82		
2003	4,922	470	12 Oct	19 Mar	73		
2004	4,854	642	17 Oct	22 Mar	90		
2005	6,257	834	25 Oct	13 Apr	83		
2006	34,672	5,319	2 Oct	29 Mar	77		
2007	17,109	1,708	20 Oct	13 Mar	69		
2008	11,684	3,310	21 Oct	9 Apr	61		
Catherine Creek							
1995	17,633	2,067	1 Nov ^a	21 Mar	49 ^a		
1996	6,857	688	20 Oct	11 Mar	27		
1997	4,442	1,123	1 Nov ^a	13 Mar	10^{a}		
1998	9,881	1,209	30 Oct	19 Mar	29		
1999	20,311	2,299	14 Nov	23 Mar	38		
2000	23,991	2,342	31 Oct	23 Mar	18		
2001	21,936	2,282	8 Oct	24 Mar	13		
2002	23,362	2,870	12 Oct	2 Apr	9		
2003	34,623	2,615	28 Oct	20 Mar	14		
2004	64,012	4,203	1 Nov	18 Mar	16		
2005	56,097	6,713	11 Oct	26 Mar	10		
2006	27,218	2,368	31 Oct	22 Mar	16		

^a Trap was started late, thereby potentially missing some early migrants. ^b Trap was located at rkm 257.

^c Median date based on small sample size: MY 1996, *n*=4; MY 1997, *n*=6; MY 2001,*n*=2.

d Limited trapping operations prevented complete population estimates and migration timing

Appendix Table A-1. Continued.

-			Median mig		
Stream,	Population				Percentage
MY	estimate	95% CI	Early migrants	Late migrants	migrating late
Catherine Creek (cont.)					
2007	13,831	1,032	14 Oct	29 Mar	21
2008	26,151	2,099	19 Oct	30 Mar	22
Lostine River					
1997	4,496	606	26 Nov ^a	30 Mar	52 ^a
1998	17,539	2,610	26 Oct	26 Mar	35
1999	34,267	2,632	12 Nov	18 Apr	41
2000	12,250	887	2 Nov	9 Apr	32
2001	13,610	1,362	29 Sep	20 Apr	23
2002	18,140	2,428	24 Oct	1 Apr	15
2003	28,939	1,865	22 Oct	1 Apr	34
2004	d	_			
2005	54,602	6,734	22 Sep	31 Mar	25
2006	54,268	8,812	4 Nov	11 Apr	22
2007	46,183	4,827	14 Oct	7 Apr	26
2008	26,117	3,516	2 Nov	29 Apr	41
Minam River					
2001	28,209	4,643	8 Oct ^a	27 Mar	64 ^a
2002	79,000	10,836	24 Oct ^a	8 Apr	21 ^a
2003	63,147	10,659	30 Oct ^a	5 Apr	69 ^a
2004	65,185	9,049	13 Nov	29 Mar	34
2005	111,390	26,553	21 Oct	28 Mar	57
2006	50,959	8,262	14 Oct	1 Apr	42
2007	37,719	5,767	5 Nov	22 Mar	31
2008	77,301	11,997	21 Oct	13 Apr	57

^a Trap was started late, thereby potentially missing some early migrants.

^b Trap was located at rkm 257.

^c Median date based on small sample size: MY 1996, *n*=4; MY 1997, *n*=6; MY 2001,*n*=2.

^d Limited trapping operations prevented complete population estimates and migration timing

Appendix Table A-2. Dates of arrival at Lower Granite Dam (LGD) of spring Chinook salmon smolts PIT-tagged in upper rearing areas during the summer and winter, and at screw traps as early and late migrants during migratory years 1993–2007. Italics indicate that the median may be biased due to when fish were tagged. Numbers of fish detected at Lower Granite Dam were expanded for spillway flow to calculate the median arrival date.

				Number	Arrival dates			
Stream,	Tag	Migration	Number	detected at				
MY	group	period	tagged	LGD	Median	First	Last	
Upper Grande Ronde River (rkm 299)								
1993	Summer	All	918	117	17 May	23 Apr	20 Jun	
1994	Summer	All	1,001	57	29 May	23 Apr	29 Aug	
	Fall	Early	405	65	30 Apr	21 Apr	23 Jun	
	Winter	Late	505	27	29 May	28 Apr	16 Jul	
	Spring	Late	573	93	15 May	20 Apr	06 Aug	
1995 ^a	Summer	All	1,000	89	29 May	12 Apr	1 Jul	
	Fall	Early	424	57	5 May	11 Apr	2 Jun	
	Winter	Late	433	30	28 May	17 Apr	4 Jul	
	Spring	Late	368	109	2 Jun	15 Apr	12 Jul	
1996	Fall	Early	4	0	_	_	_	
	Spring	Late	327	47	16 May	19 Apr	6 Jun	
1997	Fall	Early	27	2	23 Apr	22 Apr	24 Apr	
	Spring	Late	1	1	14 May	_	_	
1998	Fall	Early	592	81	27 Apr	4 Apr	25 May	
	Winter	Late	124	5	5 Jun	11 May	26 Jun	
	Spring	Late	513	116	5 May	8 Apr	5 Jun	
1999	Fall	Early	500	42	29 Apr	31 Mar	1 Jun	
	Winter	Late	420	13	27 May	12 May	20 Jun	
	Spring	Late	535	83	4 May	18 Apr	20 Jun	
2000	Fall	Early	493	45	8 May	12 Apr	6 Jun	
	Winter	Late	500	22	26 May	9 May	16 Jul	
	Spring	Late	495	91	11 May	15 Apr	20 Jul	
2001	Spring	Late	6	4	17 May	4 May	20 May	
2002	Fall	Early	344	20	20 May	17 Apr	2 Jun	
	Spring	Late	538	71	31 May	14 Apr	28 Jun	
2003	Fall	Early	584	46	1 May	3 Apr	26 May	
	Spring	Late	571	95	17 May	31 Mar	2 Jun	
2004	Fall	Early	180	24	5 May	15 Apr	3 Jun	
	Winter	Late	301	68	21 May	26 Apr	17 Jun	
	Spring	Late	525	173	21 May	17 Apr	3 Jun	
2005	Fall	Early	368	39	7 May	20 Apr	1 Jun	
	Winter	Late	449	46	30 May	3 May	19 Jun	
	Spring	Late	615	131	19 May	19 Apr	13 Jun	

^a Trap was located at rkm 257.

Appendix Table A-2. Continued.

				Number	Arrival c	lates	
Stream,	Tag	Migration		detected at			
MY	group	period	tagged	LGD	Median	First	Last
Upper Grande Ro	nde River (cont.)					
2006	Fall	Early	521	29	18 May	16 Apr	6 Jun
	Winter	Late	464	12	3 Jun	20 May	14 Jun
	Spring	Late	505	49	20 May	30 Mar	20 Jun
2007	Fall	Early	534	54	11 May	14 Apr	3 Jun
	Winter	Late	482	37	15 May	27 Apr	6 Jun
	Spring	Late	501	79	14 May	13 Apr	11 Jun
2008	Summer	All	1,000	55	29 May	8 Apr	23 Jun
	Fall	Early	159	16	18 May	6 May	10 Jun
	Winter	Late	83	3	3 Jun	20 May	9 Jun
	Spring	Late	510	49	30 May	4 May	25 Jun
Catherine Creek						_	
1993	Summer	All	1,094	125	18 May	29 Apr	26 Jun
1994	Summer	All	1,000	91	11 May	13 Apr	26 Jul
1995	Summer	All	999	88	25 May	26 Apr	2 Jul
	Fall	Early	502	65	7 May	22 Apr	19 Jun
	Winter	Late	483	57	13 May	27 Apr	4 Jul
	Spring	Late	348	88	5 Jun	1 May	8 Jul
1996	Summer	All	499	60	1 May	17 Apr	29 May
	Fall	Early	566	76	29 Apr	14 Apr	4 Jun
	Winter	Late	295	14	18 May	19 Apr	14 Jun
	Spring	Late	277	70	17 May	17 Apr	13 Jun
1997	Summer	All	583	51	14 May	24 Apr	10 Jun
	Fall	Early	403	40	12 May	17 Apr	1 Jun
	Winter	Late	102	5	17 May	27 Apr	15 Jun
	Spring	Late	78	22	26 May	28 Apr	1 Jun
1998	Summer	All	499	43	17 May	24 Apr	4 Jun
	Fall	Early	598	66	1 May	3 Apr	3 Jun
	Winter	Late	438	57		15 Apr	15 Jun
	Spring	Late	453	109	21 May	26 Apr	26 Jun
1999	Summer	All	502	20	26 May	26 Apr	26 Jun
	Fall	Early	656	41	23 May	19 Apr	28 Jun
	Winter	Late	494	35	29 May	23 Apr	9 Jul
	Spring	Late	502	54	21 May	20 Apr	20 Jun
2000	Summer	All	497	30	7 May	12 Apr	7 Jun
	Fall	Early	677	56	3 May	12 Apr	29 May
	Winter	Late	500	22	2	25 Apr	1 May
	Spring	Late	431	52	12 May	21 Apr	2 Jul

Appendix Table A-2. Continued.

				Number	Arrival c	lates	
Stream,	Tag	Migration	Number	detected at			
MY	group	period	tagged	LGD	Median	First	Last
Catherine Creek (cont.)						
2001	Summer	All	498	33	17 May	28 Apr	18 Jun
	Fall	Early	494	57	-	27 Apr	18 Jun
	Winter	Late	538	27	1 Jun	4 May	
	Spring	Late	329	100		29 Apr	13 Jul
2002	Summer	All	502	17	6 May	15 Apr	22 May
	Fall	Early	515	20	_	16 Apr	20 Jun
	Winter	Late	449	15	14 May	24 Apr	26 Jun
	Spring	Late	217	27	_	17 Apr	1 Jul
2003	Summer	All	501	17		14 Apr	9 Jun
	Fall	Early	1,196	59	-	14 Apr	31 May
	Winter	Late	531	25	22 May	18 Apr	6 Jun
	Spring	Late	576	95	25 May	13 Apr	23 Jun
2004	Summer	All	467	30	-	22 Apr	25 Jun
	Fall	Early	524	45	_	15 Apr	15 Jun
	Winter	Late	502	66	21 May	23 Apr	8 Jul
	Spring	Late	525	172	29 May	22 Apr	14 Jul
2005	Summer	All	495	21	8 May	20 Apr	2 Jun
	Fall	Early	544	43	7 May	14 Apr	2 Jun
	Winter	Late	529	28	21 May	18 Apr	20 Jun
	Spring	Late	410	82	31 May	26 Apr	20 Jun
2006	Summer	All	523	7	16 May	28 Apr	19 May
	Fall	Early	500	15	4 May	23 Apr	10 Jun
	Winter	Late	500	19	15 May	26 Apr	9 Jun
	Spring	Late	360	34	4 Jun	2 May	22 Jun
2007	Summer	All	501	6	23 Apr	19 Apr	19 May
	Fall	Early	500	26	2 May	16 Apr	15 May
	Winter	Late	500	12	13 May	21 Apr	20 May
	Spring	Late	363	42	13 May	1 May	13 Jun
2008	Summer	All	1,000	17	25 May	30 Apr	2 Jul
	Fall	Early	499	18	13 May	4 May	15 Jun
	Winter	Late	500	23	18 May	30 Apr	19 Jun
	Spring	Late	484	45	20 May	30 Apr	4 Jul
Grande Ronde Ri	ver (rkm 164	/					
2002	Spring	NA	167	21		17 May	18 Jun
2003	Spring	NA	250	90	-	22 Apr	18 Jun
2004	Spring	NA	488	286	2	21 Apr	5 Jun
2005	Spring	NA	236	118	3 May		29 May
2006	Spring	NA	400	107	16-May	8-Apr	30-May

Appendix Table A-2. Continued.

				Number	Arrival da	ates	
Stream,	Tag	Migration	Number	detected			_
MY	group	period	tagged	at LGD	Median	First	Last
Lostine River							
1993	Summer	All	997	136	4 May	17 Apr	1 Jun
1994	Summer	All	725	77	2 May	19 Apr	7 Jun
1995	Summer	All	1,002	115	2 May	8 Apr	19 Jun
1996	Summer	All	977	129	15 May	17 Apr	19 Jun
1997	Summer	All	527	43	25 Apr	9 Apr	21 May
	Fall	Early	519	53	22 Apr	2 Apr	13 May
	Winter	Late	390	60	2 May	15 Apr	27 May
	Spring	Late	476	109	25 Apr	10 Apr	22 May
1998	Summer	All	506	19	15 May	29 Mar	29 May
	Fall	Early	500	109	21 Apr	31 Mar	13 May
	Winter	Late	504	96	29 Apr	4 Apr	24 May
	Spring	Late	466	185	28 Apr	4 Apr	1 Jul
1999	Summer	All	509	36	8 May	13 Apr	3 Jun
	Fall	Early	501	40	26 Apr	31 Mar	18 May
	Winter	Late	491	39	10 May	6 Apr	7 Jun
	Spring	Late	600	88	12 May	9 Apr	8 Jul
2000	Summer	All	489	87	9 May	10 Apr	12 Jun
	Fall	Early	514	59	18 Apr	3 Apr	13 May
	Winter	Late	511	51	9 May	20 Apr	2 Jul
	Spring	Late	355	65	22 May	14 Apr	16 Jul
2001	Summer	All	501	23	20 Apr	28 Mar	29 May
	Fall	Early	500	139	27 Apr	12 Apr	18 May
	Winter	Late	500	113	14 May	16 Apr	19 Jun
	Spring	Late	445	246	12 May	21 Apr	4 Jul
2002	Summer	All	509	21	8 May	11 Apr	3 Jun
	Fall	Early	501	37	17 Apr	30 Mar	5 May
	Winter	Late	564	22	7 May	11 Apr	23 Jun
	Spring	Late	406	61	7 May	15 Apr	11 Jun
2003	Summer	All	997	136	4 May	17 Apr	1 Jun
	Fall	Early	900	77	18 Apr	25 Mar	27 May
	Winter	Late	491	42	15 May	13 Apr	8 Jun
	Spring	Late	527	107	4 May	3 Apr	4 Jul
2004	Summer	All	525	26	7 May	14 Apr	15 Jun
	Winter	Late	500	70	11 May	23 Apr	27 May
2005	Summer	All	500	49	28 Apr	5 Apr	18 Jun
	Fall	Early	500	103	20 Apr	5 Apr	9 May
	Winter	Late	500	72	9 May	12 Apr	13 Jun
	Spring	Late	464	174	8 May	13 Apr	19 Jun

Appendix Table A-2. Continued.

				Number	Arrival c	lates	
Stream,	Tag	Migration		detected at			
MY	group	period	tagged	LGD	Median	First	Last
Lostine River (c	ont.)						
2006	Summer	All	1,105	29	28 Apr	5 Apr	9 Jun
	Fall	Early	495	29	22 Apr	2 Apr	10 May
	Winter	Late	501	27	12 May	20 Apr	31 May
	Spring	Late	517	112	11 May	6 Apr	3 Jun
2007	Summer	All	500	27	4 May	5 Apr	21 May
	Fall	Early	500	37	17 Apr	27 Mar	12 May
	Winter	Late	500	39	12 May	17 Apr	25 May
	Spring	Late	505	109	11 May	18 Apr	1 Jun
2008	Summer	All	1,000	71	8 May	10 Apr	14 Jun
	Fall	Early	499	69	1 May	7 Apr	22 May
	Winter	Late	500	47	19 May	24 Apr	30 Jun
	Spring	Late	499	130	12 May	15 Apr	11 Jun
Minam River	1 0				· ·	•	
1993	Summer	All	994	113	4 May	18 Apr	3 Jun
1994	Summer	All	997	120	29 Apr	18 Apr	13 Aug
1995	Summer	All	996	71	2 May	-	7 Jun
1996	Summer	All	998	117	24 Apr	10 Apr	7 Jun
1997	Summer	All	589	49	16 Apr	3 Apr	13 May
1998	Summer	All	992	123	29 Apr	3 Apr	30 May
1999	Summer	All	1,006	50	29 Apr	31 Mar	2 Jun
2000	Summer	All	998	74	3 May	10 Apr	29 May
2001	Summer	All	1,000	178	8 May	8 Apr	12 Jun
	Fall	Early	300	107	28 Apr	12 Apr	26 May
	Spring	Late	539	274	14 May	16 Apr	18 Aug
2002	Summer	All	994	30	3 May	16 Apr	31 May
	Fall	Early	537	35	18 Apr	25 Mar	9 May
	Spring	Late	382	42	30 May	8 Apr	23 Jun
2003	Summer	All	1,000	23	13 May	13 Apr	1 Jun
	Fall	Early	849	82	18 Apr	26 Mar	23 May
	Spring	Late	512	95	15 May	31 Mar	1 Jun
2004	Summer	All	996	36	1 May	7 Apr	31 May
	Fall	Early	500	58	28 Apr	2 Apr	21 May
	Spring	Late	412	164	9 May	4 Apr	14 Jun
2005	Summer	All	1,002	95	6 May	-	8 Jun
	Fall	Early	498	115	23 Apr	5 Apr	18 May
	Spring	Late	374	135	9 May	-	19 Jun
2006	Summer	All	1,007	50	8 May		6 Jun
	Fall	Early	499	45	19 Apr	4 Apr	16 May
	Spring	Late	401	74	17 May	21 Apr	7 Jun

Appendix Table A-2. Continued.

				Number	Arrival c	lates	
Stream,	Tag	Migration		detected at			
MY	group	period	tagged	LGD	Median	First	Last
Minam River	(cont.)						
2007	Summer	All	1,000	65	2 May	4 Apr	22 May
	Fall	Early	500	28	16 Apr	30 Mar	12 May
	Spring	Late	217	40	12 May	5 Apr	2 Jun
2008	Summer	All	1,000	87	7 May	17 Apr	11 Jun
	Fall	Early	500	61	2 May	2 Apr	2 Jun
	Spring	Late	496	118	8 May	16 Apr	1 Jun
Imnaha River							
1993	Summer	All	1,000	74	14 May	15 Apr	23 Jun
1994	Summer	All	998	65	8 May	20 Apr	11 Aug
1995	Summer	All	996	41	2 May	10 Apr	7 Jul
1996	Summer	All	997	158	26 Apr	14 Apr	12 Jun
1997	Summer	All	1,017	98	19 Apr	31 Mar	2 Jun
1998	Summer	All	1,009	159	29 Apr	3 Apr	24 May
1999	Summer	All	1,009	41	8 May	17 Apr	3 Jun
2000	Summer	All	982	63	2 May	12 Apr	16 Jun
2001	Summer	All	1,000	159	30 Apr	8 Apr	28 May
2002	Summer	All	1,001	15	4 May	15 Apr	31 May
2003	Summer	All	1,003	43	8 May	17 Apr	31 May
2004	Summer	All	998	81	4 May	18 Apr	8 Jun
2005	Summer	All	1,001	90	2 May	5 Apr	11 Jun
2006	Summer	All	1,011	40	30 Apr	3 Apr	4 Jun
2007	Summer	All	1,000	59	27 Apr	5 Apr	24 May
2008	Summer	All	1,000	68	7 May	14 Apr	1 Jun
Wenaha and So	outh Fork Wen	aha rivers			•	-	
1993	Summer	All	749	84	28 Apr	14 Apr	15 May
1994	Summer	All	998	93	24 Apr	18 Apr	6 Jun
1995	Summer	All	999	76	26 Apr	9 Apr	15 May
1996	Summer	All	997	105	21 Apr	13 Apr	16 May
1997	Summer	All	62	10	16 Apr	9 Apr	23 Apr

Appendix Table A-3. The number of PIT tagged spring Chinook salmon released by tag group and stream, and survival probability to Lower Granite Dam during migratory years 1993–2008. Summer and winter tag groups were collected upstream of screw traps, while fall and spring tag groups were collected at screw traps. Asterisks indicate that low detections precluded calculation of survival probabilities.

Tag group,		Number	
Stream	MY	released	Survival probability (95% CI)
Summer			
Upper Grande Ronde	1993	918	0.287 (0.237–0.365)
	1994	1,001	0.144 (0.110-0.197)
	1995	1,000	0.173 (0.144–0.207)
	2008	1,000	0.264 (0.224–0.319)
Catherine Creek	1993	1,094	0.178 (0.151–0.212)
	1994	1,000	0.226 (0.186–0.279)
	1995	999	0.154 (0.129–0.184)
	1996	499	0.277 (0.205–0.406)
	1997	583	0.176 (0.139–0.225)
	1998	499	0.211 (0.164–0.276)
	1999	502	0.157 (0.122–0.212)
	2000	497	0.151 (0.109–0.217)
	2001	498	0.087 (0.063–0.115)
	2002	502	0.109 (0.079–0.157)
	2003	501	0.075 (0.052-0.106)
	2004	467	0.072 (0.051-0.098)
	2005	495	0.057 (0.038-0.082)
	2006	523	0.057 (0.033–0.128)
	2007	501	0.042 (SE = 0.009)
	2008	1,000	0.080 (0.053-0.136)
Lostine River	1993	997	0.250 (0.214–0.296)
	1994	725	0.237 (0.188–0.309)
	1995	1,002	0.215 (0.183–0.255)
	1996	977	0.237 (0.191–0.306)
	1997	527	0.213 (0.160–0.310)
	1999	506	0.180 (0.145–0.234)
	2000	509	0.212 (0.159–0.294)
	2001	489	0.210 (0.175–0.248)
	2002	501	0.154 (0.117–0.209)
	2003	509	0.155 (0.109–0.238)
	2004	525	0.065 (0.046–0.089)
	2005	_ 500	0.129 (0.101–0.163)

ag group,	1.437	Number	g : 1 1 1 1 1 1 (050) GY
Stream	MY	released	Survival probability (95% CI)
Jummer Lastina Divar (aant)	2006	1 105	0.112 (0.001, 0.142)
Lostine River (cont.)	2006	1,105 500	0.113 (0.091–0.143)
			0.159 (0.112–0.245)
Minam River	2008	1,000 994	0.183 (0.155–0.218)
Minam River	1993		0.187 (0.115–0.230)
	1994	997	0.293 (0.249–0.350)
	1995	996	0.153 (0.124–0.191)
	1996	998	0.208 (0.169–0.264)
	1997	589 992	0.270 (0.181–0.693)
	1998		0.228 (0.199–0.259)
	1999	1,006	0.181 (0.155–0.210)
	2000	998	0.239 (0.199–0.292)
	2001	1,000	0.228 (0.202–0.256)
	2002	994	0.093 (0.074–0.119)
	2003	1,000	0.061 (0.044–0.088)
	2004	996	0.062 (0.047–0.080)
	2005	1,002	0.136 (0.114–0.160)
	2006	1,007	0.145 (0.119–0.178)
	2007	1,000	0.175 (0.147–0.211)
	2008	1,000	0.193 (0.166–0.224)
Imnaha River	1993	1,000	0.141 (0.115–0.180)
	1994	998	0.136 (0.109–0.173)
	1995	996	0.083 (0.064–0.108)
	1996	997	0.268 (0.222-0.330)
	1997	1,017	0.216 (0.179–0.276)
	1998	1,009	0.325 (0.290-0.366)
	1999	1,009	0.173 (0.141–0.219)
	2000	982	0.141 (0.115–0.172)
	2001	1,000	0.181 (0.158–0.206)
	2002	1,001	0.106 (0.079-0.160)
	2003	1,003	0.141 (0.110-0.185)
	2004	998	0.109 (0.090-0.131)
	2005	1,001	0.123 (0.103–0.146)
	2006	1,011	0.144 (0.117–0.180)
	2007	1,000	0.178 (0.147–0.218)
	2008	1,000	0.189 (0.157–0.228)
Wenaha/SF Wenaha	1993	749	0.214 (0.181–0.255)
	1994	998	0.144 (0.121–0.172)
	1995	999	0.146 (0.119–0.180)
	1996	997	0.212 (0.172–0.271)
	1997	62	*

Appendix Table A-3. Continued.

Tag group,	1.637	Number	G : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Stream	MY	released	Survival probability (95% CI)
Fall trap		40.5	0.0.000
Upper Grande Ronde	1994	405	0.348 (0.284–0.432)
	1995	424	0.228 (0.184–0.281)
	1996	5	*
	1997	27	*
	1998	590	0.286 (0.244–0.334)
	1999	498	0.269 (0.229–0.315)
	2000	493	0.341 (0.260–0.476)
	2002	344	0.308 (0.198–0.653)
	2003	581	0.184 (0.143-0.247)
	2004	180	0.164 (0.114–0.225)
	2005	368	0.138 (0.105–0.177)
	2006	521	0.171 (0.136–0.232)
	2007	534	0.242 (0.199–0.301)
	2008	159	0.338 (0.257–0.450)
Catherine Creek	1995	502	0.238 (0.193–0.297)
	1996	508	0.358 (0.296–0.446)
	1997	399	0.365 (0.256–0.588)
	1998	582	0.238 (0.194–0.293)
	1999	644	0.202 (0.166–0.250)
	2000	677	0.212 (0.170–0.269)
	2001	508	0.130 (0.103-0.162)
	2002	514	0.154 (0.114–0.245)
	2003	849	0.120 (0.093-0.160)
	2004	524	0.126 (0.099–0.158)
	2005	544	0.122 (0.093–0.161)
	2006	500	0.074 (SE = 0.012)
	2007	500	0.203 (0.143-0.340)
	2008	499	0.153 (0.109–0.256)
Lostine River	1997	519	0.312 (0.247–0.465)
	1998	500	0.448 (0.391–0.514)
	1999	501	0.422 (0.349–0.538)
	2000	514	0.317 (0.267–0.380)
	2001	498	0.335 (0.294–0.378)
	2002	500	0.326 (0.258–0.455)
	2003	854	0.287 (0.236–0.365)
	2004	0	_
	2005	500	0.267 (0.227–0.310)
	2006	495	0.269 (0.207–0.406)
	2007	500	0.223 (0.172–0.301)
	2008	499	0.265 (0.221–0.317)

Appendix Table A-3. Continued.

Tag group,		Number	
Stream	MY	released	Survival probability (95% CI)
Fall Trap			
Minam River	2001	300	0.427 (0.371–0.485)
	2002	537	0.249 (0.201–0.326)
	2003	849	0.238 (0.199–0.292)
	2004	500	0.183 (0.150–0.219)
	2005	498	0.293 (0.253–0.337)
	2006	499	0.245 (0.205–0.304)
	2007	500	0.250 (0.186–0.368)
	2008	500	0.283 (0.235–0.344)
Wallowa River	1999	45	*
Winter			
Upper Grande Ronde	1994	505	0.248 (0.152-0.519)
	1995	432	0.151 (0.115–0.199)
	1998	124	0.113 (SE = 0.028)
	1999	420	0.118 (0.083–0.183)
	2000	500	0.133 (0.099–0.183)
	2004	301	0.296 (0.245–0.353)
	2005	449	0.207 (0.159–0.306)
	2006	464	0.080 (0.052-0.183)
	2007	482	0.169 (0.132–0.226)
	2008	83	0.361 (0.124–5.029)
Catherine Creek	1995	482	0.279 (0.230–0.343)
	1996	295	0.312 (0.163–1.008)
	1997	102	0.078 (0.033–0.222)
	1998	437	0.278 (0.226–0.345)
	1999	493	0.285 (0.230–0.367)
	2000	500	0.138 (0.102–0.191)
	2001	522	0.077 (0.054–0.106)
	2002	431	0.203 (0.129–0.476)
	2003	524	0.152 (0.109–0.231)
	2004	502	0.178 (0.145–0.215)
	2005	529	0.112 (0.079–0.178)
	2006	500	0.125 (0.080–0.312)
	2007	500	0.088 (0.047–0.343)
	2008	500	0.144 (0.108–0.207)
Lostine River	1997	388	0.445 (0.334–0.650)
	1998	504	0.349 (0.301–0.403)
	1999	491	0.305 (0.259–0.363)
	2000	511	0.397 (0.296–0.576)
	2001	499	0.284 (0.245–0.326)
	2002	_ 564	0.246 (0.170–0.464)

Appendix Table A-3. Continued.

Tag group,	1.637	Number	
Stream	MY	released	Survival probability (95% CI)
Winter	2002	501	0.226 (0.167, 0.227)
Lostine River (cont.)	2003	501	0.226 (0.167–0.337)
	2004	500	0.189 (0.156–0.227)
	2005	500	0.201 (0.166–0.240)
	2006	501	0.177 (0.127–0.304)
	2007	500	0.135 (0.101–0.186)
	2008	500	0.328 (0.270–0.417)
Spring trap	1001		0.460 (0.000 0.060)
Upper Grande Ronde	1994	571	0.462 (0.387–0.563)
	1995	368	0.609 (0.545–0.683)
	1996	327	0.512 (0.404–0.690)
	1998	512	0.548 (0.487–0.622)
	1999	528	0.538 (0.486–0.601)
	2000	495	0.560 (0.472–0.680)
	2001	6	*
	2002	536	0.499 (0.416–0.633)
	2003	571	0.397 (0.346–0.461)
	2004	525	0.420 (0.376–0.464)
	2005	615	0.374 (0.335–0.418)
	2006	505	0.398 (0.318–0.561)
	2007	501	0.373 (0.307–0.469)
	2008	510	0.418 (0.362–0.492)
Catherine Creek	1995	348	0.506 (0.441–0.578)
	1996	276	0.591 (0.480–0.755)
	1997	81	0.413 (0.292–0.580)
	1998	453	0.517 (0.459–0.583)
	1999	502	0.448 (0.379–0.545)
	2000	431	0.452 (0.359–0.598)
	2001	328	0.376 (0.322-0.433)
	2002	217	0.527 (0.411–0.750)
	2003	535	0.365 (0.312-0.431)
	2004	525	0.413 (0.370–0.457)
	2005	410	0.445 (0.366–0.569)
	2006	360	0.367 (0.290–0.526)
	2007	363	0.310 (0.250–0.402)
	2008	484	0.380 (0.309–0.506)
Grande Ronde (Elgin)	2001	4	*
('	2002	167	0.776 (0.624–1.073)
	2003	250	0.764 (0.668–0.893)
	2004	488	0.721 (0.677–0.764)
	2005	236	0.698 (0.625–0.776)
	2006	400	0.745 (0.666–0.881)

Appendix Table A-3. Continued.

Tag group,		Number	a
Stream	MY	released	Survival probability (95% CI)
Spring Trap	1005	47.5	0.7(0.(0.(20.1.000)
Lostine River	1997	475	0.769 (0.630–1.009)
	1998	484	0.784 (0.728–0.845)
	1999	599	0.744 (0.664–0.857)
	2006	501	0.177 (0.127–0.304)
	2007	500	0.135 (0.101–0.186)
	2008	500	0.328 (0.270–0.417)
Spring trap			
Upper Grande Ronde	1994	571	0.462 (0.387–0.563)
	1995	368	0.609 (0.545–0.683)
	1996	327	0.512 (0.404–0.690)
	1998	512	0.548 (0.487–0.622)
	1999	528	0.538 (0.486–0.601)
	2000	495	0.560 (0.472–0.680)
	2001	6	*
	2002	536	0.499 (0.416–0.633)
	2003	571	0.397 (0.346–0.461)
	2004	525	0.420 (0.376–0.464)
	2005	615	0.374 (0.335–0.418)
	2006	505	0.398 (0.318–0.561)
	2007	501	0.373 (0.307–0.469)
	2008	510	0.418 (0.364–0.495)
Catherine Creek	1995	348	0.506 (0.441–0.578)
	1996	276	0.591 (0.480–0.755)
	1997	81	0.413 (0.292–0.580)
	1998	453	0.517 (0.459–0.583)
	1999	502	0.448 (0.379–0.545)
	2000	431	0.452 (0.359–0.598)
	2001	328	0.376 (0.322–0.433)
	2002	217	0.527 (0.411–0.750)
	2003	535	0.365 (0.312–0.431)
	2004	525	0.413 (0.370–0.457)
	2005	410	0.445 (0.366–0.569)
	2006	360	0.367 (0.290–0.526)
	2007	363	0.310 (0.250–0.402)
	2008	484	0.380 (0.309–0.506)
Grande Ronde (Elgin)	2001	4	*
Grande Ronde (Digin)	2001	167	0.776 (0.624–1.073)
	2002	250	0.764 (0.668–0.893)
	2003	488	0.704 (0.008–0.893)
	2004	236	0.698 (0.625–0.776)
	2003	400	0.698 (0.623-0.776) 0.745 (0.666-0.881)

Appendix Table A-3. Continued.

Tag group,		Number	
Stream	MY	released	Survival probability (95% CI)
Spring Trap			
Lostine River	1997	475	0.769 (0.630–1.009)
	1998	484	0.784 (0.728-0.845)
	1999	599	0.744 (0.664–0.857)
	2000	355	0.660 (0.546-0.823)
	2001	442	0.695 (0.648-0.741)
	2002	406	0.683 (0.589–0.825)
	2003	482	0.495 (0.424–0.591)
	2004	0	
	2005	464	0.552 (0.503-0.602)
	2006	517	0.619 (0.551–0.722)
	2007	505	0.589 (0.508-0.706)
	2008	499	0.683 (0.616–0.768)
Minam River	2001	536	0.619 (0.576–0.661)
	2002	382	0.532 (0.465–0.644)
	2003	512	0.476 (0.405–0.577)
	2004	412	0.530 (0.480-0.580)
	2005	374	0.555 (0.497–0.620)
	2006	401	0.543 (0.482–0.630)
	2007	217	0.602 (0.519–0.725)
	2008	496	0.623 (0.554–0.710)

Appendix Table A-4. Travel time to Lower Granite Dam (LGD) of juvenile spring Chinook salmon PIT-tagged at screw traps in spring and arriving at Lower Granite Dam the same year. Min. = minimum; Max. = maximum.

Stream,	Distance to	Number	Tra	avel time (d)
MY	LGD (km)	detected	Median	Min.	Max
Upper Grande Ronde					
River (rkm 299)	397				
1994	371	93	45.1	17	130
1995 ^a		114	19.5	6	81
1996		47	64.7	14	88
1997		1	56.7		
1998		116	48.6	25	71
1999		83	39.1	16	92
2000		91	50.5	12	98
2001		4	37.5	29	56
2002		71	46.5	12	79
2003		95	56	20	84
2004		173	52.5	10	95
2005		131	36.7	11	74
2006		49	49.9	21	77
2007		79	54.7	10	73
2008		49	59.4	37.4	92.1
Catherine Creek	362				
1995		88	59.1	20	105
1996		70	54.2	9	91
1997		22	60.4	17	91
1998		109	56.5	12	87
1999		54	63.2	21	90
2000		52	50.5	20	95
2001		100	64.5	15	110
2002		27	52.8	13	75
2003		95	54.8	16	101
2004		172	56.8	10	109
2005		82	49.7	9	109
2006		34	50.1	12	86
2007		42	46.1	14	83
2008		45	65.2	26.6	119.3

^a Trap was located at rkm 257; distance to LGD was 355 km.

Appendix Table A-4. Continued.

Stream,	Distance to	Number	Т1	ravel time (q)
MY	LGD (km)	detected	Median	Min.	Max
Grande Ronde River	, ,				
(rkm 164)	262				
2002		21	6.6	3	22
2003		90	8.6	3	35
2004		286	8.5	4	52
2005		118	20.3	4	51
2006		107	5.8	2	50
Lostine River	274				
1997		109	21.7	5	54
1998		183	17.8	6	59
1999		88	25.6		60
2000		65	32.5	5 5	90
2001		246	23.6	5	90
2002		61	27.5	8	57
2003		107	41.6	8	90
2004^{b}				_	_
2005		174	32.8	6	75
2006		112	32	6 5	53
2007		109	34.5	6	84
2008		130	20.5	7.7	64.3
Minam River	245				
2001		274	39.5	9	106
2002		42	32.4	5	52
2003		95	45.3	10	71
2004		164	38.1	6	82
2005		135	38.3	8	68
2006		74	33.4	6	58
2007		40	33.4	9	62
2008		118	42.6	7.8	74.1

^b Limited trapping operations

Appendix Table A-5. Overwinter survival rates of spring Chinook salmon parr overwintering upstream of screw traps on Catherine Creek and the Lostine and Grande Ronde rivers. Screw traps are located on Catherine Creek at rkm 32, Lostine River at rkm 3, and Grande Ronde River at rkm 299, except MY 1995 when the upper Grande Ronde River trap was at rkm 257. Survival rates were calculated by dividing the survival probability of the winter tag group by the survival probability of the spring tag group.

		Overwinter sur	vival in upper	rearing areas
		Upper Grande	Catherine	Lostine
BY	MY	Ronde River	Creek	River
1992	1994	0.54		
1993	1995	0.25	0.55	
1994	1996		0.53	
1995	1997	_	0.19	0.58
1996	1998	0.21	0.54	0.45
1997	1999	0.22	0.64	0.41
1998	2000	0.24	0.31	0.60
1999	2001	_	0.20	0.41
2000	2002		0.39	0.36
2001	2003		0.38	0.46
2002	2004	0.70	0.43	0.30
2003	2005	0.55	0.25	0.36
2004	2006	0.20	0.34	0.29
2005	2007	0.45	0.28	0.23
2006	2008	0.86	0.38	0.48

Appendix Table A-6. Comparisons of overwinter survival of spring Chinook salmon parr in rearing areas upstream (above screw trap) and downstream (below screw trap) on the upper Grande Ronde River, Catherine Creek and the Lostine River. Early migrant life history corresponds to overwintering downstream; late migrant life history corresponds to overwintering upstream. Screw traps operated in the same location in each study stream with the exception of the upper Grande Ronde River trap which operated at rkm 299 in all years but MY 1995 when it was located at rkm 257. Each *P*-value was based on the maximum likelihood ratio test comparing the fit of the null model (fall tag group survival = winter tag group survival) to the fit of the full model (fall tag group survival).

	Upper Grande Ronde Ri	ver	Catherine Creek		Lostine River	
	Area/life history with higher		Area/life history with		Area/life history with	
MY	overwinter survival	<i>P</i> -value	higher overwinter survival	<i>P</i> -value	higher overwinter survival	<i>P</i> -value
1994	Equivalent	0.331		_		
1995	Downstream/fall migrants	0.020	Equivalent	0.278	_	
1996	_		Equivalent	0.766		
1997	_		Downstream/fall migrants	0.016	Equivalent	0.133
1998	Downstream/fall migrants	< 0.001	Equivalent	0.289	Downstream/fall migrants	0.014
1999	Downstream/fall migrants	0.002	Upstream/spring migrants	0.025	Downstream/fall migrants	0.014
2000	Downstream/fall migrants	< 0.001	Downstream/fall migrants	0.031	Equivalent	0.211
2001	_		Downstream/fall migrants	0.009	Equivalent	0.090
2002			Equivalent	0.403	Equivalent	0.350
2003			Equivalent	0.283	Equivalent	0.263
2004	Upstream/spring migrants	0.001	Upstream/spring migrants	0.026	-	
2005	Upstream/spring migrants	0.030	Equivalent	0.733	Downstream/fall migrants	0.021
2006	Equivalent	0.070	Equivalent	0.061	Equivalent	0.144
2007	Equivalent	0.051	Downstream/fall migrants	< 0.001	Equivalent	0.115
2008	Equivalent	0.931	Equivalent	0.800	Equivalent	0.115

80

Appendix Table A-7. Estimated number of wild spring Chinook salmon smolt equivalents leaving tributaries in spring, and at Lower Granite Dam (LGD). Brood year represents the year eggs were deposited in the gravel, and migration year refers to the calendar year that smolts migrate seaward.

			y migran	nts		te migran	ts	Estimated smolt	
Brood	Migration	Migrant Abundance	95%	Survival	Migrant Abundance	95%	Survival	equivalents leaving tributary	Estimated smolt
Year	Migration Year	Estimate	93% CI	to LGD	Estimate	93% CI	to LGD	in spring	equivalents at LGD
1 641	1 641	Estillate	CI	io LGD	Estillate	CI	io LGD	in spring	equivalents at LOD
Upper Grande Ronde River									
1992	1994	2,616	188	0.348	22,175	3,188	0.462	24,145	11,155
1993	1995	4,859	1,881	0.228	33,866	12,560	0.609	35,685	21,732
1994	1996	13	15	(a)	1,105	192	0.512	(a)	(a)
1995	1997	68	28	(a)	14	11	(a)	(a)	(a)
1996	1998	2,408	316	0.286	4,514	535	0.548	5,771	3,162
1997	1999	2,440	187	0.269	12,418	3,116	0.538	13,638	7,337
1998	2000	3,839	386	0.341	10,941	2,033	0.560	13,279	7,436
1999	2001	6	9	(a)	45	30	(a)	(a)	(a)
2000	2002	1,625	180	0.308	7,508	1,564	0.499	8,511	4,247
2001	2003	1,350	105	0.184	3,572	458	0.397	4,198	1,666
2002	2004	467	81	0.164	4,387	637	0.420	4,569	1,919
2003	2005	1,094	123	0.138	5,163	825	0.374	5,567	2,082
2004	2006	7,846	1,248	0.171	26,826	5,170	0.398	30,197	12,018
2005	2007	5,356	306	0.242	11,753	1,680	0.373	15,228	5,680
2006	2008	4,576	1,721	0.338	7,108	2,828	0.418	10,808	4,518
Catherine	Creek								
1993	1995	8,966	1,337	0.238	8,667	1,577	0.506	12,884	6,519

^a Small tag group size and low recaptures at LGD precluded estimating survival probabilities and smolt equivalents

			y migran	nts		e migran	ts	Estimated smolt	
D 1	N	Migrant	0.50/	o : 1	Migrant	0.50/	G : 1	equivalents	T 1 1 1 1 1 1 1
Brood	Migration	Abundance	95%	Survival	Abundance	95%	Survival	leaving tributary	Estimated smolt
Year	Year	Estimate	CI	to LGD	Estimate	CI	to LGD	in spring	equivalents at LGD
Catherine	Creek, cont.								
1994	1996	4,985	440	0.358	1,872	529	0.591	4,892	2,891
1995	1997	4,029	1,118	0.365	413	103	0.413	3,974	1,641
1996	1998	7,058	1,140	0.238	2,823	403	0.517	6,072	3,139
1997	1999	12,607	2,010	0.202	7,704	1,115	0.448	13,388	5,998
1998	2000	19,769	2,156	0.212	4,222	914	0.452	13,494	6,099
1999	2001	18,996	2,213	0.130	2,940	558	0.376	9,508	3,575
2000	2002	21,183	2,846	0.154	2,179	373	0.527	8,369	4,411
2001	2003	29,763	2,399	0.120	4,860	1,039	0.365	14,645	5,345
2002	2004	53,712	3,796	0.126	10,300	1,804	0.413	26,687	11,022
2003	2005	50,630	6,500	0.122	5,467	1,680	0.445	19,348	8,610
2004	2006	22,823	2,176	0.074	4,365	934	0.367	8,967	3,291
2005	2007	10,936	788	0.203	2,895	677	0.310	10,056	3,117
2006	2008	20,502	1,700	0.153	5,649	1,231	0.380	13,904	5,283
Lostine Ri	ver								
1995	1997	2,175	239	0.312	2,321	557	0.769	3,203	2,463
1996	1998	11,381	2,373	0.448	6,158	1,089	0.784	12,661	9,927
1997	1999	20,133	1,966	0.422	14,134	1,749	0.744	25,554	19,012
1998	2000	8,370	835	0.317	3,880	299	0.660	7,900	5,214
1999	2001	10,478	1,246	0.335	3,132	549	0.695	8,183	5,687
2000	2002	15,358	2,371	0.326	2,782	522	0.683	10,112	6,907

Appendix Table A-7, continued.

			ly migrar	nts		e migran	ts	Estimated smolt	
D 1	M	Migrant	0.50/	G : 1	Migrant	0.50/	G : 1	equivalents	Tai 1 1
Brood	Migration	Abundance		Survival	Abundance		Survival	leaving tributary	Estimated smolt
Year	Year	Estimate	CI	to LGD	Estimate	CI	to LGD	in spring	equivalents at LGD
Lastina Di	vor (oort)								
Lostine Ri 2001	2003	10.049	1 450	0.297	0.901	1 161	0.405	20.025	10.262
	2003 2004 ^b	19,048	1,459	0.287	9,891	1,161	0.495	20,935	10,363
2002 2003	2004	41,163	6,185	0.267	13,439	2,662	0.552	33,349	18,409
2003	2006	42,563	8,705	0.269	11,705	1,372	0.619	30,202	18,695
2005	2007	34,250	4,720	0.223	11,933	1,013	0.589	24,900	14,666
2006	2008	15,354	2,601	0.265	10,763	2,366	0.683	16,720	11,420
Minam Riv	ver								
1999	2001	10,224	2,820	0.427	17,985	3,689	0.619	25,038	15,498
2000	2002	62,708	10,088	0.249	16,292	3,957	0.532	45,642	24,282
2001	2003	19,674	3,738	0.238	43,473	9,982	0.476	53,310	25,376
2002	2004	42,978	5,732	0.183	22,207	7,002	0.530	37,047	19,635
2003	2005	47,924	2,782	0.293	63,466	26,407	0.555	88,766	49,265
2004	2006	29,492	6,275	0.245	21,467	5,374	0.543	34,774	18,882
2005	2007	25,875	5,517	0.250	11,844	1,680	0.602	22,589	13,599
2006	2008	33,592	5,337	0.283	43,709	10,744	0.623	58,968	36,737

^b Access was denied to the Lostine River trap site during MY 2004

APPENDIX B

A Compilation of Steelhead Data

Appendix Table B-1. Population estimates, median migration dates, and percentage of steelhead population moving as late migrants past trap sites, 1997–2007 migratory years. The early migratory period begins 1 July of the preceding year and ends 28 January of the migratory year. The late migratory period begins 29 January and ends 30 June.

			Median mig	gration date	
Stream,	Population				Percentage
MY	estimate	95% CI	Early migrants	Late migrants	migrating late
Upper Grande Ronde	River				
1997	15,104	3,184	25 Oct	27 Mar	92
1998	10,133	1,612	8 Aug	27 Mar	60
1999	6,108	1,309	8 Nov	29 Apr	95
2000	17,845	3,526	30 Sep	8 Apr	94
2001	16,067	4,076	11 Oct	8 May	96
2002	17,286	1,715	24 Oct	15 Apr	94
2003	14,729	2,302	6 Oct	23 Apr	93
2004	13,126	1,487	15 Oct	11 Apr	91
2005	8,210	1,434	25 Oct	4 May	86
2006	13,188	2,819	2 Oct	12 Apr	86
2007	12,632	1,766	20 Oct	10 Apr	87
2008	7,296	1,405	13 Nov	28 Apr	95
Catherine Creek					
1997	25,229	4,774	23 Nov ^a	14 Apr	42 ^a
1998	20,742	2,076	22 Sep	4 Apr	58
1999	19,628	3,549	2 Nov	15 Apr	75
2000	35,699	6,024	30 Oct	16 Apr	61
2001	20,586	4,082	24 Sep	31 Mar	56
2002	45,799	6,271	12 Oct	1 May	58
2003	29,593	5,095	14 Oct	18 May	59
2004	26,642	4,324	31 Oct	23 Apr	63
2005	27,192	5,686	15 Oct	20 May	66
2006	23,243	8,142	13 Oct	13 Apr	62
2007	13,715	1,704	16 Oct	4 May	27
2008	24,011	9,268	19 Oct	13 Apr	64
Lostine River					
1997	4,309	710	21 Nov ^a	1 May	63 ^a
1998	10,271	2,152	4 Oct	24 Apr	46
1999	23,643	2,637	17 Oct	1 May	35
2000	11,981	1,574	19 Oct	21 Apr	44
2001	16,690	3,242	4 Oct	27 Apr	55
2002	21,019	2,958	18 Oct	17 Apr	31
2003	37,106	4,798	2 Oct	25 Apr	30
2004	b				
2005	31,342	8,234	23 Sep	25 Apr	26
a Tran was started late		,			

^a Trap was started late, thereby potentially missing some early migrants.

^b Limited trapping operations prevented complete population estimates and migration timing

Appendix Table B-1. Continued.

			Median mig	gration date	
Stream,	Population				Percentage
MY	estimate	95% CI	Early migrants	Late migrants	migrating late
Lostine River (cont.)					
2006	28,710	7,068	3 Oct	18 Apr	11
2007	13,162	1,867	5 Oct	28 Apr	26
2008	21,493	4,087	6 Oct	30 Apr	43
Minam River					
2001	28,113	10,537	3 Oct ^a	28 Apr	86 ^a
2002	44,872	19,786	24 Oct ^a	25 Apr	82 ^a
2003	43,743	20,680	10 Nov ^a	1 May	99 ^a
2004	24,846	13,564	29 Oct	28 Apr	97
2005	105,853	75,607	16 Sep	18 Apr	94
2006	103,141	62,607	2 Oct	22 Apr	78
2007	11,831	3,330	1 Oct	30 Apr	72
2008	62,675	21,725	19 Oct	30 Apr	81

^a Trap was started late, thereby potentially missing some early migrants.

^b Limited trapping operations prevented complete population estimates and migration timing

Appendix Table B-2. Dates of arrival at Lower Granite Dam (LGD) of steelhead PIT tagged upstream of the screw trap in Catherine Creek and tributaries during summer, and at screw traps in the fall and spring during the same migratory year, 2000–2008. The numbers of fish detected were expanded for spillway flow to calculate the median arrival date.

Stream,		Number	Number		Arrival dates	
MY	Tag group	tagged	detected	Median	First	Last
Upper Grande Ro	nde River					
2000	Fall	110	7	30 Apr	18 Apr	26 May
	Spring	462	73	7 May	31 Mar	28 Jun
2001	Fall	61	10	7 May	28 Apr	29 Jun
	Spring	475	180	5 May	26 Apr	28 Aug
2002	Fall	165	9	7 May	26 Apr	1 Jun
	Spring	543	86	22 May	14 Apr	25 Jun
2003	Fall	309	11	18 May	8 Apr	1 Jun
	Spring	583	101	25 May	4 Apr	24 Jun
2004	Fall	108	1	23 May		
	Spring	853	190	17 May	15 Apr	14 Jun
2005	Fall	288	16	10 May	19 Apr	19 May
	Spring	643	150	11 May	21 Apr	27 Jun
2006	Fall	53	4	10 May	25 Apr	17 May
	Spring	500	62	10 May	15 Apr	27 May
2007	Fall	485	16	9 May	15 Apr	6 Jun
	Spring	600	59	13 May	7 Apr	12 Jun
2008	Fall	136	18	15 May	19 Apr	28 May
	Spring	601	110	11 May	25 Apr	7 Jun
Catherine Creek				-	-	
2000	Fall	989	43	20 Apr	2 Apr	29 Jun
	Spring	502	63	6 May	6 Apr	10 Jun
2001	Summer	1,169	26	8 May	25 Apr	25 Jun
	Fall	561	66	6 May	18 Apr	12 Jun
	Spring	266	88	14 May	22 Apr	11 Jun
2002	Summer	1,108	32	20 May	14 Apr	25 Jun
	Fall	723	10	12 May	16 Apr	17 Jun
	Spring	504	95	22 May	20 Apr	1 Jul
2003	Summer	1,043	27	26 May	26 Apr	1 Jun
	Fall	918	26	8 May	27 Mar	3 Jun
	Spring	364	52	26 May	22 Apr	3 Aug
2004	Summer	1,046	54	11 May	10 Apr	18 Aug
	Fall	512	38	7 May	3 Apr	20 Jun
	Spring	598	150	22 May	26 Apr	24 Jul

Appendix Table B-2. Continued.

Stream,		Number	Number		Arrival dates	
MY	Tag group	tagged	detected	Median	First	Last
Catherine Creek of	cont.					
2005	Summer	1,024	81	8 May	4 Apr	3 Jun
	Fall	473	35	8 May	23 Apr	8 Jun
	Spring	623	55	10 May	18 Apr	27 Jun
2006	Summer	632	19	2 May	15 Apr	9 Jun
	Fall	934	23	30 Apr	2 Apr	22 May
	Spring	500	32	7 May	15 Apr	31 May
2007	Summer	609	3	12 May	2 May	13 May
	Fall	859	21	5 May	2 Apr	9 Jun
	Spring	370	15	9 May	4 May	3 Jun
2008	Fall	600	20	4 May	22 Apr	4 Jul
	Spring	604	21	19 May	22 Apr	12 Jun
Lostine River						
2000	Fall	777	116	10 May	26 Mar	16 Jun
	Spring	532	166	6 May	13 Apr	13 Jun
2001	Fall	421	13	12 May	16 Apr	13 Jun
	Spring	345	164	14 May	13 Apr	18 Aug
2002	Fall	837	40	8 May	10 Apr	24 Jun
	Spring	351	72	23 May	19 Apr	30 Jun
2003	Fall	999	48	26 May	25 Mar	22 Jun
	Spring	451	116	26 May	3 Apr	15 Jun
2004	Fall ^a					
	Spring ^a					
2005	Fall	760	73	10 May	2 Apr	18 Jun
	Spring	232	52	9 May	10 Apr	20 May
2006	Fall	827	21	19 May	6 Apr	8 Jun
	Spring	270	23	1 May	18 Apr	22 May
2007	Fall	1,000	46	13 May	27 Apr	10 Jun
	Spring	273	16	10 May	18 Apr	16 May
2008	Fall	599	13	17 May	6 May	26 May
	Spring	473	31	12 May	20Apr	13 Jun
Minam River						
2001	Fall	32	6	9 May	2 May	17 May
	Spring	454	240	7 May	26 Apr	29 Aug
2002	Fall	262	5	11 May	17 Apr	31 May
	Spring	197	48	20 May	16 Apr	2 Jun
2003	Fall	42	6	13 Apr	2 Apr	27 May
	Spring	503	129	21 May	2 Apr	6 Jun
2004	Fall	60	2	24 May	23 May	1 Jun
	Spring	217	52	11 May	28 Apr	25 Jun

^a Limited trapping operations during MY 2004.

Appendix Table B-2. Continued.

Stream,		Number	Number	A	Arrival dates	
MY	Tag group	tagged	detected	Median	First	Last
Minam River cont.						
2005	Fall	79	7	8 May	1 May	10 May
	Spring	333	67	10 May	7 Apr	18 Jun
2006	Fall	81	5	28 Apr	18 Apr	6 May
	Spring	437	64	2 May	8 Apr	3 Jun
2007	Fall	107	2	14 May	12 May	16 May
	Spring	293	29	7 May	3 May	7 Jun
2008	Fall	495	14	13 May	24 Apr	14 Jun
	Spring	591	53	11 May	19 Apr	8 Jun

Appendix Table B-3. Probability of surviving and migrating in the first year to Lower Granite Dam for steelhead PIT tagged in the upper rearing areas of Catherine Creek during summer and at screw traps during fall and spring.

			Num	ber det	ected	Probability of surviving and
Tag group,	MY	Number		MY	MY	migrating in the first year
Stream	tagged	tagged	MY	+ 1	+ 2	(95% CI)
Summer						` /
Catherine	Creek					
	2001	413	22	7	0	0.056 (0.012-0.083)
	2002	838	65	9	0	0.101 (0.075–0.140)
	2003	510	23	7	0	0.048 (0.031–0.071)
	2004	527	42	18	0	0.081 (0.059–0.108)
	2005	704	58	3	0	0.082 (0.063–0.104)
	2006	418	40	1	0	0.138 (0.090–0.252)
_	2007	334	10	1	_	0.072 (0.024–0.992)
Little Cat						
	2001	415	0	3	0	(a)
	2007	275	1	1		(a)
Middle Fo		rine Creek		_	-	
) f:::: ~	2006	214	1	0	0	(a)
Milk Cree		500	27	2	•	0.0(0.00.00.00.00.00.00.00.00.00.00.00.0
NI 4 E	2003	532	27	3	0	0.062 (0.040–0.100)
North For			•	4	1	
	2001	117	2	1	1	(a)
	2002	270	8	2	1	0.035 (0.015–0.085)
G 4 . F	2005	320	14	6	0	0.044 (0.024–0.074)
South For			_	٠	-	0.000 (0.000 0.000)
	2001	225	5	4	0	0.022 (0.002–0.042)
	2004	519	20	10	1	0.035 (SE = 0.008)
Catherine		d tribs cor				
	2001	1,170	29	15	1	0.026 (0.017–0.036)
	2002	1,108	73	11	1	0.084 (0.064–0.114)
	2003	1,042	50	10	0	0.054 (0.040–0.073)
	2004	1,046	62	28	1	0.058 (0.048–0.082)
	2005	1,024	72	9	0	0.070 (0.055–0.087)
	2006	632	41	1	0	0.094 (0.061–0.173)
	2007	609	11	2	_	0.045 (0.015–0.062)
Fall						
Upper Gr	ande Ron	de River				
1.1	2000	110	16	0	0	0.227 (0.118-0.650)
	2001	61	12	0	0	0.223 (0.122–0.398)
	2002	165	21	1	0	0.185 (0.108–0.387)
	2003	309	17	1	0	0.094 (0.043–0.956)
a D .	cc. ·	<u>.</u> . 1 1			1 1 1 1	••

^a Data was insufficient to calculate a survival probability.

Appendix Table B-3. Continued.

			Nun	ber det	ected	Probability of surviving and
Tag group,	MY	Number		MY	MY	migrating in the first year
Stream	tagged	tagged	MY	+ 1	+ 2	(95% CI)
Fall cont.						
Upper Gra	ande Ron	de cont.				
	2004	108	1	1	0	0.009 (SE = 0.009)
	2005	288	20	2	0	0.071 (SE=0.016)
	2006	53	5	0	0	0.094 (SE = 0.040)
	2007	485	34	12		0.121 (0.065–0.488)
	2008	136	41			0.420 (0.294–0.657)
Catherine	Creek					
	2000	996	73	14	0	0.099 (0.075–0.133)
	2001	562	67	0	0	0.120 (0.095–0.149)
	2002	723	31	4	0	0.069 (0.040-0.152)
	2003	915	56	11	0	0.085 (0.059–0.143)
	2004	512	53	6	0	0.128 (0.095–0.177)
	2005	473	44	2	0	0.087 (SE=0.013)
	2006	934	61	12	0	0.077 (0.058–0.110)
	2007	859	59	8		0.084 (0.059–0.155)
	2008	600	37			0.079 (0.052-0.142)
Lostine R	iver					
	2000	777	158	11	0	0.264 (0.222–0.315)
	2001	423	17	18	0	0.045 (0.027–0.073)
	2002	837	106	18	0	0.154 (0.124–0.194)
	2003	998	100	30	0	0.111 (0.090–0.138)
	2005	760	108	27	0	0.150 (0.124–0.180)
	2006	827	59	15	0	0.085 (0.063–0.125)
	2007	1,000	96	23		0.160 (0.110-0.279)
	2008	599	49			0.082 (SE = 0.011)
Minam Ri	iver					
	2001	32	7	2	0	0.225 (0.103-0.396)
	2002	262	11	10	0	0.134 (0.041–1.971)
	2003	42	8	0	0	0.238 (0.105–1.663)
	2004	60	3	2	0	(a)
	2005	79	10	1	0	0.127 (SE = 0.037)
	2006	81	7	1	0	0.086 (SE = 0.031)
	2007	107	10	4		(a)
	2008	495	33			$0.090 \ (0.057 = 0.173)$
Spring (FL \geq		·				
Upper Gra						
	2000	324	100	1	0	0.400 (0.326–0.497)
	2001	465	196	5	0	0.451 (0.402–0.503)

Appendix Table B-3. Continued.

	Number de		ber det	ected	Probability of surviving and	
Tag group,	MY	Number		MY	MY	migrating in the first year
Stream	tagged	tagged	MY	+ 1	+ 2	(95% CI)
Spring (FL \geq		*				
Upper Gra		de cont.				
	2002	543	192	1	0	0.450 (0.387–0.529)
	2003	578	205	3	0	0.461 (0.393–0.552)
	2004	853	223	2	0	0.492 (0.443–0.542)
	2005	371	186	2	0	0.553 (0.490–0.628)
	2006	342	168	2	0	0.522 (0.454–0.629)
	2007	464	119	3	_	0.315 (0.246–0.453)
	2008	578	263		_	0.626 (0.588–0.708)
Catherine						
	2000	305	104	2	0	0.490 (0.392–0.630)
	2001	247	95	2	0	0.400 (0.339–0.465)
	2002	504	213	2	0	0.532 (0.465–0.615)
	2003	359	107	2	0	0.360 (0.291–0.472)
	2004	411	187	1	0	0.474 (0.423–0.526)
	2005	181	69	2	0	0.453 (0.353–0.623)
	2006	222	96	0	0	0.540 (0.421–0.790)
	2007	169	25	2	_	0.179 (0.108–0.546)
	2008	128	48	_	_	0.520 (0.358–1.002)
Lostine R	iver					
	2000	443	234	4	0	0.635 (0.570–0.708)
	2001	330	189	16	0	0.594 (0.538–0.651)
	2002	351	171	6	0	0.625 (0.538–0.739)
	2003	447	269	4	0	0.705 (0.633–0.795)
	2005	90	56	1	0	0.641 (0.532–0.766)
	2006	89	57	0	0	0.629 (SE = 0.051)
	2007	101	35	3	_	(a)
	2008	128	76	_	_	0.714 (0.576–0.967)
Minam Ri						
	2001	442	269	8	0	0.632 (0.584–0.680)
	2002	197	109	1	0	0.722 (0.598–0.898)
	2003	500	272	0	0	0.662 (0.590–0.753)
	2004	120	68	2	0	0.588 (0.493–0.686)
	2005	161	91	3	0	0.566 (0.485–0.647)
	2006	274	168	1	0	0.665 (0.584–0.809)
	2007	178	68	2		0.684 (0.432–1.638)
	2008	291	175			0.819 (0.689–1.027)
Spring (FL <		•				
Upper Gra	ande Ron	de River				
	2000	129	0	5	0	(a)

Appendix Table B-3. Continued.

			Num	ber det	ected	Probability of surviving and
Tag group,	MY	Number		MY	MY	migrating in the first year
Stream	tagged	tagged	MY	+ 1	+ 2	(95% CI)
Spring (FL <	115 mm) cont.				
Upper Gra		de cont.				
	2001	7	0	0	0	(a)
	2002	17	2	1	0	0.118 (SE= 0.078)
	2003	5	0	0	0	(a)
	2004	378	5	29	1	0.016 (SE=0.008)
	2005	272	0	9	2	(a)
	2006	157	2	9	2	(a)
	2007	136	0	7		(a)
	2008	83	0			(a)
Catherine	Creek					
	2000	189	0	10	1	(a)
	2001	19	1	2	0	(a)
	2002	6	0	1	0	(a)
	2003	4	1	0	0	(a)
	2004	187	5	17	0	0.027 (SE=0.012)
	2005	442	1	22	0	(a)
	2006	278	3	8	0	(a)
	2007	201	0	23		(a)
	2008	476	9			0.019 (SE=0.006)
Lostine R	iver					
	2000	84	0	9	0	(a)
	2001	21	1	1	0	(a)
	2002	0	0	0	0	(a)
	2003	1	0	0	0	(a)
	2005	142	0	24	0	(a)
	2006	89	1	16	0	(a)
	2007	172	0	26		(a)
	2008	345	3			0.009 (SE=0.005)
Minam Ri	iver					,
	2001	9	0	0	0	(a)
	2002	1	0	0	0	(a)
	2003	0	0	0	0	(a)
	2004	97	0	9	1	(a)
	2005	172	0	10	0	(a)
	2006	274	0	7	0	(a)
	2007	115	0	14		(a)
	2008	300	0			(a)

Appendix Table B-4. Fork lengths of steelhead at the time they were PIT-tagged at screw traps on Catherine Creek and the upper Grande Ronde, Lostine, and Minam rivers during the early migration period 1999–2006, summarized by dam detection history.

			Length at tagging (mm)						
Stream,	Year				Perce	ntile			
Year tagged	detected	N	Median	Min	25 th	75 th	Max		
Upper Grande Ro	nde River								
1999	(a)	108	133	71	122	148	205		
2000	(a)	60	124	86	101	145	180		
	2001	12	152	115	134	161	180		
2001	(a)	165	115	62	80	130	193		
	2002	21	130	110	120	150	163		
	2003	1	111	_	_	_	_		
2002	(a)	309	111	63	76	131	200		
	2003	17	133	120	125	140	155		
	2004	1	77	_					
2003	(a)	108	77	61	70.5	110	160		
	2004	1	113	_	_	_	_		
	2005	1	70	_	_	_	_		
2004	(a)	288	114	62	90	125	179		
	2005	20	127	101	118	137	159		
	2006	2	81	72	77	86	90		
2005	(a)	53	113	63	73	128	190		
	2006	5	136	110	127	176	190		
2006	(a)	478	112	54	87	123	190		
	2007	33	131	99	119	140	180		
2007	(a)	136	132	59	126	148	309		
	2008	41	132	112	126	148	199		
Catherine Creek									
1999	(a)	986	101	60	76	142	200		
	2000	73	148	67	133	162	195		
	2001	14	77	61	73	86	118		
2000	(a)	561	136	76	124	150	204		
	2001	67	139	102	126	152	195		
2001	(a)	723	85	62	75	124	193		
	2002	30	128	78	91	136	170		
	2003	4	71	62	67	75	75		
2002	(a)	918	111	60	81	141	245		
	2003	56	143	99	133	154	177		
	2004	13	74	65	71	83	167		
2003	(a)	512	117	59	85	133	240		
	2004	54	131	81	118	146	185		
	2005	6	77	65	71	82	118		

^a Data represents all the early migrants tagged, regardless of detection history.

Appendix Table B-4. Continued.

			Length at tagging (mm)						
Stream,	Year	-			Perce	entile			
Year tagged	detected	N	Median	Min	25 th	75 th	Max		
Catherine Creek ((cont.)								
2004	(a)	473	124	58	81	140	191		
	2005	44	136	85	123	152	189		
	2006	2	81	75	78	84	87		
2005	(a)	934	91	55	77	134	246		
	2006	61	140	82	127	154	208		
	2007	12	78	69	71	79	94		
2006	(a)	856	135	60	118	153	331		
	2007	58	144	81	127	160	227		
2007	(a)	597	80	57	72	116	216		
	2008	37	123	75	84	144	187		
Lostine River									
1999	(a)	773	153	66	140	168	286		
	2000	157	157	121	144	170	259		
	2001	11	105	79	85	119	141		
2000	(a)	421	80	61	73	91	235		
	2001	17	161	95	146	178	212		
	2002	18	86	65	80	89	106		
2001	(a)	824	100	60	85	155	262		
	2002	105	155	87	140	169	205		
	2003	19	82	68	78	94	161		
2002	(a)	999	93	62	73	155	348		
	2003	98	152	68	136	175	263		
	2004	33	75	66	70	84	263		
2003	(b)	_		_	_	_	_		
2004	(a)	758	92	57	77	148	246		
	2005	108	148	73	135	166	205		
	2006	27	77	62	71	85	101		
2005	(a)	827	83	59	72	140	298		
	2006	59	155	82	138	165	188		
	2007	15	75	62	71	78	101		
2006	(a)	1000	132	55	84	150	278		
	2007	96	143	103	133	161	236		
2007	(a)	599	86	57	76	125	235		
	2008	49	142	73	123	175	222		
Minam River									
2000	(a)	32	122	58	69	153	218		
	2001	7	147	114	126	155	183		
b Nic contransionan	2002	_ 2	68	63	65	70	72		

b No early migrants were tagged in the Lostine River because the trap was not operated.

Appendix Table B-4. Continued.

-			Length at tagging (mm)						
Stream,	Year	-			Perce	entile			
Year tagged	detected	N	Median	Min	25 th	75 th	Max		
Minam River (con	nt.)								
2001	(a)	262	66	55	61	117	318		
	2002	11	132	120	124	147	185		
	2003	10	65	60	63	68	85		
2002	(a)	42	104	65	72	146	199		
	2003	8	161	133	135	169	185		
2003	(a)	60	106	60	67	133	206		
	2004	3	118	115	115	118	118		
	2005	2	68	65	66	69	70		
2004	(a)	79	73	59	65	161	226		
	2005	10	167	73	147	173	210		
	2006	1	67			_			
2005	(a)	81	71	58	64	153	218		
	2006	7	161	119	143	178	209		
	2007	1	61			_			
2006	(a)	107	112	59	67	134	230		
	2007	10	131	122	128	134	153		
2007	(a)	495	71	58	66	90	210		
	2008	33	149	65	129	168	210		

Appendix Table B-5. Fork lengths of steelhead at the time they were PIT-tagged at screw traps on Catherine Creek and the upper Grande Ronde, Lostine, and Minam rivers during the late migration period 2000–2007, summarized by dam detection history.

			Length at tagging (mm)							
Stream,	Year	•				entile				
Year tagged	detected	N	Median	Min	25 th	75 th	Max			
Upper Grande Ro	nde River									
2000	(a)	453	133	71	108	152	225			
	2000	99	155	115	139	166	208			
	2001	6	80	72	77	109	126			
2001	(a)	465	147	115	135	163	219			
	2001	196	156	115	145	171	207			
	2002	5	143	121	127	150	152			
2002	(a)	543	150	115	135	164	216			
	2002	192	155	115	144	170	209			
	2003	1	159				_			
2003	(a)	578	150	115	136	164	199			
	2003	204	158	115	142	169	199			
	2004	4	130	117	119	168	197			
2004	(a)	853	123	60	82	147	204			
	2004	228	148	98	135	167	202			
	2005	31	81	64	74	98	123			
2005	(a)	642	130	65	91	152	208			
	2005	186	150	117	141	164	197			
	2006	11	89	69	81	95	140			
	2007	2	82	70	76	88	94			
2006	(a)	500	132	62	94	150	276			
	2006	170	150	111	135	166	203			
	2007	10	91	65	76	105	124			
2007	(a)	600	142	65	118	157	230			
	2007	119	157	121	146	168	230			
2008	(a)	601	147	60	132	162	223			
	2008	265	155	117	142	165	203			
Catherine Creek										
2000	(a)	494	132	61	86	150	210			
	2000	103	152	120	143	167	210			
	2001	12	79	70	73	104	125			
	2002	1	87				_			
2001	(a)	247	142	115	131	154	190			
	2001	96	150	115	138	161	190			
	2002	2	120	115	117	122	124			
2002	(a)	503	152	115	139	164	260			
	2002	212	156	115	144	166	208			
	2003	2	126	123	124	127	128			

^a Data represents all the late migrants tagged, regardless of detection history.

Appendix Table B-5. Continued.

				Length a	at tagging	(mm)	
Stream,	Year				Perce		
Year tagged	detected	N	Median	Min	25 th	75 th	Max
Catherine Creek (cont.)						
2003	(a)	360	145	115	132	156	203
	2003	107	150	118	137	161	201
	2004	2	122	122	122	122	122
2004	(a)	598	135	62	102	152	202
	2004	192	148	94	135	160	202
	2005	18	77	63	72	82	130
2005	(a)	623	93	60	82	123	195
	2005	70	155	109	139	172	195
	2006	24	87	65	77	101	127
2006	(a)	500	98	60	81	146	203
	2006	99	151	87	138	163	199
	2007	8	83	80	82	87	105
2007	(a)	370	111	61	91	147	222
	2007	26	153	118	143	164	181
2008	(a)	603	85	60	77	107	206
	2008	57	147	83	123	161	206
Lostine River							
2000	(a)	526	160	66	145	175	329
	2000	234	168	123	157	179	236
	2001	13	89	66	80	128	158
2001	(a)	323	163	115	148	180	292
	2001	182	172	121	157	185	292
	2002	16	141	115	121	156	160
2002	(a)	351	158	115	141	178	326
	2002	171	163	115	152	180	244
	2003	6	127	122	122	131	138
2003	(a)	447	162	115	150	174	289
	2003	267	163	132	152	175	208
• • • •	2004	4	125	115	117.5	141	152
2004	(a)	416	115	61	86	153	215
	2004	122	163	105	148	180	215
2005	2005	24	87	73	81	104	130
2005	(a)	232	99	64	83	156	226
	2005	56	178	141	160	188	226
2006	2006	25	84	69	80	97	133
2006	(a)	270	89	61	76	149	243
	2006	58	169	106	157	183	243
2007	2007	16	79 04	65	73	89	94
2007	(a)	281	94	60	81	142	292
	2007	35	167	130	154	182	210

Appendix Table B-5. Continued.

				Length a	at tagging	g (mm)	
Stream,	Year	•			Perce		
Year tagged	detected	N	Median	Min	25 th	75 th	Max
Lostine River (co	ont.)						
2008	(a)	473	92	62	82	124	238
	2008	79	160	90	150	172	238
Minam River							
2001	(a)	442	160	115	144	177	227
	2001	269	167	124	151	183	227
	2002	8	136	118	125	151	169
2002	(a)	197	158	115	147	179	219
	2002	108	164	119	151	185	219
	2003	1	135				
2003	(a)	500	164	116	152	178	224
	2003	271	165	127	153	178	218
	2004	1	194				
2004	(a)	217	133	59	86	168	239
	2004	68	169	117	154	180	239
	2005	11	102	71	82	106	122
2005	(a)	332	110	62	76	160	288
	2005	91	163	127	149	180	215
	2006	13	76	69	74	111	142
2006	(a)	437	141	58	79	165	218
	2006	168	164	115	149	180	213
	2007	8	76	67	71	87	139
2007	(a)	293	144	63	87	172	220
	2007	68	174	118	160	187	201
2008	(a)	591	108	60	78	160	217
	2008	175	164	118	151	178	209

Appendix Table B-6. Fork lengths of steelhead at the time they were PIT tagged in rearing areas upstream of the screw trap on Catherine Creek and its tributaries during summer 2000-2006, summarized by migration history.

	Length at tagging (mm)						
Tag group,				Perce	entile		
Migration history	N	Median	Min	25 th	75 th	Max	
Summer 2003							
All PIT tagged	1,165	106	58	89	127	229	
Captured in trap Fall 2003	16	115	92	104	124	149	
Captured in trap Spring 2004	12	123	91	109	131	167	
Migrated past trap MY 2004	81	121	78	110	133	171	
Migrated past trap MY2005	5	91	78	85	92	96	
Migrated past trap MY2006	0						
Still upstream after spring 2004	4	107	97	101	109	110	
Still upstream after spring 2005	0						
Still upstream after spring 2006	0						
Detected at dams during 2004	62	123	78	110	137	171	
Detected at dams during 2005	28	91	65	81	99	111	
Detected at dams during 2006	1	71					
Summer 2004							
All PIT tagged	1,024	127	56	109	146	229	
Captured in trap Fall 2004	18	130	111	122	147	172	
Captured in trap Spring 2005	3	142	137	140	149	156	
Migrated past trap MY 2005	90	139	105	125	155	185	
Migrated past trap MY 2006	3	101	78	90	103	104	
Migrated past trap MY 2007	0						
Still upstream after spring 2005	1	179		_			
Still upstream after spring 2006	1	107					
Still upstream after spring 2007	0						
Detected at dams during 2005	72	141	105	127	156	185	
Detected at dams during 2006	9	103	80	99	108	120	
Detected at dams during 2007	0						
Summer 2005							
All PIT tagged	632	119	55	106	141	279	
Captured in trap Fall 2005	10	118	89	114	123	139	
Captured in trap Spring 2006	3	115	96	106	118	121	
Migrated past trap MY 2006	52	122	89	115	144	186	
Migrated past trap MY 2007	1	105	_	_	_	_	
Migrated past trap MY 2008	0						
Still upstream after spring 2006	1	101					
Still upstream after spring 2007	0						
Still upstream after spring 2008	0						
Detected at dams during 2006	41	126	96	116	149	186	
Detected at dams during 2007	1	99				_	
Detected at dams during 2008	_ 1	99	_				

Appendix Table B-6. Continued.

		Length at tagging (mm)								
Tag group,				Perce	entile					
Migration history	N	Median	Min	25 th	75 th	Max				
Summer 2006										
All PIT tagged	609	109	59	90	129	268				
Captured in trap Fall 2006	18	124	95	107	131	167				
Captured in trap Spring 2007	3	86	74	80	111	135				
Migrated past trap MY 2007	30	124	74	107	134	177				
Migrated past trap MY 2008	2	75	72	73	76	77				
Still upstream after spring 2007	0	_	_	_	_	_				
Still upstream after spring 2008	0	_	_	_	_	_				
Detected at dams during 2007	10	130	107	108	136	177				
Detected at dams during 2008	3	96	79	88	111	125				