LA-UR- 07-5388

Approved for public release; distribution is unlimited.

Title:

Perchlorate and Nitrate In Situ Bioremediation of Ground Water

Author(s):

Betty A. Strietelmeier, LANL H. Eric Nuttall, University of New Mexico Paul Hatzinger, Envirogen, Inc. Mark Goltz, Air Force Institute of Technology

Submitted to:

International Sub-Surface Microbiology 2002 Conference

Perchlorate and Nitrate *In Situ* Bioremediation of Ground Water

Presented to the International Sub-Surface Microbiology 2002

Conference

Session: Biodegradation of Aquifer Contaminants
Poster Number 126

Presented by:

Betty A. Strietelmeier, Los Alamos National Laboratory, Los Alamos, NM, USA

Co-authors:

H.E. Nuttall, University of New Mexico, Albuquerque, NM, USA P. Hatzinger, Envirogen, Inc., Lawrenceville, NJ, USA M. Goltz, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA

Introduction

- •Nitrate and perchlorate are growing worldwide problems as mobile anionic groundwater contaminants
- •Biological reduction of nitrate and perchlorate in groundwater is under development as a technology to address these problems
- •Maximum Contaminant Level (MCL) is 10 mg/L nitrate-N
- •Proposed EPA groundwater limit is 1 цg/L (ppb) perchlorate
- •Two major sources of nitrate are over-fertilization and animal farms/dairies
- •Perchlorate contamination is primarily from DoD propellant production and disposal (ammonium perchlorate)
- •Use of nitric and perchloric acid at LANL without adequate removal upon waste water treatment resulted in groundwater contamination

Principles of Biological Denitrification

- "True" denitrification is a reductive process that yields energy for microbial cell growth
- •Process sequentially reduces nitrate to nitrite, nitric oxide, nitrous oxide and nitrogen gas
- •Organisms "respire" using nitrate as an electron acceptor in place of oxygen, organic carbon acts as electron donor
- •Microorganisms are facultative anaerobes from many different genera
- •Both carbon and phosphorus may be found limiting in natural ground waters

Principles of Microbial Perchlorate Reduction

- •Reduction of perchlorate is apparently ubiquitous in soil
- •Process enzymatically reduces perchlorate to chlorate, then chlorite, with subsequent dismutation to chloride and oxygen
- •Organisms "respire" using perchlorate as an electron acceptor in place of oxygen or nitrate, organic carbon acts as electron donor
- •Microorganisms are facultative anaerobes from several different genera, primarily *Dechloromonas* and *Dechloromusa*
- •Nitrate is an inhibitor of perchlorate reduction, mechanism of inhibition is unclear
- •Anoxic conditions required for perchlorate reduction, redox potential required for reduction to proceed lower than that for nitrate reduction

Chemical Denitrification Reactions

•Metabolic denitrification reaction:

$$0.625\text{Ac}^- + \text{NO}_3 ----> 1.25\text{HCO}_3 + 0.25 \text{ N}_2$$

•Cell component synthesis reaction:

$$3.5Ac + NO_3 ----> C_5H_7O_2N + 2HCO_3$$

•Combined reaction:

$$0.712Ac + NO_3 ----> 0.485N_2 + 0.03C_5H_7O_2N + 1.273HCO_3$$

Ac = acetate; $C_5H_7O_2N$ = representative cellular material composition

(Per)chlorate Reduction Reactions

•Overall metabolic reduction reaction:

$$3Ac^{-} + 4ClO_{3}^{-} + 3H^{+} ----> 6CO_{3}^{-} + 4Cl^{-} + 6H_{2}O$$

Ac = acetate

•Enzymatic reduction reactions:

*Both perchlorate and chlorate appear to be substrates of the same enzyme

The Environmental Nitrogen Cycle

In Situ Bioremediation Demonstrations

- Passive Amendment Injection (Direct Push) for Denitrification
 - Albuquerque South Valley
- •Active Amendment Injection (Inverted 5-Spot) for Denitrification
 - Albuquerque South Valley
- •Permeable Reactive Barrier (PRB) for Multiple Contaminants
 - MultiBarrier in Mortandad Canyon
- Perchlorate Electron Donor Injection
 - Indian Head Division, Naval Surface Warfare Center (IHDIV)
- •Horizontal Flow Treatment Well (HFTW) for Perchlorate Reduction
 - Location TBD

Denitrification Demonstration Site

- •Site is located in the South Valley of Albuquerque, NM
- •Nitrate plume covers an area of about 0.85 square miles
- •Caused by over-fertilization of a vegetable farm in the 1950s
- •Nitrate-N levels at 215 250 mg/L in heart of plume
- •Water table is 47 ft below ground surface
- •At 42 ft is found a 5 ft thick clay aquitard, with a 15 ft thick sandy/loam soil aquifer below
- •A second clay aquitard is found at 62 ft, confining the nitrate contamination
- •Sand in aquifer is homogeneous with a saturated hydraulic conductivity of 10⁻³ cm/s and a flow gradient of 0.005 ft/ft
- •Groundwater flows in an East-Southeast direction

Denitrification Demonstration Site Aquifer Description

Amendment Injection Methods

- •Two amendment injection systems were compared:
 - Passive "direct push" application of amendment 9 points
 - Active "inverted five-spot" injection and recirculation
- •Amended with sodium acetate, sodium trimetaphosphate and sodium bromide (as tracer)
- •Amounts of amendment used were based on stoichiometry, area and estimated water volume
 - Direct push treated 30 x 30 x 15 ft or 13,500 cubic feet (30,200 gallons of water)
 - Active system treated 100 x 100 ft² area with circular treatment zone of ~300,000 gallons of water

Direct Push Demonstration System

Inverted 5-Spot Demonstration System

Monitoring and Analytical Methods

Direct Push System

- Water from three monitoring wells (MW-EA, MW-NW, MW-CE) analyzed weekly
- Samples drawn by hand using a bailer, 1.2 well volumes discarded before taking sample
- Bromide determined with Orion Ion Selective Electrode
- Nitrate and nitrite determined with Dionex DX-500 Ion Chromatograph
- •Inverted 5-Spot System
 - Water from two nested monitoring wells, one shallow (~50 ft.) and one deep (~65 ft.), analyzed at 8, 23, 29 and 64 days post-treatment
 - Sampling and analysis performed as in other system

Results - Inverted 5-Spot System

•Nitrate and nitrite concentrations in deep monitoring well

MultiBarrier *In Situ* PRB for Groundwater Remediation

- Designed to remove radionuclides (e.g. Sr, Am, Pu, U), metals (e.g. Pb, Co, Cr), nitrate and perchlorate
- •Four sections with unique purpose: colloid barrier, apatite, biobarrier, gravel polishing section
- •Bench-scale batch studies, column studies in 1- and 2dimensions to demonstrate effectiveness of each section
- •Bench-scale mock-up of full-scale system in final design sequence, actual groundwater used over ~one year period

PRB Demonstration Design

2D Mock-up of PRB Design

PRB Laboratory Results

Effluent concentrations of strontium, nitrate and perchlorate from 2D box

IHDIV *In Situ* Perchlorate Reduction Demonstration

- •Site located behind "Hog Out" facility (Building 1190) at Indian Head
- •Laboratory studies show that naturally-occurring perchloratereducing bacteria are present in groundwater aquifer at site
- •Bacteria can be stimulated with electron donor (acetate or lactate), will result in perchlorate reduction from >50 mg/L to below detection, however, natural pH (~4.3) is too low
- Buffering of aquifer to near-neutral pH will be necessary to achieve reduction
- •Experimented with bioaugmentation using FBR-2 strain isolated from ex situ fixed-bed bioreactor reducing perchlorate

IHDIV Perchlorate Reduction Laboratory Results

Influence of Different Electron Donors on Perchlorate Reduction in Aquifer Microcosms from the IHDIV Hog Out Site

Los Alamos

IHDIV Perchlorate Reduction Laboratory Results

Influence of pH on Perchlorate Reduction in Aquifer Microcosms from the IHDIV Hog Out Site (With and Without FBR-2 Inoculum)

HFTW Demonstration Design

Conclusions

- •Albuquerque South Valley passive denitrification system was not successful due to retention of nutrients in soil near injection well and poor mixing with groundwater
- •Active denitrification system worked extremely well for 10 days, biofouling then became severe and the system was shut down
- •Nitrate and nitrite concentrations in the deep monitoring well were below the ground water limits of 10 mg/L at 64 days in the active denitrification system
- •Lab-scale demonstration of PRB system for nitrate and perchlorate removed contaminants to below detection for ~one year prior to breakthrough, a modified design is due for installation in fall 2002 in Mortandad Canyon, Los Alamos, NM

Conclusions, Cont'd.

- •Lab-scale studies of perchlorate reduction determined feasibility of electron donor addition at multiple sites (Jet Propulsion Lab., IHDIV, Rocky Mountain Commercial Facility, Longhorn Army Ammunition Plant, Boeing Corp.)
- •Demonstration is in progress of electron donor injection for *in situ* bioremediation of perchlorate at IHDIV "Hog Out" Site
- •A second demonstration using HFTW Bioremediation System is planned for an as yet to be determined site with nitrate and perchlorate contamination
- •Both nitrate and perchlorate are amenable to *in situ* bioremediation using many variable engineered systems, both at land surfaces and in deep-well injection systems

Acknowledgements

- •Department of Energy (DOE) Pollution Prevention program for funding PRB development
- •Strategic Environmental Research and Development Program (SERDP) for funding perchlorate reduction laboratory studies, and Environmental Security Technology Certification Program (ESTCP) for funding the perchlorate reduction field demonstrations
- •Partial funding for the denitrification project provided by Bernalillo County (NM), US Environmental Protection Agency (USEPA), Department of Defense (DoD) and Waste Environmental Research Consortium (WERC).

