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The real trouble with this world of ours is not that it is an
unreasonable world, nor even that it is a reasonable one.cdime
monest kind of trouble is that it is nearly reasonable, bauite. ...

It looks just a little more mathematical and regular thas it.i.

— Gilbert Keith Chesterton
Orthodoxy

1 Introduction

A recent proposal to detept— e direct conversion at Fermilab asks for slow extraction atpns from the antiproton
source, specifically from the Debuncher. [1] A third-integesonance originally was considered for this, partly bsea

of the Debuncher’s three-fold symmetry and partly becatssegerational horizontal tuney =~ 9.765, is already within

0.1 ofvx = 29/3. Using a half integer resonaneg,= 19/2, though not part of the original proposal, has been suggested
more recently because (a) Fermilab has had a good deal afiexpe with half-integer extraction from the Tevatron, the
Main Injector and the erstwhile Main Ring, and (b) for reasare shall examine later, it depopulates the entire bunch
without an abort at the end.

This memo presents considerations preliminary to studyoth possibilities. It is meant only as a starting point for
investigations to be carried out in the future. The workingstraints and assumptions have oscillated between two
extremes: (1) making minimal changes in the antiprotona®to minimize cost and (2) building another machine in the
same tunnel. In this memo we adopt an attitude aligned muarartbthe first. The assumed parameters are listed in
Table 1. A few are not (easily) subject to change, such a®ttedated to the beam’s momentum and revolution frequency
and the acceptance of the debuncher.

Two resonance exemplarare presented in the next section, with an explanation cdiadytic and semi-analytic
calculations that can be done for each. Section 3 conta@lisrpnary numerical work that was done to validate the
exemplars within the context of extraction from the DebierclA final section contains a summary. Following the
bibliography, appendices contain (a) a qualitative, cptiea discussion of extraction for the novice, (b) a telpbia
review of the perturbative incantations used to filter theneglars as principal resonances of quadrupole, sextupdle a

Iwhile it sounds awkward, “exemplar” (or “exemplary cause™exemplary form”) is the correct word in this context. Acding to Kreyche [2,
pp.260-261], “[T]o act intelligently means to measure auggone’s activity according to the knowledge one has ofmfor . St. Thomas [AquinaDe
Veritate Q.3 a.1)] defines ‘exemplary cause’ thus: ‘it is a “form initition of which something comes into being from the intentdf an agent that
determines its end for itself.”’” That pretty much says it al



Quantity Unit Model Actudl

Kinetic energy Gev 8

Momentum GeV/c 8.88889 8.88626
Bp T-m 29.6501

(B,v,By) (0.994,9.526,9.474)
Circumference m 505.283 505.294
Rev. period usec 1.695

Rev. frequency kHz 590.038 590.018
Nwmd60 Hz 9834

Acceptance TTmm-mr 335 By
Initial emittance mmm-mr  20-25 By

Septum gap cm 1.6

Wire width pm 100

(Bx, By) at septum m (14.5,5.2)

(Bx,By) at lambertson m (8.2,10.4)

(Bx,By) at sextupoles m ~(14,4-6)

Resonant tunes 29/3 (third integer)

19/2 (half integer)

* These four numbers were taken from Steve Werkema's slidesepted November 18.

Table 1: Parameters for slow extraction from Debuncher.

octupole distributions, (c) a brief discussion of linedrgiependent control circuits, and (d) two files describhmey t
antiproton source’s rings in MAD v.8 format, not readily &able elsewheré.All figures are located at the end.

We emphasize again, the work reported here barely begireffibnt that will be required to design, validate and
perform resonant extraction from the Debuncher. Our goalt@@ompile these preliminary notes in one place for easy
future reference, preferably by a young, intelligent, watttd and energetic graduate student.

2 Analysis of two resonance exemplars

Resonance exemplars are fictitious, integrable, autonsidamiltonian dynamical systems that can be connected with
more realistic models using incantations derived fromsitad perturbation theory. A minimal exposition of these
incantations has been relegated to Appendix B, to which yeuederred for an explanation of the notation used in this
memo. The examplars are useful and reasonably valid onbrresonance” and only in certain physical situations, to be
made more precise later.

In this section we shall examine the forms given in Equat{@)snd (14) and connect their control parameters with
properties that can be expressed analytically: (a) thenerg@rbit, (b) its separatrix, (c) emittance of the cergtable
region, (d) step size, and (e) spill rate. To the best of oomkedge, these calculations were first done by Teng [3] and
Edwards [4] and have since been repeated and extendedausaontexts, e.g. by one [5] or the other [6] of the current
authors for half-integer extractichThe motivations for rewriting them here and in this form are:

(a) one of us (LM) needed this review,

2Steve Werkema had begun writing similar files some years ago.
30hnuma’s 1972 memo [7] contained results from simulatiarisib analytical expressions.



(b) to write everything explicitly using polynomials in thieear normal form coordinates appropriate for later use at
higher orders in perturbation theory, and

(c) to compile in one place a minimal set of expressions thghtibe useful to “jumpstart” a fresh graduate student inten
on seriously studying the extraction process.

There are two different, but parallel approaches for opstalies: one, discrete (maps), the other, continuous
(flows)# We shall use flows, because (i) we assume, based on expetiesiomost reade?sare more comfortable with
this approach, and (ii) the analytic expressions we neethast easily obtained using Hamiltonian exemplars.
Accordingly, the discussion will be carried out in the langa of Hamilton’s differential equations. Further, our
meditations are confined to one degree of freedom. Even wWigesutbscripk does not appear explictly, it is assumed that
all symbols are referred to the horizontal plane.

2.1 Third integer
The principal exemplar of the third integer resonance istamiin Eq.(41) of Appendix B and transcribed below.
H = A-a*a—iga®+ig a3+ 1)

With one exceptiofy the notation is that of Appendix B (esp. see Eq.(29):= vx — 29/3 ~ 0 is the difference between
the linear (small amplitude) horizontal tune and the resbhune and is presumed to be nearly zero; and the “resonance
coupling constanty, is a linear functional of the sextupole field strength disttion, as specified in Eq.(38).

62 4Tt

Two basic assertions are that (a) everything, expresseduadiy.t” symbol, can be transformed away using standard
techniques from perturbation thedrgnd (b) ag\ — 0, the transformation becomes the identity and therefore @séror
less) ignorable.

P | ino ((B"l 23/2, 0\ —i3(w1(6)—-v16)
9 =16 = oo 0 3 ¢ (S @ o @

Resonant orbit. Those vertices are the resonant orbit, or, in the “co-mofrizge,” the fixed points of Hamilton’s
equation of motion.

da/d6=—igH/da* = —iAa + 3g‘a?+---
da/d6=0 = A = -3ig*ay*/a 3)
Using Eq.(29) and defining the phadé,
g = [ge?
gives us,
A = 3]g||agle/%o~) 4)

4They are connected via exponentiation; the Hamiltonianriatpoint in the ring) is pulled from the map via a processamls to taking a logarithm.
For details, read the superb textbooks of Michelotti [8] &odest [9].

SMaking a highly optimistic assumption of their existence.

60ne piece of notation in this section is different from th&Section B, which is where Eq.(38) appears. | apologize liat bversight but do not
intend to fix it. Effectively,iGz = g.

"Those techniques were explainad nauseanin both “flow” and “map” contexts in Chapters 4 and Slofermediate Classical Dynamigg8]. We
shall not repeat that material here.



Becausé\ must be real, we get,

a0l = Vo = [8/3g (5)
0<A = ¢o = W/3 modar/3 (6)
A<O0 = ¢o = W/3+1m/3 mod2ay3. (7

Separatrix geometry. That the separatrix consists of three straight lines irtdnsg at the vertices of an equilateral
triangle is undisputed, but we shall verify it notwithstargl The value of the Hamiltonian on the separatrix is the®ét
assumes on the unstable resonant orbit. So, using Equétipri8) and (5), we evaluaten the separatrix

H(aa') = H(ao,3) = Ho = 3(A-3—3igag)ao+ (A a0+3igag”)ap+ 5(A-ag20)
_ 1 2
= 30|l ®
L as2

We now verify, by working backwards, that this describegéhstraight lines intersecting at the vertices of an edridt
triangle.

For the moment, assume the poings= { 1, €23 e 12Y3} comprise three vertices in the compleglane. The
line passing through the latter two is the det;s {z| O(z) = —1/2}. Written as a linear polynomial, the condition
becomes,

z+Z7+1=0.

By the rotational symmetry of the figure,afies onL, thene™2/3z lies on the line passing througa™23 1). Thus, the
polynomial satisfied by the union of lines whose intersetdipopulates is,

(ei2n/32+efi2rr/3zk+1)(Z+Zk+1)(e*i2”/3z+ei2”/3z*_|_1) =0.

Expanding and combining terms produces
24+73-37+1=0.

This must be connected with Eq.(1) by an appropriate difiediiod rotation. First, multiplg by |ag|, to correct the

scale, and identifia = |ap|z

a®+a*3—3aa’|ap| +|ag|> = 0

Multiply by —A/3|ap| and rearrange terms.
1 " *
38 120/ = Ho = A-aa"— (8/3fag|)(a°+a"%)

Of course, Eq.(8) has been used to idenitify Now, substitute from Eq.(4) fak/3|ag|,

A
3|ag|

gle WMo — gre¥o — _igr(e 112003

= |g|eiLPefi3¢o — gefi3¢o — ig(ei(n/zfq)o)):g



and rotate phase space so tea{V2%) — ato finish the demonstration.
Ho = A-a*a—iga®+ig*a*®
Notice that the rotation angle 1§/2 — ¢, not$o. (See Figure 1.)

Emittance of central region. The emittance of the central stable region is the “area” dquilateral triangle with

“radius” +/2lo.

For comparison, the emittanag, of a bunch in equilibriunwith the linear machinand totally contained within the
central stable region is the “area” of a circle whose radiuglio/2, i.e. g, = 1io/2. (See Figure 2.) The ratio of the two is
thus,

€p Tt

— = —— ~ 0.605. 10

e 33 (10)

This number is useful for setting the initial parametershefsqueeze.

Step size. Because the outgoing branches of the separatrix are astgaptioe behavior of orbits on those branches
serves to estimate how all orbits will approach the septdielg region. To that end, it is convenient that the equation o
motion along the separatrix can be expressed analyti¢ally.

First, whenA = 0, then on the separatrig,= ire (=76 (j.e.r = \/1), and

da/d® = idr/de e (V6 —  3gia?
_3|g|efil~l»’r2€i(2¢oi1'[/3)

= dr/d® = =3|g|r?

1 1 3x2m
~- > —3jg[" " de — 18mg
1 I 0
o 18mg|r?
27 T 118y,
If A0, then scale byg: i.e.a= agu. On the separatrix,
da/de = apdu/d® = —ihagu+ 3g*agu*?
= —ifag(u—u?)
du/de = —iA(u—u?)

Now letu= 1+ re'™6. (Note: r is dimensionless in this expression. Units and scaling wbserbed byy.) Then, due

the remarkable facts that
ein/G_ zefin/ﬁ — _\/éefin/3 and iefin/ﬁ — ein/3

we get
dr/d® = A(V3r+r2) = A-r(V3+r) = A-[(r+V3/2)?-3/4]

8To the best of our knowledge, this calculation was first donEdwards. [4]




After solving, the step size condition is written,

ri(ri++v3)
[V3/(exp(6my/34) —1)] —r1

Working backwards to remove the scaling will reinstate tapaehdence of step size gmnd[y.

f2—r =

Spill rate. Experimenters want beam to be extracted at a uniform rataligieally, that will require diagnostics and
feed-forward to monitor and control the ramp profiles of thigation circuits. Nonetheless, under a few assumptions —
whose validity ranges from “solid” to “highly dubious” — & possible to write solutions in at least two simple cases. Th
assumptions are:

(a) Liouville’s theorem, with its consequence that the dtgrsf states is a constant of the
motion. Of course, if the system is truly Hamiltonian, théadville’s theorem is assured.
(b) a bunch initially in equilibrium, so that the density fition depends only on the action
coordinate.

(c) an adiabatic squeeze. A fundamental theorem of Hanmltomechanics states that the
value of action remains invariant under adiabatic chany#sa system’s parameters.

With those accepted, the following manipulations can gwéod.
We assume a frozen distributigu(l ), dependent only on the action coordinate, such that the nuailparticles
remaining in the bunch at times

N(t) = /(;'maxm dip(l), for te [0, . (11)
We further assume a steady depletion to deffipg(t).
N(t) =N(0)- (1—t/1)
Finally, Eq.(9) is used to connect the ramp profile, A&y, with the largest action coordinate in the bunch.
A(t) = A(0) v/Imax(t)/Imax(0)

Given a density functiorp(l), the task is to invert Eq.(11) to finlghax(t), which then is used to generaiét). This can be
carried out analytically in at least two simple cases, thaitseof which are trivial and left to the (hypothetical) dea:

Constant density:

pm:{ I e SO NG (12)
Truncated Gaussian:
Tl —Tmax(0) (1 12
P(I)Z{ SR e A:A(o)(—'n(t/HerlmaX(o)(l tm)) (13)

2.2 Halfinteger

The half-integer resonance exemplar is written in Eq.(dBA\ppendix B, and transcribed here.

H = A-a*a+Gy(a'a)? + Gua?+Gya'?+- - (14)



Here, as usual) = vx + n/2 = 0. The first two terms express amplitude dependence of the dureeto the presence of
octupoles; the last two contain the resonance. Two couplmgmeters are functionals of quadrupole and octupole
strength distributions.

1 oB/l i
G = — ; By e 12(W—28) (15)
8n qua rupoles| Bp|
1 Bllll
Gs = 50 — B;
32T[oct%oles|8p| §

In the summand fo&,, the expression8B’” indicates that only the fraction of quadrupole streniggh contributing to
the tunemust be used here. Notice thag is complex, buts, is real. We shall examine, in sequence, the resonant orbit,
separatrix, and step size of this examplar.

Resonant orbit. Hamilton’s equation of motion can be written as follows.
ida/d8 = dH/0a* = A-a+2Gsa" +2Ga'a’ (16)
The resonant orbit is thus characterized by the fixed poinaton,
(da/dB)aay =0 = A-ap+2Gsa4as = —2G5& 17)
Now multiply by aj, use Eq.(29) and define the phaSe = |G| exp(i W), and factor out the solutioay = O, to get
A+2Gy|ag|? = 2|Gy|e(%0=¥) (18)

The physical interpretation is this: the resonant orbiuwsavhere the amplitude-dependent tune shift arising fifeem t
octupoles reaches the half-integer stopband. The expahenist be real; i.e. eXg(2¢o— W) ) = +1. These correspond
to four resonant points, two stable and two unstable. Ordyttstableones are physically relevant. They are, as we shall
confirm shortly,
> _ sgnd)-2|Gp|-A
2|G2| <A and Gs<0 = ¢o = W/2 (modm)

A< -2|Gp| and 0<Gs = ¢ = ¥/24+1/2 (modm) .

Notice that (a) the tune must lie outside the half-integaplsand, generated by quadrupole harmonic term, and (b) the
signs ofG4 andA must be opposite, so that amplitude dependence can shifirieeonto resonance at the location of the
resonant orbit.

Separatrix geometry. The value of the Hamiltonian on the separatrix is the valasstumes on the unstable resonant

orbit.

Ho = H(ao) = A-|ao|*+ Galag|* + G2a5+ G5 a5°

From the resonant point equation, Eq.(17),

* Ak 1
Gy39” + Galao|* = —5-[aof



and thus,
1 2 2
Ho = éA-laol +Goag
1 s
= §|a0|2(A—ZGze 20
_ 10 —i(200-W)
= Slaof (B-2Gale )
_ 10 i(200-W)
= S laof (B-2Gd o))

where Eq.(18) has been used to get the last line.

With this result in hand, we can now establish that the sepansists of two intersecting circles. Letepresent a
complex variable¢ a complex number, arda real, positive number. The points in the complex planeisting two
circles centered atc, each having radius are completely determined by the equation,

(lz—c|—=r?)-(|z+c|-r*) =0 .
Upon expanding and rearranging terms, this becomes trmfiolg.
2%~ 21222 - 222 — 22 = —(r2—|c?)?
For comparison, combine Eq.(14) and Eq.(20) to obtain thraton for the separatrix.
Gala*+A-|a)® + Gsa 2+ Gra? = —Gglagl* (21)

The result is established when we identify,

2 = —A/2Gy ,
c'? = —Gy/Gs , and (22)
r? |20l +[cf* .

The first two connect the geometric attributes of the ciraligh the control parameters of the Hamiltonian. The third is
just the Pythagorean theorem,|ag is the distance from the origin to the point of intersectitid consistency with the
first two must be verified.

However, we rewrite,
|Ga| = Ga-sgn(Ga) = —Ga-sgr(h)

to get,

sgr(A)-2|Gz| — A

r’—|cf? = 5Cs

= |a0|2 )

in agreement with Eq.(19).
Modulo a dilation, the shape of the separatrix is determiethe ratio,

lcl/r = cog8/2) = (2/Go/A[)?



which thus we shall call (at least once) the “shape pararhétere, 6 is the angle subtended by the resonant points at the
center of one of the lobes. (See Figure 4.)

Emittance of central region. Emittance of the central stable region is obtained by a taticn suitable for a geometry
exercise at the junior high school level. With referenceitpuFe 4, the area of the circular sector subtended by angle
8 =2cos!(|c|/r) isBr?/2. The area of the triangular piecerisin(8/2) - r cog8/2) = r?sin(8) /2. Subtracting one from
the other provides the area of the shaded cap. Keeping intimatdemittance” is double the value of “area” in these
coordinates, we have

g = 2r%(@—sinB) , B¢ (0,1, (23)

for the emittance of the central region.
If a circle now be inscribed, as shown on the right of Figureepresenting the initial bunch, the ratio of its emittance
to that of the central region is,
g T(r—[c)> _ T(1-cog6/2))

= - = : 24
£ r2(6 —sin®) 0 —sind (24)

Step size. As the separatrix is comprised of two circles, along it we parametrize,
a=c+reM (25)

where the sign in the exponential is chosen to correspondroretonically increasing phase whanc 0. (See the right
hand side of Figure 4.) Trajectories along the separatexatermined by the differential equation,

dn 1, /.da
i Fe <|%) . (26)

To fill this in, one can use Eq.(21) to specialize Eqg.(16) tdiomalong the separatrix.
on the separatrix: ia*%I = A-(|aol? - [a?) +2G,- (a3 — &?)

In general, EqQ.(26) is solved numerically, but a simplifisatoccurs when the two lobes of the separatrix are
tangent: i.e. the emittance of the central stable regioriie.ZThis corresponds to the conditions,

|A| =2|Gz|, |ag|=0, andc=ire /2 .
From Eq.(20) we get an immediate consequence,
Ho=0 = Gia'?+Gy(a'a)’>=—A -a‘a—Gya’ ,
which, substituted into Eq.(16) and Eq.(25), gives us thepér expressions,
onthe separatrix:  a=ire '¥/? (1— ie*i(”’w/z)) (27)
ida/d6 = —2|Gy|a (sgr(A)+e“”a/a*)

and therefore: (;_g = —2|G,| (é"a/r) (sgr(A)+e“”a/a*) : (28)



Employing a little algebra on Eq.(27) reveals that

dla/r = 1+ig~*/?

i 1-sin(n—W¥/2)

Y x _  _o — SN Ve
and —1+€"a/a" = -2 T e

on the separatrix. Putting these pieces together lets ugtedvq.(28) as follows.

g_g = 4|Gz| (1—sin(n—W/2))

The reduction to quadrature and its solution is done easily. n

r2X 21T "No+9n dr]
4|Gz|/ d6 — 16mGy| — /
0 .

no 1-—sin(n—Y¥/2)
1 [Not+dn dn
2/ co2(n/2—W/4+T/4)

+0n
= tanin/2—-W/4+1/4)

No
No
This is then solved for the quantidy), which becomes the step size when (correctly) projected thietborizontal axis.
on will be small when the orbit begins near the resonant paiatywhenn — W/2 ~ 11/2. In that case,

on

16m Gy | ~ -
Tl Ce 1—sin(no—W¥/2)

= 0n =~ 16mGy|-(1—sin(ng—Y¥/2))
is a good approximation. (See Figure 5.)

Spill rate. While there would be some satisfaction in writing analytipreessions similar to Eq.(12) and Eq.(13) for the
tune profiles associated with a constant spill rate, we dartarting from Eq.(23) to effect the inversion is much more
complicated than from Eq.(9). We shall leave this to nunaigalculations.

3 Numerical computations

A small set of numerical calculations were carried out, jariify to validate the exemplars within the context of tramki
programs, andnutatis mutandito test the proper working of the programs. The models used Wwased on “The
Fermilab Antiproton Source Design Report” [10] and writteto MAD V.8 description files (i.e. “.Iat” files). More
accurate descriptions of the Debuncher and Accumulatgsras they now exist are stored in the Accelerator Division’s
Lattice Repository[11] but were not used because (a) they are written in Optiméd, for which we have no parsers
other than the Optim program itself, (b) for purposes ofgiesind understanding it is best to start from a “perfect,”
symmetric machine, and (c) the rings will, in any case, ugdehanges required by the mu2e experiment. In particular,
the dihedral symmetry of the Debuncher will be broken by @suspecified) changes being designed for one of its
straight sections. We shall not incorporate those changeshut assume they will not change the linear lattice fonsti

in the other two sides of the ring.

9The repository is still available at http://lattices.fromiv/ .
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Both MAD itself and CHEF's [12, 13, 14] parsers can interpagtice descriptions in MAD v.8 and Xsif format, of
which we chose the former for writing the files, which haverbeeluded in two appendices for completen&s3o the
base lattice for the Debuncher were added control elemetecite either a third-integer or a half-integer resonaite
configurations and the calculations carried out on them aseribed in the two subsections below.

NOTE: Animportant feature common to both is that all extractiontcol elements, including the lambertson and
septum, were added within the zero-dispersion portionwofstraight sections. In addition, the Debuncher’s chraeitgt
was set (near) to zero using its pre-existing chromati@iyigoles; a scan of chromaticity as a functiod\pf/ p in our
modelis shown in Figure 61 Taken together, these two circumstances eliminate firgtrarioromatic effects on the
extraction process.

3.1 Third integer computations
3.1.1 Lattice modifications

Tune control throughout the squeeze will be handled by tleelqupoles in two of the (zero-dispersion) straight sestion
Thus, there will be no need for new quadrupoles to be adddtetDebuncher. However, six “harmonic” sextupoles must
be added to the base lattice to excite the third integer sssmn Their locations are shown schematically in FiguredZ an
projectively in Figure 8; the latter also illustrates Idoas of the septum and lambertsthMore to the point, the six
phasors that appear in the resonance gyof Eq.(2) are shown on the left hand side of Figure 9. By rengrthe

polarity of the “-2” locations relative to the “-1” and “-3lye see that sextupoles in the “20-x” and “50-x" locationsrior
almost perfectly orthogonal circuits. (That they are nofget is not important, as pointed out in Appendix C.) Witleitin
we can adjust both amplitude and phasg aé desired.

3.1.2 Computations vs. exemplar
Three real parameters enter into the exemplar:

Gs : real and imaginary parts (or amplitude and phase) of N/&baic sextupole coupling constant
A : difference between the base and resonant tunes

Further, the phase @3 determines the orientation of the separatrix, while itdesisadetermined by the rati@)/Gg3|,
according to Equations (5) through (7). For the purpose thfigeup simulations, we tre&s andA as derived from the
quantities:

€p : initial transverse emittance of the bunch
¢o: angle of orientation

More properly, the separatrix must be oriented accordirtge@hase advance between the septum and the lambertson, as
indicated in Figure 21. The integrated electric field of taptam is then fixed by the requirement of hitting the target
region shown in the figure.

Squeezing the separatrix is accomplished either in the fimi 0 or Gz — . Of course, the latter is impractical, so
the former will be done. Space charge (not addressed hdiegdiice and spread the tunes. Extracting particles in the
expected sequence — larger amplitudes first; the core lastuires thaf\ < 0 be used.

10They are also available from Fermilab’s mu2e document datab

110f course, non-zero chromaticity may prove necessary, iohwtase it later will have to be taken into account.

12In the interest of full disclosure, the MAD file positions thextupoles in sectors 50 and 20, with 40 and 30 intervening pats the septum and
lambertson in sector 10. The labels in the Figure 7 agree auithcurrent usage of the straight section in sectors 20 arfdr3&ktraction. Because of
symmetry, this renaming makes no difference.
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Ramping quadrupoles to effect the squeeze will change Hytlatune but the relative phases between the
sextupoles, affecting the value @f The ranges of phasors shown in the left hand side of Figurelate the extent over
which each will vary. The important point here is that they amall, which means that the valuegofill remain
reasonably constant if harmonic sextupole strengths ard throughout extraction. They need not track the quadespol
For comparison, the right hand side of Figure 9 illustratesvariation ing, rather thanp — ve.

Resonant orbit and separatrix. The first issue to be settled is whether the exemplar addglatates the resonant
orbit, without further adjustments from higher orders oftpebation theory. To that end, a comparison was made batwee
the solution expressed in Equations (5) through (7) andgiexact computations of the period three orbit of the medifi
Debuncher model. The result is shown in Figure 10. The ex&itwas computed using the toolkit available in CHEF’s
libraries [12, 13, 14]. Agreement seems adequate for g/flairhe range in horizontal tune, approximately
9.64 < vy < 9.69.

However, taken by itself, this “agreement” is misleadinmgufe 11 shows a more complete comparison between the
exact separatrix, obtained by tracking nearby orbits, #i#h of the exemplar fory € [9.62,9.66]. The controls were
fixed so that the central stable region could encompassla oifmvariant emittance 20mm-mr. That is, the emittance of
the exemplar’s triangle was fixed @&/3,/m) - 20r/By ~ 11 mm-mr, regardless of the tune by using the harmonic
sextupoles to track the value @f (See Equations (9) and (10).) To accomplish this, the ntadaiof each sextupole’s
integrated strength changed linearly with tune frem5 T/m atvy = 9.66 toa 107 T/m atvx = 9.62. Thus, we examine
here the integrity of the separatrix at the start of the sg@e@/ith reference to Figure 11, the small distortions in the
triangular shape are unimportant but not the behavior obthigoing branches, which deviate significantly ¥gr< 9.64
and are completely brokenats 9.62 or below. Given this configuration of magnets, This bouthdgange of tunes for
the squeeze t0.84 < vy < 29/3. We note in passing that, nearentp= 9.64, one outgoing branch is better matched to
the exemplar than the other td® This circumstance merits some attention, but not here ahdova

Approach ramp. To be realistic for just a moment, the ramp profile of the turen{rol quadrupoles) controlling the
spill will be established experimentally and experiefyiabrly in the course of the mu2e experiment. Nonetheless, f
whatever it's worth, the profiles suggested by Equation¥ &b@ (13) are shown in Figure 3. The top, dashed curve
corresponds to the limiting behavior for a flat distributioa. Eq.(12); the three lower curves assume truncated<gmss
with 90%, 95%, and 99% of the initial emittance enclosed atstiart'4

3.1.3 Extraction simulations

A short program was written to simulate (third-integeryagtion,in the absence of space chargming the sextupole and
quadrupole control elements discussed above. Using thedwailable in CHEF's libraries, the program

(a) reads and interprets the (MAD v.8) design lattice file,drain it, builds a software model of the Debuncher.

(b) groups the quadrupoles in the zero-dispersion regibtvgmof the straight sections, effectively attaching them t
“circuits” so that their strengths are controlled as one.

(c) inserts sextupoles, septum and lambertson elemerdsations as specified above.

(d) attaches sextupoles to two “circuits,” also as speciiealve.

(e) using initial conditions of tune and emittance specifisdommand line arguments, sets the strengths of the séasupo
so the separatrix will encompass the initial distribution.

(f) populates a “bunch” of protons that would be in equililim were the sextupoles turned off. (This could be done using
a variety of distributions, but only a uniform density was)

13By a happy accident, this is the one to be used for extraction.
141 (LM) refuse to comment on the surprising result that the 0% 95% curves are closer than than the 95% and 99% ones.
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(g) performs a 16 msec squeeze to extract the protons by mgrtte tune-control quadrupoles.

Simulations were carried for bunches consisting of 64, taudeghe program, to 4096 protons. While the ramp profile
could be anything — e.g. as specified by Eq.(12) — only a lipeafile was used. For these runs, chromaticity was
essentially zero and no aperture restrictions were intredinto the ring, so that momentum deviations had negégibl
effect.

Figure 12 shows a typical result, plotting the fractiongbplation of the bunch as a function of time. Unless care is
employed to tailor the ramp — e.g. as suggested by Equati@®)®( (13), or at least beginning the ramp carefully so that
the bunch starts well within the separatrix and has time josadb it — as much as 10-20% of the bunch can be depleted
very rapidly, within the first score of turns. The severitgigatest for a uniform density, as otherwise fewer pagiebdst
at the bunch'’s fringes. After the separatrix has had timesbape the distribution, the spill rate remains reasonably
consant over about half of the time interval, at which peir@0% of the bunch has been removed. Without adjusting the
ramp, the rate is reduced while the firal0% is extracted.

Of course, this initial burst of extracted particles wouunacceptable, emphasizing the need to design a ramp
profile that avoids it> Undoubtedly, final adjustments will be based on operatierpérience.

A snapshot of states in horizontal phase space is shown ié=i16 It was taken at the 6d®turn, approximately
1.1 msec into the ramp, well after the initial transienteathe bunch distribution has accomodated itself to theesbép
the separatrix. The bunch initially contained 4096 protafsvhich 3022 remained to be immortalized in this picture.

Because muZ2e requires large bunches intensities, spacgedh@xpected to affect extraction significantly. The
ingredients of the simple simulations reported here haea banded over to othérsfor inclusion of space charge
effects. Its only influence on our preliminary work was théteeause space changelucedunes, producing a tune spread
with maximum shift within the core — it was (finally) decidemddpproach the resonance framlow Doing so shifts the
core away from the resonance, assuring that particles witi¢tracted from the bunch in the expected order: i.e. larger
amplitudes first.

3.2 Half integer computations
3.2.1 Lattice modifications

By the time of writing, fewer computations were carried autthe half-integer resonance for a number of reasons, two of
which are: (1) the third-integer was initially given almestlusive priority and (2) five or six weeks were wasted ahgsi

a rather unworkable approach for a half-integer configorafio get that out of the way first, its principal features
included:

(a) a global shifting of the Debuncher’s tune to near 19/2.

(b) using four already existing focusing quadrupoles indbeter of one straight section to generateGdarmonic term.
(c) placing three (thin) octupoles symmetrically at theteesiof the straight sections to generate the zeroth ham@ni
term.

(d) effecting the squeeze by altering the strengths of tiebaic quadrupoles, increasing the stopband width, effelgt
Gz, while keeping the tune constant.

In principle, this might have been made to work; in practiceeemed too sensitive to phase shifts induced by the
quadrupole harmonic circuits. It is important that the setand fourth harmonic octupolar principal terms vanishe Th

15Jim Amundson, who is including space charge in his simuiati@pproached the initial stage of the ramp somewhat moedutlg and, without
much effort, reduced the spill to 0.5%. This is much smallgrstill too large. That number isot a lower bound and will be improved.

18] (LM) think, but will not guarantee, that this “snapshot” sveaken just upstream of the septum.

That is, to Jim Amundson.
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phasor diagrams in Figure 14 demonstrate that one triviglteao this is to take advantage of the ring’s symmetry and
place octupoles at the centers of the three straight sectidowever, the harmonic quadrupole circuit breaks that
symmetry, inducing phase errors between the octupolegtithtip distorting the separatrix badly.

A more sensible approach has been taken recently, comgsigtthe following steps.

(a) bring the horizontal tune to exactly 19/2 by locally afjng the phase advances within each cell of the straight
sections to be 60 as in the arcs.

(b) insert new quadrupole correctors at eight location® [Bbations are chosen so that, when powered symmetritadly,
first order tune variation vanishes and the quads form oghalbfamilies with respect to the half-integer phasors.sehe
eight will be used to contrdb,.

(c) tune the circuits by observing the variation in tune vettitation and setting them where the minima occur.

The locations of the eight harmonic quadrupoles that woelthbtalled in the Debuncher are shown in Figure 15, with the
two families identified and labelled. The tuning step take(c) is now standard practitéto compensate for quadrupole
field errors throughout the ring. In the absence of erroesfuhe dependence on excitation of the two quad circuits is
shown on the left-side of Figure 16. (The bare tune has beadn 8e485.) Minima occur at zero excitation, as expected,;
that is, the harmonic circuits do not affect the tune lingaklter field errors are introduced randomly throughout the
Debuncher’s quadrupoles, the tune dependence is showm eigti-hand side of Figure 16. The minima have shifted,
and these excitations must be used as the “base” or “zerd¢’ pgian which to build the driving ternizs.

Evidence that thiglobalstrategy adequately stabilizes phaleeslly is offered by the curves in Figure 17, which
showARB/B before (red) and after (blue) the harmonic circuits haventteeed. The lattice functions themselves are
displayed in Figure 18.

3.2.2 Computations vs. exemplar

Four parameters enter into the exemplar:

G4 : zeroth harmonic octupoles’ coupling constant
Gy : real and imaginary parts (or amplitude and phase) of N/thbaic quadrupoles’ coupling constant
A : difference between the base and resonant tunes

For the purposes of setting up simulations, we tf@aand|G;| as derived from the more fundamental quantities:

c|/r : shape parameter, equivalente- 2cos*(|c|/r)
g, . initial transverse emittance of the bunch

0 is the angle subtended from a lobe’s center by their poiniistefsection, the resonant orbit.
We shall adopt the set of four parameter8, = { &, A, |c|/r (or8), W}, as determining the exemplar of the
simulation. From thenG, andG4 are derived as follows.

|G2| = |A/2|(|c|/r)?, and of course G, = |G,|€e¥
Gs = —A-(g&/m) *(1—c|/r)?

180ne of the authors (JJ) has had operational experience wiitfinteger extraction from the Main Injector; the othemM).tried to compensate by
spending several hours speaking with him and with others edmtrolled extraction from the Tevatron. Step (c) is stadda the Main Injector and
becamestandard in the Tevatron, though at some point — prior to theies reported in References [15] and [16], which does eoessarily imply
causality — Tevatron extraction was finely tuned by detgctind minimizing particle losses. [17] We expect that shdaddlone for mu2e as well. The
complete history of resonant extraction at Fermilab is ivddcumenting, but not here and not now.
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These are obtained by combining the pieces of Eq.(22) wélobservation that, when the bunch exactly fits into the
central region, then it must be that/2 = 1i(r — |c|). Note in passing that, as one would expect, the quadrupoktaoin
is connected with shape only, while scale is determined bythupoles.

Of course ¥ must not be chosen randomly. As with the third integer, ittotsthe orientation of the separatrix, so its
value will depend on the phase advance between the septuthetanbertson. (E.g. see Figure 21, for the third-int¢ger.
Further, the septum offset will be influenced by the sepiaratrwell as the step size of its asymptotic orbits.

Resonant orbit and separatrix. As with the third integer, we must first examine how well themplar, with no
adjustments from higher orders of perturbation theory,distribe the actual resonant orbit and its separatrix.r€ig/@
shows two representative snapshots, taker at 9.46 andvk = 9.49. Notice the “interwoven figure eight”
sub-separatrices appearing within the major lobes at therltune. (In connection with this, see also Figure 22 and
footnote 31 from the discussion in Appendix B.) The red eisatomprise the exemplar's separatrix, while orbits from
tracking are shown in black. As before, and as expecteddisercone gets to the resonant tune, the better. Even so,
achieving a better match to the orientation would requiditazhal quadrupole tuning.

Many such separatrices were constructed by examining aetyari quadrupole arrangements and settings. The
zoological collection of pictures will not be displayed eeSuffice it to say that hours of staring at them resulted in an
increased awareness of the ease with which a half-integaraix could be distorted by such deviations. The presume
mechanism is that variations in phase advance break symamadrhinder the suppression of unwanted second and fourth
order octupole harmonic term& The “geometry” and even topology of the separatrix is sasib such terms; e.g. see
References [3] and [5].

3.2.3 Extraction simulations

Unlike the third-integer, there are (at least) three inegjeint ways to perform the squeeze:

(a) by fixing G2 andG4 and reducind), the separation between the two lobes remains fixed
while their radii shrink,

(b) by proportionately reducing the magnitudesoand G, so that the ratid\/G4 remains
constant, the lobes’ radii are fixed while their separatiameéases, or

(c) by fixing A andG4 while varyingG,, producing the same effect as method (b),

until the squeeze is completed by reaching the point of tacygd-or the record, method (c) was used in the Tevatron and
is still used in the Main Injector.

It may be worth mentioning, as a historical sidebar, #&tond harmonioctupoles were installed in the Tevatron
but never powered, after it was decided to use onlyz#reth harmonidistribution2° In the Main Injectorzeroth
harmonicoctupoles were installed, to excite the average term bittased out, neither needed nor powered due to the
unexpectedly large octupole content of the Main Ring qupolies.

As of this writing, while a considerable number of hours haegen spent staring at its separatrices, no extraction
simulations have been carried out on the half-integer r@somsimilar to those done for the third-integer. (See Ei@ar.)
When and if they are, results will be included in a revisiomtiLthat happy day, review the early simulations carrietl ou
by Harrison [19, 20, 21, 22] and the later studies of Marraed Martens [15, 16].

19gee the discussion of “Neglected principal terms” on pageT24 global quadrupole tuning strategy alluded to in theiptes section may improve
matters. This will be studied further in the future.

20according to Lee Teng [3], Sho Ohnuma first suggested usimgtzéarmonic octupoles exclusively. Nothing of that olation was recorded apart
from Teng’s footnote; Ohnuma himself has no memory of it][18
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4 Summary

We have modeled the rings of the antiproton source basedsmmipigons in their design repoffsand transcribed the
models into two MAD v.8 description files which are includedappendices. These are not final, as one side of the
Debuncher is even now being redesigned to accommodategairaThe new side will no doubt break the ring’s
(dihedral) symmetry, presumably without altering lattioactions in the other two sides. Anticipating these change
confined the resonance control elements tadikpersion fregarts of straight sections within two sides of the Debuncher
The third will contain the (electric) septum and (magndaehbertson devices for extracting the beam.

Two possible resonances are under consideration: a thtedéryy = 29/3, advanced by the original mu2e
proposal [1], and a half-integer, = 19/2, suggested more recently, during the series of working mgetonvened by
Mike Syphers. Neither has (yet) been shown to be unmanagdalileach possesses its own characteristics.

The two resonances will be controlled in different ways: hlaéi-integer, by using quadrupole harmonic circuits to
enlarge the stopband; the third-integer, by using the a-t@mérol circuit to move the bare tune onto the resonance,
thereby reducing the emittance enclosed by the centrdestation to zerd? The half-integer resonance can take
advantage of a stopband width to extract the entire beamthitttkinteger possesses no such width — that is, to zero the
central stable region, the machine must operate preciséhgaesonant tune — and is thus more sensitive to small power
supply ripple. [24] Thus, using the third-integer wouldu@g an extra step (and additional hardware) to remove uasid
beam after extraction.

On the other hand, the separatrix of the half-integer resomas more easily distorted than that of the third-integer.
This is not unexpected, as quadrupoles are used not onlyntootthe tune but to drive the resonance. In addition, a
half-integer resonance is necessarily also a quartegéntesonanc& Any manipulations with quadrupoles will have to
be done carefully so as to maintain the phase advanceseddaizero out principal octupole driving terms not included
in the exemplaf® This is done most easily by maintaining symmetry rigorodsiliy as already mentioned, that will not be
an option. In any case, quadrupole circuits will have to Imetlioperationally to their correct working points (e.g. see
Figure 17).

In general, the third-integer separatrix should be morbust’: less easily distorted by small perturbations in ghas
advances and requiring less operational tuning than tHdritaber. Because its resonance phasors are reasonalbly st
during extraction (see Figure 14) and there is no dangeraifieg an unwanted principal resonance in the horizontal
plane, tracking the tune circuit with the sextupoles showitbe necessary. The exit branch of the separatrix is #self
simpler affair, being a “straight line” in normalized phagemcé® and therefore matched to the target region of the
lambertson (see Figure 21). Its already mentioned disddgans the extra “clearing” step that would be necessary.

All of which is not necessarily meant to “sell” the third-@gfer nor to suggest that the choice has been made already.
It has not. Both possibilities will be pursued further.

Space charge will reduce the protons’ tunes, especiallydrcore, where the electric field changes most rapidly.
This suggests we should approach the resonance from beddhatwould move the core away from the resonance,
assuring that particles will be depopulated in the ordeeeigd. We further assume that the septum and lambertson will
kick the beam to the outside. This was, for a time, an opentmuewhich now seems to have been settled. (By a happy

21Three seem to have been distributed. The first, “The Ferndiletiproton Source Design Report,” [10] was written in Feogy 1982; the next two,
seemingly identical, bear the same title, “Design Repovaifen 1 Project,” [23] and are dated September, 1983 (ldvery and September, 1984 (pink
cover).

22The alternative would be to increase the sextupole strengthich would reduce the emittance but not zero it.

23Whereas a third-integer is not an integer. See the disaus$itNeglected principal terms” on page 24.

24The Tevatron had the advantage of being rather large, withibandance of symmetric locations in which to place octupo@onfining ourselves
to (zero-dispersion parts of) two straight sections in tlebiihcher makes it more challenging to establish the zemttmdnic exclusively and stably
throughout the squeeze.

25|n the approximate range® < vy < 9.67; below this, these branches have disintegrated.
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circumstance, this works well with approaching the resoedrom below. Because protons rotate clockwise, as seam fro
above, this corresponds to the negatiwrection in transverse phase space.)

We emphasize one last time, the work reported here barelpbtte effort that will be required to design, validate
and perform resonant extraction from the Debuncher. Thesdgrpnary notes were compiled for easy future reference.
Our intent is that they be picked up some day by a young, igéeit graduate student with the motivation, vitality, and
time to give this problem sustained and undivided attentida too will continue to work the problem, as permitted by
time, obligations, and circumstance. Additional notesiding upon this one but shorter, may be written to mark fatur
progress. We hope that parts of this memo and of those hyiidhethers will find their way into the future GBN >
documents required for the experiment to proceed. Mu2e sékely to be approved and realized following close upon
the Tevatron era. Its success will contribute to Fermilabistinued survival, even if — though we hope for more —
“success” turns out to mean measuring with great accuratynththing revolutionary is happening.
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A Conceptual schematic of third-integer extraction.

This section explains the sequence of sketches in Figurea? lllustrate the concept of third-integer resonanceaetion.
It was written primarily for someone completely new to théjsat. Taken one frame at a time, with reference to
Figure 21:

(a) Phase space is viewed at (just upstream of) the lamibeff&@ blue region corresponds to the physical region
containing the magnetic field that will effect the final extian of particles from the Debunch&tThe darker green

region is the subset encompassing the permitted regiorgie ais well as position, which is a small neighborhood of

X = 0. As a # 0, this regions is not parallel to theaxis in normalized phase space.

(b) Phase space is here viewed at (just upstream of) theedeatic septum, which is upstream of the lambertson. As the
coordinates are (still) normalized, the target region showthe previous sketch is simply rotated by the betatrorspha
angle between the two locations. The orange region now septs the region of the lambertson containing an electric
field to kick particles onto new orbits.

(c) A third-integer separatrix is imposed by the harmonidiggoles. We assume the base (zero-amplitude) tune is below
resonance, so that orbits rotate counter-clockwise irtbieldoundary. Particles at or near the boundary escape on the
outgoing arms, identified with arrows.

(d) When (and if) a particle reaches the septum’s field regtas kicked. The electric field is fixed so that, at the
beginning of the squeeze, particles are kicked into the éidywortion of the target region.

(e) As the squeeze progresses, the triangular separatirikshif the electric field remains at a fixed value, the kitke
particle’s will move “upward” toward the “higher” portiorf the target region. (Remember that the negatieis is

toward the outside of the ring. Extraction begins with et kicked to the outer edge of the lambertson and ends with
them kicked to its inner edge.) At the same time, the traclschae follow what would be a line of constaxitat the
lambertson. Thus, the incident angle at the lambertsorcilhge throughout the squeeze, as was, in fact, observiedl in t
Tevatron.

(f) What is shown in this frame will not happen. If the initenittance were so large that the range between the
lambertson’s outer and inner edges was too small to encantipagntire squeeze, the separatrix would have to be rotated
during the squeeze in order to finish it. To repeat, that shoat be necessary.

Extraction using a half-integer resonance proceeds similBhe major difference arises from separatrix geometry:
two intersecting circles rather than an equilateral triangith the consequence that the outgoing arm is curved, not
matching the target region. In addition, the squeeze doesomespond to a simple dilation, so the separatrix’s siepe
not an invariant, as is the case with the third-integer.iff done in the Debuncher as it was in the Tevatron, the civeies
separate while maintaining their radii.

28Ignore the red region; it was originally intended to conveyotion that part of the lambertson’s field should be avoided.
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B Fundamentals from linear dynamics and perturbation theory

This appendix contains a necessarily telegraphic degmnipf the sequence of steps which filter the two principal
resonance exemplars used in this memo from a periodic Hanrdl whose nonlinearity is expressed as a longitudinal
vector potential. These steps are well known, so the degurijs brief, primarily intended to anchor the notation and
verify the coupling constants. For our immediate purpoges,may gloss over deep questions and treat them as
incantationg’ We confine ourselves to two-dimensional (horizontal) ptsasee, but everything can be extended
naturally to higher dimensions without essential changéise formalism.

Linear normal form coordinates: The linear normal coordinates and their relationships itiear) action-angle
coordinates and (linear) Courant-Snyder lattice functiare as follows. [8, 25] Lé¥l be the one-turn matrix —i.e. the
Jacobian of the one-turn map — andhn array of “regular” state coordinates in transverse @kpace. LeE be a matrix
whose columns are the eigenvectordbtorrectly ordered and normalized. Then, the (complex) linear normal form
coordinates defined over phase space are contained in ysatefined by the equation,

a=El.z.

In particular — and this is the only case of interest in thisrmoe- if linear motion is decoupled and we confine our
attention to one plane only (the horizontal, here), thes ltleicomes,

a=DOa+ida=ivie® and /28e'W V9 a = x+i(ax+px) , (29)

wheref, a andy are the usual Courant-Snyder lattice functiongxJk') are canonically conjugate, then so é&pel ) and
(a,a"). The connections are

dxAdX = dpAdl = idanda” = 2d(0a)Ad(0a) . (30)

Not surprisingly, the paif¢,|) are angle and action coordinates for the system. That lasession on the right implies
that the area enclosed by a Jordan curvgina, (Ja) Cartesian space must be multiplied by two to be interpresed a
“emittance.” (This is nothing profound or mysterious. leguivalent to writing that the area element in polar cocatis
isrdrd@ = (1/2)dr?de.) Finally, Hamilton’s equation of motion is expressed iagh coordinates as follows,

ida/d® = oH /da* . (31)

Nonlinear fields in the Hamiltonian: If we take® = s/Rto be the orbit parameter (aka “independent variable,”étim
then the Hamiltonians we shall use are written,

H = vl = va‘a—RAs/|Bp| , (32)

wherev is the (horizontal) tuneR is the circumference of the closed orbit divided by 23 is a local, nonlinear,
longitudinal vector potential, expressing a transversgmetc field, andBp| is the usual magnetic rigidity. In particular,

27If interested in further explanation, in abundant and natiisg detail, please read Reference [8].
28How that is done, along with a proof that it “always” can be elotan be found in Reference [25]. We shall not repeat thdsélslaere.
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in this memo we are interested only in quadrupoles, sexéganhd octupoles, so that,

/
fora quadrupole: Az = Z(xz—yz) ,
//
for a sextupole: Az = B x3 3xy?) | (33)
//
and for an octupole: Az = B x4 6x2y2+y4

The numerology of therincipal resonances excited by muItipoIes is embedded within tixpiorents: for a quadrupole,
2vy; fora sextupole, B, vx andvy £ 2vy; for an octupole, ¥y, 2vy, 2vyx =+ 2vy, 4vy and 2. Because we are considering
horizontal motion only, by setting= 0 these fields simplify te-B'x?/2!, with principal resonancesg, —B"x3/3!, with
principal resonances/3 andvy, and—B"’x*/4!, with principal resonances/4 and 2. We shall want to excite only the
3vyx resonance, for third-integer extraction, and thig i2sonances, for half-integer extraction.

First filter: shear and resonant terms: The procedure is to insert Eq.(29) into Eq.(33) and subs#tyiato Eq.(32)
and apply perturbation theoretic manipulations to geeaegonance exemplars. To begin with, sextupoles are uséu fo
extract using the third-integer resonance. Thus, we censid
X3 — (B/2)3/2(e’i<¢"’e) a+ ei(LlJf\)G) a* )3
— (8/2)3/2(efi3(lbfve) a3 + ei3(ljJ7V9) a*3 + 3efi(l|J7v9) aZa* + 3ei(lp7v9) aa*Z
= (B/2)¥(e BV VIR LBV g3 (34)
The first two terms excite third-integer resonances; if weerast careful, the last two would excite integer resonanéss.

shall assume care and drop them. (Perturbatively, theéyligtibrt the phase space, an effect that will be ignored.Hese
a more thorough treatment, see [8].) The Hamiltonian is fuisnto the form,

1 B'R
H = va'at+ ——— — B3/2(g13(W-v0) 33 | d3(W-v8) 5+3) | ... 35
12\/—|Bp|B (e ) (35)

These terms we retain; the rest we assume (here) can beftinares! away.2°
Next we consider half-integer extraction, controlled byupoles and quadrupoles. Begin with the quadrupole
component.
X2 — (B/Z)( i(p—ve) a+ ei(quve) a* )2
= (B/2)(2a*a+e 2W- V0 g2 4 d2(W-vE) 5+2) (36)
If one is not careful, the first term will produce an overatéushift (compare to Eq.(32)). Again, we assume care will be
taken not to let that happen and drop that term. (Or, think&$ being “renormalized” away by absorption into the
definition ofv.) The second and third terms distort orbits and, more to ¢t pcan excite half-integer resonances.
Octupoles will contribute as follows.
X' = (B/2)%(e' W ay W VIar)t
= (B/2)?(6(a*a)?+4e 2V V0) g35" 1 4d2WV0) ggr3 | g 1 AWVE) gt | AW-VE) 54 (37)

29This is not merely “hand-waving,” but making this preciseuldbfill several more pages. Suffice it to say that, within tihage space region of
interest, the sextupoles are distributed so as to produtggmficant” resonance excitations at higher orders inyréation theory. The phase space will
be distorted but no further separatrices appear, at the staiterest. Please see Reference [8] for further details.
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The first term has no dependence on phases and produces™sbeamplitude dependence of the tune. The second and
third excite half-integer resonances, while the fourth fifitld excite fourth-integer resonances. In the configuratid
magnets assumed in this memo, we assert that care has beerndakoidboth. That is, we shall drive the half-integer
resonance with quadrupoles only and use the octupoles@nipte the tune onto the half-integer as the orbit amplitude
increases. Accordingly, we take

X' = (B/2)*(6(a'a)*+ )

which puts the Hamiltonian into the form,

[32 (a*a)2 + } % B(efiZ(wfve)aZ + g2(b-vB) o )Y

B/IIR
H = va‘a+ —
4 |Bp|

16 |Bp|

Second filter: averaging: The rationale for the next step, heuristically called “aggng,” is embedded in perturbation
theory. Itis frequently motivated intuitively, but it isgtified fully only within the context of a rigorous perturbmat
theory. As a result, the coefficient aF is replaced with a single harmonic teren/"®, wheren minimizes the value of
[mv +n|. In particular, in the Hamiltonian of Eq.(35), we shall regga

1 B'R
12v/2 |Bp|

where 3 + n= 0. (Specifically, for the debuncher= —29.) This brings us to the Hamiltonian form,

[33/2643([“7\’9) ~ Ggefine (38)

H = v-a‘a+Gze a3+ Giea3+... . (39)
Correspondingly, for the half-integer resonance, in EgwB replace

1 B///R 2
16 |Bp| B 4+

1 BR; 2w-e)
4 [Bp

~ —in®
~ Ge My

which gives us the following.

H = A-a*a+ Gy(a'a)’+ Goe a4+ Gyedar? + - (40)

Autonomous exemplars: The final incantation — and perhaps the most valid — is intomedder to produce autonomous
exemplars. Equations (40) and (39) still depend expli@ti® through its appearance in the harmonic factors. Rewriting
Eq.(40) as

H = v-a‘a+Gs(ae "%3)3 1 Gj(ae M¥/3)*3 4 ...

makes obvious what the required transformation should be.

o in6/3

a —a

A bit of nomenclature: Forest and Irwin [26] descriptiveblled this a transformation to a “co-moving frame.” In
principle, we should change the symbol used for the cootdipat will not. Please consider that at this point the symbol

23



has been “overloaded” and henceforth refers to the co-ngdvame. Simultaneously, to retain Hamilton’s equation of
motion, Eq.(31), we must add a term to the Hamiltom&ihe final exemplar looks as follows:

H =A-aa+Ggal+Gsad+.- | (41)

whereA =v +n/3= 0. It has the form appropriate to an autonomous dynamical systeking the Hamiltonian a
constant of the motion, that being the entire point of thialftransformation.
Similarly, for the half-integer we rewrite Eq.(39) as,

H = v-a‘a+ Gy(a*a)’+ Gy(ae "%/?)2 + Gj(ae M/2)2 4 ... | (42)
Then, the transformation,
ae M0/2, 5
gives us,
H = A-a*a+Gy(a*a)’+Gyal+ Gra 2+ --- | (43)

withA=v+n/2~0.

Neglected principal terms: Terms that were dropped in going from the expansions in Egus(34), (36) and (37) to
the exemplars in Equations (43) and (41) can excite additjprincipal resonances: half-integer and quarter-integer, for
the quadrupoles and octupoles; an integer resonance gfigettupoles. There is little to be concerned about in the chs
the sextupoles, as a tune near a third-integer is nowhereaneateger. Not so, with the octupoles; a tune near a
half-integeris alsounavoidably near a quarter-integer: that s, 2 19 = 4vx ~ 38. Neglecting these resonances cannot
be justified unless care is taken to avoid exciting them whstnilduting the control magnets. In particular, as only the
zeroth harmonic octupole term is wanted for the exemplagpmies must be arranged so that the second and fourth
harmonics of their distribution vanish. As only the secoadonic coefficient is wanted from the quadrupole circuit,
they are arranged so as not to excite the zeroth harmonithedarmonic quad circuit should not affect the tune. These
requirements are most readily accomplished by exploitieging’s symmetry. When the symmetry is broken, either
deliberately or from random shifts in phase advance indbgegliadrupole field errors, compensation must be made by
tuning to reestablish a “base point” for control settingigiure 22 illustrates just one class of separatrices to aresed, in
our case, the most likely one — if this is not doHdf necessary, fine tuning could be carried out on individisdrents.
Even so, it would be a challenge to restore the separatriptately to its symmetric form.

30There is nothing mysterious about this; we need not invokghirg as complicated as generating functions. It simplipfes from the fundamental
rule for derivatives:(ca)’ = ca+cd.

311t could be argued that distortion is more dangerous thaadkéional branches of the separatrix, as they are totaliyained within the lobes of the
other branches.
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C Linearly independent control circuits

Each of the complex coupling paramet€:g andGs, written in Equations (2) and (15) for third-integer andffinteger
extraction respectively, requires two control circuitsét its amplitude and phase (or real and imaginary partsalid
these would be orthogonal — that is, their contributionsididne orthogonal in the complex plane — but all that is
necessary is that they be linearly independent.

Suppose that the desired complex coupling constapt(ise. this is the resonance sum.) We have two control
circuits, currently producing; andg, respectively and seek the superposition,

=501+ %02
wheres; ands, are real. This is solved in identical fashion to the same leralin real vector spaces.
ig5g = is10301+1is2|Q2|?
0(igz9) = s10(ig301)

Thus s = 0(g29)/0(9201)
and similarly s, = 0(g719)/0(9192) -

Though unnecessary, this could be writtin in polar form. get [g|€®, g1 = |g1|€®, andg, = |g2|€%. Then,

s — 19 Sin@—@)
91| sin(@r — @)

S gl sin(e—@)
92| sin(gz — @)

Of course, since the coupling constants are linear funatsoof magnetic fields, it is always possible to apply
singular value decomposition (SVD) to find truly orthogooainbinations of elements strengths. Figure 23 illustrates
example that was carried out on the locations of focusinglgquaoles in the straight sections. From it can be deduced the
relative strengths that can be assigned to octupoles pttthadse locations in order to supply the zeroth harmonic for
half-integer extraction without exciting the second anarfb harmonics. These are the lines colored black. At theesam
time, two red lines indicate how to excite orthogonal cdmitions to the second harmonic without exciting the fouvtle.
shall not now explain this method further but only note ingdag that, in principle, it is “always” possible to use SVD to
find orthogonal circuits, though, in operational practit®ill be better to rely on symmetries and phase advances
specifically designed to create useful phasors.
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D Debuncher design lattice file

TIEEEEEEET T T T e r e LT

File : Debunch_20081112.lat

MAD v.8 input file.

Debuncher design based on the description given in:
Design Report Tevatron | Project
September, 1984
Sections 4-2, 4-4, 4-5, Appendix D

Written by: John A. Johnstone
November 12, 2008

Comments on the Debuncher lattice description (2008.11.1 2 - JA))

* The following minimal Debuncher lattice model is based pr edominantly

on the description in the Tev 1 Design Report (especially th e SYNCH file
and output in Appendix D). However, the magnet lengths used in the SYNCH
run are obviously incorrect. More realistic lengths for al | quadrupoles
and dipoles were obtained from the ’'gold’ OPTIM Debuncher | attice located

in the FNAL lattice respository (2007.12.04):

http://lattices.fnal.gov/aid_repository/listall.ph p?lattices/debuncher
* The design Debuncher lattice has a period of 3 with mirror s ymmetry in
each period:

3 x 2 x 17 SQC quadrupoles
3 x 2 x 2 SQD quadrupoles
3 x 2 x 11 SDD dipoles

3 x2x 23 sextupoles
The lattice has a regular FODO structure with 600 cells in th e arcs and
simple "missing dipole" dispersion suppressor cells. In t he long straight
sections there are 6 adjustable quad circuits available to adjust the

machine tunes and match optics between sextants.

* Since the magnet lengths appearing below differ slightly from those

in the Appendix D SYNCH file, it was not possible to reproduc e the

lattice functions exactly everywhere in the machine. The c hoices made were
to maintain zero dispersion through the straight sections , reproduce the

X, y tunes - 9.73, 9.77, and to reproduce beta_x, beta_y at th e symmetry
point in the middle of the long straights {where beta_x reac hes the maximum
value in the ring [beta_x(max) = 17.833m, beta_y(max) = 16. 760m]}.

On the other hand, because of the slightly revised dipole le ngth, the machine
circumference was matched to the OPTIM value (which differ s from the SYNCH

result by 0.4mm).

* The design features of zero dispersion straights, small b etas, and the

choice of machine tunes were all driven by considerations o f implementing
stochastic cooling. In the future, with proton operation, these constraints
vanish and, in particular, the horizontal tune can be shift ed to facilitate

! resonant extraction.

* Finally, note that the parameter "bang := -twopi/nbend" d escribes protons
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! circulating counter-clockwise.
]
s TEEEEEREERRLTEeeerennn

twopi = 6.28318530718

mproton = 0.93827231 I GeV/c™2
momentum := 8.827385 I GeV/c
tenergy = 8.87710994

kenergy := 7.93883763 I GeV
brho = 3.335641 * momentum I T-m

BEAM, PARTICLE=PROTON, PC=momentum

I Magnet Lengths:

ISDD = 1.616075 1 63.625" SDD arc length
ISQC_2 = 0.333375 1 0.5%26.25" SQC quad length
ISQD_2 = 0.396875 1 0.5*31.25" SQD quad length
ISX = 0.187325 1 7.375" sextupole length
! Dipoles:

nbend = 66 ! Dipole #

bang = -twopi/nbend ! Bend angle per dipole

bdb : sbend, type = SDD, | = ISDD, angle = bang, &

el = bang/2., e2 = bang/2.
I Quadrupoles:
! tunes: mux = 9.730, muy = 9.770

! gradients:

of = 10.46322 I T/m
od = -10.38121

gfl = 11.39456

gdl = -10.40220

gf2 = 10.91268

gd2 = -11.26577

of3 = 9.80173

gd3 = -9.54533

kf = gf / brho 1 1/m™2
kd = gd / brho

kfl ;= gfl / brho

kd1l := gdl / brho

kf2 = gf2 / brho

kd2 := gd2 / brho

kf3 := gf3 / brho

kd3 ;= gd3 / brho

hqf . quadrupole, type = SQC_2, | = ISQC_2, k1 = kf
hqd : quadrupole, type = SQC_2 = 1SQC_2, k1 = kd
hgfl : quadrupole, type = SQC_2, | = ISQC_2, k1 = kfl
hqdl : quadrupole, type = SQC_Z = I1SQC_2, k1 = kdl1
hgf2 : quadrupole, type = SQC_2, | = ISQC_2, k1 = kf2
hqd2 . quadrupole, type = SQC_Z = ISQC_2, k1 = kd2
hqf3 : quadrupole, type = SQD_2, | = ISQD_2, k1 = kf3
hqd3 : quadrupole, type = SQD_. 2 = ISQD_2, k1 = kd3

I Chromaticity Sextupoles:
! chromaticities : Cx ~ Cy 0.
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! d"By/dx" fields:

b2f 1= -21.06823 ' T/Im"2
b2d = 32.28239

kaf = b2f / brho 1 1/m"3
kad = b2d / brho

sf . sextupole, | = ISX, k2 = kaf
sd . sextupole, | = ISX, k2 = k2d
I Monitors:

hbpm . hmonitor, | = 0.1524

vbpm : vmonitor, | = 0.1524

! Drifts:

drl4 . drift, | = 3.613159

dr45 . drift, | = 3.549659

dr56 . drift, | = 3.486159

dr67 o drift, | = 3.549659

drds o drift, | = 0.922342

drb . drift, | = 1.074740

drmt  drift, | = 2.940109

drba . drift, | = 0.655667

drbb ;. drift, | = 0.668367

drms . drift, I = 0.079350

drsq  drift, | = 0.219050

I "Missing Magnet" Dispersion Suppressor Cells

hcfdmt : line = ( hgf,hbpm, drms, sf, drmt, sd, drsq, hqd )
hcdfmt : line = ( hgd,vbpm, drms, sd, drmt, sf, drsq, hgf )
fmtcell : line = ( hcfdmt, hcdfmt )

hcfdds : line = ( hgf, hbpm, drds, bdb, drb, hqd )

hcdfds : line = ( hqgd, vbpm, drds, bdb, drbb, sf, drsqg, hgf )
fdscell : line = ( hcfdds, hcdfds )

I Standard Arc Cells

hcfd : line = ( hgf,hbpm, drms, sf, drba, bdb, drbb, sd, drsq, h qd )
hcdf : line = ( hqgd,vbpm, drms, sd, drba, bdb, drbb, sf, drsq, h qf )
fcell : line = ( hefd, hedf )
dcell : line = ( hcdf, hefd )

! non-standard Q19-Q20 half-cell
! (only very slightly 'non-standard’ -- BPM's at both U/S & D/ S ends)

hcfd1920 : line = ( hgf,hbpm, drms, sf, drba, bdb, drba, sd, dr ms, vbpm,hgd )

I Sextant Components:

straight : line = ( hgfl,hbpm, drl4, 2*hqdl,vbpm, drl4, 2*hq f2,hbpm, drl4, &
2*hqd2,vbpm, dr4d5, 2*hqgf3,hbpm, dr56, 2*hqd3,vbpm, dr67, &
hgf )

suppress : line = ( fdscell, fmtcell )
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arc : line = (. 4*fcell, hcfd1920 )

sextant : line = ( straight, suppress, arc )

|

I Ring:

mstr : marker

marc . marker

third : line = ( mstr, sextant, marc, -sextant )
debunch : line = ( 3 * third, mstr )
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E Accumulator design lattice file

TIEEEEEEET T T T e r e 1"

I File: accum_20081107.lat

! MAD v.8 input file.

I Accumulator design lattice based on

! description in: Design Report Tevatron | Project,
September, 1983 (19847)
pages 5-3 to 5-6

I Written by: Leo Michelotti
! Original: February 18, 2002 (never worked well)
I Modified: November 7, 2008

I Comments and issues (2008.11.07)

I * This is a minimal description based on a 1983(4?) design re port. It

I does not represent the accumulator as it exists. The date’s ambiguity
I comes from my possession of two documents, seemingly ident ical except

! for their covers. One is pink and dated "SEPTEMBER 1983"; th e other

| is pale blue and dated "SEPTEMBER 1984."

I * The (design) accumulator's symmetry is that of the dihedr al group, D_3.
I It contains 3 x 2 x 5 = 30 dipoles

3 x 2 x 14 = 84 quadrupoles

3 x 2 x 4 = 24 sextupoles and is not a FODO based lattice.

I Two principal design requirements for the straight sectio ns were

! LARGE (approx. 9 meters). The numbers used here need to be mo dified
I very slightly to achieve these exactly: as given below, the minimum
! dispersion is about 3 mm while beta_x and beta_y differ very slightly

I in one of the straight sections.

I * The tunes also are slightly different from those written i n the

! design report: (6.593,8.577) instead of (6.61,8.61). In a ddition,

! the total length is 474.066 m, not 474.0702 m (as given on pag e 5-6).
I * Dipoles are represented as parallel face sector bends. Al | dipoles

! have the same magnetic field, but if the value 16.84 kG is use d, the

! ring does not close. Instead, | have specified the angles so as to

! close the ring. The calculated dipole bend field needed to a chieve

! this is only slightly different: 16.8778 kG, not 16.84 kG, a s in the

! design report.

I * The Design report lists two (10 in) octupoles, called 010 a nd O12,
! but does not include them in the lattice. These names are amb iguously
! reused while defining two drift lengths. | have retained th e

! octupoles, changed their names to OCT10 and OCT12, but did n ot include
I them in the "sextant" sub-lattice.

I * A curious feature is that the bend angles in degrees numeri cally

I equal the dipole lengths in feet. Someone on the design team may have
! had a whimsical streak. Not that it matters, but the bend rad ius

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
! (1) beta_x = beta_y and (2) dispersion alternates between z ero and
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

! required to do this is 17.4638 m.
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TEEEEEEEE T T e e e e e e

ke = 7.94779 I GeV

mp = 0.93827203 I GeV/c™2
et = ke + mp

pc = sqrt(ke*(ke + 2.0*mp)) ! GeVic

brho := pc/0.299792458 I Tesla-m

BEAM, PARTICLE=PROTON, PC=pc

inch := 0.0254
foot := 12.0*inch
deg := 3.14159265/180.0

! Dipoles

! Small aperture

angh3 := 5.0*deg

b3  := 5.0*oot

B3: sbend, I=Ib3, angle=angb3, el=angb3/2, e2=angh3/2

angb7 := 10.0*deg
b7 := 10.0*foot
B7: sbend, I=lb7, angle=angb7, el=angb7/2, e2=angb7/2

angb8 := 15.0*deg
b8 := 15.0*foot
B8: sbend, I=lb8, angle=angb8, el=angh8/2, e2=angh8/2

! Large aperture

angb9 := 15.0*deg

b9 := 15.0*foot

B9: sbend, I=lb9, angle=angb9, el=angh9/2, e2=angh9/2

angbl0 := 15.0*deg
Ib10 := 15.0*foot
B10: sbend, I=Ib10, angle=angb10, el=angb10/2, e2=angbl0

I Quadrupoles

I Small aperture

Q1. quadrupole, 1=25.2*inch, k1= 10.381/brho
Q2: quadrupole, 1=51.6*inch, k1=-10.381/brho
Q3: quadrupole, 1=27.6*inch, k1= 10.381/brho
Q4: quadrupole, 1=18.0*inch, k1= 9.663/brho
Q5: quadrupole, 1=32.6*inch, k1= -9.741/brho
Q6: quadrupole, 1=27.6*inch, k1= 9.663/brho
Q7: quadrupole, 1=27.6*inch, k1= -9.741/brho
Q8: quadrupole, 1=18.0*inch, k1= 9.663/brho
Q9: quadrupole, 1=18.0*inch, k1= -9.741/brho

! Large aperture

Q10: quadrupole, 1=18.0*inch, k1= 4.088/brho
Q11: quadrupole, 1=34.4%inch, k1= 8.940/brho
Q12: quadrupole, 1=30.4*inch, k1= -8.940/brho
Q13: quadrupole, 1=30.4%inch, k1= -8.940/brho
Q14: quadrupole, 1=25.3*inch, k1= 8.940/brho

"
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I Sextupoles

S7: sextupole, |I= 8.0*inch, k2= 5.358/brho
S9: sextupole, |I= 8.0*inch, k2=-32.928/brho
S10: sextupole, 1=10.0*inch, k2= 16.216/brho
S12: sextupole, 1=10.0*inch, k2=-20.501/brho

I Octuupoles
OCT10: octupole, 1=10.0*inch, k3=-39.033/brho
OCT12: octupole, 1=10.0*inch, k3= 32.512/brho

! Drifts

LS: drift, 1=7.9465
LSS: drift, 1=7.8449
O1: drift, 1=0.5124
02: drift, 1=0.9609
O3: drift, 1=0.9042
OB3: drift, 1=6.4237
O4: drift, 1=3.2610
O5: drift, 1=7.3478
06: drift, 1=4.1872
O7: drift, 1=0.3556
OS7: drift, 1=3.8866
OB7: drift, 1=0.5080
08: drift, 1=1.2192
OB8: drift, 1=0.5080
09: drift, 1=0.3556
0S9: drift, 1=0.6604
OB9: drift, 1=0.5080
010: drift, 1=0.5080
OB10:drift, 1=0.3173
0S10:drift, 1=0.3173
O11: drift, 1=0.5210
012: drift, 1=0.2432
0OS12:drift, 1=0.2432
0O13: drift, 1=0.4972

M1: marker
M2: marker

sextant: line=(M1, &

LS, Q1, O01, Q2, 02, Q3, 03, B3 &

OB3, Q4, 04, Q5 05 Q6, 06, Q7, &
o7, S7, 0S7, B7, OB7, Q8, 08, B8, &

OB8, Q9, 09, S9, 0S89, B9, 0OB9, Q10, &
010, B10, OB10, S10, OS10, Q11, O11, Q12, &

012, S12, 0S12, Q13 013, Q14 LSS, &
M2)

sp: line=(sextant,-sextant)

accum: line=(3*sp)
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Figure 1: Angle connecting a “standard” triangle with thpamtrix isTt/2 — ¢o, not do.

Im(a)

i

‘\‘CE/E Re(a)

Figure 2: Central emittance of the third-integer resonan@mplar. Using these coordinates, “areas” are multiglied
to obtain emittances. Alternatively, the length scale istiplied by v/2. (See Eq.(30) in Appendix B.)
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Figure 3: Suggested ramp profiles for constant spill rate ddshed curve at the top was calculated using an assumption o
constant density; the three bottom curves assume trunGataesisians where 90%-99% of the initial emittance is endlose
at the start.

Figure 4: Central emittance of the half-integer resonamxeenplar. The colored circle indicates a bunch at the onset of
extraction. On the right, arrows on the separatrix show thection of the (faux) “flow.” The separatrices are flipped to
confuse the reader.
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Figure 5: Comparison of exact step size with approximafionthe half-integer resonance exemplar with tangentiag#
and for|G;| € {0.0020.004,0.006 0.008 0.01}.
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Figure 6: This was the result of a chromaticity scan carrigidom the Debuncher model, whose chromaticity had been set
explicitly to (near) zero.
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ORTHOGONAL HARMONIC SEXTUPOLE
CIRCUITS FOR 1/3 -INTEGER EXTRACTION

10160 50140

| ssmeow | scoseow
Figure 7: Location of harmonic sextupoles on two orthogairaliits configured for third-integer resonance extractio
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Figure 8: Locations of the harmonic sextupoles, septum amibértson for the third-integer resonance model. The color
scheme is: quadrupoles, red; dipoles, green; sextupalesifing chromaticity sextupoles), yellow; septum andbant-

son, orange.
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Figure 9: Correct (left) and incorrect (right) phasors fog third-integer resonance during the squeeze
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Figure 10: Comparison between exact resonant orbit andeakicped by exemplar.
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Figure 11: Comparison of exact separatrix, from trackimgthte exemplar, fov = 9.62 9.63,...,9.66. The invariant
emittance of the central stable regiorBige/m= 20 mm-mr in each figure. To accomplish this, the magnitudeache
sextupole’s integrated strength changed linearly witketilam~ 15 T/m atvy = 9.66 to~ 107 T/m atvy = 9.62.



Fraction of bunch remaining
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Figure 12: History of the spill during a simulated extrantivom the Debuncher using the third-integer resonance. The
ramp was taken to be linear throughout the squeeze; no caréaken to control the spill. (For this run, the initial bunch
contained 2048 protons.) Over several simulations witfeddht initial distributions, initial rapid loss remove8-20% of

the bunch.
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Figure 13: Scatter diagram of states in horizontal phaseesfraore or less) midway through a “simple” simulated ex-
traction using the third-integer resonance. “Simple” meeamly horizontal coordinates were non-zero when popgdtie
initial bunch. In some sense, then, this represents a “lasst scenario.”

39



1/2 integer resonance phasors 1/4 integer resonance phasors

Horizontal tune = 9.502 Horizontal tune = 9.502
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Figure 14: Phasor diagrams for th@lg — v48) and the 4y — vx0) terms in the resonance functionals (sums, integrals,
whatever), for the minimalist configuration. Colors idéntiontributions from the three sectors in the Debuncher.

ORTHOGONAL HARMONIC QUADRUPOLE
CIRCUITS FOR 1/2 -INTEGER EXTRACTION

10160 50140

IQS]N(IEJw) I QCos(19y)

Figure 15: Location of harmonic quadrupoles on two orth@j@ircuits for the half-integer configuration in which the
straight sections’ cells have been set individually t8,8 in the arcs.
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Fractional Horizontal Tune (27)

Quadratic Harmonic Tune Variation with No Lattice Errors

Harmonic Compensation of Random Quadrupole Errors
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Figure 16: After introducing errors, harmonic quadrupdaliesuits are tuned by observing their effectwn The left and
right figures show that behavior before and after random &gidrs are scattered into the quadrupoles.
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Figure 17:AB/B before (red) and after (blue) tuning harmonic quadrupaleudts.
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Debuncher: mux = 9.485, muy = 9.415
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Figure 18: Lattice functions of Debuncher modified for halieger extraction, after tuning quadrupole harmonicuitec

Vx = 9.46 Vx = 9.49

Figure 19: Two separatrices observed while using a minshalnfiguration for the half-integer resonance. As ex-

pected, correspondence is better closer to the resondmegh correcting the orientation requires tuning the harimo
quadrupoles.
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Figure 20: This had to do with quadrupole settings neededmdral the shape of the half-integer separatrix. Plotted is
| G2/A| versusec/sp, the reciprocal of the ratio appearing on the left hand sfdeqo(24). | don’t want to talk about it.
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Figure 21: Conceptual diagram of third-integer extraction
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Figure 22: One class of possible separatrices arising frantipal resonances excited quadrupoles and octupoles. Th
figure in the upper left identifies points in the space of etiwinh parameters that produce the separatrices seen ithre o
frames. (Reproduced from References [8] and [5] with pesioisof the author.)
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Figure 23: Relative strengths of octupoles in circuits sebading to SVD analysis. The four colored red would set up
orthogonal circuits for second order and fourth order hame®— i.e. N/2 andN/4 — and mushot be used in order to
avoid exciting those terms. Any linear combination of thst fgolored black) would set up a zeroth harmonic octupole
circuit.
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