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Abstract- The Gaussian belief propagation algorithm (GaBP) 
is an iterative message-passing algorithm for computing inference 
in a Gaussian graphical model. It is known that when the GaBP 
converges it converges to the correct global solution. The exact 
region of convergence is a chaUenging open problem. Currently 
there are two known sufficient conditions for convergence. 

In this paper we develop a double-loop algorithm for forcing 
the convergence of the GaBP algorithm applied to any positive 
de6nite covariance matrix. Our novel method works even when 
the sufficient conditions for convergence do not hold. We fur­
ther extend this construction to non-square column dependent 
matrices. 

We believe that our novel construction has numerous appli­
cations, since the GaBP algorithm is linked to the solution of 
linear system of equations, which is a fundamental problem in 
computer science and engineering. As a case study, we discuss 
the linear detection problem. We show that using our new 
construction, we are able to force convergence of Montanri's 
linear detection algorithm, in cases where it would originally 
fail. As a consequence, we are able to increase significantly the 
number of users transmitting concurrently. 

I. INTRODUCTION 

The Gaussian belief propagation algorithm (GaBP) is an 
efficient distributed message-passing algorithm for computing 
inference over a Gaussian graphical model. Recently, GaBP 
was explicitly linked to the canonical problem of solving 
systems of linear equations [1]-[3], one of the fundamental 
problems in computer science and engineering, which ex­
plains the large number of algorithm variants and applications. 
For example, the GaBP algorithm is applied for signal pro­
cessing [3]-[7], multiuser detection [8], [9], linear program­
ming [10], ranking in social networks [11], support vector ma­
chines [12] etc. Furthermore, it was recently shown that some 
existing algorithms are specific instances of the GaBP algo­
rithm, including Consensus propagation [13], local probability 
propagation [14], multiuser detection [8], Quadratic Min-Sum 
algorithm [1], Thrbo decoding with Gaussian densities [15] 
and others. 

Identifying the exact region of convergence of the GaBP 
algorithm is a challenging open question. Currently, only 
two sufficient convergence conditions are known, (when the 
algorithm is applied on a loopy graph) [16], [17]. A vast 
research effort was invested in characterizing the convergence 
of the GaBP algorithm in various settings [1], [8], [13]-[18]. 

In this work, we propose a novel construction that fixes 
the convergence of the GaBP algorithm, for any positive-

definite matrices, even when the known sufficient convergence 
condition do not hold. We prove that our construction con­
verges to the correct solution and characterize the speed of 
convergence. Furthermore, we extend our construction for non­
square matrices. 

As a specific application, we discuss Montanari's linear 
detection algorithm [8]. By using our construction we are able 
to show convergence in practical CDMA settings, where the 
original algorithm did not convergence, supporting a signifi­
cantly higher number of users on each cell. 

This paper is organized as follows. Section II outlines the 
problem model. Section III describes our novel double-loop 
construction for positive definite matrices. Section IV extends 
the construction for arbitrary column depended non-square 
matrices. We provide experimental results of deploying our 
construction in the linear detection context in Section V. We 
conclude in Section VI. 

II. PROBLEM SETTING 

We wish to compute the maximum a posteriori (MAP) 
estimate of a random vector x with Gaussian distribution (after 
conditioning on measurements): 

1
P(x ) <X exp{ -"2xT J x + hTx } (1) 

where J >- 0 is a symmetric positive definite matrix (the in­
formation matrix) and h is the potential vector. It is equivalent 
to solving Jx = h for x given (h , J ) or to solve the convex 
quadratic optimization problem: 

minimize f (x) ~ ~xT J x - hT x (2) 

We may assume without loss of generality (by rescaling 
variables) that J is normalized to have unit-diagonal, that is, 
J = I - R with R having zeros along its diagonal. The off­
diagonal entries of R then correspond to partial correlation 
coefficients [19]. Thus, the fill pattern of R (and J) reflects the 
Markov structure of the Gaussian distribution. That is, P is 
Markov with respect to the graph with edges 9 = {(i, j) h.i i= 
o} . 

If the model J = I - R is walk-summable [17], [18] 
Malioutov et al], such that the spectral radius of IRI = (I r ii I) 
is less than one (p(IRI) < 1), then the method of Gaussian 
belief propagation (GaBP) may be used to solve this problem. 
We note that walk-summable condition implies I - R is 



positive definite. An equivalent characterization of the walk­
summable condition is that 1 - IRI is positive definite. 

III. OUR CONSTRUCTION 

This current paper presents a method to solve non­
? 	 walksummable models, where J = 1 - R is positive definite 

but p(I RI) ~ 1, using GaBP. There are two key ideas: (1) using 
diagonal-loading to create a perturbed model J' = J +r which 
is walk-summable (such that the GaBP may be used to solve 
J 'x = h for any h) and (2) using this perturbed model J' 
and convergent GaBP algorithm as a preconditioner in a sim­
ple iterative method to solve the original non-walksummable 
model. 

A. Diagonal Loading 

We may always obtain a walk-summable model by diagonal 
loading. This is useful as we can then solve a related system 
of equations efficiently using Gaussian belief propagation. For 
example, given a a non-walk-summable model J = 1 - R we 
obtain a related walk-summable model J"'( = J + 'YI that is 
walk-summable for large enough values of 'Y: 

Lemma 1: Let J = 1 - Rand J' ~ J + 'YI = (1 + 'Y) I - R. 
Let 'Y > 'Y. where 

'Y. = p(I RI) - 1. 	 (3) 

Then, J' is walk-summable and GaBP based on J' converges. 
Proof We normalize J' = (1 + 'Y) I - R to obtain J~orm = 

1 - R' with R' = (1 + 'Y) - 1 R, which is walk-summable if 
and only if p(I R'1) < 1. Using p(I R' I) = (1 + 'Y) - l p(I RI) we 
obtain the condition (1 + 'Y )- 1 p(1 RI) < 1, which is equivalent 
to 'Y > p(I RI) - 1. 0 

It is also possible to achieve the same effect by adding a 
general diagonal matrix r to obtain a walk-sum mabie model. 
For example, for all r > r· where 'Y;i = Jii - L:i#i IJijl 
it holds that J + r is diagonally-dominant and hence walk­
summable (see [17]). More generally, we could allow r to be 
any symmetric positive-definite matrix satisfying the condition 
1 + r >- IRI. However, only the case of diagonal matrices is 
explored in this present paper. 

B. Iterative Correction Method 

Now we may use the diagonally-loaded model J' = J + r 
to solve J x = h for any value of r ~ O. The basic idea 
here is to use the diagonally-loaded matrix J' = J + r as 
a preconditioner for solving the J x = h using the iterative 
method: 

X(tH ) = (J + r)-I (h + r x(t)) (4) 

Note that the effect of adding positive r is to reduce the size 
of the scaling factor (J + r)-1 but this effect is compensated 
for by adding a feedback term r x to the input h. This may 
also be interpreted as solving the following convex quadratic 
optimization problem at each step: 

x(tH) = arg mxin {f(X) + ~(x - x(t) )T r (x - x(t)) } (5) 

This is basically a regularized version of Newton's method 
to minimize f (x) where we use Tychonoff-regularization to 
control the step-size at each step. Typically, regularization is 
used to insure positive-definiteness of the Hessian matrix when 
using Newton's method to optimize a non-convex function. 
We instead use it to insure that the Hessian J + r is walk­
sum mable, so that the update step can be computed via 
Gaussian belief propagation. Intuitively, this will always move 
us closer to the correct solution, but slowly if r is large. It is 
simple to demonstrate the following: 

umma 2: Let J >- 0 and r ~ O. Then, x(t) -+ x = J- 1h 
for all initializations x(O). 

Comment. The proof is given for a general (non-diagonal) 
r ~ O. For diagonal matrices, this is equivalent to requiring 
rii ~ 0 for i = 1, ... , n . 

Proof First, we note that there is only one possible fixed­
point of the algorithm and this is x = J- 1 h . Suppose x is 
a fixed point: x = (J + r)- I (h + rx ). Hence, (J + r)x = 
h + r x and J x = h. For non-singular J, we must then have 
x = J - 1 h. Next, we show that the method converges. Let 
e(t ) = x(t) - x denote the error of the k-th estimate. The error 
dynamics are then e(tH) = (J + r)- l r e(t ) . Thus, e( t) = 

(( J + r) - lr )ke(O) and the error converges to zero if and only 
p((J + r)- Ir) < 1, or equivalently p(H) < 1 where H = 
(J + r)- 1/2r(J + r)- 1/2 ~ 0 is a symmetric positive semi­
definite matrix. Thus, the eigenvalues of H are non-negative 
and we must show that they are less than one. It is simple to 
check that if A is an eigenvalue of H then -6 is an eigenvalue 
of r l/2J- l r l/2 ~ O. This is seen as follows: Hx = AX, 
(J + r )-lry = AY (Y = (J+r)- 1/2X ) , ry = A(J + r )y, (1­
A)ry = AJy J- 1ry = ~y and r l/2 J -l r l/2z = _A_ z 

, I -A I- A 
1(z = r / 2y ) [note that A i= 1, otherwise J y = 0 contradicting 

J >- 0] . Therefore I ~A ~ 0 and 0 :s; A < 1. Then p(H ) < 1, 
e(t) -+ 0 and x(t) -+ x completing the proof. 0 

Now, provided we also require that J' = J + r is walk­
summable, we may compute x(tH ) = (J+r)-1 h (tH ) , where 
h(tH ) = h+rx(t), by performing Gaussian belief propagation 
to solve J' x(tH ) = h(t) . Thus, we obtain a double-loop 
method to solve J x = h. The inner-loop performs GaBP and 
the outer-loop computes the next h(t). The overall procedure 
converges provided the number of iterations of GaBP in the 
inner-loop is made large enough to insure a good solution to 
J'x = h. Alternatively, we may compress this double-loop 
procedure into a single-loop procedure by peforming just one 
iteration of GaBP message-passing per iteration of the outer 
loop. Then it may become necessary to use the following 
damped update of Mt ) with step size parameter s E (0, 1): 

h (t+l ) 	 (1 - s )h(t) + s(h + r x(t)) (6) 

h + r((l - s )x (t- l) + sx(t)) (7) 

This single-loop method converges for sufficiently small val ­
ues of s . In practice, we have found good convergence with 
s = ~ . This single-loop method is usually more efficient then 
the double-loop method. 



IV. EXTENSION TO GENERAL LINEAR SYSTEMS 

In this section, we efficiently extend the applicability of 
the proposed double loop construction for systems of linear 
equations with positive definite matrices to systems with any 
square (i.e., also nonsymmetric or non positive definite) or 
rectangular matrices. For this construction to work, we require 
that the matrix should be column dependent. 

Given a column-dependent matrix Jnxb n ~ k, and a shift 
vector h, we are interested in solving the linear systems of 
equations Jx = h. The naive approach for using GaBP would 
be to take the information matrix J ~ (]TJ), and the shift 
vector h ~ ]Th. Note, that J is positive definite and we can 
use GaBP as before. In this case, the MAP solution is 

x = (JTJ)-lJh, (8) 

which is the pseudo inverse solution. 
Note, that in the above construction has two drawbacks: 

first, we need to explicitly compute J and h, and second, J 
may not be sparse in case the original matrix J is sparse. 
To overcome this problem, [ollowing [9], we construct a 
new symmetric data matrix J based on the arbitrary (non­
rectangular) column dependent matrix J E IRnxk 

J~ ( hJk ]T ) E IR(k+nlx(k+nl. 
On x n 

Additionally, we define a new hidden variable vector x ~ 
IRkXl{xT, zT}T E IR(k+nl Xl, where x E is the solution 

vector and z E IRn x 1 is an auxiliary hidden vector, and a 
new shift vector h ~ {OT hT}T E IR(k+nlxl Now we run k x l' . , 

GaBP on the new system (it, J) to obtain the solution to 8. 
The proof of the correctness of the above construction is given 
in [9]. 

V. EXPERIMENTAL RESULTS 

A. Linear detection in linear channels 

Consider a discrete-time channel with a real input vec­
tor x = {x 1, ... , x K }T governed by an arbitrary prior 
distribution, Px , and a corresponding real output vector 
Y = {Yl,'" ,YKV = /{xT

} E IRK. Here, the function /0 
denotes the channel transformation. By definition, linear de­
tection compels the decision rule to be 

x = ~{x*} = ~{A-lb}, (9) 

where b = Y is the K x 1 observation vector and the 
K x K matrix A is a positive-definite symmetric matrix 
approximating the channel transformation. The vector x* is 
the solution (over IR) to Ax = b. Estimation is completed 
by adjusting the (inverse) matrix-vector product to the input 
alphabet, dictated by Px , accomplished by using a proper 
clipping function ~{-} (e.g., for binary signaling ~{-} is the 
sign function). 

For example, linear channels, which appear extensively in 
many applications in communication and data storage systems, 
are characterized by the linear relation 

Y = f{x} = Rx + n, 

where n is a K x 1 additive noise vector and R = ffI's 
is a positive-definite symmetric matrix, often known as the 
correlation matrix. The N x K matrix S describes the physical 
channel medium while the vector Y corresponds to the output 
of a bank of filters matched to the physical channel S. 

Assuming linear channels with AWGN with variance 0'2 

as the ambient noise, the linear minimum mean-square error 
(MMSE) detector can be described by using A = R + 0'2 JK. 

known to be optimal when the input distribution Px is Gaus­
sian. 

In general, linear detection is suboptimal because of its 
deterministic underlying mechanism (i.e. , solving a given set 
of linear equations), in contrast to other estimation schemes, 
such as MAP or maximum likelihood, that emerge from an 
optimization criterion. 

B. Montnanri's iterative algorithm for computing the MMSE 
detector 

Recent work by Montanari et al. [8] introduces an efficient 
iterative algorithm for computing the MMSE detector. Follow­
ing this work, Bickson et a1. showed that this algorithm is an 
instance of the GaBP algorithm [9]. 

In the current work, we apply our novel technique for 
forcing the convergence of Montnanri's algorithm. We use 
the following setting: given a random-spreading COMA code 
with chip sequence length n = 256, and k = 64 users. We 
assume a diagonal AWGN with 0'2 = 0.001. Matlab code of 
our implementation is available on [20]. 

We have drawn at random random-spearing COMA matrix. 
1Ypically, the sufficient convergence conditions for the GaBP 
algorithm do not hold. For example, we have drawn at random 
a random-spreading COMA matrix with p(J -IRI) = 1.0906. 
Since p(J - R) > 1, the GaBP algorithm for multiuser 
detection is not guaranteed to converge. 

Figure 1 shows that under the above settings, the GaBP 
algorithm indeed diverged. The X axis represent iteration num­
ber, while the values of different Xi are plotted using different 
colors. This figure depicts well the fluctuating divergence 
behavior. 

n=256 k=64 

Ip = 1.0906 I 
x-

C 
Q) 
:> 
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2 4 6 8 10 12 14 
Iteration number 

Fig. 1. Divergence of the GaBP algorithm for the multiuser detection 
problem. when n = 256, k = 64. 

Next, we deployed our proposed construction and used a 
diagonal loading to force convergence. Figure 2 shows two 



10-et .~ 
o ~ ~ w -

different possible diagonal loadings. The X axis shows the 
Newton step number, while the Y axis shows the residual. We 
experimented with two options of diagonal loading. In the first, 
we forced the matrix to be diagonally dominant (DO). In this 
case, the spectral radius p = 0.20355. In the second case, the 
matrix was not DD, but the spectral radius was p = 0.33854. 
Clearly, the newton method converges faster when the spectral 
radius is larger. 

n=256 k=64 

10° 

~N 10~ 

'f 
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Newton step 

Fig. 2. Convergence of the fixed GaBP iteration under the same senings 
(n = 256, k = 64) 

VI. CONCLUSIONS AND FUTURE WORK 

We have presented an iterative method based on Gaussian 
belief propagation which always converges to the correct 
global solution, even in models where Gaussian belief prop­
agation alone does not converge. Essentially, this involves 
adding a diagonal-loading term to force the model to become 
walk-summable such that GaBP converges in this modified 
model and adding a feedback mechanism which corrects for 
the damping caused by the diagonal-loading term. 

We believe that there are numerous applications for our 
construction in many domains, since GaBP is related to the 
solution of linear systems of equations. As an example, we 
discuss the case of multiuser detection. We gave a concrete 
example, where a state-of-the-art linear iterative algorithm for 
detection fails to converge. Using our construction we are 
able to force convergence for computing the correct MMSE 
detector. 

There are a number of directions for further development. 
Most importantly, it would be very useful to develop a simple 
method to select r so as to optimize the rate of convergence of 
the overall method. In the double-loop method, it is seen that 
there is a trade-off in deciding how large r should be. For 
larger r (beyond the threshold of walk-summability) GaBP 
converges faster accelerating the inner-loop of our algorithm. 
However, larger r will also make the outer-loop converge more 
slowly. Hence, we must somehow balance these competing 
objectives in choosing r. In the single-loop method, it would 
be useful to develop an adaptive method to optimize the step­
size parameter s. Lastly, it may also prove useful to exploit 
a more general class of perturbations beyond the diagonal­
loading method used in this paper. 
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