
7 7

Approved for public release;
distribution is unlimited.

Title:

Author($):

Submitted to:

AUTOMATED COMPONENT CREATION FOR LEGACY
C-PLUS-PLUS AND FORTRAN CODES

Matthew J. Sottile
Craig E. Rasmussen

Component Deployment 2002 Conference
Berlin, Germany
June 20-21,2002

Los AI
NATIONAL LA
Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the US.
Department of Energy ct W-7405-QNG-36. By acceptance of this article, the publisher recognizes that the US. Government
retains a nonexclusive license to publish or reproduce the published form of this contribution, or to allow others to do so, for US.
Government purposes. Los Alamos Natiohal Lgboratory requests that the publisher identify this article as work performed under the
auspices of the US. Department of Energy. Los Alamos National Laboratoly strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (WOO)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Automated Component Creation for Legacy
C++ and Fortran Codes

Matthew Sottile and Craig Rasmussen

Los Alamos National Laboratory, Los Alamos NM 87545, USA*’

Abstract. A significant amount of work has been spent creating compo-
nent models and programming environments, but little support exists for
automation in the process of creating components from existing codes.
To entice users to adopt the component-based paradigm over traditional
programming models, integration of legacy codes must be as simple and
fast as possible, We present a system for automating the IDL genera-
tion stage of component development based on source code analysis of
legacy C, C-t-4 and Fortran codes using the Program Database Toolkit.
Together with IDL compilation tools such as Babel, we provide an al-
ternative to hand-written IDL code for legacy applications and libraries.
In addition to generating IDL, we propose an XML-based method for
specifying meta-data related to type mapping and wrapper generation
that can be shared between our tools and IDL compilers. The component
model of choice for this work is the Common Component Architecture
(CCA) using the Scientific Interface Definition Language (SIDL), though
the concepts presented can be applied to other models.

1 Introduction

Component architectures provide a rich conceptual model for the construction
and maintenance of computer programs similar to more mature paradigms such
as object-orientation, It i s widely accepted that for a programming model to be
adopted by users and application developers, a critical mass of existing codes
in the form of object or component libraries must be reached. If it isn’t, users
of the model are forced to writk significantly more code than they would in the
older, existiqg models regardless of the elegance and potential of the new. To
achieve this body of ready-to-use code to entice end-users and programmers to
use component programming, it must be a reasonable task to “componentize”
existing codes. This will achieve two important goals: first, a code base can be
rapidly developed within an organization to entice users to adopt new method-
ologies, and second, legacy codes can be ”wrapped” and integrated into modern
environments. In this paper we present a tool that uses stable compiler tech-
nology to assist in the generation of interface definitions for existing codes, and
methods for allowing IDL compilation tools to use this information for wrapper
generation.
** This work was supported by the U.S. Department of Energy through Los Alamos

National Laboratory Contract W-7405-ENG-36, LA-UR No. XXXXX

Our tool targets a specific component model currently under development
within the scientific computing community: the Common Component Architec-
ture (CCA)[l]. The goal of this tool is to automate the generation of interface
definitions of existing codes using the Scientific Interface Definition Language
(SIDL)[4]. Efforts have been undertaken many times in the past to automate
code wrapping by creating parsers for the languages to be wrapped that can
understand the interface presented by a code and generating the IDL equiva-
lent. Unfortunately, few have been able to support codes that utilize all aspects
of the language specifications. Examples include lack of C++ template support
and oversimplified array representations that are either too restrictive or useless
to scientific users and those using Fortran 90 in a mixed-language environment.
By using the Program Database Toolkit (PDT)[8] for gathering and exploring
interface information, we are able to take advantage of PDTs reliance on reliable
compiler technology to extract interfaces directly from a standards-compliant
front end. The front-ends that are used support each target language that we
wish t o support: C, C++, Fortran 77 and Fortran 90. The compiler front-end
provides sufficient information about the interface of a given code for our tool to
explore the entire interface and generate an equivalent 1DL interface. Another
tool that was developed using P D T for wrapping is SILOON[7], which allows
users to automatically generate Python and Per1 extensions so that scripts in
either language can call the existing code.

Currently our tool does not provide IDL mappings for every type in the C++
or Fortran language specification. To do so would not only be limited by time
and programmer-power, but by the lack of essential semantic information in the
code itself. Some types cannot be automatically mapped to IDL, so we have
chosen at this time to implement an initial version that can use accurate default
mappings for many common data types. We are in the process of integrating
an XML based mechanism to allow users to customize the behavior of the type
mapper so that the SIDL that is generated will require minimal modification by
the user. An example of where ambiguity in mapping types appears is with a
simple C pointer - in some cases, the pointer is used to represent a single value,
where in others the pointer could be referring to an array. Given solely interface
information about a piece of code (without data or control flow analysis), we
cannot determine how this type is to be interpreted until the user intervenes.

1.1 The Common Component Architecture

Before continuing, we will briefly introduce the goals and purpose of the CCA
project. The CCA is a widespread effort within the high-performance computa-
tional science community to bring scientific programming models closer to ones
found in the general computing industry today. It is similar to other industry
component models such as CORBA[10] and JavaBeans[9], but with an emphasis
on its use in high performance distributed and parallel environments where com-
plex data structures will be frequently used. Existing component systems can be
used in a scientific computing environment to build applications, but since their
design requirements were biased toward business or Internet applications, they

require additional work to fit well in the high performance computing environ-
ment. In addition to meeting scientists performance and usability requirements,
the notion of a common component model emphasizes the additional hope that
it will encourage a more free exchange of code without imposing implementation
restrictions on users as we commonly find in existing scientific libraries. Concep-
tually, our tools that target the CCA and SIDL are capable of being re-targeted
to other component architectures provided a proper implementation of the in-
terface and type mapping modules. Since this is the case, we have designed the
tool from the start to be modular so that we can explore this in the future with
other popular component architectures. We chose C++ as the implementation
language for our tools, which allows porting to new component architectures by
using basic object inheritance to create specialized versions of important objects.

2 The Program Database Toolkit and IDL generation

In order to generate an accurate guess at the appropriate IDL mapping for a
C++, C or Fortran code, one must have access to the signatures for each function
in the interface. A simple script can retrieve this information at a basic level, but
it is virtually impossible to derive the interface of complex functions (such as
those using templates.) The only place this information is readily available is at
the compiler front end after parsing the language into an intermediate language
(IL). Instead of reinventing a full, standards-compliant compiler front end to
gather this information, we use the Program Database Toolkit (PDT) to gather
and access the interface information.

The PDT is based on industrial compiler front ends from the Edison Devel-
opment Group (C and C++) and Mutek (Fortran 77 and 90). Once the program
has been parsed to the intermediate language from the compiler front end, an IL
analyzer creates a program database (PDB) that is easily traversed for programs
wishing to use this information. A C++ library known as Ductape is used in
conjunction with PDT to explore the PDB files using basic container objects
and iterators, Ductape forms the layer of our IDL generation tool that explores
the program or library interface and passes PDT type objects to our type map-
per. The type mapping portion of the tool described later takes the type objects
found within a function interface and maps them to the proper IDL type de-
scriptor used later in IDL generation. An illustration of the tool architecture is
shown in Figure 1.

Once a PDB file is available for a given legacy code, it is passed into our
tools that then use Ductape to walk the data structures and decide what IDL
representation is appropriate. To illustrate the process, we assume that we are
working with a PDB file for a C++ class library. When the process starts, we
determine the scope of the classes within the library, such as the C++ names-
paces that the classes reside within. Once we have this information, we explore
each class within the namespace. Each public method of the class is passed into
a TypeMapper object that we have created to make decisions regarding the IDL
equivalent for argument and return types. The result is a set of TypeDescriptor

Source
Files .

Files u
I I I IDLTypeMapper I

A

C++/F90 Type Mapper

PDT IDL Generator

Fig. 1. Architecture of our IDL generator using PDT.

objects that represent the IDL types along with additional fields describing the
characteristics of the argument behavior (such as its intent, as explained later.)
The TypeMapper objects are the key to accurate IDL generation and are ex-
amined in more detail in the next section. The PDT representation in Ductape
is language specific: a Fortran method signature is described by different types
within Ductape than the equivalent signatures in C++.

3 The TypeMapper Object

Our tools were written in C++, which allows us to use inheritance to specialize
classes such as the TypeMapper. The basic TypeMapper object is an abstract
class that doesn’t provide any functionality, but provides a simple method that
takes a PDT type a.nd returns a type descriptor reflecting the equivalent IDL.
We do not simply return a type string or other simple structure since an IDL
type can provide richer information about an argument beyond basic types. For
example, in the CCA SIDL, a type must reflect the type of the argument and
its intent - whether it is an “in”, “out”, or “inout” argument. This information
is used in the component runtime system for deciding when and where to copy
values, so that unnecessary copies of large data structures can be avoided. For
example, a value that is used simply its input should be specified as an “in”
argument so that it is not copied back to the caller on each function call. In

distributed, remote method invocation situations, this will cut down on wasteful
network traffic and memory consumption.

per for C-t+ and the FortranTypeMapper for Fortran. Originally, an older ver-
sion of PDT was used for building the initial version of our tools, and Fortran
support wa$ not complete yet. As a result, the majority of our code and testing
has revolved around C++. The current version of the tools include type mappers
for Fortran at a basic level, using the mappings described below. An additional
type mapper for each language will also be available that can be customized to
fit specialized mappings for specific codes. As mentioned earlier, the customiza-
tions will be expressed using an XML document that also contains meta-data
for classes and methods useful during IDL compilation.

Currently two classes inherit from the TypeMapper interface: the CxxTypeMap-

e++ Signature
TYPE *
cmst TYPE *

Default Intent
inout
in

TYPE const *
TYPE * const linout
lccinst TYPE * constlin

1

 TYPE const * constl
Table 1. Valid uses of the const modifier with Cff pointers and their default intent.

In addition to thc trivial mapping of basic types, we provide mappings for the
SIDL string type from a character pointer, and handle the different usages of the
const modifier on arguments. A basic, non-pointer or non-reference argument
is automatically an “in” argument. Indirection through a pointer or reference
allows data to be modified, so the safest assumption is that data can be passed
in and returned via these arguments. Therefore pointers and references with no
const modifier are mapped to “inout” arguments. If a const modifier appears
before the type, the language specification states that this argument is therefore
treated as an “in” argument regardless of it being a reference, pointer or other
mutable type. This interpretation of the const modifier is detailed in Table 3.1.
The current default type mappings are presented in Table 3.1.

C++ Type (type) SIDL Type (stype)
int int
long long

In ten t
in
in

double
char
char *

double in
char in
string inout

3.2

Fortunately, mapping to Fortran is somewhat simpler than C or C++ when using
PDT to examine the interfaces. This is due to the presence of an argument's
intent in the IL from the Fortran 90 compiler. In the case of C or C++, this
had to be inferred based on the type of the data or through user intervention.
Currently the Fortran type mapper is less mature than the C++ version, but
much of the code we have developed for mapping C++ types can be carried over
with little modification to Fortran. As we will also see later, the XML format
for specifying custom mappings is designed from the start with both C++ and
Fortran in mind. We present the default type mappings for Fortran in the current
TypeMapper object in Table 3.2.

Fortran to SIDL default type mappings

class *
type * / type [3
type *" / type [I"
tvne k

class inout
array<stype,l> inout
array<stype,n> inout
stvDe inout

3.3

In order to fulfill the needs of users and minimize the amount of modification
required in the SIDL our tool generates, we have developed a method to allow

Custom type mappings and code meta-data in XML

~~ ~

'Fortran Q p e (type)
INTEGER*'$
INTEGER*8
REAL
DOUBLE PRECISION
CHARACTER*l
CHARACTER*(*)
tY Pe (4
type(&' dz, ... dn)

SIDL Type (stype)
int
long
float
double
char
string
array<stype,l>
array<stype,n>

users to define custom type mappings and other meta-data related to the IDL-
generation and wrapping process. Currently, a draft DTD has been created to
define the format of these XML files, and we are in the process of creating a
TypeMapper class that can be parameterized based on this specification. We
are using the Xerces[S] XML library for C++ to validate, parse, and interpret
these XML files. The layout of the XML files is intended to mimic the structure
of codes in all languages that we wish to support. A TYPEMAP tag can be defined
within specific other tags to specify custom mappings for the scope in which they
are to be applied. For example, the user can define type mappings to be applied
in the scope of a library, namespace, module or class. Similarly, for languages
(such as C) where scoping may simply be controlled based on nested braces, we
allow the user to defise these regions with general SCOPE tags containing custom
mappings.

The XML specification allows users to customize mappings at the function
level. A function can be specified by its name and signature, and individual
argument types can be given. Additionally, if the user knows exactly what code
they want the IDL gqnerator to produce when creating wrapper code, they can
place it in a CODE tag coutained in the function tag. The following sample XML
file illustrates the format we have developed.

1 < ! DOCTYPE l i b r a r y SYSTEM "mapping. dtd" C
2 I >
s < 1 i bra r y name= "my- 1 i b r aryl' lang= cxx I' >
4 <scope name="some_cxx,namespace">
6 <method name=I1mystatic" sig="void f o o (i n t *x)">
6 <arg name="x" intent="out1I s ig=" in t *x" s id l=" in t"></arg>
7 <re tu rn sig="void" s id l="void"></re turn>
8 </method>
D <class name="f oo,class">

10

11

12 <re turn sig="void" sid1="void1'></return>
1s <code>
14 p r i n t f ("Hi. \nll> ;
16 </code>
16 </method>
17 </c l a s s>
18 </scope>
19 </ l ib ra ry>

<method name="f oo" sig="void f oo (i n t *x> I t >

<arg name="x" in ten t=" inout" s ig=" in t *x" s id l="a r ray i n t , l "></arg>

A final point of interest regarding the XML is that the users are not required
to generate the files by hand. We provide a tool which is also based on PDT
that creates an XML representation of the interfaces contained within. This can
be used as a starting point by the user to customize and pass through our tools
and others that know how to interpret the data.

4 Limitations of automatic IDL generation

A fully automatic solution based simply on interface analysis is not possible.
The actual meaning of primitive types such as pointers in C or C++ cannot be
determined from a basic method signature. Similarly, the intent of an argument
cannot be determined for some languages. More sophisticated analysis of the
code within a compiler can extract most, if not all, of this information. Data
flow analysis to determine the usage of a variable can reveal whethey the data
is modified or simply read by a method, which will dictate whether the data
should have an “in”, “out”, or “inout” intent. If a variable is a pointer and we
see it used as an array, we can assume that it is not simply a singleton value
that is pointed to. Unfortunately, this would require a significant effort within
the compiler at the IL analysis phase. Furthermore, languages such as C do not
prevent programmers from using array syntax to access singleton values through
a pointer (though this is considered horrible programming style.) Relying on the
user to provide hints that allow a tool to look up the exact meaning of a data
type in the context of a method or class will let the tool make the proper decision
at the IDL mapping phase.

5 Current status and future directions

5.1 Current status

As has been mentioned above, our target component model is the CCA. Most
of our test cases for the SIDL generation were C++ classes that are part of the
CCA specification and related component specifications (such as the equation
solver interface, ESI[G]). The SIDL for the CCA specification in C++ that was
generated by our tool is equivalent to the hand-coded SIDL that has been used
previously. The SIDL generated from the ESI headers is not currently accurate
due to the lack of template support in our tool. The lack of template support
in SIDL requires that the SIDL generator must find a legal SIDL “equivalent”
that is sufficient for the users, but not as general as the original template code
as we will show below in our discussion of template support in our future work.
An example of a header file and the corresponding SIDL generated by our tool
is included in Appendix A.

5.2 Creating an automatic component wrapper for legacy codes

In addition to providing a nearly complete mapping of the source language to
IDL, we would also like to tie the SIDL generation and PDT knowledge into
the IDL compilation process to build complete wrappers very rapidly. The IDL
generation process is the first step, where the interfaces are defined in a language
independent meta-language. Given these IDL interfaces, an IDL compiler cre-
ates code that interfaces with the original code, the client code that wishes to
call it, and the support infrastructure (such as Babel[5], ILU[2], CORBA, etc ...).

Currently, these steps in the CCA context are not connected. The IDL generator
has no knowledge of the actual code that the IDL compiler will generate, and the
IDL compiler has no knowledge of the original interface signatures of the code
in its native language. This limits the compilers ability to generate the required
code to call into the library being wrapped. By providing the information in
the IDL generation phase related to the IDL and original signature mappings to
the compiler, the compiler can generate the method calls and data conversions
required for completing the wrapping process. Additional code can be provided
through the CODE tags within method descriptions in our XML format and au-
tomatically inserted into the code generated by the IDL compiler. We illustrate
the wrapper generation process in Figure 2, with the relationship between each
step of the process shown.

Original 5 ! Compiled
Component

t
c++/F90

Generator Compiler

IDL Wrapping

XML
Generator

XML

\ / I I

I , , .I

Fig. 2. The parts of the complete component wrapping process.

5.3 Supporting sophisticated types

A further limitation of our current tool is the lack of support for sophisticated
types such as C+f templates. SIDL does not currently have a representation of
templates, and will likely never incorporate one. To overcome this, we plan to
allow users to specify which types they expect a template to be instantiated with.
Given these types, we can create SIDL descriptions of the templated objects for
each type and instantiate the templates appropriately in the code generated by

the IDL compiler. Though it is not the most elegant solution, it will provide
a functional solution that is significantly better in the author’s opinion than
simply not supporting templated types at all. We will add a tag to the XML
DTD described above to allow users to define the types that they wish generated.

6 Conclusion

As many have shown, source code analysis opens many possibilities for auto-
mated code generation and manipulation. We have shown that by using standards-
compliant compiler technology, we gain access to the full code interface and can
support many language features not available in other packages. Unfortunately,
inferring the exact behavior of code from the interface is not possible without
additional information from either the user or more sophisticated analysis of the
code control and data flow behavior. The XML format that we have developed
will allow users to provide this data regarding the interface behavior, so our tools
will be able to create an accurate SIDL representation. Furthermore, the XML
will contain enough information to allow IDL compilation tools to generate much
of the code required for functional wrappers around existing codes. Our tools
have been successful thus far in using PDT to generate a significant amount of
code that was previously written by hand.

Acknowledgements. We would like to acknowledge the following people for their
assistance and feedback regarding this work. Sameer Shende, Kathleen Lindlan,
and Bernd Mohr provided excellent assistance in learning how to use the PDT
package. Scott Kohn supplied the required modifications to our C++ type map-
per to allow us to wrap large interfaces such as the CCA specification headers.
Finally, we would like to thank all members of the CCA Forum for their valuable
feedback.

A An example of automatically generated SIDL

The following is a header file defining two basic C++ classes to illustrate how
our tool will generate a SIDL file for it. The example shows how inheritance,
const modifiers, and various uses of pointers and references are dealt with.

1 namespace Test I
2 class MyParent
3 public:
4 int someFunction(char *astring) ;
5 1;
6 class SIDL-Tester:MyParent {
7 public:
8 int min(int a, int b) ;
9 void averager(const int *values, int size, float &average);

10 int strlen(char *thestring) ;
11 I;
12 I ;

Once the header has been passed through PDT and a PDB file has been
generated, our tool is able to produce the following SIDL code.

1 version Test 1.0;
2 /**
3 * C++ package: "Test"
4 */
5 package Test <
6

7

8

9

10

11

12

13

14

16

18

17

18

19

20

21

22

23

24

25

28

27

28

29

30

31

32

33

34

36

36

37

38

/**
* C++ class : "Test : : Myparent"
*/
class MyParent {

/**
* int Test: :Myparent: : someFunction(char *)
*/
final int someFunct ion (
inout string astring);

I
/**
* C++ class : "Test : : SIDL-Testerft
*/
class SIDL-Tester
extends MyParent

E
/**

*/
* int Test::SIDL-Tester::min(int, int)
final int min(
in int a,
in int b);

/**

*/
* void Test::SIDL-Tester::averager(const int *, int, float &>

final void averager(
in array<int> values,
in int size,
inout float average);

/**
* int Test::SIDL-Tester::strlen(char *>
*/
final int strlen(

39 inout s t r i n g t h e s t r i n g) ;
40 3
41 1

References

1. R. Armstrong, D. Gannon, A. Geist, K. Keahey, L. Curfman-McInnes, S. Parker,
and B. Smolinski. Toward a common component architecture for high performance
scientific computing. In Proceedings of the Eighth International Symposium on High
Performance Distributed Computing, 1999.

2. Doug Cutting, Bill Janssen, Mike Spreitzer, and Farrell Wymore. ILU Reference
Manual. Xerox Palo Alto Research Center, 1993.

3. The Apache Software Foundation. Available at
http: //xml. apache. org/.

4. Scott Kohn, Tammy Dahlgren, Tom Epperly, and Gary Kumfert. The State of
SIDL: Quarterly Status Report. Common Component Architecture Forum Meeting,
Indiana University, Bloomington, IN. October 2-3, 2001.

5. Scott Kohn, Gary Kumfert, Jeff Painter, and Cal Ribbens. Divorcing language
dependencies from a scientific software library. In Proceedings of the 10th SIAM
Conference on Parallel Processing, 2001.

6. Sandia National Laboratories. Equation Solver Interface (ESI) Standards. Avail-
able at http://z.ca.sandia.gov/esi/.

7. Los Alamos National Laboratory. SILOON: Scripting Interface Languages for
Object-Oriented Numerics. Available at http: //vvw. acl . lanl . gov/siloon/.

8. Kathleen A. Lindlan, Janice Cuny, Allen D. Malony, Sameer Shende, Bernd Mohr,
Reid Rivenburgh, and Craig Rasmussen. A tool framework for static and dynamic
analysis of object-oriented software with templates. In Proceedings of SC.2000:
High Performance Networking and Computing Conference, 2000.

The Apache X M L Project.

9. Richard Monson-Haefel. Enterprise Javabeans. O’Reilly and Associates, 2000.
10. Alan Pope. The CORBA Reference Guide: Understanding the Common Ob ject

Request Broker Architecture. Addison-Wesley, 1998.

