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PHOTOGENERATION OF HYDRIDE DONORS AND THEIR USE TOWARD CO2 
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Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 
using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a 
sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are 
using hydride-ion transfer from photoproduced C–H bonds in metal complexes with bio-inspired 
ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons. 

1. Photogeneration of Hydride Donors: We have shown that a polypyridylruthenium complex 
with an NAD+/NADH model ligand, [Ru(bpy)2(pbn)]2+ ([1]2+, bpy = 2,2′-bipyridine, pbn = 2-(2-

pyridyl)-benzo[b]-1,5-naphthyri-dine) in a 
wet CH3CN/amine solution, undergoes 
proton-coupled two-electron reduction to 
give [Ru(bpy)2(pbnHH)]2+ ([1•HH]2+, 
pbnHH = 5,10-dihydro-2-(2-pyridyl)-
benzo[b]-1,5-naphthyridine) upon irradiation 
of visible light (300-600 nm). When 
triethylamine was used as a sacrificial 
electron donor, the quantum yield for 
[1•HH]2+ formation is 0.21 at 355 nm. This 
result opens a new door to photoinduced 
catalytic hydride-transfer reactions ! 

2. Kinetic and Mechanistic Investigation of Hydride Donor Generation by Pulse Radiolysis: 
Using the pulse radiolysis technique, we determined the mechanism of formation of [1•HH]2+ in 
water. Protonation of the one-electron-
reduced species [2] takes place below 
pH 11 to form [3] (pKa ~11). Species [3] 
disproportionates through a π-stacked 
dimer at low pH (see below), and the 
dimer dissociates to yield [1]2+ and 
[1•HH]2+. The cross reaction between 
[2] and [3] yields the same final 
products at high pH, probably by 
forming a N-H…N hydrogen bonding interaction between the two species, the transfer of an 
electron to [3], which subsequently acquires a proton. 

3. Stereo-Specific Photochemical Formation of a C-H Hydride: Our photolysis experiments 
with D2O and H2O solutions containing [1]2+/CH3CN/triethanolamine produced [1•DD]2+ (m/z 
337.5838) and [1•HH]2+ (m/z 336.5725), respectively. 1H and 13C NMR indicate that stereo-
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specific hydrogenation takes 
place at C8 (see figure at right) in 
the photochemical reduction of 
[1]2+. The reduction of [1]2+ with 
Na2S2O4 in D2O did not afford 
any stereospecific products in the 
deuterization at C8 of pbn. The 
stereoselective formation of Δ-
(S)-[1•DD]2+ and Λ-(R)-[1•DD]2+, 
which are enantiomers with the 
same 1H NMR spectra, clearly 
indicate that a π-stacked dimer is 
a key intermediate in the photo-
reduction of [1]2+. The chiral recognition reaction via stereospecific dimerization of a racemic 
mixture of monomers, followed by disproportionation, may open new directions for 
photochemical stereospecific hydride-transfer reactions to organic molecules. 

4. Hydricity and Hydride Transfer Reactions: While [1•HH]2+ can transfer a hydride to Ph3C+ 

(k = 4 × 10-3 M-1 s-1), it cannot transfer a hydride to CO2 or M−CO. We have carried out 
calculations of the thermodynamic hydricity, or 
hydride donating power, of this photo-generated 
catalyst and the hydrided form of possible hydride 
acceptor molecules for hydride transfer reactions 
related to CO2 reduction. 
Our theoretical calculations predict that free CO is 
difficult to convert to the formyl anion by hydride 
transfer reactions, however, M−CO is much easier to 
convert to M−CHO. Our calculations also show that 
the further photoreduction of [1•HH]2+ can create a 
[1•HH]•+ species with a dramatically increased 
hydricity that can donate its hydride to 
[CpRe(NO)(CO)2]+ to form CpRe(NO)(CO)(CHO), 
the most difficult step in CO2 reduction to methanol. 
Our experiments indicate that the excited state of 
[1•HH]2+ lives 70 ns and can be reductively quenched 
by amine to form [1•HH]•+, which is a very strong 
hydride donor that stores the energy of three photons. 
This suggests that photoinduced hydride transfer 
reactions to M−C1 species are possible. In order to test 
this scenario we are currently carrying out 
experiments with [1•HH]•+

. [This work was carried 
out in collaboration with Koji Tanaka, Institute for 
Molecular Science, Japan.] 
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Photoproduct of [1]2+ in H2O (a) and (c); in D2O (b) and (d). H8 is 
located above the pyridine ring of bpy. 
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ΔH‡ = −0.6 kcal/mol
ΔG‡ = 12.6 kcal/mol

ΔHo = −16.1 kcal/mol
ΔGo = −15.9 kcal/mol
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