
IYU I c. uw IIIWW uuiioris io prim or save tne iorm. uu NU I use me urowser 1001 Dar. P.'1'y?q 

Title: 

Author(s). 

Submitted to. 

/A 
' Q Los Alamos 

N A T I O N A L  L A B O R A T O R Y  
Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the U.S. 
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government 
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US. 
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the 
auspices of the US. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to 
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (8/00) 

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact:



Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM  87544

Phone:  (505)667-4448

E-mail:  lwwp@lanl.gov



A Dynamic Kernel Modifier for Linux 
Ronald G. Minnich 

Los Alamos National Laboratory* 
Advanced Computing Laboratory 

Los Alamos, NM 87545 USA 
rminnich @lanl.gov 

September 3,2002 

MS-B287 

Abstract 

Dynamic Kernel Modifier, or DKM, is a kernel module 
for Linux that allows user-mode programs to modify the 
execution of functions in the kernel without recompiling 
or modifying the kernel source in any way. Functions may 
be traced, either function entry only or function entry and 
exit; nullified; or replaced with some other function. 

For the tracing case, function execution results in the 
activation of a watchpoint. When the watchpoint is ac- 
tivated, the address of the function is logged in a FIFO 
buffer that is readable by external applications. The 
watchpoints are time-stamped with the resolution of the 
processor high resolution timers, which on most modem 
processors are accurate to a single processor tick. 

DKM is very similar to earlier systems such as the 
SunOS trace device[]] or Linux TT[5]. Unlike these two 
systems, and other similar systems, DKM requires no ker- 
nel modifications. 

DKM allows users to do initial probing of the kernel to 
look for performance problems, or even to resolve poten- 
tial problems by turning functions off or replacing them. 
DKM watchpoints are not without cost: i t  takes about 200 
nanoseconds to make a log entry on an 800 Mhz Pentium- 
Ill. The overhead numbers are actually competitive with 
other hardware-based trace systems, although it  has less 

‘Los Alamos National Laboratory is operated by the University 
of California for the National Nuclear Security Administration of the 
United States Department of Energy under contract W-7405-ENG-36. 

accuracy than an In-Circuit Emulator such as the Amer- 
ican Arium. Once the user has zeroed in on a problem, 
other mechanisms with a higher degree of accuracy can 
be used. 

1 Introduction 

One of the most frequently asked questions about kernels 
is “where is all the time going?’ We have long wondered, 
for example, where the time is spent when a program 
sends a packet. We have found after asking people who 
should know that no one really knows. Many people have 
conjectures based on intuition, but in all too many cases 
the intuition has proven to be wrong. Very simple probing 
can be done using sufficiently clever external programs, 
but for the most part, the kernel is a black box which is 
difficult to measure. 

A number of systems have been developed over the 
years to help resolve these questions. One such system is 
the SunOS trace device[l]. The trace device was present 
in SunOS at least as early as SunOS 4. I ,  ca. 1991. It is 
possible it was present even earlier, but the exact time of 
creation is hard to fix for reasons discussed below. An- 
other device is the Linux Trace Tool (or 77J device. This 
device provides sophisticated software tracepoint support, 
albeit at moderate cost. We give an overview of these de- 
vices below. 



1.1 SunOS/Solaris trace device 

The SunOS trace device consisted of several components: 
a macro that logged data into a FIFO; a device that could 
give user programs access to the FIFO; and user programs 
that read the data from the device and turned it into useful 
information. None of these components were available to 
us in 1991 when we first encountered this device. As far 
as we know, the trace device at the time was for Sun inter- 
nal use only. The only hint of the trace device’s existence 
were the mysterious TRACE macros scattered throughout 
the kernel source. 

We found that Sun programmers had used the TRACE 
macro in many places in the kernel. The macro was nor- 
mally disabled, i.e. compiled to no code at all, but could 
be enabled if desired when the kernel was built. There was 
no problem in using the macro, since in kernels as shipped 
i t  was compiled out. The macro accepted a fixed number 
of parameters as well as a constant describing the class of 
trace entry it was creating. In the source as shipped this 
macro was never enabled or even available; the include 
and source files for the trace device were not included in 
the SunOS source tree. We did not even know the values 
of the constants for trace classes. 

Since the SunOS trace device was not available to 
us, we really have no idea what ultimate functionaly the 
macro and device provided. The presence of the macros in 
SunOS source did provide us with a very convenient set of 
examples and hooks for tracing. We decided to implement 
our own macro and trace device;we will now describe the 
trace device we implemented at the Supercomputing Re- 
search Center in 1991. 

Our trace device, had several capabilities. If the trace 
device was not opened, then no data was recorded in the 
FIFO. Once the user program had opened the trace de- 
vice, it could control the size of the FIFO. The user pro- 
gram could also set a mask, so that only events of a certain 
class were recorded. We defined the trace class constants 
as bits so facilitate trace enables. The device supported 
memory-mapped I/O for maximum efficiency: memory- 
mapped I/O was worth at least a factor of two improve- 
ment in performance on SunOS at that time. 

The user program had access to a read-only trace buffer 
as well as read-only control variables. The kernel would 
always write into the FIFO, and the user program used the 
counters to determine when new data was in the FIFO, and 

also how much data it had missed in the event of overrun. 
We required that the size of the buffer be a power-of-two 
so that we could use a classic hardware trick: a 32-bit 
FIFO counter counted the number of FIFO entries, and the 
low-order N bits of the counter mapped to the slot number 
of the next entry. 

One of our user programs was a TCL program which 
made reading and dumping the data easy. Once data was 
saved, we used other programs to analyze the data. Using 
this information we were able to measure and optimize 
the performance ofMether[4], MNFS[3], and the NFS file 
system. 

About the same time that we developed our trace de- 
vice, Brent Welch at XEROX PARC developed his own 
trace device driver and set of tools. Our systems were 
very similar. Neither system was ever generally released 
to the Open Source community. The vibrant Open Source 
community we take for granted today had barely begun to 
exist in 1991. 

1.2 Linux Trace Tools 

Once the research community made the transition to open 
source operating systems such as FreeBSD and Linux, 
the capabilities of the SunOS trace device were no longer 
available. SunOS as shipped contained a substantial num- 
ber of tracepoints. We did not need to add many of their 
own. The Open BSD-based and Linux operating systems, 
in contrast, had no support for tracepoints, and hence no 
installed tracepoints. It is true that adding tracepoints, a 
tracepoint device, and user programs is not a difficult task, 
but trying to keep one’s changes in sync with kernels that 
may be changing on a weekly basis is a burden. 

Nevertheless the Linux Trace Tools (LTT) effort has 
made a first try at implementing a trace device capabil- 
ity. It is an extremely capable device. 

The LTT consists of a set of kernel patches, device 
driver, and user programs. The L?T provides a set of 
GUls for viewing events. 

The problem with the LTT, from our point of view, 
is that the patches are very specific to a kernel version. 
The latest stable LTT, for example, only supports kernel 
versions 2.2.17 and 2.4.0-testlo. The patches are large 
(4000 lines for 2.4.10); invasive, requiring modifications 
to 47 source files in 2.4.10; and difficult to turn on and 
off, since turning them off requires a kernel recompile, as 



does adding new tracepoints. For this reason tracepoints 
are not added lightly. 

Finally, the LTT has a bigger time footprint for record- 
ing a trace than we are comfortable with. The device itself 
is complex, and does a great deal of work per trace. 

1.3 DKM 

We implemented DKM because we need to monitor the 
Linux kernel at a time when versions are changing almost 
weekly. The LTT, as mentioned, requires patching the ker- 
nel, and has major difficulties with several recent kernel 
versions. LTT has had a hard time keeping up with the 
pace of change of Linux. Because we are tracking the lat- 
est kernel, it is essential that we be able to instrument the 
latest kernel. 

We also decided that we were no longer willing to re- 
compile the kernel every time we wanted to add a trace- 
point. In the SunOS days we often found that we had built 
a kernel and needed yet another tracepoint. Every trace 
package with which we are familiar imposes the same re- 
quirements: adding traces requires a kernel rebuild and 
reboot step. We wanted the ability to add and remove tra- 
cepoints at will, to any running kernel, without changing 
the kernel source at all. We also wanted the monitoring 
system to be easily removed with one command. 

Once we had implemented DKM we realized that with 
just a bit more work we could add two additional valuable 
capabilities: we could nulllfi a function, and we can also 
replace a function in a running kernel. This type of con- 
trol has great utility in the protocol stack. While debug- 
ging one problem, for example, it would have been very 
useful to be able to disable delayed acks in TCP. There 
is a a kernel API for doing this, but it does not work. 
DKM would have allowed us to experiment with turning 
the delayed-ack function off or replacing it with one that 
worked better. 

DKM consists of a pseudo-device module and a user- 
level library which allows the user to insert tracepoints 
into a live kernel. No kernel patches are needed. Many 
Linux tools that deal with kernel symbols (e.g. all the 
module tools) can only use exported symbols as found in 
/proc/ksyms. If a symbol is not exported, the kernel 
has to be rebuilt. For DKM, the exportable symbols from 
a kernel need not be changed, since the kernel symbol ta- 
ble (System. map) can be used to locate functions. The 

basic user-level program takes a list of addresses to watch 
in the kernel and sets tracepoints. We use Per1 scripts to 
convert symbol names in the kernel to addresses. 

The basic operation of DKM is to replace the first few 
instructions of a traced application with a call to a dynam- 
ically generated code stub. The instructions replaced by 
the stub are moved to, and executed in, the stub. We de- 
scribed the actual stub in more detail below. Note that it 
is essential that the stack frame of the stub be identical to 
the stack frame of the function. 

DKM does not support arbitrary code placement. We 
target placing tracepoints at function entry. The set of in- 
structions used by GCC at function entry is very limited, 
and we have exploited this fact: we can not parse the en- 
tire x86 instruction set, and hence can not substitute for 
an arbitrary instruction sequence anywhere in the kernel, 
only a limited set of instructions (25 at last count) that are 
typical of those used at the start of a function: load/store 
from stack; move registers; growhhrink the stack; and so 
on. 

2 Architecture of DKM 

As mentioned above, DKM consists of a pseudo-device 
module for Linux; a small library for manipulating trace- 
points; a set of assembly-code stubs for code modification 
support; and a set of instruction patterns that the library 
uses to determine how to build the dynamic code stub for 
the code modification. 

Save for the pseudo-device, all the code works in user- 
mode for programs, and was in fact developed and de- 
bugged in user mode prior to being tested in the kernel. 
The library interface in both user and kernel mode is the 
same, although we provide additional interface funtions 
for user-mode access to the device. DKM can be used for 
much more than just kernel modifications. 

Tracepoint insertion is a specialized instance of the 
more general case of modifying the function entry. A set 
of tracepoint support functions and an API are provided 
as part of the standard DKM source, although users can 
easily write their own and use them instead. 

Because tracepoints are both the most common appli- 
cation of DKM and exercise all the functions of DKM, we 
will discuss them in detail below. The mechanics of the 
tracepoint implementation are the most interesting so we 



will cover that part first. 

3 Inserting tracepoints 

Figure Omitted: The figure has been omitted since 
pdflatex can not seem to figure out how to import 

postscript at present. We will fix this for the final paper if 
accepted. 

Tracepoints are code segments that record execution of a 
specific function. A given tracepoint only records an indi- Figure 1: How the code stub modifies the function. 
vidual function. Because they augment the function, and 
hence increase the number of instructions the function ex- 
ecutes, tracepoints must exist in memory allocated outside 
the function. Tracepoint code is responsible for calling a 
trace function, executing the first few instructions of the 

0 fix up addresses in the stub to point to the correct 
locations, including call stack return addresses, calls, 
relative jumps, and the jumpback address 

function in that function’s stackframe,and resuming the 
function at the correct place. On Pentiums, tracepoint in- 
sertion is complicated by the variable-size instruction set 
of the x86 architecture. 

A tracepoint consists of a dynamically allocated code 
stub that contains a prologue, used to call the logging 
function; the relocated code that used to be at the start 
of the function; and a jumpback which jumps back to the 
rest of the function. The prologue is fixed in size. The 
relocated code will vary in  size, since on a CISC machine 
like the x86 instructions are variable length. The size of 
the jump is similarly fixed in size. Overall, however, the 
code stub will vary in size due to the variation in size of 
the relocated code. 

Inserting a tracepoint requires that we: 

0 figure out the relocated code size, Le. how many 
bytes of instructions we need to relocate from the 
function to the tracepoint stub (note: on CISC ma- 
chines this is more complex than, e.g., on Alpha) 

0 Compute the stub buffer size, given the relocated 
code size, and the prologue and jumpback code size 

0 allocate memory for the stub 

0 copy the prologue code to the stub 

0 save the relocated code from the start of the function 
to the stub after the prologue code 

0 install the jumpback code into the stub after the relo- 
cated code 

0 replace the start of the function with a call to the stub; 
fix up the relative address in this call so it calls the 
stub buffer correctly 

Figure 1 shows how the code looks before and after the 
tracepoints are inserted. This same technique is used both 
in kernel and user modes. 

Most of the code to handle tracepoint insertion is writ- 
ten in C, in an architecture-independent manner. Some 
code is necessarily written in assembly; the prologue 
code, which is (on x86 machines) 2 instructions; the 
jumpback code, which is 1 instruction; and the call code, 
which is 1 instruction. C code needs to rewrite pieces of 
the assembly code with addresses; to support the C code 
the assembly code exports sizes of assembly code blocks 
and offsets into the blocks for addresses. The C code has 
no knowledge of the details of assembly code. The only 
issue in C is the need to fix up relative addresses forjumps 
and calls. To support the address fixup, the assembly code 
also generates named variables that the C code can use to 
locate fixup addresses. 

The C code needs to replace the instructions at the be- 
ginning of the traced function with a call to the tracepoint 
stub. To do this, the code must replace an integral num- 
ber of instructions with a call instruction. The size of the 
instructions to be replaced may be larger than the call in- 
struction. 

We call this process sizing. The issue of sizing is a bit 
complicated, but we have simplified it greatly by restrict- 
ing ourselves to code patterns most commonly found at 
function entry. Once again we use generated assembly 
code to initialize data structures used by C. The structures 
describe the code patterns and the size of the code, as well 
as whether the instruction has a fixed part and an argument 
(e.g. immediate data). 

Tracepoint handlers are called from the tracepoint stub. 
The call to the tracepoint stub pushes the PC of the traced 
function on the stack, so this PC is available to the trace- 



Figure Omitted: The figure has been omitted since 
pdflatex can not seem to figure out how to import 

postscript at present. We will fix this for the final paper if 
accepted. 

Figure 2: Code structure to track both calls and returns 

point handler. The handler can examine all the parameters 
passed to the function, and determine the PC of the func- 
tion. 

Every traced function can have a different tracepoint 
handler, although to date we have only used one partic- 
ular tracepoint handler. The tracepoint handler code is 
written in C and can be arbitrarily complex, with the pro- 
viso that if a time-critical function is being traced then 
the tracepoint handler should do as little as possible. We 
could in theory have the tracepoint handlers do far more 
than simply log the function execution: in the limit they 
could even modify system call behavior. So far, we have 
limited ourselves (in kernel) to filling the FIFO with trace 
information. 

We had not been using the system long when users de- 
manded the ability to track returns. Code for returns is 
necessarily more complex because the caller of the func- 
tion is dynamic. The prologue code must be augmented 
to save the caller address for later use and to arrange for 
function return to be routed through code to trace returns. 

We show the additional structure in Figure 2. 
The first function we implemented in DKM was the 

tracing function entry, followed by the code to support 
function exit. Once we had these we realized that nullify 
functions and replacing a function with a different func- 
tion would be easy. Since we needed those capabilities we 
implemented them. The existing library was sufficiently 
powerful that adding these two new functions only took 
an hour or so. 

4 Nullifying Functions 

Nullifying a function is simple. DKM saves the function 
entry code as before, and replaces i t  with code to set a 
return value for the function, followed by an immediate 
return. The function entry code is not executed. 

The API allows the user to specify the return value for 

the nullified function. We have experimented with replac- 
ing the system time function with one that always returns 
0. The effects on the kernel (and X11) are revealing. 

This capability would have been very useful to us last 
year when dealing with a bug in delayed ACK handling. 
We suspected that a particular function in the kernel was 
at fault, and testing would have involved repeated kernel 
compiles - too painful to deal with at the time. Had we 
been able to simply nullify the function in a second or so, 
we would have been more willing to verify the cause of 
the problem. 

5 Replacing Functions 

Replacing a function with another function is the hardest 
thing to do in DKM. Because the replacement function 
must become part of the kernel address space, DKM re- 
quires that the user compile the function in  to the DKM 
kernel module. This operation is doable but hardly for 
the faint of heart. Nevertheless it provides an extremely 
useful debugging capability. 

For example, if one is trying to track certain behaviour 
in a particular kernel system call, one can easily replace 
that kill with code that provides the extra information. 
This operation normally requires rebuilding the kernel. 
What is nice about DKM is that the replacement is triv- 
ial to undo, as opposed to direct changes to the kernel that 
can only be undone by another kernel rebuild. Our expe- 
rience has shown that DKM can shorten the edit, compile, 
test iteration for kernel changes from the current 10 min- 
utes to a few seconds. 

Once a given change has been tested and shown satis- 
factory it can be compiled into the kernel for good. 

We had a recent experience where this capability would 
have been very useful. It so happens that the Linux code 
to allocate a new Process IDS (PIDs) had a simple bug 
that failed on SMP kernels under high load. Testing of a 
replacement function took some time, and each iteration 
required a kernel build and reboot. Had DKM been avail- 
able we could have experimented with fixing the function 
with much less time lost waiting for kernel compiles and 
reboots. 

Another useful test would be to see the effect on Linux 
of PIDs of more than 15 bits, i.e. in a range of 1-32767 
(0 is an invalid PID). Since the container for 15-bit pids is 



a 16-bit short, we can make a simple test by replacing 
the new PID function with one that returns pids in the 
range 32768-65536. This is a trivial test but could quickly 
point out any problems. Since backing out replacement 
functions is a single ioctl call, any problems caused by 
our alternate new PID function can be quickly eliminated. 

DKM function replacement allows testing of alterna- 
tive low-level kernel functions without modifying the ker- 
nel in any way, and in a way that can be backed at the cost 
of a kernel system call. In the worst case, a user can re- 
move the DKM module and ensure that any and all DKM 
modifications are totally removed. 

6 Library Interface 

DKM provides two library interfaces. The first allows a 
program (or the kernel) to modify its own code space, and 
manages the set of modifications with reference counts. 
This code is used by either the kernel or an application 
to modify itself. The second provides an interface to the 
kernel device. This latter code is used by programs to 
modify the kernel. 

6.1 Common DKM functions 

We show the common library functions in 6. I. 
When these functions are run in user mode the trace- 

point functions must write-enable the code page contain- 
ing the function. In kernel mode write-enabling code seg- 
ments is not an issue. 

6.2 DKM Kernel Interface Library 

The kernel library interface provided for the DKM device 
allows user program to set and clear tracepoints; query de- 
vice status; invoke test functions; and read the tracepoint 
buffer. 

An application which uses this library will open the de- 
vice, intialize it, set tracepoints on some functions, and 
periodically dump the FIFO to a file. For timing pur- 
poses, the application can set its own “marks” in the trace 
log kernel via the dkmtestentry function, which will 
place an entry in the FIFO. 

name 
void libt- 
pinit(void); 
TRACEPOINT 
*addnulify(voic 
*func, un- 
signed long 
retval); 
TRACEPOINT 
*ad- 
dreplace(void 
*func, void 
*callfunc); 
TRACEPOINT 
*trace- 
point( void 
*func, void 
*bfunc); 
TRACEPOINT 
*rtrace- 
point(void 
*func, void 
*bfunc, void 
*rfunc): 
int untrace- 
point(void 
*func); 

void re- 
move-all-trace1 

Function 
Initialize the functions 

Nullify function func. Set the return 
value to retval. 

Replace func with callfunc. 

Add a tracepoint to a function func, 
with bf unc as the tracepoint handler. 

Add a tracepoint to a function func, 
with bf unc as the tracepoint handler 
for function entry, and rf unc as the tra- 
cepoint handler for function exit. 

Remove a tracepoint for function f unc. 
Tracepoints actually have reference 
counts, so a tracepoint is not removed 
until all users have removed it. 
Unconditionally remove all breakpoints, 
&)pring reference counts. The main use 
of this function is when unloading the 
device, if ill-behaved programs have left 
breakooints hanging around. 

Table 1 : common library functions 



name 

exponent); 

info(struct 
dkmjnfo 

tentry(struct 
traceentry 
"entry); 

point(struct 
dkmtrace 
* traceu): 
int  dkmrtra- 
cepoint(struct 
dkmtrace 
* tracep); 

place(struct 
dkmreplace 

Function 
Initialize the device. exponent defines 
the size of the buffer, as a power of two, 
with an offset of 12 (i.e. starting at a 
minimum of one page) 
Get information from the device about 
the size of the buffer, current tracepoint 
count, and the last tracepoint read from 
the F F O  
For testing, insert a tracepoint record 
into the tracepoint FIFO 

Set a tracepoint. The dkmtrace struc- 
ture includes the address of the trace- 
point and any options. 

Set a tracepoint. The dkmtrace struc- 
ture includes the address of the trace- 
point and any options. This variation 
will trace both calls to the functions and 
returns from the function. 
set a replace point. The parameters are 
set in the dkmreplace struct. 

Table 2: tracepoint library functions 

name 
int dkmset- 
nullify(struct 
dkmnullify 
* tracep); 
int dkmuntra- 
cepoint(struct 
dkmtrace 
* tracep); 

int dkmread- 
trace(struct 
trace-entry 
*entries, struct 
dkmjnfo 
*info); 
int dkm- 
dumptrace(FIL1 
*f, stmct 
trace-entry 
*entries, size-t 
size): 
int dkmtestset- 
trace(void); 
int dkmtest- 
trace(void); 

int dkmtestclr- 
trace(void); 
int dkmread- 
dump(F1LE 
* f, struct 
trace-entry 
*entries, struct 
dkm-info 
*info): 
int dkm- 
stamp(int 
Val) 

Function 
Set a nullify. The parameters are set by 
the dkmnullify struct. 

Clear the tracepoint. The tracep stmct 
has a virtual address which is used to lo- 
cate the tracepoint. This function is in  
fact used to remove all types of trace- 
points, nullifies, and replaces; in reality 
this parameter should be a union. 
Read the DKM trace buffer 

dump the trace-entry area trace for size 
bytes to FILEf 

Set a tracepoint to a test function 

invoke the test function. If the test tra- 
cepoint has been set then the invocation 
of the function will result in a trace entry 
being written to the FIFO 
Clear the test tracepoint 

Read all tracepoint entries from the de- 
vice and dump them to the FILEf. 

Put an entry in the trace FIFO with a PC 
value of Val. This function is used to 
test the DKM kernel to user interface. 

Table 3: tracepoint library functions (cont.) 



7 Performance 

The performance measure of DKM falls into two main ar- 
eas: impact of DKM on the kernel, and the precision and 
accuracy with which DKM measurements can be made. 
In the next section we discuss the overhead of DKM. 

7.1 Performance 

The first test is to see how much time it takes to insert 
time stamps into the kernel. We measure this time by 
a sequence of back-to-back dkmstamp operations, and 
measuring the time between each. We iterate until the 
value converges to within a tick or so. 

Measured performance on an 865 Mhz Pentium-Ill is 
625 TSC ticks. A tick on this sytem is about 1.15 nanosec- 
onds; thus, cost to add a trace entry from user mode is 
about 720 nanoseconds on this CPU. 

The next number we measure is pure tracepoint cost. 
To measure this value we enabled the test checkpoint via 
dkmsettesttrace and call dkmtesttrace many 
times. The measured performance on average is 170 TSC 
ticks, which comes out to 200 nanoseconds. 

The 200 nanosecond number is remarkably consistent 
across a number of measurement cycles. If we set a 
watchpoint on open-msr, and run a program which 
opens /dev/cpu/O/msr one million or ten million 
times, the additional cost averages to 200 nanoseconds per 
call. 

The cost of tracing returns as well as function entry is 
much higher - it triples the cost to 600 ns. Users need 
to carefully consider whether they need call/return trac- 
ing or just call tracing, rather than just blindly enabling 
cal heturn tracing . 

A comparison with alternative hardware-based tech- 
niques is in order. Users wishing to trace program exe- 
cution can modify functions to output trace information 
to a parallel port, as in  [2]; use an In-Circuit Emulator 
(ICE) to trace functions; or output trace information to a 
PCI bus and use a PCI bus analyzer to store tracepoint 
information. 

Programs that output trace data would need to output at 
minimum 9 bytes of data to the parallel port: 8 bytes of 
TSC, and one byte of function identifier. Output byte in- 
structions take about one microsecond on most systems, 
so this option would require 8 microseconds to execute: 

40 times slower than our current performance. The paral- 
lel port approach was fast in 1989, but is too slow now. 

We have used In-Circuit Emulators for function tim- 
ing. They can provide very precise timing, but can be 
difficult to use. The system must be partly disassembled 
and moved to a workbench to use an ICE. There are sys- 
tems on which it is impossible to use them at all (laptops, 
embedded boards, or non-Pentium systems). Finally, the 
ICE can greatly impact the performance of the system, 
typically requiring that the system run at half-speed. 

A final option is to place a PCI trace card in the system. 
Tracepoint support functions can output a trace value to 
a well-known address. Measured performance of PCI bus 
write cycles shows that this option would be no faster than 
the software-based technique outlined in this paper. 

In summary, the cost of DKM tracepoints is about 200 
nanoseconds for tracing function entry, and 600 nanosec- 
onds for tracing function entry and exit. DKM tracepoints 
are at least as fast as other hardware-based options. 

8 Example usage 

In this section we present a sample program that uses the 
kernel device. The program is called watchmany and 
can be used to watch arbitrary functions in the kernel. The 
start of the source to the program is shown in 3. The im- 
portant call is to dkminit. The value of ’ 1 ’ indicates a 
4096-byte buffer. 

The middle section of watchmany is shown in Figure 
4. The first step is to get information out of the kernel 
about the device. This information is used in later calls to 
the library. 

The dkmdumpstatus call provides an informative 
message about the state of the device. The user must next 
allocate an array of trace entries large enough to accomo- 
date the entire kernel trace entry buffer. Having a large 
enough array is an absolute requirement imposed by the 
kernel device. If the passed-in array is not large enough, 
the kernel module returns EINVAL to the user program. 

The next step is to scan all the arguments and set watch- 
points for them. 

The program waits for the user to hit return, removes 
all tracepoints, and then dumps all the trace entries accu- 
mulated by the kernel. 



#include "dkm. h" 

int 
main (int argc, char *argv [ I  ) 

struct dkm-info info; 
struct dkmtrace *tracep; 
struct trace-entry *entries; 
char *type = argv[ll; 
int amount, i; 
int dumptrace = 0; 

{ 

if (dkminit(1) e 0 )  { 
perror ( "kbpinit ( 'I ; 

exit (1) ; 
1 

Figure 3: setup code for watchmany 

The output of the program is shown in Figure 6. The 
formatoftheentriesis calling PC/Arg High-32- 
bit/Low-32-bits. The exit entries can be distin- 
guished by the fact that the value is not a valid kernel 
Program Counter value. 

9 Conclusions 

DKM is a system for modifying functions used in the ker- 
nel. While the original use of DKM was inserting trace- 
points into a kernel, it has expanded to provide function 
nullification and replacement. In our work on kernels we 
have frequently had need of both these capabilities. 

DKM is a loadable module and requires no patches or 
changes to the kernel; users do not need to recompile the 
kernel to use DKM capabilities. DKM is almost unique 
in this regard. DKM is also simple to use, and does not 
require even a limited understanding by users of the in- 
struction set of the machine it is used on, in contrast to, 
e.g., the Dyninst tools. Any programmer familiar with the 
C language can use DKM with ease. 

Performance of DKM is comparable to the best per- 
formance of hardware-based monitors. DKM tracepoints 
require 160 cycles, and as a result DKM is suitable for 
functions that take 1600 or more instruction cycles. An 
example is an open system call, which we have measured 

dkmgetinfo(&info) ; 
dkmdumpstatus (stdout) ; 

entries = malloc(info.total-size); 

argc -= 2; 

argv += 2; 

tracep = malloc(argc * sizeof(*tracep)); 

if ( !  tracep) { 

1 

perror (ottracep") ; 

exit (1) ; 

for(i = 0; i e argc; i++) { 
sscanf (argv [i] , ~~Ox%xto, 

tracep[il .options = 0; 
if (*type == 'r') { 

(unsigned long * ) &tracep [il .v) ; 

dkmrtracepoint (&tracep [ill ; 

dkmtracepoint (&tracep [ill ; 
else 

1 
/ /  wait for user to hit LF . . .  
getchar ( 1  ; 

Figure 4: Setting up the tracepoints 

printf ("Removing tracepoint\n") ; 
for(i = 0; i e argc; i++) 
if (dkmuntracepoint (&tracep [i] ) c 0) 
perror ("untrace one") ; 

dkmreaddump (stdout, entries, &info) ; 

return 0; 
1 

Figure 5: Finishing up: dumping the buffer and removing 
the tracepoints 



# ./watchmany r 0 ~ ~ 0 1 ~ 7 0 7 0  OxcOlc5fbO 
next-empty 1 last-read 0 \ 

total-entry 4096 total-size 65536 

Removing tracepoint 
next-empty 283 last-read 0 \ 

total-entry 4096 total-size 65536 
282 entries 
0: Ox~01~5fbO/Ox35d 0~1310:0xd53bd3~3 
1: Ox4c/Ox1035d Ox1310:Oxd53bdaf7 
2: Ox~01~5fbO/Ox35d 0~1310:0xd53bfb39 
3: Ox14/0x1035d 0x1310:0xd53c000e 
4: Oxc01c5fb0/0x333 Ox1310:0xd541fa18 
5: 0~20/0~10333 0~1310:0xd542049d 

Figure 6: Output of the program for ping localhost 

at several thousand ticks depending on which device or 
file system is opened. Gettimeofday, in contrast, is a 
much shorter call and tracing it perturbs it significantly. 
We have experimented with nullification of gettime- 
of day with interesting results. 

References 

[ I ]  Sun Microsystems Corporation. SunOS Reference 
Manual, 1990. Sun Microsystems, 1990. 

[2] Not Yet Known. Paper on parallel port monitor. In 
Late 1980s Usenix Conjierence, 1989. 

(31 Ronald G .  Minnich. Mether-NFS: A modified NFS 
which supports virtual shared memory. In Proc. ofthe 
Usenix Symp. on Experiences with Distributed and 
Multiprocessor Systems, pages 89-1 08, San Diego, 
CA (USA), 1993. 

[4] Ronald G. Minnich and David J .  Farber. The Mether 
system: Distributed shared memory for SunOS 4.0. 
In Proceedings of the 1989 Summer Usenix Technical 
Conference, pages 5 1-60, Summer 1989. 

[5] Karen Yaghmour and Michael R.  Dagenais. Measur- 
ing and characterizing system behavior using kemel- 
level event logging. In Proceedings qf the 2000 An- 
nual Usenix Technical Conference, 2000. 


