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Automated Component Creation for Legacy 
C++ and Fortran Codes 

Matthew Sottile and Craig Rasmussen 

Los Alamos National Laboratory, Los Alamos NM 87545, USA*’ 

Abstract. A significant amount of work has been spent creating compo- 
nent models and programming environments, but little support exists for 
automation in the process of creating components from existing codes. 
To entice users to  adopt the component-based paradigm over traditional 
programming models, integration of legacy codes must be as simple and 
fast as possible, We present a system for automating the IDL genera- 
tion stage of component development based on source code analysis of 
legacy C, C-t-4 and Fortran codes using the Program Database Toolkit. 
Together with IDL compilation tools such as Babel, we provide an al- 
ternative to hand-written IDL code for legacy applications and libraries. 
In addition to generating IDL, we propose an XML-based method for 
specifying meta-data related to type mapping and wrapper generation 
that can be shared between our tools and IDL compilers. The component 
model of choice for this work is the Common Component Architecture 
(CCA) using the Scientific Interface Definition Language (SIDL), though 
the concepts presented can be applied to other models. 

1 Introduction 

Component architectures provide a rich conceptual model for the construction 
and maintenance of computer programs similar to more mature paradigms such 
as object-orientation, It i s  widely accepted that for a programming model to be 
adopted by users and application developers, a critical mass of existing codes 
in the form of object or component libraries must be reached. If it isn’t, users 
of the model are forced to writk significantly more code than they would in the 
older, existiqg models regardless of the elegance and potential of the new. To 
achieve this body of ready-to-use code to entice end-users and programmers to 
use component programming, it must be a reasonable task to  “componentize” 
existing codes. This will achieve two important goals: first, a code base can be 
rapidly developed within an organization to entice users to adopt new method- 
ologies, and second, legacy codes can be ”wrapped” and integrated into modern 
environments. In this paper we present a tool that uses stable compiler tech- 
nology to assist in the generation of interface definitions for existing codes, and 
methods for allowing IDL compilation tools to use this information for wrapper 
generation. 
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Our tool targets a specific component model currently under development 
within the scientific computing community: the Common Component Architec- 
ture (CCA)[l]. The goal of this tool is to  automate the generation of interface 
definitions of existing codes using the Scientific Interface Definition Language 
(SIDL)[4]. Efforts have been undertaken many times in the past to automate 
code wrapping by creating parsers for the languages to be wrapped that can 
understand the interface presented by a code and generating the IDL equiva- 
lent. Unfortunately, few have been able to  support codes that utilize all aspects 
of the language specifications. Examples include lack of C++ template support 
and oversimplified array representations that are either too restrictive or useless 
to scientific users and those using Fortran 90 in a mixed-language environment. 
By using the Program Database Toolkit (PDT)[8] for gathering and exploring 
interface information, we are able to take advantage of PDTs reliance on reliable 
compiler technology to extract interfaces directly from a standards-compliant 
front end. The front-ends that  are used support each target language that we 
wish t o  support: C, C++, Fortran 77 and Fortran 90. The compiler front-end 
provides sufficient information about the interface of a given code for our tool to  
explore the entire interface and generate an equivalent 1DL interface. Another 
tool that was developed using P D T  for wrapping is SILOON[7], which allows 
users to  automatically generate Python and Per1 extensions so that scripts in 
either language can call the existing code. 

Currently our tool does not provide IDL mappings for every type in the C++ 
or Fortran language specification. To do so would not only be limited by time 
and programmer-power, but by the lack of essential semantic information in the 
code itself. Some types cannot be automatically mapped to  IDL, so we have 
chosen at this time to implement an initial version that can use accurate default 
mappings for many common data types. We are in the process of integrating 
an XML based mechanism to allow users to  customize the behavior of the type 
mapper so that  the SIDL that is generated will require minimal modification by 
the user. An example of where ambiguity in mapping types appears is with a 
simple C pointer - in some cases, the pointer is used to represent a single value, 
where in others the pointer could be referring to an array. Given solely interface 
information about a piece of code (without data  or control flow analysis), we 
cannot determine how this type is to  be interpreted until the user intervenes. 

1.1 The Common Component Architecture 

Before continuing, we will briefly introduce the goals and purpose of the CCA 
project. The CCA is a widespread effort within the high-performance computa- 
tional science community to bring scientific programming models closer to ones 
found in the general computing industry today. It is similar to  other industry 
component models such as CORBA[10] and JavaBeans[9], but with an emphasis 
on its use in high performance distributed and parallel environments where com- 
plex data structures will be frequently used. Existing component systems can be 
used in a scientific computing environment to  build applications, but since their 
design requirements were biased toward business or Internet applications, they 



require additional work to fit well in the high performance computing environ- 
ment. In addition to  meeting scientists performance and usability requirements, 
the notion of a common component model emphasizes the additional hope that 
it will encourage a more free exchange of code without imposing implementation 
restrictions on users as we commonly find in existing scientific libraries. Concep- 
tually, our tools that target the CCA and SIDL are capable of being re-targeted 
to other component architectures provided a proper implementation of the in- 
terface and type mapping modules. Since this is the case, we have designed the 
tool from the start to  be modular so that we can explore this in the future with 
other popular component architectures. We chose C++ as the implementation 
language for our tools, which allows porting to  new component architectures by 
using basic object inheritance to create specialized versions of important objects. 

2 The Program Database Toolkit and IDL generation 

In order to  generate an accurate guess at the appropriate IDL mapping for a 
C++, C or Fortran code, one must have access to  the signatures for each function 
in the interface. A simple script can retrieve this information at a basic level, but 
it is virtually impossible to derive the interface of complex functions (such as 
those using templates.) The only place this information is readily available is at 
the compiler front end after parsing the language into an intermediate language 
(IL). Instead of reinventing a full, standards-compliant compiler front end to 
gather this information, we use the Program Database Toolkit (PDT) to  gather 
and access the interface information. 

The PDT is based on industrial compiler front ends from the Edison Devel- 
opment Group (C and C++) and Mutek (Fortran 77 and 90). Once the program 
has been parsed to the intermediate language from the compiler front end, an IL 
analyzer creates a program database (PDB) that is easily traversed for programs 
wishing to use this information. A C++ library known as Ductape is used in 
conjunction with PDT to explore the PDB files using basic container objects 
and iterators, Ductape forms the layer of our IDL generation tool that explores 
the program or library interface and passes PDT type objects to our type map- 
per. The type mapping portion of the tool described later takes the type objects 
found within a function interface and maps them to the proper IDL type de- 
scriptor used later in IDL generation. An illustration of the tool architecture is 
shown in Figure 1. 

Once a PDB file is available for a given legacy code, it is passed into our 
tools that then use Ductape to  walk the data structures and decide what IDL 
representation is appropriate. To illustrate the process, we assume that we are 
working with a PDB file for a C++ class library. When the process starts, we 
determine the scope of the classes within the library, such as the C++ names- 
paces that the classes reside within. Once we have this information, we explore 
each class within the namespace. Each public method of the class is passed into 
a TypeMapper object that we have created to make decisions regarding the IDL 
equivalent for argument and return types. The result is a set of TypeDescriptor 
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Fig. 1. Architecture of our IDL generator using PDT. 

objects that represent the IDL types along with additional fields describing the 
characteristics of the argument behavior (such as its intent, as explained later.) 
The TypeMapper objects are the key to  accurate IDL generation and are ex- 
amined in more detail in the next section. The PDT representation in Ductape 
is language specific: a Fortran method signature is described by different types 
within Ductape than the equivalent signatures in C++. 

3 The TypeMapper Object 

Our tools were written in C++, which allows us to use inheritance to  specialize 
classes such as the TypeMapper. The basic TypeMapper object is an abstract 
class that doesn’t provide any functionality, but provides a simple method that 
takes a PDT type a.nd returns a type descriptor reflecting the equivalent IDL. 
We do not simply return a type string or other simple structure since an IDL 
type can provide richer information about an argument beyond basic types. For 
example, in the CCA SIDL, a type must reflect the type of the argument and 
its intent - whether it is an “in”, “out”, or “inout” argument. This information 
is used in the component runtime system for deciding when and where to copy 
values, so that unnecessary copies of large data structures can be avoided. For 
example, a value that is used simply its input should be specified as an “in” 
argument so that it is not copied back to the caller on each function call. In 



distributed, remote method invocation situations, this will cut down on wasteful 
network traffic and memory consumption. 

per for C-t+ and the FortranTypeMapper for Fortran. Originally, an older ver- 
sion of PDT was used for building the initial version of our tools, and Fortran 
support wa$ not complete yet. As a result, the majority of our code and testing 
has revolved around C++. The current version of the tools include type mappers 
for Fortran at a basic level, using the mappings described below. An additional 
type mapper for each language will also be available that can be customized to 
fit specialized mappings for specific codes. As mentioned earlier, the customiza- 
tions will be expressed using an XML document that also contains meta-data 
for classes and methods useful during IDL compilation. 

Currently two classes inherit from the TypeMapper interface: the CxxTypeMap- 

e++ Signature 
TYPE * 
cmst TYPE * 

Default Intent 
inout 
in 

TYPE const * 
TYPE * const linout 
lccinst TYPE * constlin 

1 

 TYPE const * constl 
Table 1. Valid uses of the const modifier with Cff pointers and their default intent. 

In addition to thc trivial mapping of basic types, we provide mappings for the 
SIDL string type from a character pointer, and handle the different usages of the 
const modifier on arguments. A basic, non-pointer or non-reference argument 
is automatically an “in” argument. Indirection through a pointer or reference 
allows data to  be modified, so the safest assumption is that data can be passed 
in and returned via these arguments. Therefore pointers and references with no 
const modifier are mapped to  “inout” arguments. If a const modifier appears 
before the type, the language specification states that this argument is therefore 
treated as an “in” argument regardless of it being a reference, pointer or other 
mutable type. This interpretation of the const modifier is detailed in Table 3.1. 
The current default type mappings are presented in Table 3.1. 



C++ Type (type) SIDL Type (stype) 
int int 
long long 

In ten t  
in 
in 

double 
char 
char * 

double in 
char in 
string inout 

3.2 

Fortunately, mapping to  Fortran is somewhat simpler than C or C++ when using 
PDT to  examine the interfaces. This is due to the presence of an argument's 
intent in the IL from the Fortran 90 compiler. In the case of C or C++, this 
had to  be inferred based on the type of the data or through user intervention. 
Currently the Fortran type mapper is less mature than the C++ version, but 
much of the code we have developed for mapping C++ types can be carried over 
with little modification to  Fortran. As we will also see later, the XML format 
for specifying custom mappings is designed from the start with both C++ and 
Fortran in mind. We present the default type mappings for Fortran in the current 
TypeMapper object in Table 3.2. 

Fortran to SIDL default type mappings 

class * 
type * / type [ 3 
type *" / type [I" 
tvne k 

class inout 
array<stype,l> inout 
array<stype,n> inout 
stvDe inout 

3.3 

In order to  fulfill the needs of users and minimize the amount of modification 
required in the SIDL our tool generates, we have developed a method to allow 

Custom type mappings and code meta-data in XML 

~~ ~ 

'Fortran Q p e  (type) 
INTEGER*'$ 
INTEGER*8 
REAL 
DOUBLE PRECISION 
CHARACTER*l 
CHARACTER*(*) 
tY Pe (4  
type(&' dz, ... dn) 

SIDL Type (stype) 
int 
long 
float 
double 
char 
string 
array<stype,l> 
array<stype,n> 



users to define custom type mappings and other meta-data related to the IDL- 
generation and wrapping process. Currently, a draft DTD has been created to 
define the format of these XML files, and we are in the process of creating a 
TypeMapper class that can be parameterized based on this specification. We 
are using the Xerces[S] XML library for C++ to validate, parse, and interpret 
these XML files. The layout of the XML files is intended to  mimic the structure 
of codes in all languages that we wish to support. A TYPEMAP tag can be defined 
within specific other tags to specify custom mappings for the scope in which they 
are to  be applied. For example, the user can define type mappings to be applied 
in the scope of a library, namespace, module or class. Similarly, for languages 
(such as C) where scoping may simply be controlled based on nested braces, we 
allow the user to  defise these regions with general SCOPE tags containing custom 
mappings. 

The XML specification allows users to customize mappings at the function 
level. A function can be specified by its name and signature, and individual 
argument types can be given. Additionally, if the user knows exactly what code 
they want the IDL gqnerator to produce when creating wrapper code, they can 
place it in a CODE tag coutained in the function tag. The following sample XML 
file illustrates the format we have developed. 

1 < ! DOCTYPE l i b r a r y  SYSTEM "mapping. dtd"  C 
2 I >  
s < 1 i bra r  y name= "my- 1 i b r  aryl' lang= cxx I' > 
4 <scope name="some_cxx,namespace"> 
6 <method name=I1mystatic" sig="void f o o ( i n t  *x)"> 
6 <arg name="x" intent="out1I s ig=" in t  *x" s id l=" in t"></arg> 
7 <re tu rn  sig="void" s id l="void"></re turn> 
8 </method> 
D <class name="f oo,class"> 

10 

11 

12 <re turn  sig="void" sid1="void1'></return> 
1s <code> 
14 p r i n t f  ("Hi. \nll> ; 
16 </code> 
16 </method> 
17 </c l a s s>  
18 </scope> 
19 </ l ib ra ry>  

<method name="f oo" sig="void f oo ( i n t  *x> I t >  

<arg  name="x" in ten t=" inout"  s ig=" in t  *x" s id l="a r ray  i n t  , l "></arg> 

A final point of interest regarding the XML is that  the users are not required 
to generate the files by hand. We provide a tool which is also based on PDT 
that creates an XML representation of the interfaces contained within. This can 
be used as a starting point by the user to customize and pass through our tools 
and others that  know how to interpret the data. 



4 Limitations of automatic IDL generation 

A fully automatic solution based simply on interface analysis is not possible. 
The actual meaning of primitive types such as pointers in C or C++ cannot be 
determined from a basic method signature. Similarly, the intent of an argument 
cannot be determined for some languages. More sophisticated analysis of the 
code within a compiler can extract most, if not all, of this information. Data 
flow analysis to  determine the usage of a variable can reveal whethey the data 
is modified or simply read by a method, which will dictate whether the data 
should have an “in”, “out”, or “inout” intent. If a variable is a pointer and we 
see it used as an array, we can assume that it is not simply a singleton value 
that is pointed to. Unfortunately, this would require a significant effort within 
the compiler at the IL analysis phase. Furthermore, languages such as C do not 
prevent programmers from using array syntax to access singleton values through 
a pointer (though this is considered horrible programming style.) Relying on the 
user to  provide hints that allow a tool to  look up the exact meaning of a data 
type in the context of a method or class will let the tool make the proper decision 
at the IDL mapping phase. 

5 Current status and future directions 

5.1 Current status 

As has been mentioned above, our target component model is the CCA. Most 
of our test cases for the SIDL generation were C++ classes that are part of the 
CCA specification and related component specifications (such as the equation 
solver interface, ESI[G]). The SIDL for the CCA specification in C++ that was 
generated by our tool is equivalent to  the hand-coded SIDL that has been used 
previously. The SIDL generated from the ESI headers is not currently accurate 
due to the lack of template support in our tool. The lack of template support 
in SIDL requires that the SIDL generator must find a legal SIDL “equivalent” 
that is sufficient for the users, but not as general as the original template code 
as we will show below in our discussion of template support in our future work. 
An example of a header file and the corresponding SIDL generated by our tool 
is included in Appendix A. 

5.2 Creating an automatic component wrapper for legacy codes 

In addition to  providing a nearly complete mapping of the source language to  
IDL, we would also like to tie the SIDL generation and PDT knowledge into 
the IDL compilation process to build complete wrappers very rapidly. The IDL 
generation process is the first step, where the interfaces are defined in a language 
independent meta-language. Given these IDL interfaces, an IDL compiler cre- 
ates code that interfaces with the original code, the client code that wishes to 
call it, and the support infrastructure (such as Babel[5], ILU[2], CORBA, etc ...). 



Currently, these steps in the CCA context are not connected. The IDL generator 
has no knowledge of the actual code that the IDL compiler will generate, and the 
IDL compiler has no knowledge of the original interface signatures of the code 
in its native language. This limits the compilers ability to generate the required 
code to  call into the library being wrapped. By providing the information in 
the IDL generation phase related to  the IDL and original signature mappings to  
the compiler, the compiler can generate the method calls and data conversions 
required for completing the wrapping process. Additional code can be provided 
through the CODE tags within method descriptions in our XML format and au- 
tomatically inserted into the code generated by the IDL compiler. We illustrate 
the wrapper generation process in Figure 2, with the relationship between each 
step of the process shown. 

Original 5 !  Compiled 
Component 

t 
c++/F90 

Generator Compiler 

IDL Wrapping 

XML 
Generator 

XML 

\ / I I 

I , ,  .I 

Fig. 2. The parts of the complete component wrapping process. 

5.3 Supporting sophisticated types 

A further limitation of our current tool is the lack of support for sophisticated 
types such as C+f templates. SIDL does not currently have a representation of 
templates, and will likely never incorporate one. To overcome this, we plan to 
allow users to specify which types they expect a template to  be instantiated with. 
Given these types, we can create SIDL descriptions of the templated objects for 
each type and instantiate the templates appropriately in the code generated by 



the IDL compiler. Though it is not the most elegant solution, it will provide 
a functional solution that is significantly better in the author’s opinion than 
simply not supporting templated types at all. We will add a tag to the XML 
DTD described above to  allow users to define the types that they wish generated. 

6 Conclusion 

As many have shown, source code analysis opens many possibilities for auto- 
mated code generation and manipulation. We have shown that by using standards- 
compliant compiler technology, we gain access to the full code interface and can 
support many language features not available in other packages. Unfortunately, 
inferring the exact behavior of code from the interface is not possible without 
additional information from either the user or more sophisticated analysis of the 
code control and data flow behavior. The XML format that we have developed 
will allow users to provide this data  regarding the interface behavior, so our tools 
will be able to  create an accurate SIDL representation. Furthermore, the XML 
will contain enough information to allow IDL compilation tools to  generate much 
of the code required for functional wrappers around existing codes. Our tools 
have been successful thus far in using PDT to  generate a significant amount of 
code that was previously written by hand. 
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A An example of automatically generated SIDL 

The following is a header file defining two basic C++ classes to  illustrate how 
our tool will generate a SIDL file for it. The example shows how inheritance, 
const modifiers, and various uses of pointers and references are dealt with. 

1 namespace Test I 
2 class MyParent 
3 public: 
4 int someFunction(char *astring) ; 
5 1;  
6 class SIDL-Tester:MyParent { 
7 public: 
8 int min(int a, int b) ; 
9 void averager(const int *values, int size, float &average); 



10 int strlen(char *thestring) ; 
11 I; 
12 I ;  

Once the header has been passed through PDT and a PDB file has been 
generated, our tool is able to  produce the following SIDL code. 

1 version Test 1.0; 
2 /** 
3 * C++ package: "Test" 
4 */  
5 package Test < 
6 

7 

8 

9 

10 

11 

12 

13 

14 

16 

18 

17 

18 

19 

20 

21 

22 

23 

24 

25 

28 

27 

28 

29 

30 

31 

32 

33 

34 

36 

36 

37 

38 

/** 
* C++ class : "Test : : Myparent" 
*/ 
class MyParent { 

/** 
* int Test: :Myparent: : someFunction(char *) 
*/ 
final int someFunct ion ( 
inout string astring); 

I 
/** 
* C++ class : "Test : : SIDL-Testerft 
*/ 
class SIDL-Tester 
extends MyParent 

E 
/** 

*/ 
* int Test::SIDL-Tester::min(int, int) 
final int min( 
in int a, 
in int b); 

/** 

*/ 
* void Test::SIDL-Tester::averager(const int *, int, float &> 

final void averager( 
in array<int> values, 
in int size, 
inout float average); 

/** 
* int Test::SIDL-Tester::strlen(char *> 
*/ 
final int strlen( 



39 inout  s t r i n g  t h e s t r i n g )  ; 
40 3 
41 1 
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