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DESCRIPTION OF ACCOMPLISHMENTS 
 
Introduction and Objectives 

Concern over the quality of environmental management and restoration has motivated 
the model development for predicting water and solute transport in the vadose zone. Soil 
hydraulic properties are required inputs to subsurface models of water flow and 
contaminant transport in the vadose zone. Computer models are now routinely used in 
research and management to predict the movement of water and solutes into and through 
the vadose zone of soils. Such models can be used successfully only if reliable estimates 
of the soil hydraulic properties are available. The hydraulic parameters considered in this 
project consist of the saturated hydraulic conductivity, Ks, and four parameters of the 
water retention equation by the van Genuchten equation, 
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where ψ  is the capillary pressure head, θ is the soil water content, θr is the residual water 
content of soil, θs  is the saturated water content of soil, α is the shape factor, n is the pore 
size distribution index, and m is the empirical constant which can be related to n by m = 
1-1/n. 

The overall objective of this project is to better quantify soil hydraulic parameters 
which are critical in predicting water flows and contaminant transport in the vadose zone 
through a comprehensive and quantitative study to predict heterogeneous soil hydraulic 
properties and the associated uncertainties. We seek to address a number of important 
issues related to the soil hydraulic property characterizations. The results of numerical 
simulations of a field injection experiment at Hanford site in this project can be used to 
provide insights to the DOE mission of appropriate contamination characterization and 
environmental remediation. This project also strengthens collaboration between 
researchers at the Desert Research Institute in the EPSCoR State of Nevada and their 
colleagues at the Pacific Northwest National Laboratory. While all of our efforts of this 
project are centered on estimating heterogeneous soil hydraulic parameters, evaluating 
the associated uncertainty and applying to field applications at the Hanford site, and 
innovative approaches of quantifying soil hydraulic properties applicable to large scale 
modeling of hydrological processes including flow and contaminant transport in the 
vadose zone, we report in the following topics roughly in the chronological order when 
the work was performed or published for the organization of the report. All the reported 
work has been published, under peer review or is under preparation to be submitted to 
peer-reviewed journals in the near future. 
 
1. Macroscopic Parallel and Perpendicular Unsaturated Hydraulic Conductivities 
for Layered Soils 

It is a well known fact that for saturated flow the macroscopic scale hydraulic 
conductivity is equal to a simple arithmetic average of all individual saturated hydraulic 
conductivities for horizontally heterogeneous media and harmonic average of all 
individual saturated hydraulic conductivity for vertically heterogeneous media. The same 
average schemes were often assumed and extended to the more complex unsaturated 
flows in many studies. Due to the strongly non-linear relationship between the 
unsaturated hydraulic conductivity and the saturation degree, the validity of the same 
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average schemes for unsaturated flow conditions needs to be examined. We investigated 
the appropriateness of using the arithmetic and harmonic averages of hydraulic 
conductivity for unsaturated flows horizontal and perpendicular to the heterogeneous soil 
columns or layers under the steady state flow conditions (Zhu, 2008). The macroscopic 
hydraulic conductivity in this study meant the derived equivalent macroscopic hydraulic 
conductivity from either horizontally or vertically heterogeneous soil columns or layers 
distinguishable by variations in the hydraulic parameters. Specifically, for horizontally 
heterogeneous soils the macroscopic hydraulic conductivity function should be able to 
predict the actual average flux of the parallel column soil system and for vertically 
heterogeneous soils, it should simulate the actual moisture flux of the layered soil 
formations.  
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Figure 1: Relative error of flux as functions of h under various average hydraulic conductivity 

schemes for horizontal heterogeneity scenario for <α*> = 1 at selected variance levels (CV = CVα* 
= CVKs values of 0.1, 0.5, and 0.9). (a) r = 0.0, (b) r = 0.9. 
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Figure 2: Relative error of flux as functions of h under various average hydraulic conductivity 

schemes for vertical heterogeneity scenario for <α*> = 1 at selected variance levels (CV = CVα* = 
CVKs values of 0.1, 0.5, and 0.9). (a) r = 0.0, (b) r = 0.9. 

 
 
The relative error of calculated flux against the actual average flux of the 

heterogeneous soils, using various averaged hydraulic conductivity functions was also 
assessed. Figure 1 and Figure 2 illustrated errors Relative error of flux as functions of the 
dimensionless ground surface capillary pressure head (h) under various average hydraulic 
conductivity schemes for horizontal heterogeneity scenario and vertical heterogeneity 
scenario respectively. In general, our results illustrated that while arithmetic mean of 
hydraulic conductivity function performed reasonable well in predicting the actual 
average flux for the horizontally heterogeneous columns, the harmonic mean of hydraulic 
conductivity function introduced quite large error in predicting the actual flux for the 
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vertically heterogeneous soil layers, especially for the highly heterogeneous soils.  Some 
of the other main conclusions from this study were: (1) the optimal macroscopic 
hydraulic conductivities for both horizontally and vertically heterogeneous soils also 
depended on the capillary pressure head conditions at the land surface, and it was more 
challenging when the capillary pressure head at the land surface was higher (i.e., dry 
surface conditions); (2) the arithmetic mean for horizontally heterogeneous soil columns 
and harmonic mean for vertically heterogeneous soil layers, extended from saturated flow 
situations, would introduce larger errors in simulating the actual flux for coarser textured 
soils and for more heterogeneous soils with large hydraulic parameter variances; and (3) 
the parametric correlations among the hydraulic parameters were also important in 
determining the appropriate macroscopic hydraulic conductivity for the heterogeneous 
soils. 
 
2. Estimating Heterogeneous Hydraulic Properties using Cokriging and Artificial 
Neural Network and Simulation of Field Injection Experiment at Hanford Site 

We developed an approach to integrate data that are easily available (for example, 
initial moisture content, bulk density, and soil texture) with soil hydraulic property data 
via cokriging and artificial neural network (ANN)-based pedotransfer functions (PTFs) 
(Ye et al., 2007). The method was applied to generate heterogeneous soil hydraulic 
parameters at a field injection site at the Hanford area. Cokriging was first used to 
generate three-dimensional heterogeneous fields of bulk density and soil texture using an 
extensive data set of field-measured moisture content, which carry signature about site 
heterogeneity and stratigraphy. Soil texture and bulk density were subsequently input into 
an ANN-based site-specific PTF to generate three-dimensional heterogeneous soil 
hydraulic parameter fields. The stratigraphy at the site was well represented by the 
estimated pedotransfer variables and the soil hydraulic parameters. The soil hydraulic 
property data included laboratory measurements of saturated hydraulic conductivity and 
van Genuchten moisture retention parameters obtained from 70 core samples at the 
Hanford area. Another type of data used, also referred to as pedotransfer variables, 
included bulk density and percentages of gravel, coarse sand, fine sand, silt, and clay 
measured for the same 70 core samples. The data set also included 1,376 observations of 
initial moisture content before the injection experiment at the Hanford area. The 
hydraulic parameter estimates were then used to simulate the field injection experiment at 
the Hanford 200E Area. Figure 3 showed the comparison of first and second spatial 
moments of soil moisture evolution between the observed and simulated results. A 
relatively good agreement was achieved between the simulated and observed moisture 
contents. The spatial distribution pattern of observed moisture content as well as the 
moisture movement was captured reasonably well in the simulations. In contrast to earlier 
work using an effective parameter approach, we were able to reproduce the observed 
moisture plume in a coarse sand unit that was sandwiched between two fine-textured 
units. The approach of combining cokriging and ANN for site characterization of 
heterogeneous soils provided unbiased prediction of the observed moisture plume and 
was flexible so that additional measurements of various types can be included as they 
become available.  
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Figure 3: Comparison of observed (filled symbol and solid line) and simulated (open symbol and 

dashed line) (a) first and (b) second moment of moisture plume 
 
 
3. Markov Chain Model for Characterizing Medium Heterogeneity and Sediment 
Layering Structure 

By leveraging use of ‘‘soft’’ data (e.g., initial moisture content), the work of Ye and 
Khaleel (2008) applied the transition probability (TP) based Markov chain (MC) model 
to sediment textural classes for characterizing the medium heterogeneity and sediment 
layering structure. The TP/MC method was evaluated by simulating the vadose zone 
moisture movement at the field injection site at Hanford, where the stratigraphy consists 
of imperfectly stratified soil layers. Soil heterogeneity was characterized via spatial 
variability of the geometry of soil textural classes. When the initial moisture content 
measurements, which carry signature about medium heterogeneity and stratigraphy, were 
not included in the TP/MC model, it was not possible to identify the horizontal TP. The 
initial moisture content measurements, when transformed into soil classes, were 
necessary in mapping the soil layering structure prevalent at the site. The soil hydraulic 
parameters for each soil class were treated deterministically and were estimated on the 
basis of core samples. To evaluate uncertainty in characterizing geometry of the soil 
classes, multiple conditional realizations of the soil classes were generated. A Monte 
Carlo simulation showed that the simulated mean moisture contents agree well with 
corresponding field observations. Figure 4 showed comparison between the three-
dimensional contours of observed and simulated mean moisture content on several dates. 
Pearson’s linear correlation coefficients (r) were calculated for the two simulation dates. 
The observed splitting of the moisture plume in a coarse sand layer that is sandwiched 
between two fine-textured layers, the southeastward movement of the plume during the 
redistribution period, and the near-zero fluid flux below the bottom fine layer were 
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adequately simulated. Spatial variability of the field-measured moisture content was 
sufficiently captured by the 95% confidence intervals calculated from the Monte Carlo 
simulations. Investigating the effect of data conditioning on the simulated results showed 
that a reduction of conditioning data does not necessarily deteriorate simulation results if 
other conditioning data exist within the mean length of the soil classes. The TP/MC 
method was flexible so that other types of site characterization data (e.g., geophysical 
data) can be incorporated as they become available. 

 
Figure 4: Three-dimensional contours of (a) observed and (c) simulated mean moisture content on 
2 June 2000; three-dimensional contours of (b) observed and (d) simulated mean moisture content 

on 31 July 2000; and observed and simulated mean water content on (e) 2 June 2000 and (f) 31 
July 2000. Pearson’s linear correlation coefficients (r) were calculated for the two simulation times 
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4. Effective Soil Hydraulic Parameters for Transient Flows in Heterogeneous Soils 
The study of Zhu and Sun (2009) investigated the use of effective soil hydraulic 

properties (expressed in terms of hydraulic parameters) applicable to large-scale transient 
infiltration problems in a landscape with horizontally heterogeneous soil hydraulic 
properties. The heterogeneous landscape was conceptualized as an equivalent 
homogeneous medium with effective hydraulic properties. The main objectives were to 
investigate: (i) which effective soil hydraulic property schemes are suitable to represent 
average behavior of large-scale infiltration processes, (ii) how the effective hydraulic 
parameters are sensitive to the process time frame, and (iii) how hydraulic parameter 
variability and correlation impact the effective hydraulic parameters. The heterogeneous 
landscape was represented by a series of vertically homogeneous stream tubes or parallel 
columns. Large-scale average infiltration behavior in the heterogeneous soils was 
quantified through Monte Carlo simulations of multiple realizations (stream tubes) of 
local-scale infiltration. The optimal effective hydraulic parameters were then calculated 
with an inverse procedure that minimized the difference between average cumulative 
infiltration and cumulative infiltration based on a single set of effective parameters.  
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Figure 5:  Effective hydraulic parameters and corresponding minimized objective functions for 
cumulative infiltration as a function of time when both saturated hydraulic conductivity KS and 

shape factor α are optimized simultaneously. (a) Effective hydraulic parameters, and (b) 
minimized objective functions 
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Three scenarios were used to optimize either the hydraulic parameters simultaneously 
or only one hydraulic parameter while using the arithmetic mean for the other parameter. 
Several hydraulic parameters data sets were synthetically generated in order to 
investigate the impact of different statistics of hydraulic parameters on the effective 
hydraulic parameter schemes. Figure 5 showed effective hydraulic parameters and 
corresponding minimized objective functions for cumulative infiltration as a function of 
time. Results indicated that while the effective hydraulic parameters could simulate 
average infiltration more closely when multiple parameters were optimized together, the 
effective parameter values were more variable as time evolved. Optimizing only one 
hydraulic parameter while keeping the arithmetic mean for the other parameter produced 
more uniform effective hydraulic parameters with time, but this approach did not 
represent average infiltration behavior of the heterogeneous soils as well as when 
multiple hydraulic parameters were optimized simultaneously. 
 
Note: The progresses reported in 5 through 9 below were made largely from the third 
year the no cost extension fourth year although much work actually started during the 
first two years. 
 
5. Quantification of Uncertainty in Pedotransfer Function-Based Parameter 
Estimation for Unsaturated Flow Modeling 

The objective of the study by Deng et al. (2009) was to evaluate uncertainty of the 
PTF-estimated soil hydraulic parameters and its effect on numerical simulation of 
moisture flow. Contributing to the parameter estimation uncertainty are (1) the PTF 
intrinsic uncertainty caused by limited data used for PTF training and (2) the PTF input 
uncertainty in pedotransfer variables (i.e., PTF inputs). The PTF intrinsic uncertainty was 
assessed using the bootstrap method by generating multiple bootstrap realizations of the 
soil hydraulic parameters; the realizations followed normal or lognormal distributions. 
The PTF input variables (i.e., bulk density and soil texture) were obtained using the 
cokriging technique. The PTF input uncertainty was quantified by assuming that the 
cokriging estimates follow a normal distribution. Figure 6 showed comparison of the 
observed and simulated moisture contents on 23 June 2000 at four boreholes. The results 
showed that the PTF input uncertainty dominates over the PTF intrinsic uncertainty and 
determines the spatial distribution of the PTF parameter estimation uncertainty. When the 
parameter estimation uncertainty was included, the spatial variability of the measured soil 
hydraulic parameters was better captured. This was also the case for the observed 
moisture contents, whose spatial variability was well bracketed by the prediction 
intervals. However, this was only possible after the PTF input uncertainty was 
considered. These results suggested that additional sample acquisition for the PTF input 
variables (soil texture and bulk density) would have a more favorable impact on 
reduction of the parameter estimation uncertainty than collecting additional soil hydraulic 
parameter measurements for PTF development. Therefore, it appeared that a more 
complete characterization of a site for texture and layering and a judicious positioning of 
sample measurement locations would lead to an optimal site characterization of soil 
hydraulic parameter heterogeneity. 
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Figure 6: Comparison of the observed (triangles) and simulated moisture contents on 23 June 2000 

at four boreholes. The mean and 95% prediction intervals of the simulated moisture content are 
shown as solid and dashed lines, respectively. Both PTF intrinsic and input uncertainty are 

considered 
 
 
6. Unsaturated Hydraulic Conductivity for Layered Soils of Structured 
Heterogeneity 

The study of Zhu and Warrick (2009) investigated hydraulic conductivities of 
unsaturated soils for one-dimensional structured heterogeneity. The heterogeneity was 
defined by forming repeated unit cells of homogeneous sublayers. Specifically, we 
examined the appropriateness of harmonic mean of unsaturated hydraulic conductivities 
in representing the structured heterogeneity for a finitely deep profile typical for many 
applications such as water fluxes for both infiltration and evaporation between ground 
surface and saturated zone. We addressed the significance of ground surface conditions, 
structural arrangement within the unit cell, and the number of repeated units on the 
applicability of harmonic mean of hydraulic conductivities in representing the 
heterogeneous layered medium. Figure 7 showed flux prediction and its associated 
relative error, and capillary pressure profile for binary heterogeneous structure. It was 
demonstrated that structural arrangement of the repeated unit is significant. Specifically, 
the location of coarse material in the unit cell is an important indicator of whether using 
harmonic mean overpredicts or underpredicts the flux of the structured layered 
heterogeneous medium. Results indicated that using harmonic mean of individual 
hydraulic conductivities is appropriate only when the number of repeated structured 
layers is larger than about 100. It was also found that the harmonic mean of hydraulic 
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conductivities performs better for infiltration than evaporation in representing fluxes of 
the layered heterogeneous soils. 
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Figure 7: Flux prediction and its associated relative error, and capillary pressure profile for binary 
structure with <Ks> = 1.78x10-5 ms-1 and <α*> = 7.0. (a) Flux and associated relative error, h = 
1.5 (evaporation), (b) Capillary pressure profile, h = 1.5 (evaporation), (c) Flux and associated 
relative error, h = 0.05 (infiltration), and (d) Capillary pressure profile, h = 0.05 (infiltration) 

 
 
7. Incorporating Soil Hydraulic Parameter Statistics into Developing Neural 
Network Based Pedo-transfer Functions 

The traditional ANN based PTFs, in general, is to adjust ANN’s coefficients to solely 
minimize the difference between the estimated and measured soil hydraulic parameters in 
the neural network training process. The training process, however, does not consider the 
distributions of soil hydraulic parameters and the trained neural networks may yield 
improper distributions and unrealistic correlations between the output parameters, which 
may severely affect probabilistic predictions. In the study of Gautam et al. (2010), we 
incorporated the distributions and correlations of the soil hydraulic parameters into the 
ANN PTF development by adding two regularization terms to the ANN error functions. 
The traditional neural network based PTFs utilize the objective function (denoted MSE 
EF) (i.e., the sum of the squared errors of the neural network prediction of the soil 
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hydraulic parameters or mean square error (MSE)). To incorporate the hydraulic 
parameter distributions, the error function (denoted EF2) was modified to include 
hydraulic parameter means and variances. To resolve the problem of unrealistic 
parameter correlations introduced by the neural networks, an error function (denoted 
EF3) was introduced to also include the parameter correlations among different hydraulic 
parameters. 
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No

i

No

ij
ijj

No

j
jjj

Ns

i

No

j

No

j
jjjijijj    

   


  (4) 

where Ns is the number of samples, No is the number of output parameters, Yij is the 

measured hydraulic parameters and ijŶ  is the predicted hydraulic parameters (i.e., θr, θs, 

α, n, or Ks ), αj are weighting coefficients that can be assigned based on measurement 
error and confidence level of Yij and will not be adjusted in the neural network training 
process,  γj, δj are weighting coefficients for the mean and variance, j̂  and 2ˆ j  are the 

mean and variance of jŶ  estimated by the neural networks, μj and 2
j  are the mean and 

variance of soil hydraulic parameter Yj assumed to be known a priori, εj are pre-assigned 

weighting coefficients, ijĈ  and Cij are the correlations of the neural network estimated 

and measured parameters. 
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Figure 8: Comparison of actual and predicted residual water content in test phase 
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We developed a suite of new neural network models to estimate soil hydraulic 
parameters. These neural networks have the same input and output variables, but different 
error functions, which incorporated sequentially the site soil hydraulic parameter 
measurements, parameter probability distributions, and parameter correlations. In order to 
illustrate the proposed approach, we used datasets using synthetic cases of different data 
availability. We employed a statistical multiple regression equation from the literature to 
generate synthetic data for this purpose. Figure 8 showed the comparison of actual and 
predicted residual water content in test phase. From the results with synthetic dataset and 
the Handford site dataset, we found that the modified ANN targeted for bias (mean) 
correction works quite well. While the modified ANN targeted for both bias and variance 
correction also works well, the correction in output variances is slight. 
 
8. Tension-Dependent Hydraulic Conductivity Anisotropy of Unsaturated Soils 

As mentioned earlier, one of key properties of the soil hydraulic parameters at the 
Hanford site is that there exists a layered structure. The layered structure causes 
anisotropy in unsaturated flow and contaminant transport. The effects of saturation 
degree (or tension) on hydraulic conductivity anisotropy in unsaturated soils have been 
recognized for long time, but they have not been fully described conceptually. Previous 
models included quantifying saturation-dependent anisotropy of soil formations that 
consist of many thin layers each with its own hydraulic properties characterized by a 
uniform density distribution of saturated hydraulic conductivity or soil bulk density. 
Some other approaches have also been developed to study the soil anisotropy behavior in 
dealing with flow and transport problems in saturated and unsaturated soils, such as 
tensorial connectivity-tortuosity concept. 

In the study of Zhu and Sun (2010a), we investigated soil unsaturated hydraulic 
conductivity anisotropy that mainly arises from a combination of both wide range of soil 
texture variations and within narrow range of texture units in conjunction with 
pedotransfer functions (PTFs) of soil hydraulic properties. We developed a new approach 
to combine the neural network based PTF results with the thin layer approach to explore 
saturation-dependent anisotropy behavior for a wide range of texture and bulk density 
conditions. Anisotropy models were developed that quantify saturated and unsaturated 
hydraulic conductivities for soils composed of many thin layers distinguished by texture 
and bulk density. Figure 9 showed Relationships between Kh (hydraulic conductivity 
parallel to the layering), Kv (hydraulic conductivity perpendicular to the layering), and 
the anisotropy factor A, and the capillary pressure head ψ.  Results indicated that the 
vertical variability of soil texture and bulk density was a significant factor that impacts 
tension-dependent hydraulic conductivity anisotropy of unsaturated soils. The coupled 
dependence of the hydraulic parameters on the texture and bulk density was important to 
determine the anisotropic behaviour of unsaturated soils. The minimum anisotropy at a 
certain capillary pressure was only observed when both KS and α were related to the soil 
particle diameter. When only one hydraulic parameter was related to the grain diameter 
or when both were not related to the same attribute simultaneously, the unsaturated soil 
anisotropy increased monotonically with the increasing capillary pressure head. The 
inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly 
different anisotropy behaviours of the unsaturated soils. The correlation between the soil 
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grain diameter and bulk density decreased the anisotropy effects of the unsaturated 
layered soils. 
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Figure 9: Relationships between Kh (hydraulic conductivity parallel to the layering), Kv (hydraulic 
conductivity perpendicular to the layering), and the anisotropy factor A, and the capillary pressure 

head ψ.  van Genuchten n = 1.59, and the correlation coefficient between lndm and lnρ, r = 0.8. 
Scenario 1: Both KS and α are empirically related to dm through linear regressions 
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Figure 10: Anisotropy factor for (a) 1 m profile, and (b) 0.1m profile 
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The main objective of the study by Zhu (2010) was to improve basic understanding of 
capillary pressure-dependent soil hydraulic conductivity anisotropy by examining how 
the anisotropy characteristics are related to the layered structure of soils. Specifically, we 
investigated the hydraulic conductivity anisotropy of layered soils bound by a same 
capillary pressure at both ends of the domain. Both randomly arranged layered soils and 
structurally heterogeneous soils of repeated unit cells of homogeneous sublayers were 
considered. The anisotropy was determined by the fluxes in vertical and horizontal 
directions subject to the same capillary pressure. The impact of various conditions was 
examined and discussed. Figure 10 showed anisotropy factor for both thick and thin soil 
profiles. Results demonstrated that many factors such as capillary pressure, number and 
structure of the layers and correlations of layer hydraulic parameters significantly impact 
the anisotropy of unsaturated soils. 
 
9. Soil Hydraulic Properties for Moisture Redistribution in Large Scale 
Heterogeneous Soils 

The study of Zhu and Sun (2010b) focused on developing effective soil hydraulic 
parameters that can be used to predict average near surface moisture evolution of large 
scale heterogeneous fields. The main objective of this study was to develop guidelines of 
how to develop effective hydraulic parameters capable of simulating average infiltration 
and subsequent moisture redistribution over a large scale heterogeneous field. The 
heterogeneous soil was represented by a series of vertically homogeneous stream tubes or 
parallel columns. Average large-scale infiltration and redistribution in the heterogeneous 
soils was quantified through Monte Carlo simulations of multiple realizations (stream 
tubes) of local-scale infiltration and subsequent soil moisture redistribution. The effective 
parameters were sought to mimic the total average amount of infiltrated water into the 
soil, and to capture the subsequent surface soil moisture redistribution averaged over the 
large heterogeneous soils. Simple hydraulic parameter aggregation schemes were 
developed where effective parameter was derived only for one hydraulic parameter while 
keeping the other parameters at their arithmetic means. The derived schemes while 
simple were capable of simulating large scale infiltration and subsequent redistribution 
behavior. Results demonstrated that effective hydraulic parameters typically exhibit a 
step change from infiltration to redistribution with the size of the step change being 
related to the degree of hydraulic parameter heterogeneity and the correlations among the 
hydraulic parameters. However, the effective parameters do not change significantly over 
time for soil moisture redistribution. This finding is particularly useful in practical 
applications when simulating large scale soil moisture redistribution in that relatively 
constant effective hydraulic parameters are adequate for predicting transient behavior of 
soil moisture redistribution. 

Average surface water content evolution is mainly determined by mean hydraulic 
parameters. When only the saturated hydraulic conductivity is heterogeneous, the 
effective parameter does not change significantly and is between arithmetic mean and 
geometric mean. When only the saturated water content is heterogeneous, the effective 
parameter is between geometric mean and arithmetic mean for initial absorption and is 
above arithmetic mean for subsequent redistribution. When only the shape parameter is 
variable, the effective parameter is between geometric mean and harmonic mean for 
initial absorption and is below harmonic mean for subsequent redistribution. 
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Figure 11: Effective α for infiltration (absorption) and subsequent redistribution. Only one 

hydraulic parameter (θs, Ks or α) was variable, and others were kept at arithmetic mean when 
calculating average infiltration and redistribution 

 
 

For a more realistic situation when all the three hydraulic parameters are variable, the 
effective parameter ranges from below harmonic mean to above arithmetic mean. 
Correlations among hydraulic parameters have more significant impact on effective 
parameters for initial absorption and have relatively insignificant effect for subsequent 
redistribution when all three hydraulic parameters are variable. 
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