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ABSTRACT 

Historical unreinforced masonry buildings often include features such as load 
bearing unreinforced masonry vaults and their supporting framework of piers, fill, 
buttresses, and walls.  The masonry vaults of such buildings are among the most 
vulnerable structural components and certainly among the most challenging to analyze. 
The versatility of finite element (FE) analyses in incorporating various constitutive laws, 
as well as practically all geometric configurations, has resulted in the widespread use of 
the FE method for the analysis of complex unreinforced masonry structures over the last 
three decades. However, an FE model is only as accurate as its input parameters, and 
there are two fundamental challenges while defining FE model input parameters: (1) 
material properties and (2) support conditions. The difficulties in defining these two 
aspects of the FE model arise from the lack of knowledge in the common engineering 
understanding of masonry behavior. As a result, engineers are unable to define these FE 
model input parameters with certainty, and, inevitably, uncertainties are introduced to the 
FE model.  

As the complexity of the building increases, as is the case for historical 
unreinforced masonry buildings, the errors and uncertainties in the analysis also increase. 
In the presence of high and numerous uncertainties originating from multiple sources, 
deterministic approaches in which parameters are defined as constant values assumed to 
be known with certainty cannot be implemented reliably. Probabilistic methods, however, 
provide a rigorous and rational means in treating the uncertainty present in the FE 
analysis of historical unreinforced masonry buildings. The way in which uncertainty in 
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historical unreinforced masonry construction is treated is one of the novel and main 
contributions of this dissertation.  

While building FE models, sometimes it is advantageous to model only a smaller 
portion of a larger structure. This substructure modeling approach not only reduces the 
computational time of FE analysis but also reduces required preliminary work for the 
model development. In this dissertation, substructure FE models of vaulted sections of 
two Gothic churches are calibrated using a Bayesian statistics-based procedure against 
physical evidence collected through experimental modal analysis.  During calibration 
both the FE calculations and experimental measurements are treated probabilistically. 
The probabilistic nature of the FE calculations stems from the fact that several FE model 
parameters, which are determined to introduce significant analysis uncertainty, are treated 
probabilistically. The probabilistic nature of experimental measurements stems from the 
fact that a large number of repeated experiments are compiled to determine experimental 
uncertainty.  The fact that uncertainty in both numerical calculations and experimental 
measurements are accounted for is one of the novelties of this dissertation. The modal 
parameters measured on the vault are statistically compared to the predictions of the FE 
model during calibration.  According to the automated Bayesian statistics-based 
calibration procedure, the posterior distributions for the appropriately selected calibration 
parameters, such as modulus of elasticity of the vault material and support spring 
constants of the vaults, are obtained. This stochastic procedure is applied to the 
substructure FE models of the choir vaults of the National Cathedral, Washington, DC, 
and to the nave vaults of Beverley Minster, Beverley, UK. 
 



Chapter 1 
 

INTRODUCTION 

A computer lets you make more mistakes faster than any invention in human 
history—with the possible exceptions of handguns and tequila.  

Mitch Radcliffe 

1.1  Introduction to the Problem 

Growing interest in the preservation of architectural heritage has created a need 
for tools capable of reliably analyzing unreinforced masonry structures. The versatility of 
finite element (FE) analyses in incorporating various constitutive laws, as well as 
practically all geometric configurations, has made the FE analysis a more generally 
applicable method for masonry systems compared to graphical or semigraphical analysis 
methods initially proposed by Heyman (1966). Over the last three decades, FE methods 
became a widely applied tool for the analysis of unreinforced masonry structures. 
However, the success of the FE model depends on the accuracy of its input parameters.  

As the complexity of the problem increases, as is the case for historic masonry 
structures, the ability to fully incorporate the physical reality in the FE model decreases. 
The difficulties routinely faced during the FE model development of unreinforced 
masonry structures are primarily in obtaining physical dimensions and material 
properties. While defining these two aspects, uncertainty and error arise from numerous 
sources:  

 Aside from natural variability between masonry units, the variable and 
time-dependent properties of mortar add uncertainty to the analysis. Even 
in cases where material coupons or spare stone units can be obtained from 
the structure, the limited number of tests provides statistically insignificant 
information. Even when these tests are considered representative, the 
properties of stone units alone are not sufficient to define the material 
behavior, as the behavior of masonry heavily relies on mortar properties 
(De Stefano 2007).   

 Determining material properties of mortar is also problematic because 
extraction of an intact mortar specimen from an existing structure is a very 
challenging task. On the other hand, tests to measure mortar properties of 
young laboratory mortar specimens yield unrealistic results due to the age-
dependent hardening of mortar.  
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 The mechanical properties of a homogenized masonry assembly are 
strictly anisotropic due to the presence of mortar joints. However, these 
anisotropic material properties are difficult to determine due to the highly 
variable mortar joint thickness, hidden material defects, nonuniform 
dimensions of the stone units, and irregular layout of units and joints.  

 The interior constitution of masonry construction, especially historic 
construction, often includes empty or roughly filled volumes and material 
discontinuity. Although an inspection of the interior constitution may be 
possible through thermal- or radar-based methods, incorporating this 
information into an FE model is not straightforward. 

 The geometry of masonry construction is almost always imperfect, even 
when built in laboratory conditions; for an example see the arch specimen 
of Ramos (2007). Moreover, the out-of-plane rotation of vertical members 
due to lateral loads, the flattening of arches and vaults due to the formation 
of cracks, and the geometric deformation due to the movement of supports 
induce further variability to the geometry of these structures. Typically, in 
the FE analysis, the geometry is idealized. This aspect unavoidably 
introduces uncertainties in the analysis.  

 The environmental conditions, such as temperature, are known to affect 
the behavior of masonry structures. Ramos (2007) noted another very 
important but less obvious environmental factor: the effect of moisture on 
a masonry system.  Absorbed moisture increases the mass of stone units 
and reduces the stiffness of mortar joints. As a results, an increase in 
moisture results in a decrease in natural frequencies. As seen, 
environmental effects must be included in the analysis. However, unless 
the FE analysis incorporates probabilistic methods, it is difficult to include 
environmental variability. 

 Effects of accumulated structural damage and past repairs or interventions 
on a historic masonry structure are often poorly documented. These 
aspects increase the number of unknown factors and, likewise, increase the 
complexity of FE modeling.  

 The effect of workmanship on the masonry structural behavior is known to 
be an important factor. However, it is very difficult to quantify the effects 
of this factor for a large-scale historic structure and even more difficult to 
incorporate in the FE model. 

To reduce the problem to a manageable size, it is crucial to establish appropriate 
assumptions and simplifications for each of these aspects related to the material behavior 
and physical geometry of masonry construction. Moreover, further uncertainties are 
introduced to the analysis while representing the support conditions in the FE model due 
to the complicated soil-structure interaction at the base of the structure. Accurate 
boundary condition representation also becomes a problem when the FE model is built to 
analyze a substructure of the entire system. Substructure modeling is feasible when (1) 
structural analysis is necessary only for a small portion of a larger structure, for instance, 
when analyzing one of the spans of a multispan system (Brencich and Sabia 2008), (2) 
the structure of interest has a complex interaction with an adjacent structure which is not 
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of interest, for instance, when analyzing a tower that has a common wall with an adjacent 
building (Gentile and Saisi 2007, Bayraktar et al. 2008, and Júlio et al. 2008), or (3) the 
structure has self-repetitive components, in which analysis of one will be sufficient, for 
instance, when analyzing a church with multiple nominally identical vaults (Erdogmus 
2004 and Atamturktur 2006).  

When building a substructure model, boundary conditions between components 
involve factors depending on contact pressure, surface friction, existing cracks, and load 
path, as well as the elastic behavior of each masonry unit and mortar. However, the 
connectivity options in general-purpose FE packages typically include translational and 
rotational restraints without providing any options to implement the more complex 
underlying physics such as joint friction, inelastic deformation, rigid body motion, etc. 
On the other hand, an attempt to include these relevant physical phenomena further 
complicates the problem due to the unknown parameters of these phenomena. For macro-
models, this additional complication is hardly justified. Thus, implementing the 
admittedly approximate boundary conditions available in the FE package still remains the 
option commonly selected by the engineer.  

Many similar instances routinely experienced during FE model development of an 
existing masonry system limit the analysis capabilities to represent the physical reality. 
As a result, the burden of appropriate implementation of FE tools lies entirely on the skill 
and intuition of the engineer. When called upon to analyze an existing masonry structure, 
engineers are also confronted with a lack of analysis guidelines. Therefore, engineers are 
forced to choose an FE model, which, according to their best engineering judgment, will 
yield satisfactory results. An example of this common confusion regarding masonry 
behavior was recently reported subsequent to the Catoctin Creek Aqueduct elliptical arch 
restoration. The consulting engineers reported that the numerical model resulted in 
unrealistically high stresses within the stone arch (Biemiller 2006). When developing 
masonry structure FE models, particularly for historic structures, there are numerous 
opportunities to misinterpret the actual system, to build an unsuitable model, and to 
obtain erroneous solutions.  

Over the last three decades, progress has been made in correlating FE solutions 
with physical evidence for civil structures with corresponding measurements (i.e., 
bridges, frame buildings, towers, stadiums, etc.), a procedure commonly known as model 
correlation. As the need for structural assessment of historic buildings increased, the 
model correlation concept has been applied to the masonry structure analysis such as 
masonry towers (e.g., bell towers, minarets), buildings (e.g., residential, public), and 
monuments (e.g., churches, mosques, basilicas, arch bridges,). Typically, when the FE 
solutions compare favorably with the corresponding measurements, this is accepted as a 
sign of accuracy of the model. However, if the comparison does not yield an acceptable 
match, the discrepancy is attributed to the deficiencies in the model due either to 
imprecise model parameters or to erroneous modeling decisions.  

Following the advancements in model correlation, researchers in other fields 
investigated the use of physical evidence to reduce FE model deficiencies, a process 
commonly known as model calibration. During the calibration process uncertain 
parameters are either manually or automatically adjusted until the resulting FE model 
reproduces acceptable agreement with the physical evidence. In this context, physical 
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evidence is obtained through experimental measurements that are relevant to the 
identified deficiencies in the model. The relevancy of physical evidence to the model 
deficiencies is typically decided based on engineering judgment.  

Calibration of masonry structure FE models requires considerations about the 
large uncertainty in masonry construction. This topic has not been fully addressed in the 
pertinent literature. To address this topic, this dissertation brings together the aspects of 
model calibration under uncertainty and outlines a probabilistic framework applicable to 
historic masonry structures. The study ultimately aims to obtain calibrated FE models 
with calculated uncertainty bounds on the input parameters. Such models will provide 
engineers the ability to predict masonry monument structural behavior with increased 
confidence where experimental technology is not readily available.  

1.2 Problem Statement and Objectives 

This study formulates a Bayesian calibration approach suitable for complex 
vaulted historic masonry structures and probabilistically characterizes the poorly known 
FE model input parameters.  The choice of the structure type is motivated by the high 
uncertainties associated with historic masonry systems as discussed in the previous 
section. The procedure outlined below may ultimately be applied to analysis of other civil 
engineering structures with high parameter uncertainties originating from numerous 
sources. Specific objectives of the study are outlined below: 

Objective 1: Develop FE Models of a Historic Masonry Structure. A model 
intended for calibration must be parameterized appropriately. The first objective is to 
present an FE modeling approach suitable for calibration activities.  

The FE models in this study are developed based on observed geometry and 
construction of the selected case study structure. The models are representations of a 
substructure of the overall building and they include the ribs and webbing of a masonry 
vault, the adjacent nave walls, and the fill. The boundary conditions, representing the 
structural interaction between the modeled elements and those that are excluded from the 
model, are to be abbreviated in the FE model. The boundary conditions that are difficult 
to represent through fixed or hinged connections are defined with linear elastic springs. 
This study is devoted to the determination of appropriate boundary conditions and 
material property values to be used in analysis. 

Objective 2: Conduct In Situ Calibration Experiments of Historic Masonry 
Structures. Inherent in their definition, calibration experiments are tied to the 
deficiencies in the FE model. As the aim of this study is to improve the quality of the FE 
model by calibrating parameters that are directly related to the stiffness and mass 
distribution in the system, nondestructive dynamic test results are used to obtain relevant 
physical evidence. This study devotes attention to the particular aspects of dynamic 
testing as applied to complex vaulted masonry monuments.  

Objective 3: Calibrate the FE Models of Historic Masonry Structures Based 
on In Situ Dynamic Measurements. The spring constant and material property values, 
parameterized in Objective 1, are poorly known; therefore, they are calibrated with the 
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help of physical evidence, obtained in Objective 2. The calibration procedure 
implemented in this study goes beyond a deterministic method that ignores the presence 
of uncertainty to one that relies on the definition and propagation of parameter 
uncertainty. With this step, an improved, quantitative knowledge is gained about the 
material property values for each structural component, as well as about the restraining 
forces applied by adjacent components to each other, for instance, from buttresses to the 
nave walls. 

Objective 4: Validate the Calibrated Model Parameters. The aim of this 
objective is to validate the results of the calibration study. In the absence of refined 
knowledge about the material properties, the probability distributions of the material 
property values obtained through calibration in Objective 3 cannot be validated. 
However, it is possible to estimate the boundary condition spring constants by modeling 
the remainder of the structure and to judge the acceptability of the calibration exercise 
completed in Objective 3.  

1.3 Research Hypothesis 

This study starts with the hypothesis that the FE solutions to predict phenomena 
of interest (A, in Figure 1-1) can be improved by calibrating the appropriately selected 
model parameters according to the physical evidence that is provided by experimental 
measurements (B, in Figure 1-1). When the calibration is completed, a separate and 
independent information set can be used to judge the calibrated model (C, in Figure 1-1). 

1.4 Model Verification, Validation, and Calibration 

Also of far-reaching importance is defining model calibration in a larger context 
and emphasizing its role in relation to model verification and validation. The terms 
calibration, validation, and verification are used interchangeably in the literature, 
hindering the adequate communication of these principles. To provide clarity, this section 
describes what model calibration is and is not.  For this clarification, the factors to which 
the accuracy of the FE solutions is dependent are listed below:  

a) the adequacy of the governing equations involved in the analysis, i.e., 
mathematical definitions for dynamic behavior of shells, 

b) the precision of numerical solution, i.e., fineness of discretization,  
c) the accuracy of the physical parameters, i.e., values for material properties and 

definitions for boundary conditions, and 
d) the adequacy of the constitutive element models, i.e., assuming linearity only 

when the response is predominantly linear.  
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The first two factors are purely mathematical and are the topic of model 
verification. As Roache (1998) states, model verification aims to answer the question: 
“Are we solving the equations right?” When disagreement between model predictions 
and measurements are believed to be the result of inadequate mathematical representation 
or imprecise numerical solution, verification activities must be initiated. Verification is a 
prerequisite to validation activities. Although the crucial role of verification is 
acknowledged, only a very limited attention is paid to the verification procedures in this 
dissertation. 

The last two factors are based on physical phenomena and the assessment relates 
to the model validation. According to Roache’s definition, model validation aims to 
answer the question: “Are we solving the right equations?” When an FE analysis 
reproduces a match to a set of physical evidence, the model is typically considered 
validated. However, when there is disagreement between model predictions and physical 
evidence, the numerical model can be calibrated as discussed earlier. When the first set of 
physical evidence is used to calibrate a model, a separate and independent set of physical 
evidence must be gained to validate the FE model. Therefore, calibration can be 
considered as a subcomponent of validation. An extensive discussion about the semantics 
of verification and validation has been provided by Trucano et al. (2006). 

FE Model 

B A 

Physical phenomena where 
measurements are available:  

nondestructive low amplitude 
dynamic tests 

Physical phenomena of interest 
where measurements are not 
available:  

tensile stresses, maximum 
deformations 

Calibration 

Prediction 

Prediction 

C 

Physical phenomena where 
estimates are available:  

spring constant estimates via FE 
model 

Validation 

Figure 1-1:  Calibration of the imprecise input parameter of the numerical model by the
use of comparative features. 
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1.5 Scope of the Research  

This study is confined to linearly elastic analyses based on the FE method. This is 
a necessary step that needs to be successfully completed before nonlinear and inelastic 
characteristics of masonry can be incorporated into an FE analysis.  

The study will be accomplished through investigation of records of an 
experimental program and simulations of a monumental, unreinforced masonry building: 
The National Cathedral (Washington, DC, USA). This building contains characteristics 
of stone masonry monuments, e.g., piers, walls, buttresses, and vaults. 
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Chapter 2 
 

LITERATURE REVIEW  

Papers focused on building vaults tend to be more general, more conjectural, and 
have less opportunity to introduce positive confirming evidence (although several 
redundant masonry bridges have been available for destructive testing, one hardly 
expects to see testing of redundant cathedrals). 

Thomas E. Boothby 

2.1 Introduction 

In the early 1980s, computer-based finite element (FE) methods were first 
seriously applied to the analysis of masonry structures. Because an FE model is only as 
accurate as its input parameters, questions regarding the validity of the FE solution were 
immediately raised. Mark (1982) initiated one of the earliest efforts to validate masonry 
structure behavior predictions. In Mark’s studies, photoelastic tests on small-scale plastic 
samples of Gothic vaults were conducted to identify internal stress distributions under 
wind load (Figure 2-1). These internal, scaled stresses were compared to the FE model 
predictions to confirm the applicability of the FE analysis. Although the adapted test 
technique was primarily limited to wind loads, Mark’s early studies illustrated the 
accuracy concerns of historic masonry monument FE analysis.  

Today, the application of the FE method to various structural analysis problems 
has been widely accepted. Commercially available FE software delivers accurate 
analyses that are limited by the accuracy of the user-defined inputs. However, the current 
challenge is in implementing physically substantiated input parameters for the analysis. 
For typical masonry structures, FE model inaccuracies primarily arise when defining the 
complicated boundary conditions between structural components and the complex 
mechanical behavior of masonry and mortar assemblies. To remedy these FE model 
inaccuracies, researchers have devoted decades of consistent attention to model 
calibration. This chapter provides a review of the extent of these prior studies’ success 
and identifies the remaining technical challenges.  
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The earliest efforts discussed in Section 2.2 date back to the 1980s and range from 
qualitative visual comparisons based on field observations to quantitative comparisons of 
static tests. In Section 2.3, studies that extend model correlation to a calibration stage are 
discussed. Because the available literature addressing this topic is observed to implement 
in situ dynamic testing, it is necessary to highlight the characteristic behavior of masonry 
structures and review some of the previous work on dynamic testing of such structures. 
The second half of Section 2.3 provides a discussion of FE model calibration as applied 
to masonry structures in the context of linear dynamics. These studies are categorized by 
the sophistication of computational calibration methodology. The first to be discussed are 
studies comprised of manual parameter value adjustment. Automated procedures, based 
on optimization techniques and Bayesian inference, are discussed next.  Many studies 
discussed in Section 2.3 follow a deterministic approach in that model parameters are 
assumed to be known with certainty and repeated experiments yield identical results. In 
Section 2.4, attention is given to stochastic calibration procedures that incorporate 
uncertainty in the calibration process by treating the input parameters of an FE model, as 
well as its output response, probabilistically. 

2.2 Model Correlation 

Several studies have been conducted with the purpose of comparing FE analysis 
predictions with visual, on-site observation or static experimental measurements. These 
studies provide a valuable resource, as they allow observation of static procedure 
advantages and disadvantages for the purposes of FE model correlation and calibration. 

 

 

Figure 2-1:  Mark’s photoelastic studies on two-dimensional scaled models, reprinted 
from Mark (1984), with permission. 
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2.2.1 Visual Methods for Model Correlation 

The earliest model correlation effort applied to masonry monuments was the 
visual comparison of crack locations to analytical estimates of the tensile zones. Mark 
and Hutchinson (1986) compared the available information on the existing cracks of the 
Roman Pantheon against the tension region predictions of several alternative FE models. 
Based on this comparison, the suitability of various modeling strategies was investigated 
(i.e., modeling of the hemispherical dome with and without the walls). Mark and 
Hutchinson eventually used the model to understand the cathedral’s structural behavior 
under earthquake excitation. A similar work was completed for the simplified structural 
model of a historic cathedral (Ricart-Nouel 1991). These methods incorporated the visual 
inspections of existing cracks that are concentrated at a few locations in a historic 
masonry building. This visual approach is of limited effectiveness and is susceptible to 
significant error, especially when differential support settlements or long-term creep are 
present in the structure. 

2.2.2 Static Methods of Correlation 

For some structure types, the problems associated with visual methods have been 
remedied by destructive and nondestructive tests focusing on stress, strain, or deflection 
under controlled loading. For instance, Fanning and Boothby (2001) experimentally 
investigated the behavior of three masonry arch bridges under truck loading. The 
simplified analytical bridge models yielded reasonable agreement with the field test data. 
Based on this correlated analytical model, the authors provided guidance in the FE model 
development for such bridges—particularly in the selection of material properties and 
definition of abutment stiffness. In another stone arch bridge study (Fanning et al. 2005), 
service and high load level tests were used to establish the suitability of the authors’ 
nonlinear FE modeling procedure for the given loading conditions. These methods, based 
on in situ strain or deflection measurements, were successful when applied to masonry 
bridges, however, the methods are impractical for larger masonry structures such as 
masonry cathedrals, due to the difficulty in sufficiently loading the structure to achieve a 
detectable response. Also, destructive tests on a historic cathedral will never be permitted 
for research purposes.  

Due to the technical infeasibility of obtaining a detectable response from 
monumental structures such as churches, cathedrals, and state and municipal buildings, 
several researchers have attempted to examine the static behavior of such systems 
through scaled laboratory models. These studies typically compare measured strain, 
deformation, and ultimate strength of the test scaled model to those of FE model 
predictions. Creazza et al. (2001) investigated the three-dimensional behavior of a 
masonry barrel vault laboratory scaled model reinforced with fiber-reinforced polymers 
(FRP), both in the intrados and extrados. In the FE model, the authors treated the 
masonry as a homogenized material and simulated the FRP strips through an elastic 
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constitutive law. A barrel vault scaled model was tested to failure under a vertical quasi-
static load located around the quarter span. The load was increased until the vault formed 
an unstable mechanism. The measured displacement and the failure load were compared 
with the FE model predictions to confirm the applicability of the developed damage 
model.  

A very similar study with the same purpose was repeated a year later on a 
masonry, ribbed cross-vault scaled model and a masonry, barrel-vault scaled model by 
Creazza et al. (2002). This study focused on the locations and magnitudes of maximum 
strain and deformations as well as on the characteristics of the collapse mechanism under 
slowly increasing static load. A parallel approach was adapted by Theodossopoulos et al. 
(2003) to investigate the behavior of the cross-vaults through static tests conducted on 
wood scaled models representing an aisle vault of the partially collapsed Abbey Church 
of Holyrood in Edinburgh (Figure 2-2). The strains and displacements under gravity 
loading were recorded, and the failure mechanism due to progressive abutment 
movement was identified. The FE solutions of the deformations and of the collapse 
mechanism agreed with the experimental observations. In another study, Boothby et al. 
(2005) investigated the spandrel wall collapse of masonry arch bridges through a half-
scale model. The experimental results compared favorably with those of the FE model. 
Accordingly, inferences have been made about the masonry arch FE modeling. The 
scaled model tests, when combined with FE predictions, have the potential to illustrate 
the behavior of the structures for load regimes that usually cannot be tested in real life—
for instance, for collapse mechanisms. However, the scaled test models represent only a 
portion of the model, and thus have the drawback of excluding the actual elastic restraint 
exerted by adjacent elements, or boundary conditions. Accordingly, the alternative load 
paths within the structure are also absent from the analysis.  

 
 

 

Figure 2-2:  The dead load experiments conducted on the wood-mortar assembly, 
reprinted from Theodossopoulos et al. (2003), with permission. 
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2.3 Deterministic Model Calibration 

This section highlights efforts in model calibration for FE models of masonry 
structures. The studies that will be discussed in this section invariably implement non-
destructive dynamic testing as physical evidence. Because of the widespread application 
of dynamic testing, it is necessary to emphasize unique characteristics of masonry 
structures under dynamic loading. For this, an overview of solely experimental studies is 
first provided. Next, successful applications of deterministic calibration are presented. 

2.3.1 Dynamic Tests 

As a result of an extensive experimental program conducted on a series of Gothic 
cathedrals, Atamturktur et al. (2009a) discussed the practical issues related to the testing 
of monumental masonry structures. The authors emphasized that the connectivity of two 
masonry walls involves factors depending on the contact pressure, surface friction, and 
existing cracks, as well as the mechanical behavior of each stone unit and mortar joint. 
The interaction of these factors typically yields a rather flexible connection between 
structural components and allows local modes to be more pronounced relative to global 
modes. As a result, the structural component connectivity and load distribution are 
affected by the amplitude and location of the excitation. This aspect has also been noted 
by Sortis et al. (2005). Additionally, high dissipative forces in a masonry assembly make 
identification of low-amplitude dynamic features difficult.  

Moreover, masonry is nonlinear and inelastic in the sense of its stress-strain law, 
and the assembly of mortar and masonry units is inhomogeneous due to the mortar joints. 
Thus, masonry tests the limits of the basic assumptions established for standard modal 
testing. Despite these challenges, it is possible to obtain highly coherent, reliable 
measurements from masonry structures. This section will highlight several successful 
experimental programs. Environmental conditions, such as temperature and moisture, 
also have an effect on the dynamic properties of masonry structures. Ramos (2007) 
presented the results from long-term monitoring of an ancient monastery and reported an 
average 6% variation in frequencies due to annual temperature fluctuations. Also, the 
absorbed moisture increased the mass of the stone units and reduced the stiffness of the 
mortar joints. During his studies on a masonry clock tower, Ramos reported a 4% 
reduction in the natural frequencies of a clock tower with the beginning of the rainy 
season.  

Generally, experiments in controlled laboratory settings are largely immune from 
additional complications caused by support settlements, environmental loads, material 
deterioration, prior damage, or operational conditions. This is why laboratory 
experiments yield higher-quality measurements and clearer results than experiments 
conducted on existing masonry structures. However, only by extending the laboratory 
tests to existing structures can practical difficulties be incorporated and a realistic view be 
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gained. In this section, the laboratory studies will be discussed first, while studies 
investigating the behavior of existing structures will follow. 

2.3.1.1 Scaled Laboratory Models 

The literature concerned with damage detection and structural health monitoring 
has also provided a rich experimental background which is beneficial to model 
calibration studies. For instance, to investigate the spandrel wall separation, Armstrong et 
al. (1995a) tested two brick masonry arch bridge scaled models by impact hammer 
excitation. The authors were able to relate the deviations between natural frequencies and 
the mode shapes to the structural condition of the arch bridges. Armstrong et al. (1995b) 
also compared the dynamic stiffness of the structurally sound and defective scaled 
models to detect spandrel wall separation. Both of these studies concluded that dynamic 
experiments can be used for integrity assessment of existing masonry arch bridges, 
specifically for spandrel wall separation. However, the authors stressed the necessity to 
investigate the effects of a wider range of structural defects on the arch bridge dynamic 
characteristics. Bensalem et al. (1995 and 1997) investigated the dynamic response of 
brick arch scaled models using both hammer and shaker excitation. Through these 
dynamic tests, Bensalem et al. (1999) focused on detecting void presence and size in the 
arch bridge backfill. By observing the difference in the peak amplitudes of the frequency 
response functions, the authors were able to identify the presence of backfill voids.  

Scaled masonry building laboratory models have also been a popular research 
subject. In 1996, Vestroni et al. completed experiments on a one-fifth-scale masonry 
building with a mechanical vibration exciter. First, the scaled model dynamic 
characteristics were investigated by inducing small amplitude vibrations. When the 
baseline modal parameters were obtained, forces with successively increased amplitudes 
were applied to the scaled model to induce structural damage. A reduction in the dynamic 
stiffness due to structural damage was observed through dynamic measurements. In 2000, 
Zembaty and Kowalski completed a shaker table experiment on a half-scale, two-story 
brick masonry building by using harmonic excitation and time-varying seismic 
excitation. The authors were able to identify eight clear modes by the harmonic excitation 
technique and only the first three modes through the seismic excitation technique. The 
variations in the modal parameters obtained by two different excitation sources are 
explained by the presence of large numbers of closely spaced modes, in other words, the 
characteristically high modal density of typical masonry structures.  

Ramos et al. (2005) had success in establishing the relationship between damage 
and natural frequencies during his study on a full-scale masonry building scaled model 
built of rubble stone. Increasing numbers of cracks were induced by shaking tests (Figure 
2-3). Modal identification, through operational modal analysis, was performed at each 
damage state and it revealed consistently decreasing natural frequencies as the damage 
level increased. However, a direct relationship between the crack patterns and dynamic 
response was not evident. 
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In 2007, Ramos conducted a similar study on a replicate ancient masonry arch and 
wall. The scaled model was built with clay bricks of low compressive strength and mortar 
with poor mechanical properties to represent the typical material present in historic 
construction. Cracks were progressively induced in the scaled models through controlled 
static tests. In between these tests, operational modal analysis was performed to identify 
the modal parameters. Consecutive static tests indicated a clear loss of stiffness after the 
first crack. Natural frequencies and mode shapes provided evidence in agreement with 
the damage in the system. Ramos noted that the natural frequencies were significantly 
reduced while damping coefficients were significantly increased after damage. He also 
noted that the mode shapes generally remain unchanged before and after the damage.  

2.3.1.2 Existing Structures 

Slastan and Foissnerr (1995) measured the dynamic characteristics of several 
masonry residential buildings under ambient vibration and compared the dynamic 
characteristics of low- and high-rise masonry structures. The dynamic behavior of an old 
masonry building was investigated by Genovese and Vestroni (1998). Small-amplitude, 

 

Figure 2-3:  Masonry building evaluated at increasing damage levels: (a) general view;
(b), (c), and (d) the first three mode shapes; (e) reference and damage scenario A; (f)
damage scenario B; (g) damage scenario C; and (h) damage scenario D, reprinted from 
Ramos (2007), with permission. 
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forced oscillations were used to excite the structure and the acceleration response of the 
building was recorded. The frequency response functions (FRFs) obtained at increasing 
excitation levels were compared to investigate the nonlinear characteristics of the 
masonry structure. Similar to their earlier study in the laboratory (Vestroni et al. 1996), 
the authors observed a reduction in the stiffness of the structure under increased force 
levels. Sigmund and Herman (1998) completed a similar study on historic masonry 
buildings, investigating the effects of different levels of excitation sources on the 
vibration response. The authors concluded that monitoring the dynamic characteristics 
has the potential to indicate the structural integrity.  

Ellis (1998) completed a vibration-based damage detection study on 534 stone 
pinnacles of the Palace of Westminster in London. The author adapted both traditional 
modal analysis techniques using an impact exciter and operational modal analysis 
techniques exploiting the wind forces as an exciter. The fundamental natural frequencies 
of the pinnacles were measured and compared to each other. The pinnacles with an 
outlier fundamental frequency were identified as damaged pinnacles (Figure 2-4). 

 

Zonta (2000) conducted an experimental program on a Roman amphitheatre 
which had been experiencing structural problems due to aging and material deterioration.  
The elliptical amphitheatre consists of a modular system divided by radial walls (Figure 
2-5). Modal testing on the structure was carried out by using both operational and 
traditional modal analysis techniques. Both impact hammer and shaker exciter were used 
for the traditional modal analysis. The measurement locations were limited to four points 
on the wing wall; however, the author managed to identify the first eight modes of 

 

Figure 2-4:  Laser-monitoring and velocity record of (a) undamaged, (b) damaged pinnacle, 
reprinted from Ellis (1998), with permission. 
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vibration. The authors observed the frequency response of the wing wall to be 
independent of the vibration amplitudes, which is an indication of linear behavior. 

 

Vibration-based studies, just as they were used to detect damage, were also used 
to detect the improvements in the structural behavior after retrofit or strengthening 
campaigns. Turek et al. (2002) conducted ambient vibration analysis on a recently 
repaired, historical church. The identified modal parameters of the church before and 
after retrofit were compared and an increase in the dynamic stiffness was observed. 
Although the authors compared the measured modal parameters against the predictions of 
the FE model of the church, they noted that measurements recorded at a larger number of 
points with a denser grid were necessary to extract clear mode shapes in support of FE 
model calibration.  

Increased dynamic stiffness was also observed in a similar study on a historic 
basilica by Antonacci (2001) and by Ramos (2007) on a historic masonry tower before 
and after retrofit. Both of these studies extended their experimental campaigns to the 
calibration stage. These studies are discussed in Section 2.3.2.2. 

Brencich and Sabia (2008) conducted dynamic tests on an 18-span masonry 
bridge. The natural frequencies obtained through dynamic tests were compared to those 
estimated by the elastic three-dimensional models. The authors also mentioned the 
dynamic interaction between adjacent spans and the necessity to monitor the entire bridge 
to gather a complete understanding of the mode shapes. 

Atamturktur et al. (2009b) investigated the feasibility of using vibration-based 
damage detection techniques for damage types that manifest themselves as coupled 
effects of Sabouret cracks (Heyman 1995) and geometric distortion of vaults, commonly 
caused by the settlement of foundations of buttresses. Two of the 10 nominally identical 

 

  

Figure 2-5:  The section of the Roman amphitheatre, reprinted from Zonta (2000), with 
permission.  
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masonry vaults of Beverley Minster, UK, at different structural damage states, were 
subjected to vibration testing with hammer excitation. The measurements were then 
configured in frequency, modal, and time domains. In the frequency domain, the 
amplitudes of FRFs acquired from the damaged vault were noticeably higher than that of 
the undamaged vault. However, the modal parameters derived from these FRF remained 
unchanged up to 10 Hz for both of the vaults. Because of the characteristic high modal 
density the authors could not identify the higher-order modal parameters adequately. 
Time domain regression methods proved sensitive to the damage present in the system. 

2.3.2 Calibration Studies 

Solely experimental methods are, by default, limited in their spatial resolution. 
Experiments integrated with an FE calculation, however, allow a more complete set of 
results, because a calibrated numerical model can deliver a variety of important structural 
properties. The extent of research efforts on model calibration applied to masonry 
structures is emphasized herein. Two different types of calibration approaches will be 
discussed. The first one is manual calibration, which is a trial-and-error-based approach 
performed manually by tuning selected parameter values. The second approach, 
automated calibration, is performed by constructing a series of loops around the FE code 
based on optimization procedures or Bayesian inference. 

2.3.2.1 Manual Model Calibration  

Manual calibration is substantiated by engineering judgment and is an appealing 
and convenient approach in calibrating the modeling parameters. However, by its nature, 
this method fails to incorporate the uncertainties of material properties and boundary 
conditions, especially when there are sources of uncertainty challenging understanding of 
the structural behavior. In the complex interaction between a masonry tower wall and an 
adjacent church wall, the calibration may be compensating for errors from other sources 
by tuning the originally correct model parameters. A manual calibration of parameters 
can be justified on the grounds that the initial model is a close representation of reality 
and any deficiencies have arisen from imprecise model parameters that are independent 
and uncorrelated. If the parameters have hidden dependencies or correlations, however, it 
is likely that they will not be observed during a manual calibration.  Again, this will raise 
the problem that tuning one parameter may be compensating for an imprecision in 
another parameter. Keeping these problems in mind, various applications of manual 
calibration will be overviewed in the following paragraphs.  

Antonacci (2001) obtained the natural frequencies and the global mode shapes of 
a basilica that had gone through moderate scale repair and strengthening. Transient 
dynamics tests were repeated before and after the repair using hammer excitation. The 
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authors observed a trend of increasing natural frequencies after the repair. Measured 
natural frequencies were used to tune the numerical model material properties. The 
calibrated FE model was then used to investigate the static behavior of the structures 
before and after the repair and strengthening. Arêdê et al. (2001) completed similar work 
on an ancient monastery church. In this study, Young’s modulus of the surcharge infill 
was tuned based upon the experimentally obtained modal parameters. The calibrated 
model was then used to assess the seismic vulnerability of the structure.  

Multitiered masonry temples in Nepal were the subject of a similar study (Jaishi 
et al. 2003). Three temples were tested with operational modal analysis techniques. The 
first three bending modes in both orthogonal directions of the temple were identified 
from the measurements and paired with the calculated modes based on visual inspection. 
The natural frequencies were observed to be as low as 1.6 Hz for the first bending mode. 
The identified frequencies were used to manually tune the uncertain material properties 
of the mud-brick walls of the temple. The Young’s modulus magnitudes were 
significantly reduced to achieve a better correlation between the measured and calculated 
frequencies. Such an approach was applied to the vaults of Gothic cathedrals by 
Erdogmus (2004). Erdogmus identified the first axis-symmetric mode of the choir vaults 
of a twentieth-century cathedral built similar to medieval construction techniques. This 
mode was used as a reference to manually adjust the FE model boundary condition and 
material properties. The calibrated FE model was then used as a baseline for the 
development of FE models of two other complex vaulted historic churches. Atamturktur 
(2006) and Atamturktur and Boothby (2007) completed a complementary study on two 
masonry tile domes. Both studies obtained coherent and high-quality test data and 
identified 10 clear mode shapes. In these two studies, the authors used nondestructive and 
destructive techniques to identify the material properties of the tile and mortar, therefore, 
calibration parameters were confined to boundary conditions. Upon the completion of 
manual calibration, FE model predictions compared favorably with the measured results. 
The FE models were then used to assess the structural principles of Guastavino domes.  

Júlio et al. (2008) applied a similar procedure to a clock tower adjacent to a 
faculty building at the University of Coimbra in Portugal. The tower was built of rubble 
stone with coarse stone masonry at the corners, and it exhibited degradation of joints, 
cracking of stone blocks, and biological growth. The tests were conducted using 
operational modal analysis techniques. The restraints imposed on the tower by the 
adjacent building walls and slabs and the soil structure interaction were uncertain, 
therefore, the authors were forced to make several assumptions regarding these 
connections. During test-analysis correlation to remedy the observed discrepancy, the 
authors altered the initially established boundary conditions by trial and error until an 
acceptable agreement was reached for the first five mode shapes. The authors 
acknowledged that without a survey of geometry and material of the surrounding 
structural components, it was not possible to validate the final boundary conditions in the 
sense that validation is defined in this dissertation. The material properties of the tower 
walls were further tuned to achieve better agreement between the measured and 
numerical frequencies. The calibrated model was then used to construct inferences about 
the structural integrity of the tower. Júlio et al.’s approach uncouples the calibration of 
boundary conditions and material properties, where the boundary conditions are 
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calibrated based on mode shapes and the material properties are calibrated based on 
natural frequencies. The same approach has been applied to a half-scale Guastavino dome 
specimen by Erdogmus (2008). The uncoupling of the boundary condition and material 
property calibration must be applied with caution when there are multiple material types 
in the FE model, as mode shapes are known to be sensitive to the relative ratios of the 
material property values.   

2.3.2.2 Automated Model Calibration 

Aoki et al. (2005) presented the results of a dynamic identification and model 
calibration campaign applied to a brick chimney. Both microtremor and acceleration 
measurements were collected due to the ground motion induced by a derrick car. The first 
three modes in two orthogonal directions of the tower were identified by Autoregressive 
Moving Average and Eigensystem Realization Algorithm techniques. The FE model of 
the chimney was built with 20-node isotropic solid elements assuming a fixed support at 
the base. By the use of Inverse Eigensensitivity Method (IEM), the elemental matrices of 
the FE model, such as mass and stiffness matrix of each FE, are calibrated. To alleviate 
the problems caused by the inevitable incompleteness of the measurements, a weighting 
function was applied to eliminate the calibration parameters that do not have significant 
influence on the outputs. As a result of calibration, for each FE a stiffness correction 
factor was obtained. The stiffness of the elements at the base of the chimney was 
observed to be reduced, while at the corners the stiffness was observed to be increased. 
The author explained the former by chimney-soil interaction and the latter by the iron 
angles at the corners. 

The study completed by Júlio et al. (2008) on the masonry tower resembles an 
earlier study by Gentile and Saisi (2007). Both of the towers investigated in these studies 
presented severe difficulties in the identification of the interaction between the tower and 
the walls of an adjacent structure. The tower dealt with by Gentile and Saisi also showed 
signs of partial damage due to extensive vertical cracks. Gentile and Saisi represented the 
connection between the walls of the tower and adjacent cathedral using linear springs 
with a constant to be calibrated. Quantifying the material properties of defective 
structural components is challenging, if not impossible. Thus, Gentile and Saisi also 
selected the poorly known Young’s modulus values of the defective walls as calibration 
parameters. Based on the extent of damage, the exterior walls were defined in six distinct 
regions with independent material properties. According to the modal parameters 
obtained through ambient vibration testing, the calibration was achieved by minimizing 
the difference between theoretical and experimental natural frequencies. The calibration 
was completed by both the IEM and Douglas-Reid (DR) method. The IEM represented 
the functional relationship between frequencies and the calibration parameters by Taylor 
series. Following that, Gentile and Saisi developed an iteration routine where the 
calibration parameters were evaluated. In the DR method, the relationship between the 
calibration parameters and the frequencies were approximated around the expected values 
defined previously. Also, a definition of a range within which the calibration parameters 
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could vary was also necessary for the method. The findings consistently yield lower 
Young’s modulus values in the damaged regions when compared to the undamaged 
regions, supporting the potential of the vibration-based model calibration methods to 
deliver useful information about the damaged state of a masonry structure.  

Ramos (2007) conducted tests on a masonry clock tower that, due to lack of 
maintenance, had undergone severe damage. Cracks, material degradation, biological 
growth, and loss of material were noted in the tower. Similar to Turek et al. (2002) and 
Antonacci (2001), Ramos obtained an opportunity to investigate the dynamic behavior of 
the tower before and after a strengthening campaign was undertaken. The tower was 
observed to vibrate at higher natural frequencies after the retrofit while the damping 
coefficients were observed to be lower. It must be emphasized that the correlation of the 
first five theoretical and experimental mode pairs is remarkable. This is perhaps due to 
the fact that the test structure was a standalone tower without uncertain connections to 
adjacent structures. The first five natural frequencies and mode shape vectors were used 
to calibrate the FE model by the nonlinear least squares method. Ramos obtained 
significantly lower Young’s modulus results for the walls where damage was dominant.  

In the next section, studies that address more complex structures with large 
numbers of uncertainty sources, such as churches and buildings, will be discussed. These 
studies will manage these sources of uncertainty by relying on probabilistic methods. 

2.4 Stochastic Model Calibration 

Advancing calibration beyond a deterministic approach requires considerations of 
uncertainty, both in experimentation and modeling. While deterministic model calibration 
is intended to reach a direct match between the analytically and experimentally derived 
comparative features, the objective of stochastic calibration is to reach a statistical 
correlation between the two. This can be achieved by formulating the input parameters 
probabilistically.  

Deterministic methods can be considered as examining a single point in a cloud. 
In such a case, stochastic methods are concerned with clouds of points—where 
experimental point clouds are obtained from repeated experiments and analytical point 
clouds are obtained from repeated numerical experiments. By nature, a manual model 
calibration effort is deterministic, and for stochastic model calibration, an automated 
process is required. Studies of civil engineering systems that utilize the method of model 
calibration based on statistical principals merit discussion as it relates to the present 
study. 

Antonacci et al. (2000), and in a later refined version, Sortis et al. (2005), 
presented a study on a two-story stone masonry structure. Both studies collected vibration 
measurements from the structure due to low-amplitude vibratory forces induced by 
shakers placed at four different locations. The modal parameters extracted from these 
measurements were used to calibrate the individual Young’s modulus values of exterior 
wall segments of the corresponding FE model, based on a nonlinear output error 
approach. Both the input parameters and the output error were treated as random 
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variables with normal distribution. The optimal parameter values, which yield maximum 
posterior probability distributions for the input parameters and minimum for the 
nonlinear objective function, were sought. The calibration parameters, selected based on 
their significance according to the Fisher information matrix, were Young’s modulus of 
four exterior wall sections. The discrepancies between the experimental and analytical 
modal parameters, after the calibration, were noted to be within the measured frequency 
variations obtained by exciting four different locations. Both studies also noted that 
optimization-based calibration is highly ill-conditioned due to the incompleteness of the 
measurements and it is important to aid the error-minimization tools with engineering 
judgment. 

De Stefano (2007) conducted dynamic experiments on a masonry dome of a 
baroque chapel using four different excitation sources: ambient, hammer, dropped object, 
and wind turbulence caused by a helicopter. As a result, the first six modes were 
identified. The structure was divided into a number of substructures, within which the 
material of each substructure was assumed to be homogenous. To represent the 
interaction of the chapel with the neighboring buildings, elastic springs were added to the 
model. The most influential modeling parameters were selected based on a sensitivity 
analysis. The probability distribution of the parameter values for the selected calibration 
parameters were initially defined as uniform. A cost function, that is, the test-analysis 
deviations for the first five natural frequencies, was minimized through an algorithm 
known as Probabilistic Global Search Lausanne. The algorithm explores the domain 
defined by the calibration parameters, generating multiple alternative models to be run. 
Among these models, the algorithm selects those that show reasonable agreement with 
the measurements. Next, the calibration parameters of the models that passed the first 
elimination were perturbed one at a time and at each iteration, the probability distribution 
of these calibration parameters was then updated. The last step of this multimodel 
approach was clustering the final set of models that fit the minimum error requirements. 
With this approach, the author clustered five alternative models, which only differ from 
each other for the values of the calibration parameters.  

The two studies discussed in this section both incorporate uncertainty in the 
calibration parameters by treating them probabilistically. However, in neither of these 
studies is the experimental variability accounted for, which is accomplished in a later 
study on a masonry cathedral. Atamturktur (2009) integrated large amounts of 
experimental and computational information collected from testing the choir vaults of the 
National Cathedral in Washington, DC. Measurement uncertainty was assessed from the 
replicated experiments. A design of computer experiments, which is used to explore 
variability of the model parameter domain, was run by perturbing model parameters. 
Both from the measurements and numerical analysis, comparative features were extracted 
probabilistically as mean and variance statistics. Using a Phenomenon Identification and 
Ranking Table, the uncertain parameters that were candidates for calibration were ranked 
based on the sensitivity of test-analysis comparative features. Bayesian inference was 
used to compound the prior knowledge about the calibration parameters together with 
experimental observations collected from vibration testing. Prior probability distribution 
incorporates expert judgment while the variance of measured features account for the 
experimental uncertainty. Bayesian inference resulted in updated knowledge of the 
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calibration parameters in the form of a posterior probability distribution. The details of 
the implementation of Bayesian inference in this study are given in Chapter 3. 

2.5 Discussions and Conclusions 

This literature review reveals the common need of analysts to find supporting 
evidence for FE solutions. Mark’s photoelastic studies of plastic scaled models, 
Fanning’s scaled masonry bridges, and recent applications of in situ dynamic tests 
convey one common message: until the model is validated with physical evidence, 
numerical predictions must be treated with due caution. These studies also illustrate that 
testing of existing buildings yields very useful information about its response 
characteristics. However, only by integrating these experimental measurements with 
numerical FE tools is it possible to gain a thorough understanding of the structural 
behavior of the building. Although experimental measurements are always incomplete in 
the sense of their spatial resolution, they play an instrumental role in model calibration 
that ultimately yields mathematical representation of the global structural behavior. 
However, there are several issues in the practical application of model calibration that 
remain to be addressed.  

In the calibration of masonry system FE models, inaccuracies are observed to 
originate from many different sources. Therefore, calibration must be stochastic and 
account for uncertainties, both in the experimental measurements and the model 
definition. The tasks required for stochastic model calibration require extensive resources 
and expertise and are, therefore, currently not routinely practiced. However, the 
stochastic approach is a first necessary step to bring calibration of analytical models into 
the analysis mainstream.  

It is important to distinguish between a calibrated model and a validated model. 
To gain validity and to quantify the accuracy of an FE model, an independent set of 
experimentally derived information, other than that used in the calibration, is necessary. 
Until this step is completed, there can be no justification of the FE solutions (Trucano et 
al. 2006). This requirement increases the already high demands on resources. 

Manual calibration studies—or tuning of uncertain parameters to improve the 
agreement between calculations and measurements by trial and error—have a benefit, as 
they conveniently incorporate engineering judgment and expert opinion into the 
calibration process, which keeps the calibration from converging to an unrealistic model. 
However, in the manual approach, parameters are treated as deterministic values, and 
therefore, this approach has limitations in incorporating the uncertainties. The manual 
calibration approach becomes more successful in the absence of a structural configuration 
difficult to interpret by engineering judgment; for example, a complex interaction 
between two masonry components. In cases where several such sources of uncertainty are 
present, it is likely that the errors introduced by an inappropriate boundary condition are 
compensated by manual tuning of the material properties, or vice versa.  

Obviously, the credibility of a calibrated model is increased as the amounts of 
experimental information accurately reproduced by the calibrated model increases. The 
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pertinent literature does not discuss how the decision about the completion of calibration 
is reached. There is a need to develop a measure of sufficiency for experimental 
information and an indicator of completion for the calibration exercise.  

Automated calibration studies, commonly based on optimization techniques, can 
be stochastic and can incorporate uncertainties; however, they are not typically conceived 
to incorporate expert opinion, which is more successfully achieved by manual calibration 
approaches. An alternative is the use of Bayesian inference methods for the 
characterization of calibration parameters that can take both uncertainty and expert 
opinion into account.  

The extent of research efforts in model calibration is presented herein with a 
specific emphasis on historic structures. Although the immediate benefits of model 
calibration are not as obvious in civil engineering as they are in fields where prototyping 
and mass production are common, the determination of modeling strategies learned 
through model calibration can ultimately serve the civil structural engineering community 
with an improved accuracy in numerical modeling. Calibrated FE models will enable a 
better understanding of historic monument behavior and ultimately enable successful 
repair and retrofit schemes. As a result of this review, it is concluded that the ever-
increasing popularity of FE model calibration will result in the application of model 
calibration to a diverse group of structures.  

 



Chapter 3 
 

METHODOLOGY 

The difficulty [in science-based prediction] is shifting from being able to perform 
complex simulations to validating the models and assessing the degree of credibility of 
predictions.  

François Hemez 

 

3.1 Introduction 

Section 1.4 defined the concept of model calibration in a larger context and 
emphasized its role in relation to model verification and validation. To reiterate, when the 
disagreement between model predictions and measurements is believed to be due to 
imprecisely known parameters in the model, poorly known input parameters can be 
calibrated to improve the fidelity of the finite element (FE) model predictions to physical 
evidence. This task invariably requires the comparison of calculations with 
measurements. In the present study, this comparison is completed based on linear 
dynamics.  

Linearity herein means that the principle of superposition is applicable, meaning 
that the structural response to simultaneous application of a number of forces can be 
obtained by summing the structural response to each individually applied force. This 
assumption is valid for most engineering applications. Also, for structures that exhibit 
nonlinear behavior, developing a reliable linear model must be considered as the first 
necessary step.  

This chapter aims to provide a framework for model calibration in linear 
dynamics by discussing the fundamental steps of model calibration, as illustrated in 
Figure 3-1.   In Section 3.2, an introduction to the implementation of linear dynamics in 
FE analysis is provided. This section presents the mathematical background for the 
computation of structural system natural frequencies and mode shapes, while the 
experimental approach to estimating the natural frequencies and mode shapes is 
discussed in Section 3.3. The FE analysis results are compared against experimental 
measurements through the comparative features. Comparative features can be one of the 
many outputs of the FE analysis. Section 3.4 discusses the appropriate selection of 
comparative features based on the characteristics of the structure dynamic behavior. This 
section also provides a discussion on the importance of the selected feature 
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dimensionality. The success of calibration depends not only on selecting suitable 
comparative features, but also on the calibration of the appropriate parameters.  

Appropriate selection of the calibration parameters is guided by uncertainty 
propagation and effect screening analysis. Both of these procedures are introduced in 
Section 3.5. Test-analysis correlation is the step when the calculated and measured 
comparative features are compared against each other. In Section 3.6, different schemes 
of test-analysis correlation are discussed. Details of the stochastic calibration procedure 
are presented in Section 3.7. This section summarizes the adaptation of a Bayesian 
calibration approach as well as the implementation of Gaussian process models as fast 
running surrogate in place of the computationally expensive FE model.   

 

 

 Figure 3-1:  The model calibration process. 
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3.2 Finite Element Analysis 

In structural dynamics, a mathematical model that can reliably predict the 
prototype’s dynamic characteristics enables the design engineer to control certain 
important characteristics, such as maximum displacement or acceleration under a certain 
load. On the other hand, the demand to study structural dynamics of an existing structure 
stems from the need to assess performance of the structure under different conditions 
than those considered in the initial design. Increased operational loads due to a change in 
function, or reduced structural capacity due to damage or aging, are typical conditions 
that can vary greatly from the initial design.    

Fundamentally, structure dynamic behavior depends on the dynamic equilibrium 
between external loads and the inertial, dissipative, and internal forces of the system at 
each instance of time. Therefore, in linear structural dynamics, the stiffness matrix 
constructed for static analysis is accompanied by mass and damping matrices (Equation 
3-1). A simple single-degree-of-freedom system is shown in Figure 3-2.    

where, d(t) is the displacement, F(t) is the force, and M, C, and K are the mass, damping, 
and stiffness, respectively. The velocity and acceleration are derived from the 
displacement as the first and second derivative, respectively.   
 

For a multiple-degree-of-freedom system, the terms of equation of motion, given 
in Equation 3-1, expand into vectors and matrices.  

The solution of Equation 3-2 requires mass, damping, and stiffness matrices to be 
constructed. The FE method constructs these matrices through mesh discretization. 
However, the solution methods of structural dynamics do not specify the means from 
which these elemental matrices are derived. Therefore, to construct elemental matrices, 

)()()()( tFtKdtdCtdM     (3-1)

 

Figure 3-2:  Schematic of single-degree-of-freedom system. 

)}{{)}(]{[)}(]{[)}(]{[ tFtdKtdCtdM    (3-2)
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other approaches can be used in place of the FE method. In fact, many solution methods 
in structural dynamics predate the development of the FE method (Cook et al. 2002).  

The second-order linear differential equation of motion given in Equation 3-2 
yields the eigenvalue problem if the dissipative forces are omitted or if the system is 
assumed to exhibit proportional damping. The proportional damping assumption defines 
the damping matrix as a linear combination of mass and stiffness matrices. By solving the 
eigenvalue problem, one obtains the modal parameters of the structure: natural 
frequencies and corresponding mode shapes.  

where λ yields the eigenvalues, which are the squares of the circular natural frequencies. 

Φ is the eigenvector, the dimensionless mode shape vector corresponding to each of the 
system’s natural frequencies (Equation 3-4).  

Omitting the damping component, or assuming proportional damping, results in 
real normal mode shape vectors without phase components. In a real, normal mode, the 
maximum deformations are reached simultaneously at all nodes. In complex modes, the 
nodes exhibit time-dependent phase delays while reaching their maximum deformations. 
The topic of complex modes will be revisited in the next section, when modal analysis is 
discussed from an experimental point of view.  

Direct solution of the characteristic eigenvalue problem is straightforward for 
systems with few degrees of freedom (Equation 3-3). Typically, eigenvalue problems are 
solved iteratively or based on repetitive similarity transformation (Friswell and 
Mottershead 1995). However, as the model size increases, the solution to the eigenvalue 
problem becomes increasingly expensive. The symmetric, banded nature of elemental 
matrices makes subspace iteration (Bathe and Wilson 1972) or the Block Lanczos method 
(Lanczos 1950) suitable for large FE eigenvalue problems. Today, structural dynamics 
calculation methods are tailored to reduce the computational requirements of the FE 
analysis, for example see Guyan Reduction (Guyan 1965). 

The key component of modal analysis is the coordinate transformation of 
equation of motion back and forth between the modal domain and time domain. First a 
modal matrix [Φ] is defined by placing eigenvectors {Φ} in columns. Modal matrix is 
then normalized with respect to the mass matrix. The three elemental matrices of 
Equation 3-2 are converted into a modal model consisting of the defined modal mass, 
modal stiffness, and modal damping values: 

  }0{}{][][  MK    (3-3)

2   (3-4)

 IMM T  ]][][[][  modal mass matrix 

]][][[][  CC T   modal damping matrix 

][]][][[][ 2 KK T  modal stiffness matrix 

(3-5)
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Next, the displacement vector {d} is expressed as linear combination of eigenvectors. 
Displacement, velocity, and acceleration vectors in physical coordinates are transformed 
into vectors in modal coordinates.   

Modal matrices, {Z} and derivatives, are functions of time, and can be considered 
as a fraction of eigenvector contribution to the overall system response {d} and to its 
derivatives. Because the system response is defined as combination of modal matrices, 
this method is also referred to as the Mode Superposition Method. Incorporating 
Equation 3-4 into Equation 3-6 and premultiplying by [ΦT] yields Equation 3-7:   

Defining [FΦ]=[ΦT]{F(t)}, the coupled equations are transformed into uncoupled 
equations in modal coordinates.    

The assumption of proportional damping yields a simple solution consisting of diagonal 
matrices. After the solution of the uncoupled equations in modal coordinates, the system 
response is transformed back into physical coordinates by using the same eigenvector 
matrices, or the results are used to obtain the response of the system in frequency domain.  

Implementation of modal analysis in FE method has computational benefits. For 
many engineering applications only the lowest portion of the spectrum is needed, and 
calculation of the response vectors from generalized modal coordinates provides the 
required accuracy.  

The FE analysis in structural dynamics is mature and discussed at length in 
several textbooks (see for instance, Cook et al. 2002, Zienkiewicz 1977, and Bathe 1982). 
Therefore, the numerical algorithms behind FE analysis will not be reported herein, even 
though the present study routinely implements these tools. However, guidance will be 
provided for successful FE analysis of masonry structures in Section 3.8.1. 

3.3 Experimental Modal Analysis 

As stated earlier, the purpose of the experiments is to obtain features that can be 
compared against the FE model. Among all the experimental methods that were 
attempted in the field of model calibration, the techniques of experimental modal analysis 
(EMA) have emerged as the most widely used and well established (Ewins 2000). EMA 

}]{[}{ Zd    where }{Z is modal displacement matrix 

}]{[}{ Zd     where }{Z  is modal velocity matrix 

}]{[}{ Zd     where }{Z  is modal acceleration matrix 

(3-6)
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provides a convenient and inexpensive means to extract features, as long as the system 
exhibits predominantly linear behavior. 

EMA consists of two phases: the testing phase, during which the vibratory data 
are measured, and the postprocessing phase, during which the modal parameters are 
extracted from the measured vibratory data. These two phases of EMA are considered to 
be a combination of art and science by McConnel (2008). The scientific aspects of EMA, 
as McConnel defines them, are discussed in this section. The art component of EMA 
develops with accumulated experience on the tested structure. This will be discussed 
specifically for masonry vaulted monuments in Section 3.8.2.  

In EMA, the most commonly used comparative features are the modal 
parameters: natural frequencies and mode shapes. The way FE-based modal analysis 
calculates modal parameters is discussed in the previous section. However, 
experimentalists take a different route to reach these modal parameters. A fundamental 
component of EMA is the construction of the frequency response function (FRF), and it 
is best explained with a single-degree-of-freedom system as illustrated in Figure 3-2. 
Replacing the excitation force, F(t), with a force phasor, F(t)=F0 e

jωt, and the response, 
d(t), with a response phasor, d(t)=d0 e

jωt, the equation of motion given in Equation 3-1 
becomes 

where d0 is the response vector and F0 is the force vector. For a given force magnitude 
F0, depending on the characteristics of the loading, the dynamic response d0 may be less 
than or greater than the static response of the structure. FRF is computed as a ratio of the 
structural response d(ω) to the excitation force F(ω) in the frequency domain. FRF 
provides a physically meaningful interpretation of the dynamic input-output relationship, 
as expressed in Equation 3-10: 

As evidenced by Equation 3-10, FRF is a complex valued function with magnitude and 
phase components that form the bode plot (or real and imaginary components that form 
the Nyquist plot). The d0 in Equation 3-10 gives the receptance FRF that operates on 
displacement response. If the measured response is velocity, it is called mobility FRF, 
and if the measured response is acceleration, then it is called accelerance FRF. The 
relationship between these three forms of FRF is given in Table 3-1. 
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In vibration testing, acceleration is the most common type of measurement as it is 
applicable for a wide band of frequencies (currently between 0 and 20,000 Hz). The 
usable frequency range is 1–1000 Hz for velocity transducers and 1–100 Hz for 
displacement transducers (Bruel and Kjaer 1982 and Parker 2009). The performances of 
velocity and displacement transducers are compared to accelerometers in Figure 3-3. 
Because of wider frequency band of accelerometers, acceleration measurements will be 
the basis for the following discussion.  

 

The graphical representation of acceleration FRF, presented in Figure 3-4, 
provides a convenient means for visual interpretation of structure dynamic 
characteristics. Consider a simple system of a single-degree-of-freedom mass and spring-

Table 3-1:  The Relationship between These Three Forms of FRF 
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Figure 3-3:  The frequency spectrum of displacement, velocity, and acceleration 
transducers (Parker 2009, with permission). 
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loaded by a time-dependent sinusoidal force with a constant magnitude. If the rate of 
force oscillation is swept through a frequency range, the FRF graph displays an 
asymptotic behavior at both low and high frequencies, as seen in Figure 3-4. When the 
forcing frequency is much lower than the natural frequency, the system stiffness 
dominates the response. When excitation frequency draws near the natural frequency, the 
response of the structure displays a sharp maximum, the height and width in frequency 
space of which is determined by the damping in the system. At much higher excitation 
frequencies, the FRF is determined by the mass of the system.  

 

The acceleration FRF can be conveniently constructed from the time-response 
measurements by taking the ratio of the Fast Fourier Transform (FFT) of the measured 
acceleration response and forcing functions. A series of steps occurs for the calculation of 
FRF (Figure 3-5): (1) acquiring the analog signal, (2) filtering higher frequencies with 
antialiasing filter, (3) digitizing the filtered signal with analog-to-digital converters, (4) 
applying a window function to prevent leakage, (5) performing FFT on windowed signal, 
(6) averaging to reduce the effects of noise, and (7) constructing the FRF. There are many 
important aspects to digital signal processing, and the topic has received significant 
attention in numerous textbooks (see Ewins 2000, Hatch 2000, Maia and Silva 1997, 
McConnel 2008, and Silva 2009).  

 

 
 

Figure 3-4:  Acceleration-based FRF in logarithmic scale: (top) magnitude, (bottom) 
phase. 
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Figure 3-5:  The schematics of FRF computation from experimental measurements
(Avitabile 2001, with permission). 
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In multiple-degree-of-freedom systems, the magnitude component of FRF 
displays sharp peaks at all resonant frequencies, while the phase angle is 90 degrees. 
Accordingly, at resonant frequencies, the real component of FRF converges to zero and 
the imaginary component reaches a maximum. The imaginary component of the FRF 
yields the relative deformations of measurement locations.  

By identifying the frequency at which the sharp peaks of the FRF are centered, 
the natural frequencies of the system can be obtained. This simple approach of finding 
the natural frequencies is known as peak-picking (Bishop and Gladwell 1963). At these 
frequencies, plotting the imaginary component of the FRF for each measurement point 
conveniently yields the mode shapes (Figure 3-6).  

 

This simple approach of constructing the mode shapes is known as quadrature 
response analysis (Pendered 1965). It is a single-degree-of-freedom system identification 
method that estimates modal parameters one mode at a time. It is most successful when 
applied to a clean, high-quality FRF with well separated modes of a lightly damped 
system. This simple method assumes the multiple-degree-of-freedom FRF to be a 
superposition of multiple single-degree-of-freedom FRFs. It is a fast and convenient way 
to find mode shapes and natural frequencies. Other popular single-degree-of-freedom 
frequency domain system identification methods are the circle fitting method (Kennedy 
and Pancu 1947) and rational fraction polynomial method (Li et al. 1994). 

More sophisticated multiple-degree-of-freedom time domain methods are 
developed for successful system identification from complex FRFs where modes are 
closely spaced, the ambient noise is present, or FRF peaks are smeared due to high 

 

  

Figure 3-6:  The derivation of mode shapes from imaginary FRF plots (Avitabile 2001, 
with permission). 
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damping. These methods determine the modal parameters indirectly by imposing a linear 
multiple-degree-of-freedom model on the measurement. Popular multiple-degree-of-
freedom time domain system identification methods are Ibrahim time domain (Ibrahim 
1977), least squares complex exponential method (LSCE) algorithm (Brown et al. 1979), 
eigensystem realization algorithm (ERA) (Juang and Pappa 1985 and 1986), and auto-
regressive moving average model and its derivatives (e.g., ARMAX, ARMAVX) (Ljung 
1999). Some of these multiple-degree-of-freedom time domain methods are also 
implemented in the frequency domain. For example, least squares frequency-domain, 
(frequency domain version of LSCE) (Mergeay 1983) and ERA-frequency domain, 
(frequency domain version of ERA) (Juang and Suzuki 1988).  

The most suitable system identification method varies depending on system 
dynamic characteristics (e.g., lightly/highly damped, low/high modal density) and 
measurement characteristics (e.g., low/high signal-to-noise ratio, single/multiple run 
setup). An overview of various system identification methods emphasizing their merits 
and drawbacks can be found in Verboven (2002). 

3.4 Selection of Comparative Features 

Among all possible FE model outputs, those selected for comparison with 
physical evidence are called comparative features. In some cases, regulatory agencies or 
industry standards can impose a specific comparative feature. An example is the head 
injury criterion of the Federal Motor Vehicle Safety Standard Occupant and Crash 
Protection (FMVSS-208). In other cases, the selection of a response feature is dictated by 
the application. For instance, damping ratio is commonly used for the aeroelastic flutter 
of airplane structures. When such impositions do not apply, the burden of selecting the 
comparative feature falls to the analysts and experimentalists. 

Because of an a priori decision to use modal parameters as comparative features 
in the present study, the groundwork has been laid in this chapter specifically for 
numerical computation and experimental identification of modal parameters. However, 
other alternative comparative features to modal parameters must be discussed.  

3.4.1 Comparative Features in Linear Dynamics 

When the measurements are collected, feature extraction is reduced to fitting a 
model to the measured data. This fitted model can be physics-based or data-based, linear 
or nonlinear, stationary or nonstationary. These characteristics determine the type of 
information the comparative feature can entail. Table 3-2 lists common and some 
uncommon features suitable for specific types of structural dynamics problems. This 
includes features that have clear, unambiguous physical meaning, such as modal 
parameters, as well as data-based features, such as temporal moments, that have less clear 
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physical interpretation. In practice, both physics-based and data-based features can be 
used successfully. However, working with features with physical significance helps the 
communication between experimentalists and analysts and should be preferred when 
possible (Hemez 2007).  

 

Because comparative features should be sensitive to the selected calibration 
parameters, the selection of comparative features is fundamentally tied to the selected 
calibration parameters. That is, modal parameters are only effective as comparative 
features when calibrating the input parameters that have significant influence on them. 

Table 3-2:  Examples of Comparative Features (Hemez 2007) 

Linear, stationary, Gaussian vibrations 
 Direct and inverse Fourier transforms;  
 Power spectral density;  
 Input-output transfer functions;  
 Frequency responses;  
 Modal parameters (frequencies and mode shapes). 

Transient dynamics and mechanical shock response 
 Peak values;  
 Energy content;  
 Decrement and exponential damping;  
 Shock response spectrum;  
 Temporal moments. 

General-purpose time series analysis 
 Autoregressive and moving average models;  
 Time-frequency transforms;  
 Wavelet transform;  
 Principal component decomposition. 

Unstable, chaotic, multiple-scale dynamics 
 State-space maps;  
 Poincaré maps;  
 Time-frequency and higher-order transforms;  
 Symmetric dot pattern;  
 Fractal analysis. 
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3.4.2 Comparative Feature Dimensionality 

Implicit in the definition of a comparative feature is the reduction of the 
dimensionality of raw measurement data. “Dimensionality” refers to the number of 
features analyzed. For example, the dimensionality of a vector of five modal frequencies 
is N = 5, while the dimensionality of a response signal sampled at 210 points is N = 1,024.  

The convergence of multivariate statistical tests that involve N features is 
typically proportional to N2, not N. This means that N2 samples (physical tests or 
computer runs) are required for the analysis. When the dimensionality is too high, trends 
cannot be identified unambiguously, and also direct comparison between the 
measurement and calculation is hindered. Data reduction can greatly simplify the 
management and statistical analysis of the oversized raw data. At the other extreme, one 
must be careful not to reduce information to the point where information regarding the 
calibration parameters is lost or too few dimensions make it impossible for patterns in the 
data to be recognized. For the last decade, this trade-off in data reduction has been a 
concern for the fields of structural health monitoring and damage detection (Farrar et al. 
2007).  

Researchers continuously seek the smallest feature dimension that maintains the 
information about the structure but is still manageable enough in size to make statistical 
inferences. In the absence of a quantitative means of determining how much relevant 
information a specific comparative feature contains for a given calibration problem, 
comparative feature selection is often conjectural, made based on past experience, and 
specific to each case. Inspired by the several successful calibration studies applied to 
masonry structures by using modal parameters, as discussed in Chapter 2, this study uses 
modal parameters as the comparative features. The dimensionality of the modal 
parameters, in other words, the number of modes that will be used during calibration, will 
be determined based on the number of the modes extracted reliably from the 
experimental measurements. 

3.5 Selection of Calibration Parameters 

The success of FE model calibration depends not only on selecting suitable 
comparative features but also on calibrating suitable input parameters. Fundamentally, 
selection of calibration parameters must be guided by the combined effects of parameter 
uncertainty and sensitivity. These two important factors are combined together in the 
Phenomenon Identification and Ranking Table (PIRT) (Pilch et al. 2001). PIRT 
originated in high-consequence modeling in nuclear reactor safety studies (Wilson and 
Boyack 1998). When the PIRT is successfully constructed, parameters of the FE model 
that are relatively certain to the analyst or parameters that are not influential on the 
desired solutions are removed from the calibration parameter list. A sample PIRT is 
illustrated in Table 3-3. 
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3.5.1 Parameter Uncertainty 

Parameters that are used to represent the physical reality in a mathematical model 
are typically random variables due to their natural variations; therefore, at a minimum 
they should be represented with mean and standard deviation. In the context of model 
calibration, parameter uncertainty arises from the lack of knowledge of the analyst about 
the statistical properties of these random calibration parameters.  

In the presence of repeated physical experiments on poorly known FE model 
parameters, lack of knowledge about the parameter values would be reduced to the 
natural variability of the parameter, provided that a large enough family of experiments 
are conducted to be statistically representative. The experimentally obtained statistical 
properties of the parameters can then be quantitatively incorporated in the PIRT (Hills 
2006). Coleman and Steele (1999) extensively discuss parameter uncertainty.  

In the absence of repeated physical experiments on calibration parameters, for 
instance, material tests on extracted coupons, quantification of parameter uncertainty 
becomes a difficult task to achieve, if not impossible (Mace et al. 2005). Because of this, 
in PIRT, parameter uncertainty can be considered qualitatively through expert judgment 
based on prior knowledge about the structure (Table 3-3). For instance, Young’s modulus 
of steel is well known and virtually uniform within a member, therefore, it can be 
considered more certain compared to the Young’s modulus of the material in an old 
vernacular mud-house. Before proceeding to the next section, it is assumed that the 
analysis at least has a priori estimates for the minimum, nominal, and maximum values 
of the FE model parameters. 

Table 3-3: Example Phenomenon Identification and Ranking Table 

Parameter   Uncertainty Sensitivity Decision 

Young's modulus of Material A (E1) High high calibrate 

Young's modulus of Material B (E2) High low - 

Thickness of Component 1 (t1) Low low - 

Thickness of Component 2 (t2) Low low - 

Stiffness Constants of Component 1 (K1) High high calibrate 

Stiffness Constants of Component 2 (K2) High high calibrate 
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3.5.2 Parameter Sensitivity 

In numerical modeling, sensitivity analysis may mean different concepts in 
different fields. Its first role in model calibration is to support the parsimony approach 
(Trucano et al. 2006). The parsimony approach aims at the reduction of the number of 
calibration parameters, and the parameter sensitivity is instrumental during the calibration 
parameter selection/elimination process.  

The second main role of sensitivity analysis is appraisal of hidden interactions 
among parameters. Often parameters have combined effects on the outcome that cannot 
be represented by the sum of their individual effects (Saltelli et al. 2004). If this 
interaction is strong, it may cause a problem in that calibrating one parameter may be 
compensating for an imprecision in another parameter. It is advisable to fix one of these 
calibration parameters at their nominal values or to perform coordinate transformation of 
the correlated parameters to obtain new relatively uncorrelated parameters. An alternative 
solution to this problem can be achieved by uncoupling the correlated or dependent 
parameters such that each parameter is calibrated against an independent comparative 
feature (Williams 2008a).   

The sensitivity of an FE model solution, whether local or global, to any parameter 
in the FE model can be determined by sensitivity analysis. Fundamentally, sensitivity 
analysis measures the changes in the model output due to a unit change in each of the 
input parameters. If the monitored model outcome is local, then it is called local 
sensitivity analysis—also known as gradient. If the monitored model output is global, 
then it is called global sensitivity analysis, or effect screening. In either case, sensitivity 
analysis ranks the parameters of the FE model on which the desired model solutions are 
the most dependent.  

Local sensitivity analysis is gradient-based and it is expressed around a local 
point, Xo, and in a given direction (see, for instance, Rabits 1989) (Figure 3-7).  

 

For instance, consider an output Y to be a function of parameters Xi, for i = 1,2…n.  

 

 

Figure 3-7:  The schematic of gradient-based sensitivity analysis, local sensitivity 
analysis (reprinted from Hemez 2007, with permission). 
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Then, sensitivity of the variation in Y to a single parameter Xi can be found by 

where the parameter Xi is perturbed around its nominal value, Xi
0 (see Figure 3-7). The 

variation in Y can be explored under different conditions, when Xi is varied by a fixed 
fraction of its nominal value or by a fraction of its standard deviation.  

Because local sensitivity analysis provides information only about the variability 
of a parameter around a local point Xo, it does not provide the effect of a parameter on the 
global variability of the outcome. This question is answered by a more involved process 
instead, global sensitivity analysis.  

 Global sensitivity analysis is typically performed based on sampling techniques, 
in which the model is executed repeatedly at parameter values sampled from the 
distribution of the input parameters (Cukier et al. 1978, Helton et al. 1991). The sampling 
of the domain defined by the parameters is most effectively designed by the tools that are 
known as design of experiments (see Montgomery 2000 and Myers and Montgomery 
2002). Design of experiments aims to gain maximum information about the random 
parameters by minimum sampling points. There are numerous sampling design types, 
among which Full Factorial, Central Composite, Monte Carlo, and Latin Hypercube are 
the most common. Each of these design types is suitable for a specific problem. The 
different sampling procedures used in the Monte Carlo and Latin Hypercube designs are 
illustrated in Figure 3-8. 

After the parameters are sampled, based on the selected design type, the 
parameter samples are fed to the numerical model. Depending on the number of samples 
collected, the FE model is run multiple times and a model output is obtained 
corresponding to each parameter sample. This multirun method is known as forward 
propagation of uncertainty, and it detects the variability of the FE model output due to the 
variability of the input (Figure 3-9). Forward propagation of uncertainty is an important 
component of fast-running surrogate model development and will be used during the 
calibration process implemented in the present study (see Section 3.7.1). 

Strictly speaking, the output response variability due to the variability of FE 
model input parameters should first be studied for the selected comparative features as 
the output, for instance, the modal parameters. This is because comparative features will 
later be correlated with the experimental comparative features. Literature presents 
examples of sensitivity analysis applied to other model output (e.g., FRFs, static 
displacements, and mode shape derivatives) (FEMtools User Manual 2007).    
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 Figure 3-8:  The Monte Carlo sampling and Latin Hypercube design of experiments (reprinted 
from Hemez 2007, with permission). 
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After the parameter uncertainty is propagated to find the model output variability, 
the primary causes of this model output variability must be identified. Typically this is 
achieved through effect screening. Effect screening is the process of identifying which 
parameters, e.g., X1, X2, or parameter combinations, e.g., X1, X1X2, X1X3

2, best explain the 
output variability. Common approaches to affect screening are expectation decomposition 
schemes (Saltelli et al. 2004) and analysis of variance (ANOVA). ANOVA aims at 
separating the statistical variance caused by a particular parameter from that caused by 
other parameters. R2 statistic of ANOVA estimates the ratio of variability of the model 
output, when Xi is kept constant to the total variability of the model output when Xi is also 
varied.    

which is equal to Equation 3-13.  

A large R2 value for a parameter, compared to those of other parameters, indicates 
that Xi has a significant effect on the output. Typical effect screening results are 
represented for a seven-parameter model in Figure 3-10. In Figure 3-10, the parameters 1, 
4, and 7 are shown to be the most influential on the response of interest.  
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3.6 Test-Analysis Correlation 

The operational philosophy of model calibration is the comparison of the FE 
solutions against physical evidence. Model calibration is a knowledge-based process, and 
regardless of the sophistication of its tools, the success of model calibration relies on the 
suitability of a series of decisions made while building the initial FE model. This initial 
FE model must be a close enough representation of reality to initiate the automated 
calibration. Therefore, an automated calibration must be preceded by a test-analysis 
correlation. 

The FE model of a bridge, for instance, may be developed by modeling the 
girders with beam elements or with three-dimensional solid elements. Similarly, one can 
consider including the barriers in the FE model, or excluding them. The bridge abutments 
can be represented as fixed or hinge conditions available in the FE model, or by using 
linear or nonlinear springs. The importance of investigating alternative model schemes to 
obtain a model sufficiently close to reality has been stressed by many researchers 
(Brownjohn and Xia 2000, Pavic et al. 2002, Bagchi 2005, Pavic et al. 2007).   

A correlation metric is required to compare the success of these alternative FE 
models in matching the experiments. The specifications of these metrics are the most 
important component of the correlation processes. Correlation metrics are mainly dictated 
by the selected comparative features. They may be as simple as taking the difference of 
two features or as complex as statistical correlation analysis (Hemez 2007).  

During test-analysis correlation, major problems arise due to the mismatch of 
number of degrees of freedom in the FE model and experimental set-up and due to the 

 

 

Effect Screening  

   
 R

2  S
ta

ti
st

ic
 (

%
) 

 

    1      2      3     4      5     6      7 

     
40  

    
30  

    
20   

   
10 

     
0 

Input Parameter  
 

 Figure 3-10:  A visual interpretation of R2 statistics of ANOVA. 
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inaccuracies of the initial FE model. FE models typically have significantly larger 
numbers of degrees of freedom compared to the test campaigns. There are three main 
approaches to the degrees of freedom mismatch between the FE model and test 
campaign: (1) reducing the FE model solution, (2) expanding the test data, (3) truncation 
of the FE model solution without reduction (Friswell and Mottershead 1995, FEMtools 
2007). For the first approach, reduction techniques allow the full system matrices of the 
FE model to be reduced down to a few degrees of freedom. The most popular and 
perhaps the simplest reduction method is the Guyan reduction, through which the 
elemental matrices are partitioned into master and slave coordinates (Guyan 1965). 
Alternatively, the partitioning procedure can be applied to the computed eigenvectors, a 
method known as SEREP (O’Callahan et al. 1989, Avitabile et al. 1989, Avitabile et al. 
1992). However, from the point of view of model calibration, calibration of a reduced FE 
model has limited physical meaning (Dascotte 2004). For the second approach, expansion 
of measurement data is invariably done according to the initial FE model, whether using 
elemental matrices of the FE model or by using its modal predictions. The test data 
expansion according to the information obtained from a known-to-be inaccurate FE 
model may yield erroneous results, and the subsequent calibration may be adversely 
affected. Therefore, examples of such procedures will not be discussed herein. The last 
option is the mere truncation of the large degrees of freedom of an FE model to only a 
few of those that were selected as measurement data points. Although this option limits 
the test analysis correlation to a select few locations on the structure, it is immune from 
potential complication and errors of the reduction and expansion processes. 

After the test and analysis comparative features are matched in size through 
reduction, expansion, or truncation, the correlation metrics can be calculated. The two 
main types of correlation metrics are the fidelity-to-data metric and the regression metric. 
The fidelity-to-data metric measures disagreement between measurements and numerical 
model output. Taking the difference between calculated and measured natural frequencies 
is a fidelity-to-data metric. The regression metric measures the correlation between 
measurements and numerical model output. The statistical correlation of the mode shapes  
can be identified as the cosine of the angle between the two vectors representing the 
mode shapes. If the calculated and measured mode shape vectors align perfectly, the 
angle between the two vectors would be zero, and the correlation would be equal to unity. 
Conversely, if these two modes are completely unrelated, their vectors would be 
perpendicular to each other, and the correlation would be equal to zero. The relation of 
finding the angle between two vectors is given in Equation 3-14 and is widely known as 
the Modal Assurance Criterion (MAC) metric (Allemang and Brown 1982). 

where {ΦM} is the mode shape vector of the model, and {ΦT} is the mode shape vector of 
the test.   

Over the last three decades, several correlation metrics were developed in the 
context of linear dynamics. Examples include eigenvalue orthogonality criterion, which 
checks whether the measured mode shape vectors transform the mass and stiffness 
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matrices in diagonal forms (recall Equation 3-5); coordinate MAC, which applies the 
MAC principle on spatial degrees of freedom; coordinate orthogonality check, which 
investigates how much spatial degrees of freedom contribute to the orthogonality check; 
displacement assurance criterion, which applies the MAC principle to displacement 
vectors; and signature assurance criterion, which applies the MAC principle to FRF 
vectors (FEMtools User Manual 2007).  

Test-analysis correlation can also be classified by the amount of available 
information, and it can be as simple as a visual comparison in viewgraph form (Figure 3-
11a). The most common approach for deterministic models is the feature-to-feature 
comparison (Figure 3-11b); however, this type of correlation has the risk of deriving 
erroneous conclusions (Figure 3-12). The deterministic test-analysis correlation may 
compare the sampling points that are not representative. To guarantee that the expected 
values of the two random distributions, the mean values must be calculated. This requires 
the probability distribution of the variable to be constructed. 

Distribution-to-feature correlation is seldom meaningful and not commonly 
adapted (Figure 3-11c). Figure 3-11d represents the first-level distribution-to-distribution 
correlation where only the numerical error bounds are incorporated as a result of a 
verification study. Figures 3-11e and f show the increasing sophistication levels of 
distribution-to-distribution correlation considering the uncertainty due to lack of 
knowledge as well. This type of correlation necessitates statistical analysis and is the only 
way to incorporate the uncertainties into the calibration process. 

 

The ease of comparing EMA comparative features with FE solutions is the 
rationale for the popularity of EMA in model calibration. However, when modal 

 

Figure 3-11:  The increasing levels of sophistication for test-analysis correlation 
(Oberkampf et al. 2002, with permission). 
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parameters are used in test-analysis correlation, pairing of mode shapes becomes a crucial 
and often a problematic task. Difficulties arise because the initial FE model, as stated 
earlier, is imprecise: thus (1) it may predict the modes in the wrong sequence; (2) it may 
fail to predict some of the modes; or in the worst case (3) it may predict the modes as 
linear combinations. All of these potential problems require careful, perhaps automated, 
mode tracking through the test-analysis correlation. This topic will be discussed in 
greater detail in Chapter 4. 

 

3.7 Bayesian Model Calibration Under Uncertainty 

In model calibration, one attempts to improve the predictive abilities of an 
initially inaccurate computer simulation through comparisons of one (univariate) or more 
(multivariate) of its solutions with incomplete and imprecise physical observations 
(Friswell and Mottershead 1995). The procedure implemented in this study for the 
characterization of modeling parameters has two fundamental components: mathematical 
formulation of calibration algorithm and propagation of uncertainty, which are discussed 
in the next sections. 

3.7.1 Mathematical Formulation of Calibration Algorithm 

An FE model can be judged to be valid based on (1) the accuracy of the model 
parameters and (2) the adequacy of the model. The former can be remedied by the 
parameter-calibration approach while the latter can be remedied by the bias-correction 

 
 

Figure 3-12:  The feature-to-feature comparison (δ1) versus distribution-to-distribution 
comparison (δ2). 
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approach. In this study, the imprecise parameters of the FE model will first be calibrated 
against experimental measurements to improve the fidelity of the FE model to physical 
evidence. However, because an FE model is only a mathematical approximation of 
reality, and thus inadequate to a certain extent, even when the best parameter values are 
used, a bias error will remain between the model predictions and experimental 
measurements.  

The approach implemented in this study will be introduced in the following 
paragraphs. Detailed theoretical background of the adapted methodology can be found in 
Higdon et al. (2008) and Kennedy and O’Hagan (2000).  

The method is developed from the following relation for experimental 
measurements Y(xi): 

where ζ(xi) denotes the true response of the actual physical system, ε(xi) represents the 
experimental error, and n represents the number of control variables (xi). Accordingly, the 
experiments are conducted at n different settings. 

The controlled variables define the validation domain, that is, the domain of 
configurations, settings, or operational conditions under which the model is developed to 
make predictions. The most important distinction between controlled variables and 
calibration parameters is the lack of control over the latter during physical testing. 
Calibration parameters are either introduced by a specific choice of model, by a specific 
assumption, or by virtue of being parameters that cannot be measured or controlled 
experimentally.  

The true response of the actual physical system where ζ(xi) is then broken down 
into a simulator and a discrepancy term that denotes the discrepancy between the 
simulator and reality.      

where Y(xi)  and η(xi , θ) are experimental and numerical predictions, δ(xi) corresponds to 
the discrepancy term representing the bias, and ε(xi) represents the random experimental 
error. θ here denotes the best but unknown values for the calibration parameters. 
However, because θ is unknown, during forward propagation of uncertainty, the model is 
executed at a family of settings, t:   

where m denotes the number of computer runs. The model output is only known at m 
different settings, while the experimental output is only known at n different settings.  

Because an understanding of the formulation of each of these components of 
Equation 3-17 is fundamental, each item is discussed separately in the following sections. 
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3.7.1.1 Surrogate Model – η(x, t) 

As mentioned previously, for cases where the simulation is demanding of 
computational resources, an FE model can be run only at a limited number of settings (at 
limited values of (x, t), where x is the control variable and t is the calibration variable). 
Thus, to forecast the model predictions at settings other than those sampled, a surrogate 
model will be fit to the available data. There is a clear distinction between an FE model, 
which depends on the physical relationships of elements and their characteristic 
properties, and a surrogate model, which is a purely mathematical function that defines 
the relationship between input and output while entirely disregarding the involved 
physics.  

Common surrogate models take the form of polynomial fits. In this study, 
however, the numerical model is replaced by a Gaussian process model (GPM). A GPM 
can be fully described by its constant mean, μ(x), and covariance structure (Equation 3-
18). Details of its formulation can be found in Santner et al. (2003) and Higdon et al. 
(2008): 

λη and ρη are called hyper-parameters. λη is to control the marginal precision of the 
surrogate model and ρη is to control the dependence strength for each control and 
calibration parameter. px denotes the number of control variables and pt denotes the 
number of calibration parameters. The parameter ρη,k represents the correlation between 
model outputs evaluated at input parameters by varying the parameters in kth dimension. 

Among various surrogate models, a GPM is preferred to define a prior form of an 
unknown function for two reasons. First, it is nonparametric and thus no prior assumption 
is necessary about the parametric family of the function. Second, a GPM is very flexible 
and smooth, which enables it to represent nonchaotic continuous systems remarkably 
well. However, the construction of an intricate input-output map requires a number of 
computer experiments to be performed beforehand at sampled input values.  

After the GPM is constructed based on the m computer runs defined by the design 
of experiments, the subsequent steps in calibration operate only on the GPM, which 
means that if the GPM is not constructed accurately, the calibration will converge to 
irrelevant solutions. The common practice is to consider that accurate GPM surrogates 
are obtained when the number of computer experiments is 10 times or more the number 
of calibration parameters (Williams 2008b). 

3.7.1.2 Discrepancy Model – δ(x) 

The role of the discrepancy term in this formulation is analogous to the bias term 
as implemented in the bias correction approach. The discrepancy term is an error model 
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intended to develop an independent estimate of the inadequacies in the model predictions 
at all controlled parameter settings. The discrepancy is defined as the Euclidian distance 
between the mean of the physical measurements and the mean of the numerical model 
output at the true but unknown calibration parameter values. Higdon et al. (2008) 
replaces Kennedy and O’Hagan’s discrepancy term with a GPM. The GPM for 
discrepancy model has a zero mean. Its covariance function takes the following form: 

where λδ and ρδ are called hyper-parameters. λδ is to control the marginal precision of the 
discrepancy model and ρη is to control the dependence strength for each control and 
calibration parameter.  

One cannot calculate the discrepancy until the true input parameters are found. 
However, one cannot estimate the true input parameter without knowledge of the 
discrepancy. The solution of Kennedy and O’Hagan (2000) for this seemingly 
paradoxical problem is explained in the discussion of propagation of uncertainty. 

The addition of an independent error estimator, the discrepancy term, is the far-
reaching accomplishment of these earlier studies. However, because this study is 
conducted without the controlled variables, the discrepancy term will be a scalar, and 
thus will be less meaningful than earlier studies by Higdon et al. (2008), which operate 
on varying settings of controlled variables. 

3.7.1.3 Experimental Errors – ε(x) 

Although physical observations are subject to random and bias errors, they 
constitute our best representation of physical reality. Thus, the calibration process is 
obligated to tolerate experimental errors. Experimental uncertainty is typically 
categorized in two groups: (1) measurement uncertainty, for instance due to 
instrumentation and data processing, and (2) natural variability of the structure, for 
instance in heterogeneous materials.  

The variability of physical experiments can only be studied by repeated 
experiments. However, the experiments are typically costly and time-consuming relative 
to the FE models. It is a common application to repeat only a portion of the experiment. 
For instance, in a test setup with k measurement points, repeating the experiments at a 
select few measurement points (<<k) can reduce the required resources yet can still yield 
reasonable information about the inherent variability in the experiment. 

In engineering and science, experimental errors are commonly incorporated in the 
analysis with the help of probability theory. Typically, the error term is defined as a zero-
mean Gaussian random variable. Such an approach is best justified by the central limit 
theorem. If we assume that the experiments are conducted with rigor and are immune 
from systematic errors due to such factors as bias in the equipment, the experimental 
error can be considered to be a summation of a large number of independent processes. 
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According to the central limit theorem, these sources would collectively converge to a 
normal distribution (Hogg and Craig 1978). 

3.7.2 Propagation of Uncertainty 

When both the FE model input and FE model output are treated in a probabilistic 
manner, two types of uncertainty propagation are required. Determining how much 
uncertainty in the selected calibration parameters causes variability in the output is 
referred to as forward uncertainty propagation. The inverse uncertainty propagation, in 
contrast, investigates the sources of uncertainty in the output by focusing on the 
variability of calibration parameters (Figure 3-13).  

The forward propagation of uncertainty consists of a family of computer runs 
repeated at the sampled input parameters to observe the variability in the FE model 
outcomes, as discussed in Section 3.5.2. As long as a large enough number of samples are 
generated, this sampling approach converges to the actual distribution of the output 
parameter. The number of necessary samples depends strictly on the order of complexity 
of the sampled behavior and on the type of sampling design. 

Inverse propagation of uncertainty is computationally more involved as it 
conceptually requires the FE model to be inverted. However, for real engineering 
solutions, the requirement of inverting an FE model is practically prohibitive because of 
the discretization-based approximate approach inherent in the FE analysis. 

 

In stochastic model calibration, the inverse propagation of uncertainty forms the 
basis of the statistical inference problem. In theory, if the uncertainty in input can be 
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Figure 3-13:  The operative philosophy of model calibration. 
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reduced, the uncertainty in the output will also be reduced. Thus, the inverse propagation 
of uncertainty is usually called upon in model calibration activities to seek the sources of 
the output uncertainty. 

In the formulation adapted in this study, the inverse propagation of uncertainty is 
replaced by a large cohort of forward propagation of uncertainty via Markov Chain 
Monte Carlo (MCMC) sampling. MCMC performs a random walk in the domain defined 
by the calibration parameters defined by α1 and α2 in Figure 3-14 according to the 
probability distribution of the calibration parameters: P(α1) and P(α2). In the absence of 
better knowledge, the probability distribution of calibration parameters can be assigned 
equal probability for all possible values between an upper and lower limit. During each 
random walk, the model calculates the selected output response according to the sampled 
parameter values. Comparative feature is defined by ω in Figure 3-14. The acceptance 
criterion for the sampled parameters is guided by the likelihood estimation P(ω | α1, α2). 
The current sample point (in the domain of the calibration parameters α1 and α2) is 
rejected if it reduces the likelihood that the set of calibration parameters is correct. If the 
current sample point is rejected, the random walk returns the last accepted point and the 
probability distributions of the calibration parameter remain unchanged. However, if the 
sample point is accepted, the posterior distributions of calibration parameters are 
obtained. These posterior distributions of the calibration parameters become the prior 
distributions in the next random walk. According to the current priors, MCMC performs 
another random walk from the last accepted point to the next point (Figure 3-14). The 
repeated feedback in Bayesian inference progressively characterizes not only the 
posterior distributions of the calibration parameters, defined by α1 and α2 in Figure 3-14, 
but also the hyperparameters of the GPMs, λη, λδ, ρη, and ρδ. That is to say, if there are n 
MCMC iterations, there will be n different sets of estimates for hyperparameters and 
calibration parameters that are accepted by the likelihood function. By using the 
hyperparameters of the GPM of the discrepancy term, one can now construct the error 
model, and by using the calibration parameter values along with the hyperparameters of 
the simulation emulator, one can construct the surrogate model. Thus, the method defines 
all possible values of η(x; t) and δ(x) that, when added together, reproduce the 
experiments as described in Equation 3-17. 

The mean estimates of the posterior distribution provide the most likely values for 
the calibration parameters. These values, when obtained through stochastic calibration, 
can later be used in a deterministic study. The standard deviation of the posterior 
distributions captures the remaining uncertainty in the parameter values. Theoretically, as 
the amount of physical evidence increases, the remaining uncertainty converges to the 
natural variability of the materials. Further discussion on this statement can be found in 
Atamturktur et al. (2009a). 
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Figure 3-14:  Combining MCMC with the context of Bayesian inference. 
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3.8 Special Considerations for Masonry Structures 

Boothby and Atamturktur (2007) discussed some of the principles of unreinforced 
masonry and provided basic instructions in preparing an FE model of complex vaulted 
masonry structures using widely available, modern tools of structural analysis. In Section 
3.8.1, the most important aspects of this paper are summarized.  

As emphasized in Section 3.3, modal testing is an art as much as it is a science 
(McConnel 2008). The success of modal testing depends heavily on the experience about 
the test structure. Atamturktur et al. (2009a) highlighted the particular challenges of low-
amplitude vibration testing on historic masonry structures. In Section 3.8.2, relevant 
aspects of this paper are summarized.    

3.8.1  FE Model Development for Masonry Monuments 

Two main FE modeling approaches are available for masonry structures: 
micromodeling and macromodeling. The former focuses on the heterogeneous states of 
stress and strain using the properties of individual masonry units and mortar joints. For 
micromodeling, the amount of computational effort necessary for analysis of an existing 
building is impractical. Macromodeling, in contrast, assumes homogenous constitutive 
behavior for the masonry and mortar assembly and, therefore, is commonly applied to 
model large-scale structures. The suitability of the homogenized material property 
assumption has been confirmed in numerous studies (Creazza et al. 2002). Therefore, the 
discussion in this section will focus on macromodeling. 

There are four main aspects related to the structure that need to be defined in FE 
model development: (1) geometry, (2) material properties, (3) boundary conditions, and 
(4) loads. The coupling and dependencies between these further complicate the 
problem—for instance, connectivity conditions depend on material properties, and 
material properties may change according to loading, whether due to time-dependent 
material behavior or due to material nonlinearity. Moreover, decisions must also be made 
regarding the (1) element types and (2) meshing according to the available options in the 
FE program. All of these factors will be discussed in the following sections. The 
illustration and examples will be provided with reference to computerized FE program 
ANSYS, version 11. 

3.8.1.1 Geometry 

FE model development starts with geometric model generation. Typically, 
building survey measurements or available construction drawings can be used to locate 
reference points that define the curved geometry of a three-dimensional vaulted structure. 
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The profile of load-bearing arches of the vaults, unless seriously distorted due to loading 
or settlement effects, can be adequately characterized by the coordinates of span, rise, and 
quarter-point rise. The vault ribs generally have a constant thickness, therefore, any 
means of determining the dimensions of a rib, whether by measurements or consulting 
drawings, is sufficient. The actual shape of the vault web between ribs can then be 
generated with few additional measurements taken from the curved web surface. Vaults 
are often provided with a filling from the supports up to the haunches and the height of 
this filling must be measured. The thickness of webbing may be difficult to determine 
unless there are holes in the vault. Impact-echo and other noninvasive tools for the 
determination of thickness are available for use (Sansalone 1997). 

Complex molding profiles or multiple colonnettes on the ribs and piers are 
practically impossible to model accurately, and the effort spent on attempting to model 
these shapes often degrades the model’s accuracy because of unavoidable poor aspect 
ratios in meshing. The physical geometry of the piers and ribs of vaults are typically 
simplified to rectangles that preserve the area and moments of inertia of the original cross 
section. Figure 3-15 depicts such simplification for the cross sections of ribs of 
Washington National Cathedral. It must be noted that the error introduced by this 
geometric simplification cannot be remedied via calibration of other FE model 
parameters. The suggested principle is to simplify the geometry unless the geometrical 
details impact the dynamic response that the model must capture. This can be decided by 
isolating a structural member, such as a rib, and analyzing it with the original and 
simplified cross-sectional geometry. 

 

Although theoretically possible, implementing geometric properties as calibration 
parameters is problematic because of difficulties in meshing these complex geometric 
forms (see Section 3.8.1.3). Therefore, obtaining the most reliable geometric properties 
available is a high priority—errors caused by remaining inaccuracies must simply be 
accepted. 

 

  

a) Highly ornamented rib. b) Simplified rib geometry. 
 

Figure 3-15:  Property-preserving simplification of the rib geometry. 
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3.8.1.2 Element Type Selection 

In most FE packages, modeling capabilities are available to represent a structural 
dynamics response using a variety of element types and selection mainly depends on the 
degrees of freedom they provide. 

Shell elements are economical compared to solid elements. Vault webbing can be 
successfully modeled by shell elements as they incorporate interactions between 
membrane forces and bending moments that characterize the behavior of vault webbing. 
Shell elements can represent bending, membrane, and shear stiffness. 

Shell elements can be used to model both singly curved or doubly curved surfaces 
of varying thickness. Both quadrilateral-form (four node) and triangular-form (three 
node) elements can be defined by shell elements. Typical shell elements have six degrees 
of freedom at each node: translations in the nodal x, y, and z directions and rotations 
about the nodal x, y, and z axes. Shell elements with mid-side nodes have improved 
ability to fit curved surfaces compared to other shell elements without the mid-side 
nodes. 

In this study, shell element SHELL93 in ANSYS is used (Figure 3-16). For the 
triangular-form element, six nodes and the three thickness values for the corner nodes 
must be defined. For quadrilateral-form elements, the definitions of eight nodes and four 
corner thickness values are required. The displacement variable is interpolated in 
quadratic fashion within these elements (ANSYS 11.0 2009). 

Solid elements, on the other hand, are suitable for vault ribs and walls. In solid 
elements along an edge without a mid-side node, the displacement variable varies 
linearly, while along an edge with a mid-side node element, the displacement variable 
varies parabolically. SOLID95 in ANSYS has mid-sides nodes along the edges and a 
total of 20 nodes with three degrees of freedom per node: translations in the nodal x, y, 
and z directions (Figure 3-17). Prism-shaped, tetrahedral-shaped, and pyramid-shaped 
elements may also be formed by SOLID95 elements as shown in Figure 3-17. Solid 
elements typically require at least a nine-element cross section for computational 
accuracy.  
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Figure 3-16: SHELL93 in ANSYS reprinted from ANSYS tutorial (2009), with
permission. 

 

Figure 3-17:  SOLID93 in ANSYS reprinted from ANSYS tutorial (2009), with 
permission. 
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3.8.1.3 Meshing 

Meshing is the systematic process of discretizing the geometric model into finite 
elements. While meshing, there is always a trade-off between reducing the computational 
time and increasing the resolution and the accuracy of the solution. Steenackers and 
Gullaume (2006) emphasized that FE models with coarse mesh girds tend to overestimate 
the stiffness of the structure and this artificial stiffness increases in turn results in the 
overestimation of natural frequencies. Also a mesh that is too coarse can result in severe 
numerical truncation errors, while a mesh that is too fine will result in excessive run 
times. The truncation errors can be determined by tools of solution verification (Hemez 
2007). Solution verification is performed by comparing model solutions to a reference 
solution. The reference solution can be obtained by various methods, one of which is to 
perform multiple runs of the same problem with successively refined meshes, then, using 
an extrapolation technique, to estimate the solution that would be obtained if the 
calculation could be carried out with “infinite” resolution, that is, Δx → 0. The two main 
tools that support solution verification activities are the development of solution error 
Ansatz models and the grid convergence index (GCI). Solution error Ansatz models 
describe the properties of asymptotic convergence of discrete solutions, while the GCI 
can be used to estimate bounds of numerical uncertainty (Roache 1998). These 
techniques apply only to FE model runs performed within the regime of asymptotic 
convergence. 

The solution error Ansatz model is an equation that describes the rate at which the 
discrete solution y(Δx), obtained by running the calculation at increasingly reduced mesh 
size Δx, converges to the reference solution yReference. The equation takes a functional 
form:    

where the symbol β is a pre-factor coefficient and “p” denotes the rate of convergence. 
The triplet (yReference; β; p) represents the unknowns of the Ansatz equation and a mesh 
refinement study with a minimum of three runs provides enough equations to estimate 
these unknowns. 

Alternatively, the rate of convergence of the numerical method can be estimated 
as  

where ΔxC, ΔxM, and ΔxF refer to the coarse-mesh, medium-mesh, and fine-mesh element 
sizes, respectively, provided that convergence is monotonic. Symbol R denotes a 
refinement ratio that is assumed, without loss of generality, to be constant, that is, R = 
ΔxC/ΔxM = ΔxM/ΔxF. When the mesh size is not uniform, the mesh size can be 
approximated as  
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where V denotes the area or volume of the computational domain, Ne is the total number 
of finite elements and D denotes the dimensionality of the problem (D = 2 for a two-
dimensional geometry and D = 3 for a three-dimensional geometry) (Hemez 2007).    

A mesh refinement study is carried out for a two-dimensional arch modeled with 
SHELL93 elements in ANSYS. Finite elements are halved in each dimension of the 
mesh, so the refinement ratio is R = 2 and the number of elements between any two 
successive runs is multiplied by a factor of four. Table 3-4 lists the resonant frequencies 
of modes 1 to 3 for the four meshes analyzed.  

When the rate of convergence is estimated using either the first group of three 
(coarse, medium, fine) runs or the second group of three (medium, fine, extra-fine) runs, 
the value of p = 2 is consistently obtained. It means that convergence is second-order as 
Δx → 0, which matches the formal order of accuracy of SHELL93 elements. (These 
elements define quadratic shape functions, hence, pTheory = 2.) 

The reference solution that these discrete solutions converge to, as Δx → 0, can be 
estimated from  

as 0.09317 Hz for the first resonant frequency. It means that, should the coarsest mesh 
size be used to run the calculation, one expects a 0.12% overestimation of the first natural 
frequency. Likewise, running the calculation at the coarsest mesh size overestimates the 
second natural frequency by 0.5% only. These levels of numerical error (due to mesh 
size) are small compared to the typical variability of measurements that results from 
vibration tests. It is concluded that, as long as a mesh size finer than Δx ≤ 30 cm is used 
to discretize the FE model, numerical error will not pose a problem. 
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Table 3-4:  Results of the Mesh Refinement of an Arch Discretized with  
SHELL93 Elements 

Coarse Mesh (16 Elements) Medium Mesh (64 Elements) 

  

Mode-1 Frequency 0.09328 Hz Mode-1 Frequency 0.09317 Hz 

Mode-2 Frequency 0.28596 Hz Mode-2 Frequency 0.28458 Hz 

Mode-3 Frequency 0.58312 Hz Mode-3 Frequency 0.57486 Hz 

Fine Mesh (256 Elements) Extra-fine Mesh (1,024 Elements) 

  

Mode-1 Frequency 0.09317 Hz Mode-1 Frequency 0.09317 Hz 

Mode-2 Frequency 0.28449 Hz Mode-2 Frequency 0.28448 Hz 

Mode-3 Frequency 0.57429 Hz Mode-3 Frequency 0.57426 Hz 
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3.8.1.4 Material Properties 

The stress-strain law of masonry is largely nonlinear. Masonry units exhibit 
inelastic behavior both in tension and compression due to irreversible softening effects. 
In tension, after the crack develops normal to the stress, softening occurs because closing 
stiffness of the crack is much less than Young’s modulus of the material. In compression, 
softening occurs due to the development of cracks parallel to stress and crushing of 
concrete.  

In common applications, masonry assemblies are anisotropic and inhomogeneous 
due to the presence and orientation of mortar joints. When analyzing the global response 
of the structure, modeling the real behavior of a masonry assembly is practically 
impossible, and thus approximations and assumptions must be made to represent the 
materials in the FE model. Boothby and Atamturktur (2007) emphasized that although it 
is by far simplest to work with linearly elastic, homogeneous, isotropic material 
properties, significant progress in the assessment of a masonry structure can be made 
using this simple form of constitutive law.  

Masonry material properties can be obtained by consulting reference documents, 
by conducting tests on extracted material coupons, by conducting tests on refabricated 
prisms of similar material, or by methods of nondestructive evaluation.  

Consulting reference material often provides limited information, as the material 
property values for historic masonry assemblies are poorly known for several reasons. 
One main difficulty is that historic structures lack a standard formulation for mortar; 
moreover, there is almost never archival documentation available about the content of the 
mortar used in the construction. Additionally, changes occur to the properties of mortar 
due to the effects of hardening with aging. Conducting material tests poses unique 
challenges because of the difficulty in keeping a mortar joint intact during the extraction 
process. The extraction of masonry prisms follows the procedure of ASTM C1587. The 
determination of the properties of the extracted mortar can be made according to ASTM 
C1324 (Boothby and Atamturktur 2007).  

Refabrication of masonry and mortar prisms in laboratory, using mortar of similar 
properties to the original mortar, allows an estimate of tensile and compressive properties 
of the homogenized assembly. Prisms are tested for compressive strength properties 
according to ASTM C1314, while stiffness properties may be determined by the 
application of ASTM E111. Flexural bond strength may be tested according to ASTM 
E518 (Boothby and Atamturktur 2007). 

Semidestructive or nondestructive evaluation techniques are also commonly 
applied to determine the material properties of masonry systems. Semidestructive flat-
jack testing can be used to determine the elastic stiffness properties or compressive 
stresses of solid masonry (ASTM C1196 and ASTM C1197). Nondestructive methods 
can also be used to determine material properties of masonry structures. These methods 
include acoustical, ultrasonic imaging, and impact-echo (Binda and Saisi 2002). 
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3.8.1.5 Boundary Conditions 

When only a subcomponent of a structure is of interest for the analysis, the 
modeled portions of the structure are supported by the portions excluded from the model. 
Hence, assumptions are needed while quantifying the physical properties of these 
supports and representing them as idealized boundary conditions. Because many physical 
responses, such as stresses, strains, and modal parameters, are highly sensitive to the 
boundary conditions, the precise definitions of boundary conditions are crucial to 
accuracy. This can be illustrated on a simple two-dimensional arch (Figure 3-18). The 
arch is modeled with 64 SHELL93 elements in ANSYS. It has a 6-m radius, 1-m depth, 
and 0.1-m thickness. 

 

The maximum vertical displacement of the arch and support reactions under 
gravity loading are observed to differ significantly when the arch is modeled with fixed 
boundary conditions restraining all the translational and rotational degrees of freedom 
versus pinned boundary conditions restraining only the translational degrees of freedom. 
The observed changes in the predictions are almost identical to changes that would be 
introduced by overestimating the Young’s modulus (or density) of the homogenized 
stone and mortar assembly by a factor of 100%. As seen, boundary conditions, if 
modeled inaccurately, can cause significant inaccuracies in the model. 

The task of defining boundary conditions is challenged because neither fixed nor 
pinned boundary conditions occur in real structures. In some situations, a fixed or pinned 
boundary condition approximation may be a close enough representation of the reality. 
Shear and moment connections in steel structures are good examples of this. In other 
situations, the connection can only be approximated realistically by a semifix (or 
semiflexible) representation. Translational or rotational springs can be used to represent 
these types of boundary conditions. The springs can be linear or nonlinear in the restraint 
they provide. Linear springs are advantageous because the only variable is the spring 
constant to define the force-displacement diagram. Nonlinear springs may be used for 

 

                                 

Figure 3-18:  Two-dimensional arch example. 
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more sophisticated analysis; however, the necessary properties of force-displacement 
diagrams are often unknown.  

3.8.1.6 Loads 

After the boundary conditions are assigned, the initial model is ready for analysis. 
The loading condition for which the response is desired is defined by what is known 
about the structure and what is expected to be learned from the FE model. Loading 
conditions take, for example, the form of static loading, abutment movement, gravity 
loading, wind loading, or time-varying seismic loading. Typically, static analysis is used 
to examine the structural behavior under self-weight or service loading conditions. 
Therefore, static analysis requires gravitational acceleration and, if present, external loads 
due to nonstructural components to be defined. Modal analysis is independent from load 
input, as it delivers the characteristics of the mass and stiffness distribution of the 
structure. Transient and harmonic analysis options are available in FE analysis to 
simulate the seismic, wind, or blast events. These analysis options require time-dependent 
loading to be defined by the user. 

3.8.2 Dynamic Experiments on Masonry Monuments 

The use of experimentally obtained modal parameters (natural frequencies, modes 
of vibration, and modal damping ratios) and their derivatives for model calibration 
necessitates an accurate identification of these structural system parameters. Both 
traditional modal analysis and operational modal analysis may be used for this purpose.  

Traditional modal analysis applies a known, controlled excitation to the structure, 
while operational modal analysis exploits unknown, natural excitation sources. 
Traditional modal analysis has the benefit of enabling the experimenter to control the 
excitation type, location and amplitude, and the preferential excitation of selected modes 
of vibration. Operational modal analysis has the benefit of eliminating the need for 
controlled excitation, therefore, it is generally more economic and less logistically 
challenging compared to traditional modal analysis. 

Atamturktur et al. (2007) applied both traditional and operational modal analysis 
techniques on a Gothic cathedral. Traditional modal testing was conducted with an 
impact hammer excitation. The operational modal testing was conducted with various 
excitation sources: carillon bells, peal bells, orchestra, organ, and ambient vibration. The 
authors stated that certain natural frequencies found by traditional modal analysis were 
omitted from the sequence of frequencies determined by the operational modal analysis. 
Also, traditional modal testing with hammer excitation was emphasized to yield cleaner 
FRFs and clearer mode shapes compared to operational modal analysis.  
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The present study is, therefore, confined to traditional modal testing. Common 
excitation devices used for traditional modal analyses are impact hammers, shakers, and 
heel-drops. Among these controlled excitation devices, the impact hammers have proven 
themselves to be portable and more feasible compared to shakers or heel-drop tests; 
therefore, further discussion will be confined to hammer testing.  

In hammer testing, both the acceleration response of the structure and the impulse 
of the hammer are recorded in time domain. These signals are then transferred into the 
frequency domain. The ratio of the system response to the hammer impulse yields the 
FRF.  As discussed in Section 3.1, through these FRFs modal parameters are extracted.  

From a practical point of view, modal analysis always remains incomplete due to 
the limitations in number of measurement points. The incompleteness of measurements, 
combined with the problems posed by spatial aliasing, force the test-analysis correlation 
to be completed with only a few lower-order modes (Denoyer and Peterson 1996 and 
Bagchi 2005). A realistic objective for the tests described herein would be to develop a 
test campaign to accurately identify the first 10–15 modes of typical masonry vaults.  

3.8.2.1 Instrumentation 

Providing an even and uniform excitation is difficult with an impact hammer due 
to the high crest factor. Also, the inherent damping in masonry structures tends to absorb 
the localized energy introduced by the impact force before it propagates to distant 
accelerometer locations. The energy level must be adjusted to excite all measurement 
locations sufficiently above the ambient noise level without inducing nonlinearity in the 
system. The more the structure has cracks and separations, the more it will be prone to 
problems due to nonlinearity. With the impact hammers, the softest tip, which offers the 
lowest frequency range, must be used to keep the undesirably high frequencies from 
filling the lower-frequency spectra. 

The usual driving-point response to a typical impact blow is initially limited to 
1.5–3.0% g and decays rapidly to 0.02–0.05% g, which is the typical level of ambient 
vibration. An accelerometer sensitivity of 1 V/g or greater is suitable (Hanagan et al. 
2003). If the vibration response is measured perpendicular to the curved vault surface, 
significant uncertainties are introduced when mounting the transducers on rough masonry 
texture and in decomposition of the collected response into three coordinates. Given the 
double curvature of the vault surface, however, vertical or horizontal mounting of 
transducers requires some form of a mounting base.  

The placement of the exciter must be decided according to the anticipated mode 
shapes. In general, the complex geometry of the vaults yields clustered modes that, near 
the point of excitation, are excited in phase and amplify the motion while they tend to 
neutralize each other at other points. By analyzing multiple datasets due to excitations at 
different locations, it may be possible to isolate these repeated or closely spaced modes. 
Moreover, some particular modes, hidden when the excitation point coincides with the 
nodal lines, may be acquired when the impact force is applied elsewhere. Experience 
gained through field tests conducted on masonry vaults reveals four optimum excitation 
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locations for acquiring comprehensive definition of the vaulted system, even when the 
number of available transducers is limited. The first point, the crown (Point 1 in Figure 3-
19), primarily excites the modes that are made up of symmetric vertical motion. The rest 
are on the diagonal (Point 8 in Figure 3-19), transverse (Point 12 in Figure 3-19), and 
longitudinal ribs (Point 3 in Figure 3-19), which excite the bending modes. System 
identification from the FRFs obtained by exciting these locations would also be easier, as 
each impact location activates only a select few of the modes. 

 

The primary modes of the typical vaulted systems, as illustrated in Figure 3-20, 
are rather easy to detect. However, the higher-order modes become much more 
complicated. Even insignificant deviations in the excitation location or angle may 
stimulate different modes and degrade the quality of the mode-shape definitions.  

 

 

Figure 3-19:  Test grid adapted during the tests on Washington National Cathedral, DC. 
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3.8.2.2 Data Acquisition  

The upper limit of the frequency bandwidth of interest is provided by the number 
of modes desired to be identified and their frequency range. Atamturktur et al. (2009a) 
reported the modal test results from five historic Gothic churches of varying architectural 
style, age, and geographic location. The results of these tests showed that, for exercises 
intending to extract up to the first 10–15 modes of vaulted sections of Gothic structures, a 
50 Hz usable frequency bandwidth is sufficient.  

Masonry systems tend to have high damping, caused by the friction forces 
between the stone units and opening and closing of the cracks. As the structural response 
dies out rather rapidly due to high damping, it may be tempting to acquire the 
measurements in a short time window. However, the clustered modes of the vaults 
necessitate a reasonably fine-frequency resolution (Δf <0.2 Hz), which in turn 
necessitates a relatively long data-capture time (T > 5 seconds). Because Fourier 
transform from time domain to frequency domain occurs at discrete frequencies inversely 
proportional to total data capture time (T), there is always a trade-off between the 
frequency resolution and data capture time. 

Exponential window functions, commonly used to avoid leakage problems or to 
eliminate the environmental noise, have been found undesirable for modal testing of 

 

 

Figure 3-20:  The primary modes of vertical vibration in complex vaulted systems. 
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masonry structures since they introduce artificial damping to the measurements and 
potentially cause low-amplitude modes to be dominated by high-amplitude modes 
(Avitabile 2001). 

3.9 Concluding Remarks 

In this chapter, the scope of model calibration is expanded from one that ignores 
the presence of uncertainty to one that relies on the definition and propagation of 
parameter uncertainty. Calibration in the Bayesian framework is not an optimization 
problem, which minimizes a cost function representing a form of disagreement between 
the test and analysis. Instead, the procedure discussed herein is a process of iterative 
characterization of probability distributions of the parameters. As the iterative calibration 
takes place, uncertainty in the calibration parameter distributions will be reduced, and in 
turn the uncertainty in the model output is also reduced. The need to tackle the problem 
of calibration probabilistically is driven by our inability to define the model parameters 
and conduct experiments in a deterministic way. 

The tasks discussed in this chapter are neither inexpensive nor rapid enough to be 
immediately implemented in routine civil engineering. However, they may be developed 
into a procedure useful in management of complex structures. 
 



Chapter 4 
 

WASHINGTON NATIONAL CATHEDRAL 

All models are wrong; some are still useful. 

George Box  

4.1 Introduction 

The vaults of Gothic churches are among the most vulnerable elements of historic 
structures and certainly among the most challenging structural components to analyze. 
Gothic churches are built with empirical techniques balancing the gravitational forces 
exerted by rib vaults with the nave walls, buttresses, and piers in a way that is not yet 
fully understood. Traditional methods, based on the states of stress or strain, are not 
generally applicable to the three-dimensional force-balance problem of rib vault analysis. 
As a result, three-dimensional tools of finite element (FE) analysis have gained 
popularity in the analysis of these structures. This dissertation targets complex vaulted 
systems, particularly for their static, quasistatic, and dynamic analysis through the FE 
method. 

In FE analysis, it is advantageous to model only a portion of the structure, 
typically the portions where the structural problems are present, instead of modeling the 
entire church. Subcomponent modeling not only reduces the computational time of the 
FE model, but also significantly reduces the necessary preliminary work; for instance, 
compare the geometric survey and inspection of an entire church versus a small portion 
of the church. Despite their major advantages, subcomponent models are very difficult to 
build, because they require accurate identification of force transfer from the 
subcomponent FE model to the adjacent but unmodeled structural components. 

This chapter illustrates the application of stochastic model calibration, introduced 
in Chapter 3, to the subcomponent FE model of Washington National Cathedral choir 
vaults. The poorly known parameters of the FE model, such as the selected material 
properties of masonry assembly and spring constants that represent the support 
components of the subcomponent model, will be calibrated based on experimental 
measurements, so that the calibrated FE model reproduces the physical reality with 
increased fidelity. 
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4.2 Description of the Structural System 

The Washington National Cathedral was designed as authentic Gothic Revival 
architecture in the early twentieth century and construction began in 1903. The 
construction technique of the Cathedral closely followed medieval techniques by using 
quarried stone without reinforcement. Similar to medieval examples, the construction was 
interrupted several times over a century and the Cathedral was eventually completed in 
1990 (Washington National Cathedral 2004).  

The Cathedral is vaulted with even-level crown, fan vaults elevated above the 
stone piers. This study focuses on one of the nominally identical fan vaults in the choir. 
The vaults are composed of stone ribs and webbing supported by stone piers, walls, and 
buttresses (Figure 4-1). The plan view of the Cathedral indicating the location of the test 
vault of interest is given in Figure 4-2, while the section view of the vaults is given in 
Figure 4-3. The geometric dimensions of the vaults are illustrated in Figure 4-4. 

 

Because the focus of this dissertation is directed towards stochastic calibration 
methods, working on a complex and uncertain civil engineering system is only natural. 
The reasons why the Cathedral is selected for the present study are threefold. The first 
reason is that the author had easy and unlimited access to the structure for field 
investigations and dynamic testing. The second reason is that the Cathedral, being a 
relatively young structure, provided an example of medieval style construction without 
severe complication of accumulated damage and undocumented prior repairs. This aspect 
is certainly responsible for the good quality correlation obtained between test and 
analysis results. The third reason is the fact that full geometric drawings of the Cathedral 

 

            

Figure 4-1:  The nave of the National Cathedral: a) exterior view, b) interior view. 

(a) (b) 
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were available to the author. This aspect increased the fidelity of the FE model geometry 
to the existing structure. 

 
 

 

Figure 4-2:  Plan view of Washington National Cathedral. 

 
 

 

Springing level 

Buttress level 

Figure 4-3:  Section view of Washington National Cathedral. 

The Vault  
of Interest 

Nominally Identical 
Adjacent vaults  



72 

 

4.3 Finite Element Model Development and Parameterization 

The first objective is to create an FE model of the masonry vaults. A 
subcomponent FE model that includes only the structural components above the 
springing level is built. Because the Washington National Cathedral is a recent 
construction, a set of construction drawings is available, and the geometry of the vaults 
used in this chapter is primarily derived from these documents. The structural 
components, moldings, and decorations are replaced with simpler rectangular forms 
respecting the cross-sectional area and moment of inertia. Information about any potential 
factor that may induce nonsymmetric behavior, whether due to prior damage or 
construction variations, is difficult to obtain and to incorporate in the FE model. 
Therefore, the model geometry is idealized and the model is built based on a double 
symmetry assumption (see Figure 4-4). This aspect of the FE model will be further 
investigated during test-analysis correlation.  

The FE model is built based on the a priori assumption of linearly elastic, 
isotropic constitutive behavior. By comparing the predictions of the FE model with 
measurements, the extent to which this assumption is acceptable will be investigated.  

Table 4-1 presents the expected ranges for material properties of the vaults. These 
upper and lower limits for limestone are tabulated according to published tests. Erdogmus 
(2004) completed a test on a spare limestone specimen obtained from Washington 
National Cathedral and homogenized the Young’s modulus of this specimen with 
expected values of type O mortar. The Young’s modulus range for the limestone mortar 
assembly obtained in Erdogmus (2004) is rather large, because it not only represents the 
variability of the properties of both limestone and type O mortar but also the variability 
of the thickness of the mortar joints.  

 

 

Table 4-1:  Limestone, Brick, and Concrete Material Properties Expected Range 

Component 
Material 
Type 

Modulus of Elasticity (E) Density (d)

Low High Nominal 

Walls, 
Columns, 
Vault ribs, 
& webbing 

Indiana 
Limestone 
and Type O 
Mortar 

8 × 109 N/m2 * 21 × 109 N/m2 * 2100 kg/m3 

Fill Concrete 21.5 × 109 N/m2 24.8 × 109 N/m2 2100 kg/m3 

Walls Brick 7.5 × 109 N/m2 11 × 109 N/m2 2100 kg/m3 
*These values neglect the presence of voids and cracks. Therefore, lower values may be
observed in existing structures.  
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Figure 4-4:  Geometric dimensions of the vaults. 
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The upper and lower limits for the material properties of concrete had to be 
estimated for this study, since no prior study in literature addressed the issue and 
specimens for laboratory testing were unavailable. The Young’s modulus of the fill is 
estimated based on a concrete compressive strength of 3000–4000 psi. The upper and 
lower limits for the material properties of brick are obtained from the extensive manual of 
the National Research Council (1982).  

Figure 4-5 illustrates the construction of the Cathedral vaults, where the limestone 
ribs and vault webbing as well as the brick nave walls can be seen. Figure 4-6 presents 
the element and material types used in the development of the model. Although the ribs, 
piers, and webbing are all built of limestone, their material properties are evaluated 
independently, and parameterized as θ1, θ4, and θ5, respectively. This is done to address 
three issues: (1) the potential use of limestone from different quarries for different 
structural components, (2) the difference in mortar joint thickness, and (3) the differences 
in material behavior between highly and lightly loaded members due to load-dependent 
material behavior of stone units. The concrete fill and the brick upper nave walls are 
parameterized as θ2 and θ3, respectively (Figure 4-6). 
 

 

 

 

Figure 4-5: The construction of the Cathedral (Cathedral Archives, with permission). 
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Compared to the rest of the structure, the components immediately adjacent to the 
vaults, such as upper portions of nave walls and piers, as well as the concrete fill, have a 
greater influence on the structural behavior of the vaults. To simplify the FE model, 
components, which are not in immediate contact with the vaults, are replaced by 
boundary restraints. The effects of the buttressing system and of lower nave piers are 
replaced with linear springs exerting restraints on horizontal translation (Figure 4-7). 
However, a priori knowledge on the stiffness characteristics of these two types of linear 
springs is highly uncertain, therefore, these characteristics are likely candidates for 
calibration. To reduce the size of the problem, the pier-to-pier variations between four 
piers or buttress-to-buttress variation between four buttresses are ignored, and the springs 
for all four quadrants of the vault are assumed to be perfectly symmetrical. 

Figure 4-7 presents boundary conditions definition in the full bay model. The 
vertical movement of the pier bottoms is expected to be negligible compared to their 
horizontal movement. Therefore, at the springing level, the bottoms of the piers are fixed 
in vertical translation (z direction in Figure 4-7). Similarly, the deformation along the 
longitudinal direction of the cathedral is also expected to be minimal because the vault of 
interest is supported by two nominally identical vaults on two sides. Therefore, horizontal 
translation (x direction in Figure 4-7) at the pier bottoms is restrained. For the horizontal 
translation in the transverse direction (y direction in Figure 4-7), the bottoms of the piers 
are restrained by two linear springs, of which the constant is kept as a variable to be 
calibrated (θ6 in Figure 4-7). The horizontal restraining effect of a second-level buttress 
is represented by a single linear spring, with an independent spring constant. Aside from  

 

Figure 4-6:  Full bay model of Washington National Cathedral: element and material
types. 
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Figure 4-7:  Full bay model of Washington National Cathedral, boundary conditions. 
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the factors previously discussed for masonry connections such as material properties, 
workmanship, and existing cracks, the horizontal restraint of the buttresses is dependent 
on the geometric form of the buttresses and the soil condition at the support of the 
buttresses. As a result, this horizontal restraint is highly uncertain, and thus the stiffness 
constant of the buttress level springs are parameterized to be calibrated (θ7). Both faces 
of the vaults, along the longitudinal direction of the Cathedral, are restrained in x 
direction to represent the restraint from the adjacent nominally identical vaults (Figure 4-
7).  

4.4 Dynamic Experiments 

Physical evidence for the FE model calibration was obtained in the form of 
acceleration response of the vaults due to impact hammer excitation (Figure 4-8). The 
impact hammer type was selected according to the necessary impact force required to 
excite the vaults sufficiently above the ambient vibration level and to obtain a high 
signal-to-noise ratio. A 5.5 kg PCB model 086D20 instrumented sledge-hammer, capable 
of applying a peak force of 22 kN, was found to be suitable for these purposes. During 
the tests, the typical excitation amplitude applied to Washington National Cathedral choir 
vaults was about 2.5 kN. 

 

Model 393A03 uniaxial seismic accelerometers, manufactured by PCB 
Piezotronics, Inc., with a frequency range of 0.5–2000 Hz and a sensitivity of 1 volt/g 

 

Figure 4-8:  Vibration testing equipment in action. 

IMPACT 
HAMMER 

ACCELEROMETER 
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were used. The accelerometer layout on the choir vault can be seen in Figure 4-9. Point 1 
(crown), point 3 (longitudinal rib), point 8 (diagonal rib), and point 12 (transverse rib) 
were selected as the excitation locations. These locations were selected to excite the 
maximum number of fundamental modes of the vaults. 

 

The data were processed and recorded by a Dactron data acquisition system, 
manufactured by LDS Test and Measurement, Ltd. The record length and sampling 
frequency were adjusted to 1024 and 187.5 Hz, respectively, so that the response of the 
vaults attenuated within the time frame of 5.4 seconds. The response of the vaults was 
fully captured in a single time frame and the leakage of higher-frequency energies over 
the lower frequencies was prevented. A typical time domain measurement of hammer 
impulse and acceleration response can be seen in Figure 4-10. The variables of signal-
processing equipment are given in Table 4-2. 
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 Figure 4-9:  The 27 measurement points at the bosses where ribs intersect and at every
third point of the diagonal and transverse ribs. 
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The frequency response functions (FRFs), previously defined in Section 3.1, of 
five repeated tests were averaged to reduce the degrading effects of ambient vibration and 
to quantify the quality of the measurements in the form of coherence functions.  

The general assumption of modal analysis is that the system is linear, stationary, 
and time-invariant. The structure of interest here can safely be considered to exhibit a 
stationary response. The time-varying effects are primarily caused by environmental 
variations, such as temperature and moisture. These effects are minimal for the duration 

 

 

(a) Impact Hammer excitation.  (b) Response of the Vault.  
 

 Figure 4-10:  Typical response history measurements: a) hammer impact, b) vibration 
response. 

 

Table 4-2:  The Variables of the Digital Signal-Processing Equipment 

Parameter description Parameter value 

Data acquisition time 5.46 s 

Frequency resolution 0.18 Hz 

Frequency bandwidth 93.75 Hz 

Frequency range of interest 1–36 Hz 

Sampling frequency resolution 187.5 Hz 

Total number of samples 1024 

Number of frequency lines 450 

Number of averages 5 

Window function Boxcar (no window) 
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of the experiment. However, the linearity assumption remains to be checked through 
reciprocity checks and linearity checks.  

Because a linear system must obey the laws of reciprocity, the deviation from the 
reciprocal behavior can be used to assess the validity of the linearity assumption. Figure 
4-11 demonstrates the comparison of response at Point 12 due to an excitation at Point 1, 
with the response at Point 1 due to an excitation at Point 12. The area of the disagreement 
between the two FRFs is calculated to be only 11.3% of the total area under the average 
of the two FRFs over the entire frequency range and 7% over the frequency range up to 
40 Hz. Reciprocity checks, when repeated at other measurement locations, yielded 
similar results. It must be noted that these discrepancies are also due to test-to-test 
variability from hammer excitation, accelerometer placement, ambient vibration, and 
equipment noise. Therefore, it is evident that discrepancy due to reciprocity is even less 
than 7%.  

 

Determining whether the deviations in the reciprocity check is acceptable is 
another aspect where judgment is necessary. Considering the inherent variations in the 
testing as well as in the tested structure, obtained correlation between FRF(1,12) and 
FRF(12,1) is deemed to be acceptable. Also, the peaks of these two FRFs remain nearly 
unchanged, therefore the modal parameters identification will only be very minimally 
affected by the presence of the deviations.  

The main problem associated with hammer excitation is the inability to maintain a 
constant excitation across averaged datasets. This requires exciting at constant force and 
a constant angle with the vibration surface. In theory, a linear system has a unique FRF at 
varying excitation levels; therefore, in theory, variations in hammer excitation should not 

 

Figure 4-11:  The reciprocity check between points 12 and 1. 
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pose deviations between FRFs provided that the structure exhibits linearity. Thus, 
deviation between the FRFs obtained at varying excitation levels can be used to confirm 
the linear response of the structure for the excitation levels of interest.  

The typical excitation during the test varied between 500 lbs and 700 lbs. Figure 
4-12 portrays the frequency domain response measurements as well as the coherence 
function for these two excitation levels. The area of the disagreement between the two 
FRFs is calculated to be only 5.5% of the total area under the average of the two FRFs 
over the entire frequency range and 4.5% over the frequency range up to 40 Hz. 

 
 

 

Figure 4-12:  The linearity check with varying input levels: a) the driving point 
magnitude FRF for at the crown of the vault, b) the corresponding coherence function. 

(a) 

(b) 
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4.5 Selection of Comparative Features 

Time-history measurements are highly sensitive to ambient vibration and 
instrumentation noise. As a result, comparing two time histories with each other is only 
meaningful when based on an averaging scheme over a long duration (see statistical 
moments for instance, Hemez 2007). Also, comparing the time-history response 
measured from the vaults against the simulated time-history response would not be 
meaningful unless the damping is included in the FE model. 

Because of the complications of using raw time-history measurements, modal 
parameters, introduced in Chapter 3, are selected as comparative features. Modal 
parameters reduce raw acceleration time-history measurements into lower dimensional 
information about the structure and make probabilistic test-analysis correlation 
computationally manageable. Also, modal parameters are less sensitive to test-to-test 
variability and ambient vibrations compared to a time-history measurement or an FRF. 
Therefore, the use of modal parameters automatically reduces the degrading effects of 
extraneous vibrations. Modal parameters are especially suitable when used in studies on 
complex vaulted systems, because mode shape animations obtained from the test and 
analysis offer a convenient and fast visual comparison. Finally, modal parameters have 
been successfully applied to masonry structures, as discussed in Chapter 2. These earlier 
successful studies increase confidence in using modal parameters in the present study.  

From the 18 sets of raw acceleration time-history measurements collected from 
the choir vaults of Washington National Cathedral by exciting four different excitation 
points, the mean and standard deviation of the first eight out of nine modal parameters 
were extracted by eigensystem realization algorithm (ERA) (Juang and Pappa 1985 and 
1986). However, the first mode, which is a transverse bending mode, is consistently 
missed by ERA method. This mode, however, is obtained by both Quadrature Response 
Analysis methods and ME’Scope software; therefore, information about its standard 
deviation is derived from the coherence function (See Section 5.2 for the related 
discussion). The mean values and standard deviations of natural frequencies for the first 
nine modes are presented in Table 4-3, while the mode shape of the second and third 
modes are illustrated in Figure 4-13.  

The mode shape vectors include the relative displacement of 27 measurement 
points and thus they have a higher dimensionality than natural frequencies. However, 
identification of mode shapes from experimental measurements, especially in this study, 
is less accurate compared to the identification of natural frequencies. High damping 
inherent in masonry systems makes the mode shapes complex-valued and the 
normalization of these complex modes always introduces some errors. Also, at the nodal 
lines of a mode, where the theoretical displacement of that node is predicted as zero by 
the FE model, measured displacement may be nonzero, whether due to ambient vibration, 
imperfect mounting of the accelerometer, or the transverse sensitivity of accelerometers. 
An attempt to force an FE model to reproduce these imprecise mode shapes would only 
degrade the success of the calibration. It is more reliable to limit the comparative features 
to the natural frequencies and exploit the general characteristics of mode shapes in test-
analysis correlation.  
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Figure 4-13:  The mode shape vectors for modes 2 and 3 superimposed on the vault 
geometry. 

Mode 3 

Mode 2 
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4.6 Selection of Calibration Parameters 

In the development of the FE model, a total of seven input parameters are 
evaluated (Table 4-4). It is important to mention that for the material properties of three 
structural components (ribs, webbing, and piers), the Young’s modulus are defined as 
variables, while densities of these structural components are not included in the variable 
list. This is because of the known correlation between the stiffness and mass of a 
structure. As discussed in Chapter 3, for a single-degree-of-freedom system increasing 
the stiffness twice would have the same effect on the modal parameters as reducing the 
mass by half. Such correlations may cause the calibration routine to converge to a 
numerically viable but physically incorrect solution. Therefore, the density of the 
materials is kept at their nominal values as provided in Table 4-1. Poisson’s ratio is 
known to have a minimal effect on the dynamic response of these structures (Atamturktur 
and Boothby 2007), and thus a constant value of 0.2 is assigned for all elements.  

Among these seven input parameters, only those to which the modal parameters 
are sensitive can be calibrated when modal parameters are used as comparative features. 
Therefore, the influence of each of the seven input parameters on the natural frequencies 
of the modeled substructure is investigated through an effect screening analysis (Figure 
4-14). Often, selection and elimination of parameters according to analysis of variance 
require judgment-based decisions. 

 

Table 4-3:  Mean and Variance of Natural Frequencies for Excitation  
at the Crown of the Vault 

Mode 1 2 3 4 5 6 7 8 9 

Mean (Hz) 4.94* 9.60 12.3 13.9 14.5 15.9 17.4 18.6 23.1

Std (Hz) 0.4 0.3 0.25 0.6 0.7 0.7 0.49 0.86 0.64

Coefficient 
of Variation 

0.08  0.03  0.02  0.04  0.05  0.04  0.03  0.05  0.03 

*The identification of this mode is completed with ME’Scope software. 
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In Figure 4-14, the main-effect screening with analysis of variance revealed θ1, 
Young’s modulus of limestone at ribs, and θ7, stiffness constant of the springs replacing 
the buttresses, as the most influential parameters on the first five natural frequencies. This 
graph also indicates that the Young’s modulus of concrete fill and the brick nave walls 
were less influential on the first five natural frequencies of the vaults. As a result, these 
two parameters may not be efficiently calibrated with respect to natural frequencies. If 
higher-order modal information was available, perhaps it would have been possible to 
calibrate these two parameters as well. Concrete fill and brick nave walls were taken off 

Table 4-4: Input Parameters of the FE Model 

Parameter  Description Material 

(θ1) Young’s modulus of ribs  Limestone and Mortar 

(θ2) Young’s modulus of fill Concrete 

(θ3) Young’s modulus of walls Brick 

(θ4) Young’s modulus of piers Limestone and Mortar 

(θ5) Young’s modulus of webbing Limestone and Mortar 

(θ6) Stiffness constants of spring Type 1  - 

(θ7) Stiffness constants of spring Type 2 - 
 
 

Figure 4-14: Sensitivity analysis applied to the seven parameters of the FE model. 
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the calibration parameter list and kept constant at their estimated mean values. This is an 
example of the limitations an analyst faces due to the scarcity of experimental 
information. Eliminating the relatively insensitive parameters from further investigation 
will later reduce the computational cost during iterations of calibration. Eliminating the 
relatively insensitive parameters also helps to avoid the ill-conditioning during 
calibration.  

Another point that requires judgment is in determination of the calibration 
parameter upper and lower bounds within which the algorithm will perform random 
walks. The material parameter ranges provided in Table 4-1 are too large for calibration 
purposes, and narrower ranges must be defined by a manual but systematic process. 
However, first the ranges of boundary conditions must be determined. 

Regarding the boundary conditions, the only study that has adapted linear springs 
to define an uncertain connectivity between two masonry members was by Gentile and 
Saisi (2007). In their study, linear springs are added at the masonry tower wall to account 
for the adjacent masonry building. Gentile and Saisi, without providing the details, 
mention using the broad comparison of FE solutions with the experimental results to 
determine the stiffness constants. In this dissertation, this approach is implemented in a 
systematic manner.  

The spring constants depend on the stiffness of the subcomponent FE model as 
well as the number and the distribution of springs. However, determination of the upper 
and lower limits for spring constants is not difficult, as the behavior of the modeled 
structure is asymptotic at the very low and very high stiffness constant values. Figure 4-
15 represents the first natural frequency of the Washington National Cathedral vaults 
when the constant of the springs at the buttress level are varied between free condition  
(k = 0 N/m) to almost fully rigid condition (k = 1010 N/m) while every other parameter 
was kept at their nominal value. As is evident in Figure 4-15, for varying values of θ6, 
the first natural frequency varies between 3.85 Hz and 4.85 Hz. There is a smaller range 
within which the structure response exhibits semiflexible connection. At stiffness values 
lower than approximately 106, the structure responds as if it has a free boundary 
condition at the buttresses, while at stiffness values higher than approximately 108, the 
structure responds as if it has fixed boundary conditions at the buttresses. It is between 
those limits the spring constant provides the desired semiflexible restraint. 

As emphasized in Chapter 3, as the FE model parameters are perturbed, the 
sequence of predicted modes may change. In other words, the modes may swap order 
when the FE model is executed multiple times at sampled parameter values. This issue 
creates significant problems during effect screening and calibration, and therefore 
necessitates a rigorous mode-tracking procedure. However, this same issue becomes 
instrumental, when defining the lower and upper limits of the calibration parameters. 
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For instance, when the constant of the springs at the buttress level of Washington 
National Cathedral is varied between a free condition (k = 0 N/m) and an almost fully 
rigid condition (k = 1010 N/m) and every other parameter is kept at their nominal value, 
the predicted mode sequence is altered. Figure 4-16 presents this mode swap for the 
fourth and fifth modes. This particular parameter is observed to yield the correct mode 
shape sequence only when the parameter value is lower than k = 5 × 107 N/m. 

The parameter values at which the mode swap occurs can be conveniently used to 
narrow the parameter bounds before initiating the automated calibration process. After 
completing the similar systematic exercise for each calibration parameter, it is observed 
that the correct mode shape order for the first five modes is only obtained when the ratios 
between Young’s modulus values of the limestone and the spring constants fall within a 
certain range. It is also observed that when the values of these parameters exceed the 
maximum and minimum ranges given in Table 4-5, one of the first five modes is missed 
or the modes are predicted out of sequence by the FE model. Therefore, for each 
parameter, two boundary values are assigned within which the true value is believed to be 
present based on the mode shape correlation. 

 

 

Figure 4-15: The first natural frequency versus buttress level spring constant. 
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4.7 Test-Analysis Correlation 

As discussed in Section 4.3, the acceleration response of the vault was measured 
in the vertical direction. However, the hammer impact force also excited modes with 
predominant horizontal movement and less dominant vertical movement. As long as the 

 

Figure 4-16: The mode swap as a single calibration parameter is perturbed. 

Table 4-5:  The Parameter Ranges for Calibration Parameters 

Parameter Description  
Minimum 
Bound 

Maximum 
Bound 

Type of 
Distribution 

 (θ1) Young’s modulus of ribs 2 × 109 N/m2  8 × 109 N/m2 Uniform 

 (θ4) Young’s modulus of piers 6 × 109 N/m2 14 × 109 N/m2 Uniform 

 (θ5) 
Young’s modulus of 
webbing 

1 × 109 N/m2 5 × 109 N/m2 Uniform 

 (θ6) 
Stiffness constants of spring 
at the springing level 

2 × 107 N/m 8 × 107 N/m Uniform 

 (θ7) 
Stiffness constants of spring 
at the buttress level 

5 × 107 N/m 15 × 107 N/m Uniform 
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vertical acceleration of the vault is detectible by the accelerometers, the vertical 
components of these modes can still be identified and used in calibration.  

Another common problem during mode-shape pairing is aliasing when higher-
order mode shapes appear as lower-order mode shapes. Aliasing occurs as a result of the 
spatial incompleteness of the experimentation and makes the pairing of higher-order 
modes difficult. After the fifth mode, aliasing was observed to pose problems as higher-
order modes started to replicate the first five modes. To have credible mode pairing, the 
maximum number of paired modes is limited to five.  

The FE model has more than 200,000 degrees of freedom in all three coordinate 
directions, while the experiments have 27 degrees of freedom, all in the vertical direction. 
Because of this mismatch, the FE model degrees of freedom must be truncated down to 
those that are measured during the tests. The FE model mode shapes are constructed by 
capturing the relative deformation of the FE nodes located nearest to the coordinates of 
measurement points. However, it was practically impossible to perfectly line up the 
coordinates of the measured points with the FE model nodes; therefore, this mode 
truncation will partially degrade the mode shape correlation.  

The easiest way of comparing the test and analysis mode shapes is overlaying the 
normalized mode shape vectors. In Figure 4-17, relative displacements of 27 
measurement locations are plotted against the node numbers of these measurement 
locations. Although Figure 4-17 provides a convenient means of comparing the measured 
and calculated mode shapes, they do not provide spatial information about the particular 
mode shape. In Figure 4-17 the FE predictions of the first five modes are also given, in 
order to provide the typical deformation characteristics of the vaults.  

In Figure 4-17, experimentally obtained mode shapes are indicated in a solid line. 
Mode shapes predicted by all 128 FE simulations are indicated in stars. These 128 
simulations are obtained by a two-level full-factorial design. The spread of the stars thus 
indicates the variability in the FE solutions, as a result of the forward propagation of 
uncertainty. The mean value of the 128 simulation solutions at each node is indicated by 
the dotted line. According to this principle, the first five experimental mode shapes are 
paired with the calculated modes and are illustrated in Figure 4-17. The observable 
deviations between the measurements and FE solutions are attributed to the difficulties in 
vertical mounting of accelerometers on curved surfaces, in precise matching the 
coordinates of measurement and calculation nodes, in application of a purely vertical 
excitation force during tests combined with the transverse sensitivity of accelerometers, 
and in system identification of clustered modes. 

Also, accumulated damage in the structure as it stands today may induce 
unsymmetrical mode shapes. However, even when irregularities in the structure are 
known through inspection, their incorporation in the FE model is quite challenging. 
Modeling strategies for irregularities in a masonry structure—e.g., internal voids in the 
walls and piers, missing stone units, existing cracks and hinges, and biological growth—
are not available in literature. However, even to investigate the suitability of alternative 
modeling strategies, a reliable baseline FE model is the necessary first step. Illustration of 
the development of this baseline FE model is the goal of the present dissertation. 
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Geometric variability of the vault due to construction imperfections may also 
result in experimental mode shapes being unsymmetrical. On the other hand, the FE 
model is built based on double symmetry assumption and would only yield symmetric 
mode shapes. To investigate how sensitive mode shape vectors are to a change in a 
geometry property, the model is executed with 10% reduced web thickness. The mode 
shapes and natural frequency variations are observed to be no more than 3% for the first 
five modes.  

 

 

 

 

(a) Mode 1 correlation. 

Mode 1 elevation. 

Mode 1 plan view. 

(b) Mode 2 correlation 

Mode 2 elevation. 

Mode 2 plan view. 

Figure 4-17:  Initial mode-shape pairing of the first five modes. 
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(c) Mode 3 correlation 

Mode 3 elevation. 

Mode 3 plan view. 

(d) Mode 4 Correlation 

Mode 4 elevation. 

Mode 4 plan view. 

Figure 4-17:  Initial mode-shape pairing of the first five modes (continued). 
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Considering the above-mentioned complications, test-analysis correlation in this 
study is expected to be of lesser quality compared to those typically obtained for 
laboratory specimens or simpler structural systems. This was exemplified when Ramos 
(2007), while obtaining close agreement between the test and analysis mode shapes for a 
laboratory arch specimen and for a standalone masonry tower, had significant difficulties 
in his test-analysis correlation of a historic vaulted structure. Ramos’s attempts at mode 
correlation when applied to a historic basilica remained incomplete. Considering the 
relatively limited success of earlier studies on vaulted masonry structures, correlating the 
first five modes is considered satisfactory for our purposes. The mode shape pairing for 
the first five modes is given in Table 4-6. 

 

 

 

 

(a) Mode 5 Correlation 

Mode 5 elevation. 

Mode 5 plan view. 

Figure 4-17:  Initial mode-shape pairing of the first five modes (continued). 
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From the start, it is evident that this FE model configuration will fail to identically 
match the second experimental natural frequency considering two standard deviations. 
However, the goal of Bayesian calibration is not to reach an FE model which can 
identically match the experiments. Instead, the goal is to obtain an FE model that can 
statistically correlate with the physical evidence. 

4.8 Characterization of Modeling Parameters 

Once the measured and calculated modes are paired, the imprecisely known FE 
model parameters, three material properties (θ1, θ4, and θ5) and two spring constants (θ6 
and θ7), which are identified as influential on the dynamic characteristics of the vaults, 
can be calibrated. Experimental information from the first five modes is available in the 
form of natural frequencies and the corresponding mode shape vectors. Due to the 
challenges in obtaining precise mode shape vectors, mode shapes are only used for mode 
pairing while natural frequencies are used as comparative features during calibration.  

Assuming that the calibration parameters are uncorrelated and independent, 
uniform probability is assigned to all five calibration parameters; that is, every point 
within the defined range of a parameter has an equal probability of being sampled. There 
are two reasons for this approach. The first one is that information about the a priori 
probability distributions of calibration parameters is not available, and in fact this lack of 
knowledge is the primary motivation of the calibration exercise. The second reason is that 
assigning equal probability, from a computational point of view, is safer than making an 
unwarranted assumption about the a priori distribution of these parameters. This is 
because assigning an erroneous prior distribution may force the Markov Chain Monte 
Carlo (MCMC) random walks to focus in a certain region in the parameter domain, 
leaving other regions insufficiently explored.  

Within their predefined range, parameters are sampled with Latin-hypercube 
maxi-min design (Montgomery 1997). To train a surrogate model reliably, the rule of 

Table 4-6:  The Experimental Modes Matched with the Initial FE Modes 

Experiment Finite Element Analysis 

Mode Frequency (mean ± 1 std) Mode Frequency (min and max values) 

1 4.94 Hz ± 0.40  Hz 1 3.7  Hz 5.2  Hz 

2 9.61 Hz ± 0.30  Hz 2 6.3  Hz 8.9  Hz 

3 12.3 Hz ± 0.25  Hz 3 9.7  Hz 13.8  Hz 

4 13.9 Hz ± 0.60  Hz 4 10.1 Hz 14.3  Hz 

5 14.5 Hz ± 0.70  Hz 5 10.3 Hz 14.5  Hz 
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thumb is generating 10 times more computer experiments than the number of calibration 
experiments (Williams 2008a). Therefore, a total of 50 samples are generated from 
uncorrelated, uniformly distributed calibration parameters and accordingly the FE model 
is run 50 times, at each of the sampled parameter sets. Next, the Gaussian process model 
is trained to represent the mathematical relationship between 50 sets of calibration 
parameters and 50 sets of output response.    

Random walks of MCMC consume 100 iterations at seven step sizes to determine 
which step size is most suitable for the given problem. This means that the first 700 
points visited (and accepted) are not included in the posterior distributions. This aspect of 
the algorithm also helps to avoid potential bias that may occur due to the starting point of 
the random walks.  

Figure 4-18 illustrates the posterior distribution functions for the calibration 
parameters. In Figure 4-18, θ1 denotes the Young’s modulus for limestone of the ribs; θ4 
denotes the Young’s modulus for limestone of the piers; θ5 denotes the Young’s modulus 
for limestone of vault webbing; θ6 denotes the spring constant for the pier tops; θ7 
denotes the spring constant for the flying buttresses.  

 

The posterior distribution function is estimated by 500,000 MCMC-accepted 
random walks in a five-dimensional parameter domain. Figure 4-18 shows marginal 
probabilities of each parameter on the main diagonal and the bivariate distributions in the 

 

Figure 4-18:  The bivariate joint distribution of the five calibration parameters. 
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off-diagonal boxes (θp; θq). As suggested by Wilson and Boyack (1998) and reiterated 
by Trucano et al. (2006), a proper means of representing the calibrated model should take 
the form of a best estimate with uncertainty bounds. Accordingly, Table 4-7 lists the 
mean and standard deviation inferred from the posterior distributions of Figure 4-18. 
Readers are warned against taking the values in Table 4-7 as true values for the five 
calibration parameters, but instead encouraged to consider Table 4-7 as an improvement 
in the existing knowledge (or as a reduction in the “lack of knowledge”) about these 
parameter values. 

 

This propagation of uncertainty has been completed based on the premise that the 
calibration parameters are uncorrelated. When there is such a relation present between 
any of the parameters, however, the model calibration can easily converge to a 
numerically viable but physically incorrect solution. The bivariate distributions in Figure 
4-18 can also help us observe the hidden dependencies or correlations between the 
parameters. Figure 4-18 depicts that there is no strong correlation or dependency between 
any components. 

4.9 Discussions and Results 

This section discusses the results obtained from stochastic calibration. In Section 
4.9.1, based on the calibration results, inferences will be made on the calibrated 
parameter values of the FE model. In Section 4.9.2, a rudimentary check will be made to 
validate the calibration results. Stability of the calibration as the number of experimental 
information used in calibration increases will be investigated in Section 4.9.3. 

Table 4-7:  The Mean and Variance of Posterior Distributions  
of the Calibrated Parameters 

FE Model Parameter Mean 
Standard 
Deviation 

Coefficient 
of Variation 

(θ1) Young’s modulus of ribs 4.9 × 109 N/m2 0.4 × 109 N/m2 0.08 

(θ4) Young’s modulus of piers 11.4 × 109 N/m2 1.4 × 109 N/m2 0.12 

(θ5) Young’s modulus of webbing 2.8 × 109 N/m2 0.4 × 109 N/m2 0.13 

(θ6) 
Stiffness constants of springs 
at the springing level 

5.4 ×107 N/m 0.9 ×107 N/m 0.16 

(θ7) 
Stiffness constants of springs 
at the buttress level 

11.8 ×107 N/m 1.2 ×107 N/m 0.10 
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4.9.1 Posterior Distributions of Calibration Parameters 

The posterior distributions show that material properties for limestone are in fact 
variable for piers, ribs, and webbing. Generally, the piers are observed to be considerably 
stiffer than the ribs and the webbing. This can be explained by the lower percentage of 
mortar in the assembly due to the larger masonry units and less frequent mortar joints. 
Also, piers are also expected to have lower stresses because of their larger cross-sectional 
area, and as a result, the nonlinear stress-strain relationship of masonry would yield a 
higher Young’s modulus for low stress levels. Piers, being primarily under compression, 
are expected to have minimal cracks compared to the ribs and webbing of the vaults. It is 
quite plausible that the webbing has the least Young’s modulus among all three 
components built out of limestone. Webbing, because of its double curvature and 
difficulty of construction, has the greatest proportion of mortar and the greatest 
propensity to crack.  

Posterior distributions are also obtained for the spring constants used to represent 
the semiflexible boundary conditions between the substructure FE model and the 
unmodeled components of the church. The mean estimates of these posterior distributions 
can now be used to investigate the load paths within the vault system and the structural 
roles of each component. For instance, with the estimated values of the stiffness constants 
of the buttress level springs, the horizontal restraining forces exerted by the buttresses can 
be estimated.   

Overall, the coefficient of variance seems relatively low for a random, hand-
assembled material. This can be explained by the low-amplitude vibration experiments 
which only excite the masonry behavior with impact forces varying between 500–700 lb.  

With these refined-input parameter values, the FE model will predict the natural 
frequencies with close fidelity (Table 4-8). However, even at the best-calibrated 
parameter values, some discrepancy remains between the measurements and FE 
solutions. The “bias,” described in Chapter 3, is due to the many potential sources of 
error in the model that cannot be remedied by solely calibrating the selected five 
parameters. It is always possible that parameters that are in need of calibration are 
overlooked. For instance, the symmetry assumption and assigning a single variable for all 
spring constants is perhaps too strict an assumption and relaxing this assumption by 
assigning a separate parameter for each spring may yield improved agreement between 
the FE model and physical evidence.  
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If further improvement and refinement in the calibration is needed, the posterior 
distributions, provided in Table 4-7, can now be used in a refined, follow-up calibration 
study, perhaps with a larger amount of experimental information. Also, including higher-
order modes may enable us to better define the probability distributions of the calibration 
parameters. 

4.9.2 Validation of the Calibrated FE Model 

Calibration, discussed in the previous section, only illustrated that the fidelity of 
the FE model to physical evidence can be improved by calibrating certain model 
parameters. The model obtained with calibrated parameter values is conditioned to the 
physical evidence; therefore, the same physical evidence cannot be used to validate this 
calibrated FE model. The last objective of this chapter is to confirm that the calibration’s 
results are in acceptable agreement with an independent set of evidence. Once again, 
definition of the acceptable agreement is subjective and requires engineering judgment.  

An independent set of information related to the material properties that will 
enable us to confirm the calibrated material property values is missing. Therefore, the 
validation cannot be completed based on material properties. However, an independent 
set of information to validate the calibrated model can be obtained for the spring 
constants.  

For this, an FE model of the remaining components of the choir of Washington 
National Cathedral must be built (Figure 4-19), which will be referred to as the base FE 
model. The material property of the structure is assumed to be uniform and identical to 
the calibrated values of the Young’s modulus of the piers (θ4) with a mean value of 10.7 
GPa. This assumption is clearly very crude, as a typical masonry wall and buttress 
construction constitute voids and empty volumes in between the exterior wythes; 
however, within the scope of this study, a correct evaluation of these structural aspects is 

Table 4-8:  Improved Correlation of Natural Frequencies  
of the Calibrated FE Model 

Experiment Finite Element 

Mode Frequency (mean) Mode Frequency (mean) Within

1 4.94 Hz ± 0.4 Hz 1 5.1 Hz  1- σ  

2 9.61 Hz ± 0.3 Hz 2 8.8 Hz 3- σ 

3 12.3 Hz ± 0.25 Hz 3 13.5 Hz 3- σ 

4 13.9 Hz ± 0.6 Hz 4 14.0 Hz 1- σ 

5 14.5 Hz ± 0.7 Hz 5 14.3 Hz 1- σ 
 



98 

 

practically impossible. Therefore, the base FE model is expected to overestimate the 
stiffness of the lower part of the structure. 

To incorporate the uncertainty remaining in the calibrated Young’s modulus value 
of the piers, this parameter is treated within a range with first standard deviation; 
therefore, a minimum of 8.2 × 109 N/m2 and a maximum of 13.2 × 109 N/m2 are used 
while calculating the spring constants.  

The soil-structure interaction is poorly known, therefore, another aspect of the 
base FE model is in the determination of the support conditions of piers and buttresses, 
which is where judgment is necessary. Because of the high mass of the structure, friction 
forces are first assumed to provide sufficient translational resistance. Therefore, the pier 
base is restrained for translation in all three directions at the base of the piers. This 
assumption effectively provides a rotation restraint and is therefore a fixed boundary 
condition. This assumption is very crude and is anticipated to result in an overestimation 
of the stiffness of the lower part of the structure. Therefore, the procedure is repeated 
considering a rotation free hinge connection at the base of the piers instead of a fixed 
connection. 
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Figure 4-19:  The FE model of the remaining of the structure, referred to as base FE 
model in the text: (a) the fix boundary condition, (b) hinge boundary condition.  

(a) (b) 
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A 1000 N horizontal force is applied at the top of the base FE model, precisely 
where the springs are located on the actual FE model (Figure 4-20). When the base 
supports are fixed with both rotational and translational restraints, the resulting 
displacements are observed to be between 0.6210-4 m and 0.38 10-4 m, depending on the 
Young’s modulus of the piers. Assuming that the loads are shared equally by the two 
springs at each pier, an approximate spring constant varying between 8.1 × 106 N/m and 
13 × 106 N/m is obtained for each of the two springs. The parameter value obtained for 
θ4 by calibration, meanwhile, is 5.4 × 106 N/m ± 1 × 106 N/m with one standard 
deviation. Although a disagreement is evident between the spring constant values 
obtained by two methods, with two standard deviation statistics, they show a level of 
agreement as seen in Figure 4-20. In Figure 4-20, the probability distribution obtained by 
the base FE model is denoted with the solid red line, while the probability distribution 
obtained by the calibration of the original FE model is denoted with the blue line.  When 
the base supports are assumed to be hinge with only translational restraints, the horizontal 
displacements are observed to vary between 1.07 10-4 m and 0.67 10-4 m, depending on 
the Young’s modulus of the piers when the bottom of the piers are hinged supported. In 
turn, the stiffness constant (θ4) is obtained to vary between 4.7 × 106 N/m and 7.5 × 106 

N/m. In Figure 4-20, the probability distribution obtained by the base FE model with 
hinge connections at the bottom of the piers is denoted with the dashed red line.  

As evidenced in Figure 4-20, the results of the FE model calibration yield better 
agreement with the base FE model solution when the supports are represented with hinge 
connections. The observed discrepancy between the calibrated spring constant and that 
predicted by the base FE model can be attributed to various imprecise model parameters 
in the base FE model. These include absence of knowledge about the interior composition 
of the piers and buttresses, the difficulty in representing the soil-structure interaction, and 
the limitations of the available documentation about the physical geometry of the 
buttresses and aisle vaults.  

Oberkampf et al. (2002) effectively argue that the validation process of a 
postcalibrated model is a systematic process of evidence accumulation. The present study 
acknowledges that as additional evidence becomes available, the validation discussed 
herein will gain more credibility. However, due to the practical limitations in obtaining 
this evidence, this study is not in a position to claim that a perfect credibility in the FE 
model is reached for solving static or quasistatic analysis. Instead, a more realistic 
statement about the contribution of this study would be the fact that the FE model is 
improved because the uncertainty in the postcalibrated model is significantly reduced. 
Considering the complexity of the studied structure, this task should be considered as a 
significant achievement.  
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4.9.3 Stability of Calibration  

In Atamturktur et al. (2008), the importance of the calibration parameters to 
maintain stability during calibration is stressed. Stability herein means that as higher-
order natural frequencies are added to the calibration, the calibrated parameters should 
converge to their true values, rather than fluctuating within the ranges of the parameter.  

In this study, the calibration process has been repeated five times with increasing 
number of natural frequencies used as comparative features. The first probability 
distribution estimate is obtained by calibrating the model with respect to the first natural 
frequency; the next probability distribution estimate is obtained by calibrating the model 
with the first two natural frequencies, and so on. Figure 4-21 provides the representation 
of posterior distributions of the first calibration parameter as a function of the number of 
natural frequencies used in calibration. 

 

 

Figure 4-20:  The statistical comparison of the values for the spring constant. 

Calibration of the original 
FE model 

Base FE model 
with fixed pier bases 

Base FE model 
with hinged pier bases 
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In Figure 4-21, y axis denotes the normalized range of the parameters. Thus, 0 on 
the y axis means that the parameter value is expected to be at the minimum value as 
defined in Table 4-5, while 1.0 on the y axis means that the parameter value is expected 
to be at the maximum value as defined in Table 4-5. In Figure 4-21, when the Young’s 
modulus of limestone ribs are calibrated using only the first natural frequency, the mean 
value is around 0.6. However, adding the second natural frequency in the calibration 
changes the mean value for Theta 1 to 0.8. After this point, adding third, fourth, or fifth 
natural frequencies do not affect the posterior distributions of the Young’s modulus of 
limestone ribs. A very similar observation can be made for Theta 7, the spring constant of 
buttresses.  

Figure 4-21 and Figure 4-22 illustrate the stable behavior of the posterior 
distributions of Theta 1 and Theta 7. The other three calibration parameters also exhibit 
similar behavior with less change in the mean values, which can be attributed to the lower 
sensitivity of these parameters to the natural frequencies (see Figure 4-14). Neither 
Figure 4-21 nor Figure 4-22 indicate insensible fluctuations of mean values. This 
observation increases the confidence in calibration results. 

 

 

 

Figure 4-21:  The Young’s modulus of limestone ribs obtained by successive calibration 
studies with increasing number of experimental modes. 
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4.10 Concluding Remarks 

Considering all potential sources for uncertainty in a masonry construction, 
implementing a stochastic approach is natural. Stochastic model calibration is a very 
specialized process that responds to the need to implement FE models to predict 
phenomena for which physical measurements are not available. 

The goal of this chapter was to take a step towards illustrating the application of 
tools collectively referred to as stochastic model calibration to improve the predictive 
accuracy of large-scale FE simulations of the Washington National Cathedral, DC. For 
this purpose, large amounts of experimental and computational information collected 
from the choir vaults of the Cathedral were integrated in the context of Bayesian 
inference. Both from the physical measurements and computer experiments, modal 
parameters were extracted probabilistically as mean and variance statistics. After effect 
screening, the uncertain parameters that are candidates for calibration were ranked based 
on their effect on numerical model output. Three material properties and two spring 
constants, which represent the inter-element connectivity, were selected as comparative 
features. Once the comparative features and calibration parameters were defined, 
Bayesian inference was used to compound the prior knowledge about the calibration 
parameters, together with experimental observations collected from vibration testing. 
Bayesian inference, then, resulted in updated knowledge of the calibration parameters in 
the form of a posterior probability distribution. The posterior distributions of the spring 
constants can be articulated further to make inference about load paths in masonry 
structures. An improved understanding of the load paths has practical impacts in the 
preservation and rehabilitation of historic structures. The point of this exercise was to 
better understand where modeling uncertainty originates from and to obtain model 
predictions that are statistically consistent with the measurements and their uncertainty. 

 

 

Figure 4-22:  The stable behavior of the posterior distribution of Theta 7. 



 
 

 

Chapter 5 
 

DISCUSSION AND CONCLUSIONS 

5.1 Summary of the Research Program 

When building finite element (FE) models of masonry structures, uncertainties 
and errors arise from many different sources. Appropriate constitutive laws and 
parameters of these laws are implemented with great difficulty for masonry structures due 
both to the lack of precise engineering understanding of the masonry material behavior 
and to the significant variations in masonry quarried from different geographic locations 
and in mortar mixed by different workmen. The variability is multiplied when the 
properties of masonry units and mortar joints are homogenized to obtain effective 
material properties. These effective material properties vary depending on the dimensions 
of the masonry units and joint thickness, orientation of the masonry units, the voids 
within the masonry assembly, and the quality of workmanship, as well as the 
development of various forms of damage, such as cracks, hinges, and material 
deterioration in the structure. These factors cause high uncertainties while defining the 
masonry material properties. 

The masonry material behavior varies from unit to unit, and has a variation within 
a structural component, for instance, within a masonry pier. However, it is often desirable 
to ignore this internal variability within a structural component and assume a constant 
averaged material property value for large portions of a building structure. This approach, 
although it is very convenient for modeling purposes, adds to the uncertainties while 
defining the masonry material properties in FE models.  

Similarly, uncertainties arise when determining the interaction between adjacent 
structural components. This is needed when (1) defining the connectivity conditions at 
contact locations with unmodeled structural members or (2) defining soil-structure 
interaction. In several previous studies, these boundary conditions have been 
approximated by using the three common types of boundary conditions: fixed, pinned, or 
free. Although these boundary conditions may be applied with satisfactory results to steel 
structures, in which connections are deliberately designed to be one of these three types, 
their applicability when defining the connections between masonry members is often 
limited. Where masonry structures are concerned, the connectivity between two structural 
members relies on various factors, which include the elastic properties of the materials, 
surface friction, and the amplitude of the load. Thus, masonry connections practically 
never fall under the categories of fixed or pinned restraint. This elastic connectivity 
between the members included in the FE model and those that are excluded can be 
partially represented by linearly elastic springs with constant stiffness properties. 
However, the stiffness constants of these springs are obviously highly uncertain. 
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As the complexity of the problem increases, especially with historic masonry 
structures, the ability to appropriately incorporate the physical reality in the FE model 
decreases. Several strong assumptions become necessary and the FE solutions become a 
rough approximation of reality. The difficulties in structural analysis of historic masonry 
monuments can be mitigated by treating the FE input parameters probabilistically. When 
the FE model input parameters are defined probabilistically, the output response is 
obtained probabilistically as well. As far as masonry structures are concerned, this is a 
desirable way of developing credible FE models for structural analysis.  

In the present study, the material property values are defined as ranges with lower 
and upper bounds instead of deterministic, averaged values. The information to determine 
these bounds is compiled from published experimental studies and later refined through 
test and analysis correlation. In regards to boundary conditions, the stiffness constants are 
varied from very low values to very high values to investigate their asymptotic effect on 
the response feature. This task is completed separately for each spring constant and the 
ranges within which the springs provide the desired semiflexible restraint are obtained.  

There are several modeling parameters that are uncertain in the analysis of 
masonry structures. However, not all of them are influential on the desired results. Some 
of these parameters can be kept constant at their nominal values, and effect screening can 
be used to detect these low-sensitivity parameters. In this study, a specific type of effect 
screening, analysis of variance, is used to select the calibration parameters from the list of 
FE model input parameters. In effect screening, the parameter sensitivity is evaluated 
relative to the sensitivity of other parameters. Therefore, this is another instance when 
engineering judgment becomes necessary. The goal must be to reduce the number of 
calibration parameters as much as possible while including the parameters that have a 
significant influence on the accuracy of the solutions. 

The deterministic calibration approach relies on an assumption that 
experimentally identified modal parameters are known with certainty. However, there are 
several reasons for the identified modal parameters to deviate from reality during both 
experimentation and data processing. The uncertainty in the measured modal parameters 
can be characterized by mean and standard deviation statistics. Once these statistical 
properties are known, measurement uncertainties can be implemented in the FE 
calibration process. 

To determine the mean and standard deviation statistics of measured data, 
repeated tests must be conducted. A large number of repeated tests were in fact collected 
during the tests on Washington National Cathedral. The feature extraction is completed 
for all datasets and the modal parameter variability is computed accordingly.  

After the experiments are conducted and the FE model is built and parameterized, 
the next step is the calibration through which selected parameters are improved in a 
systematic way. When considering all potential sources for uncertainty in a masonry 
construction, implementing a stochastic calibration approach is a natural choice. In this 
study, the scope of model calibration is expanded from one that ignores the presence of 
uncertainty to one that fundamentally relies on the definition and propagation of 
parameter uncertainty. Bayesian inference is used to compound the prior knowledge 
about the calibration parameters with experimental observations collected from vibration 
testing. Bayesian inference, then, results in updated knowledge of the calibration 
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parameters in the form of a posterior probability distribution. The goal herein was to 
better understand from where modeling uncertainty originates and to obtain model 
predictions that are statistically consistent with the measurements and their uncertainty.  

The framework discussed in this thesis was illustrated for two Gothic churches. 
However, this theoretical framework can be extended to masonry structures in different 
typologies: isolated residential buildings, row buildings, complex public buildings, 
towers, palaces, and arenas. 

5.2 Findings of the Presented Research 

As a result of the summarized work, the following findings are concluded: 
1. Model calibration is a procedure of determining the appropriate parameters in an 

FE model to give an improved representation of a prototype structure.  In 
load-bearing masonry subjected to linear elastic analysis, the parameters 
representing stiffness constants, densities, and support restraints can be 
successfully calibrated.  In this study, it is concluded that calibrating the 
geometric properties of the structure is not a feasible solution for the 
masonry vaulted structures due to their complex geometry, because at 
each iteration, the FE mesh must be redone.  

2. Based on solution verification studies, a FE mesh size around 30 cm is found to 
be suitable for the dynamic analysis of these structures. 

3. An FE model that is to be calibrated must be parameterized appropriately. In this 
study, it is found that different structural components, such as piers, walls, 
and vault ribs, built out of the same type of stone may exhibit different 
material properties due to the variations in workmanship, the material 
source, the mortar thickness, and the loads they are subjected to. 
Therefore, these structural members must be parameterized individually. 

4. This study shows that for linear elastic FE models of historic masonry 
monuments, linear springs can be implemented with success to represent 
semiflexible connections in masonry structures. Although this study 
illustrated only the application of translational springs, the same concept 
can be applied to rotational restraints with equal success using rotational 
springs. 

5. Assuming symmetrical geometry for the structure is found to yield acceptable 
results. However, when the requirements on the model accuracy are 
higher, irregularities that may be present in the structure may be 
implemented in the FE model to incorporate the unsymmetrical behavior. 
Relaxing this assumption by assigning a separate parameter for each 
spring may ultimately yield improved agreement between the FE model 
and physical evidence. 

6. In literature, the most commonly employed comparatives are modal parameters 
such as frequencies and mode shapes.  In this study, modal parameters are 
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observed to yield satisfactory results when applied to historic unreinforced 
masonry buildings. 

7. When modal parameters are selected as comparative features, attention must be 
paid to distinguish the global modes from the local modes. Typically, local 
modes have lower amplitudes and are dominated by the global modes in 
the frequency response functions (FRFs). 

8. When modal parameters are selected for the comparative features, attention must 
be paid to the spatial aliasing. Number of modes that can be identified are 
related to the number and placement of measurement points. After the 
point when the higher-order modes are observed to alias the lower-order 
modes, the mode shape vectors should not be implemented in test-analysis 
correlation.  

9. Determining the experimental uncertainty invariably requires repeated 
experiments. When the available time or resources do not allow the 
replication of the entire test campaign, a portion of the test can be 
replicated to assess the experimental uncertainty. In cases when this option 
is not available, the experimental uncertainty can be derived from the 
coherence functions. 

10. The spring boundary conditions typically present an asymptotic behavior at very 
low and very high values. By investigating this asymptotic response 
separately for spring stiffness constant, the lower and upper bounds within 
which the linear spring provides a semiflexible boundary condition can be 
obtained. 

11. In literature, attempts were made to uncouple the calibration of material properties 
and boundary conditions. In these studies, after the boundary conditions 
are calibrated according to the mode shapes, the material properties are 
tuned according to the natural frequencies. However, during the present 
research, it is observed that such an approach is not suitable. Changes in 
the relative ratios of the properties of different materials can easily alter 
the mode shapes. It is suggested that all the calibration parameters are 
compiled together and the effect screening analysis and stochastic 
calibration studies are conducted while operating on all of the calibration 
parameters simultaneously. 

12. Model calibration is a decision-based process, and regardless of how sophisticated 
its algorithms are, its success strictly relies on the quality of the decisions 
made during the process. For instance, analysis of variance yields the 
relative effects of the calibration parameters on the selected response 
feature, however, it is up to the analyst to decide whether to include or 
exclude an input parameter. Therefore, these tools can only be considered 
as aids in the decision making process. 

13. Replacing the computationally expensive FE model with a fast running surrogate 
significantly reduces the demands on the resources, in the case of the 
National Cathedral FE models, this reduction was 10 times. Therefore, 
surrogate models enable one to explore the calibration parameter domain 
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with high resolution, in the case of the National Cathedral, 128 computer 
runs were performed using the surrogate model. 

14. When modal parameters are used as comparative features during test-analysis 
correlation, three main problems are faced. As the FE model input 
parameters are varied, the modes may disappear/reappear, modes may 
swap order, or modes may become linear combinations of each other. A 
careful tracking of modes is a crucial task during the training of the 
surrogate model. If the surrogate model is trained without taking these 
factors into account, the calibration results would have no meaning.  

15. Typically, automated calibration studies rely on the assumption that the 
calibration parameters are independent and uncorrelated. However, certain 
modeling parameters may have correlations and dependencies that may 
not be obvious at the inception of the study. It is suggested that the bi-
variate posterior distributions be calculated to confirm this a priori 
assumption. 

16. The proposed method is observed to yield satisfactory results for up to five 
calibration parameters. Generally, it is advisable to keep the number of 
calibration parameters low. The Phenomenon Identification and Ranking 
Table is an effective means of reducing the size of the parameter space for 
analysis.   

17. It is observed, through the calibration exercises conducted in the present research, 
that defining uninformative prior distributions for the calibration 
parameters is an acceptable approach.  

18. The posterior distributions obtained in this study show that the piers are stiffer 
than the ribs and the webbing, even though they all are built out of the 
same material. This can be explained by the fact that piers being under 
compression are not expected to crack, while the webbing and ribs may 
develop cracks which would ultimately yield severe stiffness reductions. 

19. The published values for limestone in pertinent literature are found to be high, and 
it is an endorsement of this procedure that it brought them down to 
sensible levels.  The posterior distributions obtained for the Young’s 
modulus of the stone fell into the lower end of the initially defined ranges 
indicating that a lower initial choice of E would be more appropriate. 

20. Repeating the calibration exercise with an increasing number of experiments 
allows one to monitor the stability of the calibration exercise. As new 
experimental information becomes available, the mean values should 
converge to a stable value. Also, additional experimental information 
should consistently reduce the uncertainty in the calibration parameters. 

21. The model obtained with calibrated parameter values is conditioned to the 
physical evidence; therefore, the same physical evidence cannot be used to 
validate this calibrated FE model. The replacement of the nonmodeled 
parts of the structure to verify the spring constant shows the effectiveness 
of this procedure and highlights the difficulty in determining parameters 
for an element, such as the pier, without implementing a calibration 
scheme.   
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5.3 Remaining Technical Issues 

This study uncovered several issues that have yet to be addressed. The most 
important of these issues are summarized in this section. 

Although defining linear springs can be considered suitable for static analysis, 
where dynamic analysis is concerned, dynamic impedance must be considered. In other 
words, the stiffness of the linear springs (substituting for the remainder of the structure) 
should be variable, based on the frequency of vibration. This would, however, increase 
the number of calibration parameters and require larger amounts of experimental data to 
be collected.  

During the tests on Washington National Cathedral, the practical limitations of the 
equipment mandated the acceleration measurements be limited to the vertical axis. Future 
applications of modal testing on vaults should not limit the measurements to a single axis, 
but instead explore the horizontal movements of the vaults in the transverse direction.  

In this study, effect screening is performed considering the modal parameters, 
specifically the natural frequencies. An FE model input parameter, which is not 
influential on modal parameters, is assumed to also be ineffective on other response 
features; however, this assumption is not validated in this study. In practical applications 
effect screening should be completed considering all of the possible output solutions of 
the FE model.  

If effect screening depicts some parameters as having negligible importance on 
the modal parameters, it means that natural frequencies and mode shapes do not contain 
sufficient information to infer the values of these parameters. If refined information is 
specifically needed for one or more of these insensitive parameters, alternative 
comparative features can be sought. Alternative comparative features in linear dynamics 
are FRF amplitudes, Root Mean Square response, statistical moments, etc. A list of these 
alternative comparative features that can be extracted from raw time domain acceleration 
measurements is provided in Section 3. Also, it is possible to combine different types of 
features during calibration—such as displacement and mode shape vector. Having a 
larger variety of comparative features would enable one to update a larger variety of 
parameters.  

To validate and quantify the accuracy of an FE model, an independent set of 
experimentally derived information other than that used in the calibration is necessary. 
This step is critical to the validation of the calibrated FE solutions (Trucano et al. 2006). 
Insistence on such a validation experiment increases the already high demands on 
resources; however, it is important to distinguish between a calibrated model and a 
validated model. In this study, in the absence of additional information against which the 
calibrated FE solutions can be validated, a procedure using existing data is determined to 
increase the credibility of the results. The unmodeled portions of the Cathedral are 
separately modeled to investigate the elastic restraints that the remaining structure would 
impose on the vaults. This enabled a simple validation of the calibrated spring constant 
values. Therefore, this study is not in a position to state a validated FE model for the 
calibrated models. 
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5.4 Recommendations for Future Work 

Most masonry structures exhibit very complex inelastic and nonlinear dynamic 
behavior, which makes the experimentation and comparative feature selection very 
difficult. Features with strong linearity assumptions, such as those derived in linear 
dynamics, tend to smear the effects of inelastic nonlinear behavior, degrading the quality 
of the calibration studies. Features that are not deeply rooted in strong linearity 
assumptions, unlike modal parameters, FRF, and their derivatives, warrant particular 
attention for future research. 

Subcomponent testing, commonly implemented in mechanical and nuclear 
engineering applications, is another avenue for authentic contribution. Subcomponent 
testing evaluates components individually (such as piers or walls) and later integrates the 
results into the global structure model. Subcomponent testing can also supply information 
about local phenomena that may not have a strong effect on the global response of the 
structure. It must be noted that calibrating a model with global response measurements of 
the structure can only be used for phenomena that have a substantial influence on the 
global behavior of the structure.  

Obviously, the credibility of a calibrated model is increased as the amounts of 
experimental information accurately reproduced by the calibrated model increases. 
Pertinent literature does not discuss how the decision about the completion of calibration 
is reached. There is a need to develop a measure of sufficiency for experimental 
information and an indicator of completion for the calibration exercise. For this purpose, 
a stability criterion is discussed in Section 4.7. This stability criterion monitors the 
calibrated parameters’ mean and standard deviation statistics as the amount of 
experimental information used in calibration is consistently increased. If the mean values 
are relatively stable and if the standard deviation is consistently reduced, it can be 
considered as a sign of stable calibration. However, if the mean values are fluctuating as 
new experimental information becomes available, then one would have little confidence 
in the calibration exercise.  

The tasks for stochastic model calibration discussed in this study require 
extensive resources and expertise and are therefore not currently practical as routine. 
However, the stochastic approach is a first necessary step to bring calibration of 
analytical models into the engineering mainstream. This procedure is in need of being 
demystified for practicing engineers. With the ever-increasing popularity of FE model 
calibration and its byproducts, structural health monitoring and damage detection, the 
field of civil engineering will soon be able to use this proposed method on a diverse 
group of structures. 

5.5 Concluding Remarks 

Although the demand to assess historic unreinforced masonry buildings has been 
consistently increasing, structural analysis guidelines consistent with the principles of 
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unreinforced masonry systems are still unavailable in literature. As engineers involved in 
maintenance, rehabilitation, and strengthening campaigns for historic structures seek to 
use FE model predictions for more and more ambitious applications, the probabilistic-
based calibration methods to these structures will gain importance. This research program 
proposed an approach to obtain calibrated FE models for civil engineering systems. 

The testing of an existing building yields very useful information about the 
characteristics per se. However, only by integrating these experimental measurements 
with computerized FE tools is it possible to gain a thorough understanding of the 
structural behavior of the building. Although experimental measurements are always 
incomplete in the sense of their spatial resolution, they play an instrumental role in model 
calibration. This ultimately yields mathematical representation of the structural behavior 
in a much finer spatial resolution. The proposed integrated analytical and experimental 
procedure makes use of the techniques of FE analysis and experimental modal analysis. 
The concept of model calibration should not be considered as a mere tuning of the 
variables of the model but instead as an attempt to genuinely improve the predictive 
ability of the analytical model through comparison with the experimental measurements. 
Model validation ultimately offers tools through which engineers can defend the 
credibility of computer models and their model-based decisions. 

Although the immediate benefits of model calibration are not as obvious in civil 
engineering as they are in fields where prototyping and mass production are common, the 
determination of the modeling strategies learned through model calibration can ultimately 
serve the civil engineering community with an improved understanding of computer 
modeling. Calibrated FE models can help engineers to better understand the behavior of 
historic monuments and ultimately pursue successful repair and retrofit schemes.  
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