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Optimal Sampling Efficiency in Monte Carlo Simulation with an 

Approxima te Potential 


Joshua D. Coe§, Thomas D. SeweUt, and M. Sam Shawl 
§Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

tDepartment o/Chemistry, University 0/Missouri-Columbia, MO 65211-7600 

Building on the work of Iftimie et al. (J. Chern. Phys. 113, 4852 (2000)] and Gelb [J. 
Chern. Phys. 118, 7747 (2003)], Boltzmann sampling of an approximate potential (the 
"reference" system) is used to build a Markov chain in the isothermal-isobaric ensemble. 
At the endpoints of the chain, the energy is evaluated at a higher level of approximation 
(the "full" system) and a composite move encompassing all of the intervening steps is 
accepted on the basis of a modified Metropolis criterion. For reference system chains of 
sufficient length, consecutive full energies are statistically decorrelated and thus far fewer 
are required to build ensemble averages with a given variance. Without modifying the 
original algorithm, however, the maximum reference chain length is too short to 
decorrelate full configurations without dramatically lowering the acceptance probability 
of the composite move. This difficulty stems from the fact that the reference and full 
potentials sample different statistical distributions. By manipulating the thermodynamic 
variables characterizing the reference system (pressure and temperature, in this case), we 
maximize the average acceptance probability of composite moves, lengthening 
significantly the random walk between consecutive full energy evaluations. In this 
manner, the number of full energy evaluations needed to precisely characterize 
equilibrium properties is dramatically reduced. The method is applied to a model fluid, 
but implications for sampling high-dimensional systems with ab initio or density 
functional theory (DFT) potentials are discussed. 



I. INTRODUCTION 


Characterization of thermodynamic equilibrium using Markov Chain Monte Carlo 

(MC)2 methods is now well-established practice' -4. Instead of building time-averages for 

an ensemble of trajectories, as in molecular dynamics (MD)1,2.5, configurational integrals 

are sampled directly at points dictated by a random walk. New points are added to the 

Markov chain on the basis of an acceptance criterion, most often that of Metropolis6
, and 

the simulation is complete when variance in (thermodynamic) ensemble averages has 

dropped to an acceptable level. This level varies inevitably with application, but the 

number of steps required to achieve a target variance usually rises with the 

dimensionality of configuration space. For this reason, precision sampling of high­

dimensional systems remains a serious challenge. 

Methodological improvements in solving the electronic SchrOdinger equation, 

coupled with steady advances in computing power, have made single-point calculation of 

ab initio (AI)' or density functional theory (DFT)8 energies routine even for very large 

systems'. Paired with algorithms for extracting forces from wavefunctions (or densities) 

analytically9, these improvements lead directly to steady growth in the application of ab 

initio MD (AIMD)IO. The potential energy surface (PES) in AIMD is built "on-the-fly" 

using quantum chemistry in place of ad hoc functional forms, permitting more robust and 

accurate sampling of phase space. Expanded use of AIMD has not been matched, 

however, by commensurate growth of ab initio (MC)2, although the use of ab initio 

potentials in (MC)2 simulation has been the subject of very recent attention11 ,12. While 

MD steps are collective and deterministic, standard (MC)2 steps are individual and 

stochastic; the computational exchange made in substituting MD for (MCf is that of 
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force calculation at every time step in return for steps encompassing all particles in the 

system. The single-particle character of standard (MCi steps can be exploited to lower 

their cost from O(N2) to O(N) in a system ofN particles described by a pair potential, but 

no analogous reduction is afforded self-consistent potentials including interaction levels 

much higher than the pair. It remains true, however, that (MCi possesses inherent 

flexibility unavailable to MDB
, such as constant temperature or pressure sampling 

without need of a stochastic bath, or chemical equilibrium sampling without need of a 

reactive potential surfacel4
. For these reasons, it is worthwhile to explore (MC)2 

algorithms harnessing the accuracy of ab initio quantum chemistry without requiring full 

system energy evaluation following every single-particle displacement. 

One alternative is to build trial moves from collective displacement of several or 

even all particles. The acceptance probability of a collective move will be much lower 

than that of its constituents taken independently, however, because single-particle steps 

are chosen randomly and thus lack information regarding the potential. This fact is 

illustrated clearly in a hard-sphere fluid, where the likelihood that two particles will 

overlap increases monotonically with the number of particles displaced; if a collective 

step yields even a single overlap, its acceptance probability will vanish entirely. This will 

result in many wasted trial steps, a weighty consideration if each acceptance test requires 

significant computing time. The radius of trial moves could be dramatically reduced in 

order to salvage the acceptance probability, but only at the expense of slow configuration 

space exploration; as before, precise equilibrium averages will require many energy 

evaluations. In this sense, MD steps can be viewed as "directed" forms of multi-particle 

(MC)2 moves, in the sense that time-reversible integration of the equations of motion 
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guarantees energy conservation and thus unit acceptance probability of the "trial move". 

No such guarantee exists when trial moves are chosen stochastically. 

An alternative means of building (MC)2 steps was introduced recently by Iftimie, 

et al. 15
, followed by an independent treatment from Gelbl6

• Although several monikers 

have been applied 17, we will refer to this procedure as Nested Markov Chain Monte Carlo 

(N(MCi). The method is conceptually related to (MC)2 with stochastic potential 

switchinglS
, multiple "time steps,,19, multilevel summation20, and resolution exchange21 

• 

In N(MC)2 a series of elementary moves (in the NPT ensemble, single-particle or volume 

adjustments), each accepted with Boltzmann weight, is made in a "reference" system 

defined by an inexpensive (but less accurate) potential. At the endpoints of this sequence, 

the energy is evaluated again with a more accurate potential defining the "full" system. 

Through appropriate modification of the acceptance criterion, the reference system 

Markov chain is transformed into a composite trial step accepted with Boltzmann weight 

in the full system. As long as the reference potential captures adequately the physics of 

the full potential, these composite trial moves retain a reasonable probability of 

acceptance; the more reference steps comprising a composite move (or the less capably 

the reference potential captures the interactions present in the full potential), the lower its 

acceptance probability. The difficulty is that the reference and full potentials sample 

different statistical distributions, and so the number of reference steps combinable into a 

composite step is strongly limited by the practical need of a reasonable acceptance 

probability for the latter. In spite of this difficulty, NCMC)2 permits (MCi sampling of an 

accurate potential without having to evaluate it following every single-particle 

displacement, and in this sense represents an important step toward realistic 
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implementation of (MC)2 with an ab initio potential. Although its application already has 

been fairly extensiveI2
,22, the present work attempts to improve upon the original N(MC)2 

algorithm by addressing its principal weakness; namely, the potentially poor overlap of 

reference and full distributions. 

In order to minimize the number of full energy evaluations required to achieve 

target variance in ensemble averages, configurations at which the full energy is evaluated 

should be as decorrelated (vide il1fra) as possible. Decorrelation requires separation by a 

large number of reference steps, a number constrained also by the acceptance probability 

for the composite step. By manipulating the thermodynamic variables of the reference 

system, we show how to maximize the overlap of reference and full distributions. This 

procedure maximizes also the acceptance probability for composite steps built from a 

fixed number of reference steps, minimizes the correlation of energies sampled in the full 

system, and thereby lowers considerably the number of full energy evaluations needed to 

sample with high precision. 

Section II describes the potentials used to generate the results that follow. The 

next sections provide a brief overview of conventional Monte Carlo sampling (III) and 

basic N(MC)2 (IV). Section V contains our primary contribution, wherein we outline a 

means of optimizing N(MC)2 sampling efficiency. Section VI summarizes and offers 

some suggestions for further development. 

II. POTENTIAL MODEL 

The N(MC)2 procedure evaluates the energy of a configuration using two 

different potentials: an approximate potential for single-particle steps, and a more 

accurate one for composite steps. We assume that quantities for comparison with 
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experiment are computed in the full system. In the present work, the purpose of which is 

to test and optimize the procedure, we will utilize combinations of pair potentials equal in 

computational expense but differing in their parameterization. In the future, a model 

potential will be used as reference for a full system characterized with DFr3. 

The model potentials used below describe diatomic molecules of fixed bond 

length and with interaction sites at their atomic centers. Pairwise interaction of atomic 

sites a and b are modeled with the Buckingham exponential-6 potential: 

q>(r"b) = _e_(6eao
-r"b) -!!..) (1)

a-6 6 'rob 

where 

2 =0.25r;J(I;2 +IJ)+(-W(ru .Ii)+(-l)b(rij .l j )+(-I),,+bO.5(l i .1)) (2) 
rab 2 • 

ro 

The site-site separation distance rab has been expressed in terms of the center-of-mass 

(COM) separation vector (rij) for interacting molecules i andj, and the individual bond 

vectors Ii and ~ (of length /i and lj). The full interaction of two diatomics is then 

2 2 

q>ij = ILq>(rab )· (3) 
a=16:1 

The potential parameters a, e, and r() were chosen to roughly approximate compressed 

nitrogen fluid on its shock Hugoniot locus24
• Details of the fitting procedure used to 

determine these parameters will be described in an upcoming pUblication23 
• The final 

values are 

e= 34.156 K 

ro = 4.037 Angstrom. (4) 

a = 12.29 
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We enforced a minimum allowable rii slightly greater than the N2 bond length (~tn .20 

A) as a guarantee of smooth behavior throughout the simulations. In testing the N(MC)2 

procedure, Ii and ~ were fixed at 1.10 A in the full system but shortened in 0.05 A 

increments to generate a series of reference systems. The reference potential approaches a 

purely spherical COM interaction as II~O, thus providing a poorer approximation to the 

full potential. Because bond lengths in the full system are fixed, and IF~ in all reference 

systems, we will refer only to I (and always in the context of the reference system) in 

what follows. 

Although each site-site interaction described by (I) is spherical, the sum of these 

interactions (3) for a pair of molecules is highly anisotropic. Figure I schematically 

illustrates some of the quantities appearing in (I )-(2) for a pair of molecules. The pair is 

drawn in three fiducial configurations25 labeled T, L, and X, defined by the quartet of 

angles (81'%1,82'%2)' 8 (X) is the angle in (out of) the plane of the paper, and angles are 

zeroed to the configuration in which the molecules are parallel to one another (not 

shown). The subscripts label the molecules. Figure 2 displays the variation in potential 

for each of these configurations as a function of COM separation and bond length I. The 

full potential (/=1.10 A) is compared with a purely spherical potential (/=0) and one of 

the reference potentials (1=0.90 A) used below. The ordinate is drawn on a log scale, and 

it is clear that the reference potential may differ substantially both from the full potential 

and from that of a purely isotropic interaction. 

III. STANDARD MONTE CARLO SAMPLING 

In keeping with an earlier presentation of the N(MCi methodl6
, we have adopted 

the structure and notation of Ref. 26 to describe Monte Carlo sampling. Matrices are 
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indicated by bold lettering, and their individual elements by a subscripted, italicized form 

of the same symboL The system is described by a state vector n, each element of which 

defines the probability that the system is in state 1C
i 

• These probabilities vary as steps are 

added to the Markov chain, a process performed by repeated application of the transition 

matrix p to the state vector 1t, 

nT(n)p=nT(n+l) (5) 

Here we have written the states as transposed column vectors and indicated the step 

number by n. Following Metropolis6
, we demand that the 1C

1 
be asymptotically 

distributed according to their Boltzmann weights: 

1C
• 

oc e 
W
' , (6)

i 

where 

n' = lim 1t(l)pn. (7) 
n->~ 

In the isothermal-isobaric ensemble27
, for which the corresponding potential is the Gibbs 

free energ~8, 

~ = - P(Ui + P~) + N In V, . (8) 

Vi and Vi are the internal energy and volume (respectively) of state i, N is the total 

number of atoms in the system, and Phas its usual meaning as the inverse product of 

temperature with the Boltzmann constant, (kBrr', A simple step toward realization of (6) 

is construction of the transition matrix p such that 

. . 

1tp=n, (9) 
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meaning that once reached, the limiting distribution is permanently maintained. This is 

known as the balance condition. The elements of p define the probability of transition 

between various states, meaning that 

P.. ;:::o 'ifi,}. (10)
1/ 

Conservation of probability mandates that 

IPij = I 'ifi (11) 
j 

as well. Equation (II) identifies p as a stochastic matrix. The Markov chain is irreducible 

(or ergodic) ifthere exists some n such that 

[pn]ij > 0, 'ifi,} , (12) 

establishing that any final state can be reached from any initial state simply by repeated 

application of p to an (arbitrary) initial state vector n(l). If p is stochastic and 

irreducible, the Perron-Frobenius theorem4 ensures that it possesses a single left 

eigenvector having unit eigenvalue, and that this eigenvector represents the limiting 

distribution. This guarantee does not, however, ensure that the limiting distribution is the 

Boltzmann distribution. For this, an explicit form of Pi} compatible with (6) must be 

specified. 

A helpful constraint in this regard is microscopic reversibility, 

1'CPij = 1'Cj Pj ; • (13) 

Although (13) is unnecessarily strong i 
,29, its combination with (II) guarantees 

satisfaction of (9). We now restrict Pi} to the product form 

Pij =qijaij' (14) 
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where qij is the unbiased (or marginal) probability of making a trial step from state i to 

state j, and aij is the (conditional) probability of accepting such a move. The average 

number of systems attempting this transition will be Jriqu' and the average number 

attempting the reverse transition will be JrFJi' Metropolis et al. 6 were the first to show 

that (6) will be satisfied when 

a 1/.. =min( qi.iJr---
J (15) 

qijJri ' 

if the Jr. are defined as eJt; . In the (very common) event that q.. =q .. by construction, this 
I Y Jf 

reduces to 

. ( w. -w. )aii = mm e J ',I. (16) 

The choice of au given in (15) and (16) satisfies microscopic reversibility as well, so 

long as there is a nonzero probability of remaining in the same state, 

Pu =1-LPii :;t: 0 . (17) 
i¢'; 

The matrix elements qij represent the probability of making a trial move, such as a 

displacement or a volume change. For single-particle displacements limited to a sphere of 

cutoff radius rc, qij is the uniform probability of choosing a trial state j in which a single 

particle has been moved to a different point within the sphere; this uniformity is what 

permits reduction of (15) to (16). For more sophisticated move types such as the 

composite moves introduced below, the distribution of trial moves may not be uniform, 

in which case q will assume a more complicated form. In that case, the simple 
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decomposition of pij assumed in (14) can be leveraged to yield the new matrix a 10 

relatively straightforward fashion. This procedure is illustrated in the next section. 

IV. NESTED MARKOV CHAIN MONTE CARLO 

The N(MC)2 procedure distinguishes the full system of interest from a reference 

system defined by an alternate potential. In what follows, reference system quantities will 

be indicated with superscripted zeros. Reference and full system volumes are identical, so 

no attempt will be made to distinguish the two. 

Consider a sequence of M elementary reference steps connecting configurations i 

and j. Each of these steps is accepted on the basis of the standard Metropolis criterion 

(15) using reference system energies. We wish to transform this sequence of steps 

accepted in the reference system into a trial step made in the full system. The full system 

qij are no longer drawn from a uniform distribution; rather, they are built from a sequence 

of M points accepted with Boltzmann weight in the reference system. What is the 

appropriate form of the new aij, the acceptance probability in the full system? The full 

system qij are 

M M M-II (0) II (0) (0) - II (18)qij - Pk-I,k qk-I,kak-I,k ­
k-I k-I k-I 

meaning that 

(0) (0) J ( (0) (0) J ( (0) (0) 1(0) • .n:1 ql,o (0)' rez q2,1 (0)' re M q M.M-I 
qO.lm1O 

( 
.n:(0) (0),1 xql,zm1O re(O) (0),1 x",xqM_I,M m1O re(O) (0)~~~~,1 

qij = 0 %,1 I ql,2 M-lq M-l,M ,(19) 

(0) (0) J [ (0) (0) 1 [ (0) (0) Jqji (0) • re M-IqM-I,M (0) • TC I ql,2 (0)· reo %,1 
qM,M_l m1O 

[ 
(0) (0) ,1 X", xq2,1 m10 (0) (0),1 xqo.1 m10 (0) (0),1 

re M q M.M-I TC2 q2,1 rei ql,Q 

Following Gelb l6
, note that 
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(0) (OJ )
Trk qU-J 1 

q(O) min 
( 

(0) (0)' Tr(O) 

.-u =".-,qH') --f,;-, (20) 
",(0) q(O) Tr _ 

• '"k_l k-I.k 1 k J 
mm (0) (0) ,

( 
Trk qk.k-J 

which, in combination with reordering of factors in (19), implies that 

q.. Tr(O) Tr(O) TrIO) Tr(O) TrIO) 
1...J!...::::_I_X_2_X_3 _X"·X__·-::::-j- (21)q .. TrIO) Tr(O) Tr(O) .".(0) (0) • 

]I I I 2 '"M_I Tr; 

Substituting (21) into ( 15) gives 

Tr. Tr(O) 
• 1 I (22)a .. =mm -(Oi, 

(IJ Tr Tr jj 

the acceptance probability of composite moves required for Metropolis sampling of the 

full potential. In comparing a y with a~O), the standard ratio of Boltzmann factors for 

initial and final states of the full system has been augmented by the inverse of the 

standard ratio in the reference system (to which Gelb refers as a 'correction factor'). The 

Tr~O) in (22) are evaluated using the reference system temperature (t°» and pressure 

(pO», but this in no way precludes use of a different pressure (P) and temperature (D in 

building Trk for the full system. Abbreviating the difference between full and reference 

potentials for state k as W - ~(O) == 8W ' and 8W - 8~ == ~W , (22) can be reexpressed 
k k j 

as: 

I, ~W~O 
(23)

aij = { eAW, ~W <0 

If the reference energy always were related to the full energy by a simple constant shift 

u(O) +c::::u (24)
n n' 
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the product in (22) would never deviate from unity, and thus all composite moves would 

be accepted, regardless of the magnitude of M. A distribution of oW implies a 

distribution of .6.W, the mean of which is determined by the extent to which the 

reference potential deviates from the full (or by the number of reference steps between 

full energy evaluations). Because a Dirac 0(0) distribution of .6.W would yield unit 

acceptance probability, reducing the absolute value of the first two moments of the .6.W 

distribution raises the mean value of ali in (23). These moments are dictated partly by the 

thermodynamic state of the reference system, a fact upon which we build the 

optimization procedure described in the next section. 

Unless otherwise indicated all full system results are for a periodic system of 100 

diatomic molecules at temperature T=728 K and pressure P=4.84 OPa, although our 

methodology is in no way restricted to such extreme environments. After an equilibration 

period of 0(104
) reference steps30, results were collected from an additional 0(107

) 

reference steps and averaged over 5-10 Markov chains started from randomly chosen 

initial conditions. 

The rate of convergence for ensemble averages depends on the statistical 

independence of the sampling points, in a sense now defined. The left panel of Figure 3 

presents the distribution of reference energy per particle dO) as given by (l )-(4) and for 

/=1.00 A, calculated at a fixed number of steps 0 from a reference configuration j. At an 

offset 0=10 steps, the energies u(O)(j) and u(O)(j + 0) are highly correlated and thus the 

distribution is narrowly peaked about u(O)(j). As the offset grows larger, the distribution 

widens gradually up to 0=3000, at which point the distribution ceases to broaden. The 

right panel provides a quantitative measure of this effect through the standard deviation cr 
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of the Gaussian distribution. The width of the distribution at 0=4000 is indistinguishable 

from that at 0=3000. In fact, energies are correlated only slightly at 0=500, but a 

conservative estimate of Oeorr is made in order to clarify the benchmarks provided below. 

We define the correlation length Oeorr, then, to be equal roughly to 3000 for this set of 

reference potentials. 

Gelb's presentation of the N(MCi method16 suggested a metric for evaluating its 

computational efficiency (maximum speedup), but did not attempt to quantify its 

sampling efficiency. Because the reference and full potentials used here do not differ in 

computational expense, we reverse the emphasis and defer discussion of the total 

efficiency (some combination of sampling and computational efficiencies) for a later 

work23 
• The sampling efficiency of the method provides a measure of the rate at which it 

will explore the relevant space. This quantity is not determined by the acceptance 

probability alone, but in balancing the need to separate full energy evaluations by as 

many reference steps as possible (up to Deorr) with maintenance of a reasonable 

acceptance probability for each composite move. In light of these considerations, we 

define the sampling efficiency Es for a given reference potential (characterized here by 

Oearr) and offset 0 as 

Es (0,°('or) == amin(O,Ocor) (25) 

°"Of" 

a is the average acceptance probability of a composite move from state i to state j when 

the states are separated by ° reference steps, and the min function reflects the efficiency 

loss in increasing 0 beyond Oeorr. The min function really should be replaced by one 

passing smoothly to Oeorr, but (25) is sufficient for our purposes here. The possible range 

of Es as defined by (25) is [0, I], and the goal of the procedure introduced below will be to 
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maximize this quantity through variation of i:i. If 0 is large but i:i is small, then 

accepted composite steps will explore configuration space rapidly but much 

computational effort will be wasted on rejected steps; for small 0 and large i:i, 

composite steps will be accepted with high probability but little ground will be covered in 

the process. 

We now examine the performance of N(MCi for I values in the range 0.90-1.05 

A. Figure 4 illustrates the acceptance probability and Figure 5 the sampling efficiency as 

defined by (25) for 0=1-3000. As the reference potential deviates more strongly from the 

potential (i.e., as I decreases), the performance of the method deteriorates rapidly, as 

evidenced by the downward shift in both the acceptance probability and efficiency 

curves. As is to be expected, the acceptance probability also falls as the magnitude of the 

offset rises. The inset in Figure 4 demonstrates the ability to obtain a good acceptance 

probability even with a poor reference potential, albeit at the cost oflowering 0 (meaning 

that a greater number of total sampling points will be required). In this context it is 

important to emphasize that using 0 values close to Ocarr is ideal, but not at all necessary 

for sampling the full potential much more efficiently than with conventional (MCf On 

this point, note that the efficiency using any reference potential is minimal at 0=1, which 

corresponds roughly to conventional (Mci. Efficiency no longer increases 

monotonically with the offset as the reference potential deviates more strongly from the 

full potential; results for 1=0.95 A and 1=0.90 A exhibit maxima around 0=250 steps. 

These results will be scrutinized quantitatively below, after introducing an optimized 

variant ofN(MC)2. 

V. OPTIMIZED N(MC)2 PROCEDURE 

15 
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The average acceptance probability A for composite steps connecting 

configurations i and j can be expressed exactly in the limit that i and j are fully 

decorrelated: 

A == lim ii. (26) 
O-to corr 

The initial states i will, by construction, possess relative weights eW
, drawn from the full 

distribution. The final states j will, in the Oeol'l' limit, be drawn randomly from the 

reference distribution and thus carry weights eWj"). The acceptance probability of a 

composite trial step from state i to state j is exi}' and this quantity is averaged over the 

configuration and volume spaces of all decorrelated (i,j) pairs to obtain A, 

w+w,o, oW wIO,+w,o,IIIIA= IIII aije i I dr; d~ drj dVj = a i/ i (e I )dr; d~ drj dVj (27)I I I I ow 

I 

.WiO' +w,o,
e'l drjd~drjdVj e '(e I )drid~drjdVjII I I I w+w,o, 

Because composite steps are built from a sequence of elementary moves accepted with 

Boltzmann weight in the reference system, the terms appearing in parenthesis in (27) are 

implicitly taken into account when (MC)2 sampling on the basis of the reference 

potential. Indicating a double average over initial and final states by nested brackets, (27) 

can be condensed as follows: 

_ ((a/o*:))
A= 0 (28)

((iij~))o ' 

where the subscripted '0' indicates that the averaging is performed entirely in the 

reference ensemble. A can be built from (28) by sampling 8W at a collection of 

decorrelated configurations (each separated by 02::: 0ml'/' reference steps), meaning that 
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the sampled points will be drawn purely from the reference distribution and thus without 

application of (22). We refer to this reference distribution sampling as the 'reweighting' 

calculation31 
,32, and A evaluated on this basis will be denoted Arw A 

rw 
constitutes an a 

priori estimate of A, in the sense that it provides an acceptance probability for N(MCi 

composite steps (but only in the Dearr limit) without recourse to an actual N(MCi 

simulation. 

We now step through the procedure for performing an optimized N(MC)2 

simulation at a prescribed set of thermodynamic conditions (P=P',T=T). The reference 

(full) system weights Wk(O) (Wk) appearing in (27) depend on the reference (full) system 

temperature and pressure through (8), meaning that A== f( p(O) ,T(O) ,P,T) . Hereafter, the 

variable dependencies of A will be listed in this order. From a single set of reference 

configurations collected in the reweighting calculation at (pO),r0)), a family of Arw 

differing only in the values assigned to (P,T) can be constructed from (28). Because it is 

the thermodynamic state of the full system only that we wish to match with experiment, 

(pO),r0)) can be treated separately from (P,T) and the latter varied as free parameters in 

order to maximize An;' for a given set of configurations. Previousll l we applied a similar 

idea to the thermodynamics of fluid N2 as described by OFT, but strictly in the context of 

reweighting configurations already sampled using traditional (MCi, The reference 

A = A(O)system parameters can be varied to yield maximal at optimal
fW max 

(p(O) =p(O) T(O) =T(O») : 
opt' opt 

A(O) (p(O) T(O) P' T') = 
max opt' opt' , 

(29)
max { An;,(x,y,P,T): ~(O) $. X $. ~(O),T?) ~ y $. r;(0) : P =P',T =T'}' 
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where the reference system (x,y)=(pO\tO» have been scanned over a given domain. This 

approach is permissible, but requires iteratively resampling OW (which includes 

evaluation of the full potential). Alternatively one can satisfy 

A (P' T' P T )=
max ' 'opt' opt 

(30) 
max {Arw(P(O) ,T(°l,x,y): pO) =r,T(O) -= T': ~ ~ x ~ ~,~ ~ y ~ T }'

2 

using the same set of reference configurations for each (x,y) pair. In general, A~~ is a 

function of (x,y)=(P,1) and Amax is a function of (x,y)=(pO),tO»; in (29) and (30), we 

have specified an actual value for these functions at designated values of (pOl, to)'p,1). 

Upon solution of (30) there are at least two different ways of returning the full system to 

the thermodynamic state of interest at (P=P',T=T). The first is to collect reweighting 

samples at multiple (pOl, to», solve (30) at each thermodynamic state to yield a set of 

corresponding (Popt. Topt) pairs, calculate ensemble averages at each new pair using the 

optimized N(MC)2 procedure, then interpolate between those averages to obtain 

approximate values at the (P=P',T=T) combinations desired. We will take this approach 

in a future pUblication23 where N(MC)2 will be used to characterize the shock Hugoniot 

locus of N2 over a wide range of thermodynamic conditions. Here we assume a simpler 

approach, more suitable for use of N(MC)2 at an isolated thermodynamic state. After 

solving (30) for (Popt. Topt), we linearly extrapolate back to the original, desired (P' ,T) and 

apply the same transformation to the reference variables, yielding approximate 

(pO) T(O»: 
opt' opt 

p(O) "" pO) + (P'_ P ) T(O) '" (31 )
opt opt' opt +(T'- T"Pl)' 
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Optimized N(MC)2 is then performed at (P,,~~) ,To~) ,P',T'). Concrete examples of this 

procedure are shown in Table 1. Beginning at T=TO)=T=728 K and p=PO)=P'=4.84 GPa, 

unoptimized N(MC)2 simulations were carried out with all four reference system bond 

lengths 1 and the resultant AMC(P',T',P',T') recorded. AMC values represent an a 

posteriori estimate of A, calculated simply as the number of accepted composite steps 

divided by the total number of composite trial steps a N(MC)2 simulation. The 

reference distribution of 5W was then sampled at O( 104
) points, from which 

A,.,,,(pt,T',P',T') was built using (28). P and Twere varied with (30) to yield Amax and 

(POphTopt), then (31) was used to generate (p,)~), To~)) . Finally, N(MC)2 simulations using 

the two optimized sets (pt,T\P ,T ) and (P(O),T(O),P',T') were performed to yield 
Opl opl opt opt 

the corresponding A
MG

•• Note that optimized reference system variables were obtained by 

solution of (31), not (29); thus, no a priori estimate of AMC(P,,~) ,T;:/ ,P',T') is available. 

Numbers in parenthesis indicate statistical uncertainty in the final digit recorded. 

Discrepancies of greater than one (J between theoretical and computed values most likely 

reflect use of incompletely decorrelated samples. 

We found the surface describing Am. as a function of P and T (or pO) and TO») to 

be generally smooth, and the scanned range of pressure and temperature values can be 

squeezed iteratively in combination with finer meshes until a maximum is located; this 

approach proceeds with little difficulty. The left panel in Figure 6 presents a contour plot 

of predicted acceptance probabilities scanned over a range 750-850 K and 4.75-5.75 GPa, 

for the reference potential 1= 1.00 A. Contour values were obtained in the process of 
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solving (30), so the temperature and pressure being varied are that of the full system. The 

arrow points in the direction of uniformly increasing contour values, and the vertical 

dotted line marks the temperature at which Arw is maximal. A trio of acceptance 

probability "isotherms" dmwn from the contour plot is depicted in the right panel; these 

curves scan Ant over a range of pressures at fixed temperature. The overall maximum is 

clearly identifiable at T=790 K, P=5.35 GPa. 

Solution of (29) or (30) requires sampling at enough points to provide a reliable 

estimate of An<' from (28). If such estimates require a large number of sampling points, 

then the sampling efficiency gained by optimizing N(MC)2 will be lost in the overhead of 

performing the optimization itself. It is reasonable, then, to ask how many sampling 

points Nrw are required to predict stable values of (PoPt,Topt) or (~;), r;)~». The 

convergence of (Popt, Topt) with respect to N,.." is illustrated in Figure 7, where it appears to 

be faster for reference potentials closer to the full potential; while (Popt,Topt) for 1= 1.05 A 

are converged at Nrn,=lOOO, (POPhTopt) for 1=0.90 A are clearly unconverged even for 

Nrw=5000. We hasten to note, however, that convergence of the acceptance probability is 

much more important than convergence of the thermodynamic parameters. If Aop, 

exhibits a broad, flat peak when expressed as a function of P and T, then strict 

convergence of the latter two is not necessary to ensure a dramatically improved 

acceptance probability. Figure 8 confirms that this is indeed the case: the A for all four 
OP1 

reference potentials stabilize at at roughly 1000 steps to the (Poph Topt) shown in Table 1. 

Having obtained solutions to (30) and extrapolated back to (~p~)' To~» with (31), 

we now examine the performance of optimized N(MC)2 using the new set of 
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thennodynamic reference variables. Optimal acceptance probabilities and efficiencies are 

shown in Figures 9 and 10, and should be compared directly to those of Figures 4 and 5, 

respectively (note that the ordinate scales in Figures 5 and 10 differ). Improvements in 

acceptance probability as a percentage of the unoptimized values for 0=I 00-3000 are 

shown in Table 2. Improvement is significant for all potentials at all values of 0, but the 

marginal gain increases as 0 grows larger and (in general) as the reference potential 

deviates more strongly from the full potential. The greatest perfonnance improvements 

are for /=0.95 A, possibly indicating that already at /=0.90 Athe physics embodied by the 

reference potential starts to deviate too strongly from that of the full potential for the 

optimization procedure to be fully effective. 

The distribution ausu-rJ°) of potential energy differences sampled by trial states 

in N(MCi interpolates between the distribution found by Metropolis sampling on the 

basis of the reference or full potential alone: for small 0, the distribution of trial au is 

roughly that encountered in sampling on the basis of U only; in the OCOI'I' limit, the au 

distribution corresponds exactly to that found in sampling strictly on the basis of rJ°) (in 

this case, the trial state loses its "memory" of the initial state). Because trial states are 

assigned Boltzmann weight in the full system, the acceptance probability of N(MCi 

steps is reflected indirectly in the overlap of the au distributions for trial and accepted 

states (both distributions are a function of volume). Figure 11 illustrates au (where u=( u­

vs. v (v=V/N) for /=1.05 Aand 0=1000. Unoptimized N(MCi results are shown 

in the left panel, optimized results in the right. The overlap of the trial (black points) and 

accepted (red points) distributions increases significantly upon optimization, where we 

have indicated the values of (Po,To,P,T) used in the underlying simulations. Figure 12 

21 



illustrates the same data, but for /=0.90 A and 0=1000. Again, optimization increases the 

overlap considerably. The density of accepted points is much lower than in Figure 11, in 

keeping with the acceptance probabilities listed in Table 2. The system exhibits also a 

strong tendency to become "trapped" at certain volumes, indicated by the broken, vertical 

collections of trial points. As stated in IV, the acceptance probability for N(MC)2 steps 

remains good even with a poor reference potential if one is willing to employ a smaller 

O. Figure 13 shows the same distributions as in Figure 12, but for 0=250 instead of 

0=1000. Not only are the overlaps between trial and accepted distributions greater before 

and after optimization, but the volume trapping noted in connection with Figure 12 is 

absent almost entirely. There is considerably more skew in the trial distribution for 

smaller offsets; this reflects correlation between initial and final points in the composite 

trial step. Although this combination of reference potential and 0 yields high overlap and 

thus a good acceptance probability, many more sampling points will be required to 

minimize the variance in ensemble averages. 

From the sets of trial and accepted points shown in Figures 11-12, one can build 

the dW distributions appearing in (23), thus establishing a direct link between trial 

distributions and acceptance probabilities. Figure 14 depicts the d W distributions built 

from Figures 11 (left panel) and 12 (right panel). As expected, the distributions for the 

better reference potential (/=1.05 A) are narrower and their means lie closer to zero. 

Optimization substantially lowers the absolute value of ((dW)) and a(dW) for both 

values of / (we have indicated the double averaging over initial and final points by nested 

brackets), and both of these factors contribute to a higher average acceptance probability 

for composite moves. This exercise provides an alternate means of evaluating the 
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performance of the optimization procedure, in that the first two moments of the AW 

distribution are closely related to the acceptance probability. Table 3 provides an 

overview of these moments (before and after optimization) for all of the potentials 

surveyed. 

VI. SUMMARY 

Nested Markov Chain Monte Carlo (N(MCl) allows (MC)2 sampling with a 

potential of given accuracy (the full potential) without needing to evaluate it following 

every elementary step. By stringing together a sequence of single~particle moves 

accepted on the basis of a more approximate potential (the reference system), trial steps 

in the full system are made to encompass multiple particles. The acceptance probability 

of this composite step can be maximized in at least two different ways. The first, 

described above, involves manipulation of the thermodynamic conditions characterizing 

the reference system such that the variance of the au vs. V distribution33 is minimal. A 

second means of optimization, not explored here, is direct, iterative modification of the 

reference potential to conform with 'targets' (such as average energies or volumes) 

computed with the full potential. Changes could be made adaptively to the reference 

potential functional form or its parameterization, or (in the case of an ab initio reference 

potential) the basis set or level of convergence. An iterative strategy similar to that used 

in optimal pulse-shaping34 or empirical structure refinemenes could be employed in 

combination with the thermodynamic optimization described above to yield an even more 

efficient route to accurate equilibrium sampling. 

Clearly there are limits to the range of reference potentials suitable to any given 

full potential. Qualitative differences in the nature of intermolecular forces, such as the 
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complete absence of attractions, cannot be salvaged using the optimized N(MCi 

procedure; hard spheres will never be a good reference for ab initio water. Once a pair of 

potentials is different enough that the overlap of their 8U vs. V distributions is nearly 

zero, collecting statistics to evaluate (27) becomes quite difficult. These difficulties were 

apparent even in the 1=0.90 Acase above, in spite of the fact that our reference and full 

potentials have the same functional form. Bennett's methods36 for estimating &W surely 

are useful in this context, but it is unlikely that even optimal performance will be 

acceptable if such techniques are required simply to estimate A (i.e., thermodynamic 

optimization can only move the distribution so far). 
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Figure 1. Diatomic pair configurations used to illustrate the anisotropy of the potential 
defined by (I )-( 4) and its variation with intramolecular bond length I in Figure 2. Bond 
lengths are fixed at 1.10 A in the full system, but varied from 0.90-1.05 A in the 
reference systems. Configuration types T, L, and X are characterized by four angles, 

(81,XI ,82 ,X2)' where 8 and X represent rotation of molecules I and 2 in and out of the 

plane of the page. Diatomic bond vectors in the T and L configurations therefore are 
coplanar whereas those in the X configuration are perpendicular. Clockwise rotations are 
positive, and all angle values are zeroed to those of the parallel configuration (not 
shown). 

http:0.90-1.05


X T L104 
\' '"\ ~ 

\ \ 
- 1=0\: ,, \ \ 

\: \ \ \\ , '" \ \ 

, 

' , 
- - -/=1.10 A 

\: \ \ \, ,,, \ 
\ 

\ , 

~ 103 

\ , 
, 
\ ' \ ' \~ 

' \ \\ 
\ 1 , " \ \\\\ 

\ \\ \ 
\ \ 
\ \ 

102 ',' \ \ 
\ 

\ 
\ 

2.5 3.0 3.5 4.0 4.5 
, R. 

r 
ij 

Figure 2. Illustration of the pair potential defined by (1 )-( 4) as a function of the center­
of-mass-separation rij. The full potential (/= 1.1 0 A) is compared to a spherical potential 
(/=0, where all configurations are equivalent), as well as to the reference potential with 
the shortest bond length (/=0.90 A). Variations in potential qJij are plotted on a log scale, 
revealing its highly anisotropic character. See Figure 1 for an explanation of the X, T, and 
L configurations. 
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Figure 3. Correlation of reference energy per particle u (O) at configurations j with those 
separated by a fixed number of steps 0 , for 1=1.00 A. The left panel shows the uniform 
broadening of the Gaussian distribution as the offset rises. The right panel illustrates 
convergence of the distribution width, as characterized by standard deviation cr, for 
several different values of I. At offset Ocorr=3000 steps, the energies are approximately 
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Figure 9. Average acceptance probabilities ii for the optimized N(MC)2 procedure as a 
function of the number of reference steps 0 taken between full energy evaluations. 
Results should be compared with the those of the unoptimized procedure, shown in 
Figure 4. 
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Figure 10. Sampling efficiency Es for the optimized NCMC)2 procedure as a function of 
the number of reference steps 0 take between full energy evaluations. Results should be 
compared those of the unoptimized procedure, shown in Figure 5. 
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Figure 11. Distribution of energy difference per particle (8u= ((U-(JOl) /N) vs. volume per 
particle (v=V/N) for the unoptimized (left) and optimized (right) N(MC)2 procedure at 
/= 1.05 A and offset 0=1000. The black data represent trial composite steps, the red data 
are accepted composite steps. The llW appearing in (23) are found from the difference in 
trial and accepted points. Note the increase in overlap of these distributions upon 

optimization, and thus the decrease in ((llW)). 
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Figure 12. Distribution of energy difference per particle (bu=(U-UOl)/N) vs. volume per 
particle (v=V/N) for the unoptimized (left) and optimized (right) N(MC)2 procedure at 
/=0.90 A and offset 0=1000. The black data represent trial composite steps, the red data 
are accepted composite steps. The ~w appearing in (23) are found from the difference in 
trial and accepted points, Note the change in ovedap of these distributions upon 
optimization. 
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Figure 13. Distribution of energy difference per particle (c5u) vs. volume for the 
unoptimized (left) and optimized (right) N(MC)2 procedure at /=0.90 A and offset 
0=250. The black data represent trial composite steps, the red data are accepted 
composite steps. The L1Wappearing in (23) are found from the difference in trial and 
accepted points. Even for a poor reference potential, significant acceptance probabilities 
can be achieved by lowering ° (cf. Figure 12). Note that for lower values of 0, the 
correlation of c5u and v remains even in the trial distribution. 
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Figure 14. Direct visualization of the IlW appearing in (23), taken as the difference in 8W 

for the trial and accepted distributions shown in Figure 11 (left panel) and Figure 12 

(right panel). Upon optimization, the mean value of IlW shifts closer to zero and the 

width of the distribution shrinks in both cases. Both of these factors contribute to a higher 

acceptance probability for composite moves. 
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Table 2. Improvements in efficiency for optimized relative to unoptimized N(MCi, as a 
percentage of efficiency for the latter and as a function of the reference system Markov 
chain length o. 
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Table 3. First two moments in the distribution of L1W appearing in (23), as a function of 
the reference system Markov chain length 0 and for all of the reference potentials 
surveyed. The double brackets indicate averaging over initial and final points (i and j in 
(27)), and values are listed before and after (opt) optimization. 
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