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We present an experimental study of the infrared conductivity, transmission, and reflection of a
gated bilayer graphene and their theoretical analysis within the Slonczewski-Weiss-McClure (SWMc)
model. The infrared response is shown to be governed by the interplay of the interband and the
intraband transitions among the four bands of the bilayer. The position of the main conductivity
peak at the charge neutrality point is determined by the interlayer tunneling frequency. The shift
of this peak as a function of the gate voltage gives information about less known parameters of
the SWMc model, in particular, those responsible for the electron-hole and sublattice asymmetries.
These parameter values are in a fair agreement with recent electronic structure calculations for the
bilayer graphene but different from the commonly cited estimates for the bulk graphite.

PACS numbers: 81.05.Uw, 78.30.Na, 78.20.Bh

I. INTRODUCTION

Since a monolayer graphene was isolated a few years
ago,1,2 ultrathin carbon systems have attracted tremen-
dous attention.3 Their electron properties are quite
unique. Monolayer graphene has a vanishing Fermi point
at the Brillouin zone corner and low energy quasiparti-
cles with a linear spectrum, ε(k) = ±v|k|, which obey
a massless Dirac equation. Here k is the deviation of
the crystal momentum from the Brillouin zone corner (K
point), v = (3/2)γ0a/~ is the quasiparticle velocity, γ0 is
the nearest-neighbor hopping parameter, and a = 1.42 Å
is the carbon-carbon distance. Graphene is the basic
building block of other types of carbon materials. In-
deed, the first calculation of its band structure by Wal-
lace4 was motivated by his studies of graphite. Extending
that work, Slonczewski and Weiss,5 McClure,5,6 and oth-
ers7 have developed the now commonly used Slonczewski-
Weiss-McClure (SWMc) model for the low-energy elec-
tron properties of graphite. This model, which is equiv-
alent to a tight-binding model with seven parameters,
has proven to be a very useful analytical tool. It per-
mitted theoretical calculations of a vast number of prop-
erties of graphite, including its diamagnetic susceptibil-
ity, de Haas-van Alfven effect, magnetooptical response,
cyclotron resonance, and so on. These properties were
actively studied experimentally until the late 70’s and
lead to accurate estimates of the principal SWMc pa-
rameters, γ0 through γ3. Still, it proved challenging to
unambigously determine the remaining three SWMc con-
stants γ4, γ5, and ∆, which are measured in tens of meV.

For illustration, in Table I we list inequivalent parameter
sets from the latest original sources, Refs. 8 and 9. Sub-
sequently, the issue was further confounded by numerous
misprints in reference books and reviews.10. The density-
functional theory calculations,11–13 which normally have
accuracy of ∼ 0.1 eV for quasiparticle dispersion, have
not yet settled this discrepancy.

In view of the reinvigorated interest to graphene, it
has become an important question to obtain the SWMc
constants for a few layer graphene and also to compare
them with those for bulk graphite. Thus, a significant
difference between the graphite and a graphene bilayer
was recently reported, based on the analysis of Raman
scattering.14 Several ab initio calculations of these pa-
rameters for the bilayer have also been done.15–19 Unfor-
tunately, they have not explicitly discussed the uncertain
SWMc parameters.

The bilayer is a system intermediate between graphene
and bulk graphite. Its lattice structure (for the case of
the Bernal or AB stacking) is illustrated in Fig. 1(a). The
corresponding band structure,21,22 shown in Fig. 1(b),
consists of four bands. These bands arise from splitting
and hybridization of the Dirac cones of the individual lay-
ers by the interlayer hopping matrix element γ1 and by
the electrostatic potential difference V between the two
layers.23,24 The latter can be controlled experimentally
by varying the voltage Vg of a nearby metallic gate25,26

or by doping.27 This degree of tunability makes the bi-
layer graphene an extremely interesting material for both
fundamental study and applications.

In this paper we show that γ1, v4 ≡ γ4/γ0, and ∆
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TABLE I: The SWMc parameters according to previous and present work. The numbers in parentheses indicate the reported
accuracy of the trailing decimal places. The “Exp” and “DFT” stand for experiment and density functional theory, respectively.

SWMc Graphene bilayer Graphite, early work Graphite, recent work

Parameter Pres. work Expa DFTb Expc Expd DFTe DFTf Expg DFTh

γ0 3.0(3)i 2.9 2.6 3.16(5) 3.2 2.92 2.598(15)

γ1 0.40(1) 0.30 0.3 0.39(1) 0.397 0.27 0.364(20)

γ2 0.0j 0.0j 0.0j -0.020(2) -0.0202 -0.022 -0.014(8)

γ3 0.10 0.3 0.315(15) 0.29 0.27 0.319(20)

γ4 0.15(4) 0.30 0.044(24) 0.132 0.27 0.177(25)

γ5 0.0j 0.0j 0.0j 0.038(5) 0.0098 0.27 0.036(13)

∆ 0.020(5) 0.01k -0.008(2) 0.0221 0.0079 -0.026(10) <0.01l -0.037m

aL. M. Malard et al ., Phys. Rev. B 76, 201401 (2007).14
bH. Min, B. R. Sahu, S. K. Banerjee, and A. H. MacDonald, Phys. Rev. B 75, 155115 (2007).18
cM. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).8
dR. O. Dillon, I. L. Spain, and J. W. McClure, J. Phys. Chem. Solids 38, 635 (1977).9
eTatar and Rabii, Phys. Rev. B 25, 4126 (1982).11
fJ.-C. Charlier, X. Gonze, and J.-P. Michenaud, Phys. Rev. B 43, 4579 (1991).12
gM. Orlita et al ., Phys. Rev. Lett. 100, 136403 (2008).20
hA. Grüneis et al ., Phys. Rev. Lett. 100, 037601 (2008).13
iThis value of γ0 is assumed based on results in literature.
jIrrelevant in the bilayer.
kOur estimate based on digitizing band dispersion graphs published in Refs. 16–19.
lAbsolute value only.

mThe negative sign is required for consistency with the conventional definition6 of ∆.

can be directly extracted from the dynamical condictiv-
ity measured in zero magnetic field. This is in contrast
to the bulk graphite where determination of the SWMc
constants was never straightforward and almost invari-
ably required the use of strong magnetic fields.

The dynamical conductivity σ(Ω) is determined by
the six possible transitions among the four bands, see
Fig. 1(c). They have energies of the order of a few
10−1 eV, which is in the infrared optical range. Recently,
experimental measurements of the infrared response of
the bilayers have been carried out by our28 and other29,30
groups. Below we identify and explain the key findings
of these experiments based on how different combina-
tions of the interband transitions are either activated or
suppressed by the Pauli exclusion principle. Our theory
enables us to reach a quantitative agreement with the
experiment using γ0, γ1, and γ4, and ∆ as adjustable pa-
rameters. The values of these parameters that give the
best fit are given in the second column of Table I. Note
that the next-nearest layer hopping parameters γ2 and γ5

are irrelevant for the bilayer. The parameter γ3 cannot
be reliably estimated from these particular experiments
because they are largely insensitive to it in the range of
carrier concentrations suitable for our analysis.

Previous theoretical studies of the optical conductiv-
ity of bilayer graphene21,22,31–33 used a simplified model
in which only γ0 and γ1 were taken into account. This
model successfully explains the major features of σ(Ω)
as well as its dependence on the gate voltage Vg, and
we qualitatively summarize it as follows. Conduction
and valence bands are symmetric. In the absence of
the electrostatic potential difference V between the lay-

ers the two conduction (valence) bands have the same
shape and are shifted by γ1. Except the range of very
small momenta k, their shape remain nearly identical
even in the presence of a finite V . As a result, there is
a high optical density of states for transitions between
the two pairs of bands at frequency γ1/~, which gives
rise to a sharp peak in the real part of the conductivity
Reσ(Ω) at Ω = γ1/~ ≈ 3200 cm−1 (using γ1 = 0.40 eV).
Other transitions give more gradually varying contribu-
tions to Re σ(Ω), eventually leading to the asymptotic
“universal” value21,22,31–33 σ = e2/2~ at high frequency
(which is twice the value for the monolayer34). Finally,
in real graphene systems the conductivity features are
never sharp because of a finite lifetime due to, e.g., dis-
order scattering. This broadens the peaks and can also
merge together several features that are close in energy,
see Fig. 2.

Our recent infrared experiments28 as well as measure-
ments by another group30 have largely confirmed this
picture but also found features that cannot be explained
within this simple model. In particular, the conductivity
peaks on the electron and the hole sides are displaced
in energy from γ1 by about 0.1γ1 in opposite directions.
[Electron and hole doping is identified with, respectively,
positive and negative δV = Vg − VCN, where VCN is the
gate voltage at which the bilayer is tuned to the charge-
neutrality (CN) point.]

In order to investigate the origin of these features
in this paper we carry out a combined experimental-
theoretical study of the infrared response of a bilayer
graphene. We attribute the observed electron-hole asym-
metry to the effect of γ4 and ∆. We find that including
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these parameters is essential for a more accurate discus-
sion of σ(Ω) of the bilayer. Besides differences in the
optical response, γ4 and ∆ also make effective masses
for electrons and holes unequal,35 in agreement with the
findings from the Raman scattering.14

In our experiments, we have measured the optical re-
flection R(Ω, Vg) and transmission T (Ω, Vg) as a function
of the frequency Ω and the gate voltage Vg. From R and
T we extracted the real and imaginary part of the con-
ductivity using a commercial software package. Some of
these experimental results were reported previously.28

In this paper we present more extensive experimen-
tal data and we also compute the same three quanti-
ties — σ, R, and T — theoretically. The calculation
requires accounting for the interplay of three physical
phenomena: (a) electrostatic charging of the layers (b)
their dynamical conductivity, and (c) the optical prop-
erties of the environment (sample, substrate, and the
gate). Each of these ingredients has been studied in the
past.21,22,31–33,36 However, in this work we carry out a
self-contained calculation, which enables us to directly
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FIG. 1: (Color online) (a) Crystal structure of the graphene
bilayer with the relevant SWMc hopping parameters shown
(b) Band structure of a biased bilayer (lines), which can be
considered as hybridization of two shifted Dirac cones (dots).
Numbers on the right label the four bands. (c) Examples
of the allowed optical transitions for the chemical potential
indicated by the dashed line. Occupied states are shown by
the thicker lines. The dots and the arrows mark the initial and
the final states, respectively, of the transitions that produce
features at frequencies Ej , j = 1, 2, . . . , 6 in Fig. 2(a) below.
E0 is the intraband transition (Drude peak).

1000 3000 5000 7000
0

0.5

1

1.5

Ω (cm−1)

R
e 

σ 
/ σ

0

 E
6

 E
5

 E
4

 E
1

 E
2

 E
3

(a)

1000 3000 5000 7000
−1

−0.5

0

0.5

1

Ω (cm−1)

Im
 σ

 / 
σ 0

(b)

FIG. 2: (a) Real and (b) imaginary part of conductivity in
units of σ0 = e2/~ for the gate voltage Vg = −100V and
v4 = 0.1γ1. The solid curves are for broadening Γ = 0.02γ1.
The dashed curve is for Γ = 0.002γ1.

compare our theoretical results with the measurements.
The remainder of the paper is organized as follows. In

Sec. II we summarize our results. Theoretical derivation
is outlined in Sec. III. Section IV contains comparison of
the theory and experiment, discussion, and conclusions.
Some calculational details are relegated to the Appendix.

II. RESULTS

To measure the optical response of the bilayer we em-
ployed synchrotron infrared radiation, as described pre-
viously.28,37 Understandably, the two-atom thick sample
has a rather small optical signal. The quantity which
can be extracted most reliably from the current exper-
iments is the relative transmission T (Ω, δV )/T (Ω, VCN)
and reflection R(Ω, δV )/R(Ω, VCN). All measurements
wer done at the temperature of 45 K. The data for the
largest |δV | are depicted in Fig. 3. The main feature in
the relative transmission spectra is a small but clearly
visible dip around Ω = 3200 cm−1. Away from the dip,
the relative transmission is slightly higher than unity.
The relative reflection spectra are characterized by a dip-
peak structure. Transmission and reflection spectra are
asymmetic between positive and negative δV , which cor-
respond, respectively, to doping of electrons and holes in
bilayer graphene.
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From the transmission and reflectance data, we ex-
tracted the optical conductivity.28,37,38 The dominant
feature in the conductivity spectra is a strong peak at
Ω ≈ 3200 cm−1, see Fig. 4(b). Below that frequency, we
observed a broadened threshold feature, which shifts sys-
tematically with δV . The most intriguing observation is
again a significant asymmetry in the optical conductivity.
For instance, the frequencies of the main peak in Re σ(Ω)
and its voltage dependence are noticeably different on the
electron and hole sides, see Fig. 4(b).

On the theory side, we calculated σ, T , and R, using
the SWMc constants and Γ as adjustable parameters.
Results for the conductivity are shown in Fig. 4(a). For
the reflection and transmission, see Fig. 3. The parame-
ters were adjusted to reproduce the frequency positions
and widths of the main features of the experimental data,
as discussed below. Their vertical scale is also in a rea-
sonable agreement with the calculations.

Both in our experiment and in calculations the carrier
concentrations are always smaller than the characteristic
value n0 given by

n0 =
γ2
1

~2v2
= 3.7× 1013 cm−2 . (1)

Here and below we assume that γ0 = 3.0 eV, which cor-
responds to v = (3/2)γ0a/~ = 1.0 × 108 cm/s. (Based
on other results in the literature, this value should be
accurate to about 10%.) At concentrations |n| < n0

the high energy bands 1 and 4 have no free carriers and
Reσ(Ω) has a pronounced peak at Ω ≈ 3200 cm−1. As
explained above, this feature corresponds to transition
between band pairs that are nearly parallel: bands 3 and
4 for µ > 0 or bands 1 and 2 for µ < 0, see Fig. 1.

The evolution of the infrared response with Vg can be
understood as follows. As the gate voltage deviates fur-
ther away from VCN, the electron concentration

n = CbδV/e (2)

and the chemical potential µ increase by the absolute
value. Here Cb is the capacitance between the bilayer
and the gate. As a result of an increased |n|, the peak be-
come more pronounced. Simultaneously, near the higher
frequency side of the peak a depletion of conductivity
develops. One can say that the optical weight is increas-
ingly transfered from the high frequencies to the γ1 peak.
Larger conductivity is directly associated with decreased
optical transmission. Therefore one observes an increas-
ing dip in the transmission near γ1 and a higher trans-
mission at higher Ω, see Fig. 3. Similar features appear
in the reflection but they are more difficult to interpret
as they are also affected by Im σ(Ω).

Very important for our analysis are the aforementioned
small shifts in the position of the γ1 peak as a function of
δV . Within the SWMc model, their origin is as follows.
In the absence of broadening, the peak arises from the
absorption in the range of frequencies, E2 < ~Ω < E3, see
Figs. 1 and 2. Since the optical weight at E3 is higher, the
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FIG. 3: (Color online) Relative transmission: (a) theory (b)
experiment. Relative reflection: (c) theory (d) experiment.
The solid line is for electrons, δV ≈ +80V. The dashed line
is for holes, δV ≈ −80V. The experimental uncertainties are
∼ 0.002 at Ω near 3000 cm−1 and ∼ 0.005 at high frequency.

conductivity peak occurs at energy E3. However, if the
broadening is large enough, the optical weight becomes
distributed more uniformly, and the peak position moves
to the midpoint of E2 and E3, see Fig. 5. Energies E2

and E3 themselves vary with the gate voltage (or n). For
positive δV (positive n), E2 ≡ E+

2 is the energy difference
between the bands 3 and 4 at k = 0. The energy E3 ≡
E+

3 is the corresponding difference at k = kF , where

kF = sign (n)
√

π|n| (3)

is the Fermi momentum. For δV < 0 we denote E2 and
E3 by, respectively, E−

2 and E−
3 and they are computed

using the bands 1 and 2 instead of 3 and 4.
From the band structure,21,22 we can find the following

approximate expressions valid for n ¿ n0:

E±
2 ' γ1 − V

2
±∆ , (4)

E±
3 ' γ1

√
1 +

2π|n|
n0

−
√

V 2

4
+

(
πγ1n

n0

)2

±∆∓ 2 (2v4γ1 + ∆)
π|n|
n0

. (5)

Here V = V (n) as well as the chemical potential µ =
µ(n) are determined self-consistently by the electrostatics
of the system,36 see Sec. III These equations indicate
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FIG. 4: (Color online) Theoretical (a) and experimental (b) results for the conductivity Re σ (Ω). The deviation δV = Vg−VCN

of the gate voltage from the charge neutrality point is indicated next to each curve. For clarity, the curves are offset vertically
by 0.5σ0 from one another. Here σ0 = 4e2/~. The dashed curves superimposed on the δV = +50 V (−50V) traces are the
arithmetic means of all the positive (negative) δV curves. Their significance is discussed in the main text.

that the parameters primarily responsible for electron-
hole asymmetry are γ4 and ∆.

Physically, ∆ is the difference of the on-site electron
energies of the A and the B sites6,7 [the stacked and un-
stacked sublattices, respectively, see Fig. 1(a)]. It has
two effects: first, it lifts the k = 0 energy for bands 1
and 4; second, it adds a k dependent perturbation to the
two band dispersion. Parameter v4 = vγ4/γ0 of dimen-
sion of velocity characterizes hopping between a stacked
atom and its the three unstacked neighbors of its stack-
ing partner. It also introduces difference between the
valence and conduction bands. To the leading order in k,
this hopping shifts the two middle bands (2 and 3) up-
ward by a term proportional to v4k

2 and shifts the two
outer bands (1 and 4) downward by the same amount.
These effects of ∆ and v4 are illustrated in Fig. 6.

Additional electron-hole asymmetry can in principle
come from extrinsic sources, e.g., charged impurities that
can be present on or between the layers. Besides creat-
ing a finite VCN, these charges also move V = 0 point
away from the charge neutrality point n = 0. To the first
approximation,36 this introduces an offset of the inter-
layer bias: V (n) → V (n)+V0. However, our calculations

suggest that for reasonable V0 this effect has a smaller
influence on the electron-hole asymmetry of the optical
response than ∆ and γ4.

Based on the above discussion, we can predict quali-
tatively how the position of the main conductivity peak
should vary as a function of δV . For example, on the
electron side, and for v4 > 0, the peak should move to
lower frequencies as δV increases. Alternatively, this can
be seen from Fig. 6: the top two bands move closer to
each other as k = kF increases.

For the quantitative analysis, we use a full numerical
calculation of σ and T , which is discussed in Sec. III be-
low. It demonstrates that for the case of small Γ the
energy E3 is indeed in an excellent agreement with the
computed peak positions. However, the broadening ob-
served in experiments28–30 is appreciable. For the corre-
sponding Γ other nearby transitions, E1 and E4, start to
influence the main peak. As a result, although the for-
mula Ω0 = (E2 + E3)/2 is in general a good indicator of
the peak position, it fails to capture the dependence of Ω0

on Vg in all its detail. Hence, for comparison with exper-
iment we use our numerical results rather than Eqs. (4)
and (5).
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FIG. 5: Position of the γ1 feature versus gate voltage for
γ1 = 0.40 eV, γ4 = 0.15 eV, ∆ = 0.02 eV and the two values
of broadening (a) Γ = 0.02γ1 and (b) Γ = 0.002γ1. The thin
solid lines are our numerical results from the conductivity
and the thick ones are from the relative transmission. The
dashed lines show E3 and (E2 + E3)/2 in the cases (a) and
(b), respectively. The symbols are our experimental results.

Fitting these numerical results to the data, see Fig. 5,
we have obtain estimates of γ1, γ4, and ∆ listed in Ta-
ble I. This fitting procedure proved to be very straght-
forward. For example, ∆ is determined mostly by the
splitting of the peak positions on the electron and the
holes sides of the charge neutrality point. Parameter γ1

is essentially the average of the two. Finally, γ4 controls
the slope of the Ω0(Vg) curves away from VCN. Therefore,
all these parameters can be uniquely determined.

In Table I we also list SWMc values suggested in prior
literature. They mainly agree with ours for the principal
SWMc parameters γ0 and γ1 but show some deviations
for the more subtle quantities γ4 and ∆ we have been
discussing here. Possible reasons for these differences are
discussed in Sec. IV.

III. DERIVATION

A. Band structure

The bilayer is two monolayers stacked together, see
Fig. 1(a). In the bulk graphite the preferential stacking
is the AB (Bernal) one, such that only one sublattice of

0

Γ1+D

-Γ1+D

k

Ε HkL

Γ4>0
Γ4=0

FIG. 6: The effect of γ4 and ∆ on the band structure. Pa-
rameter ∆ raises the bands 1 and 4. The interlayer neighbor
hopping term γ4 gives a contribution quadratic in k opposite
in sign for the conduction and the valence bands. The solid
(dashed) lines are the bands with positive (zero) value of γ4.

each layer is bonded to each other. In order to achieve
agreement with experiments,28 we have to assume that
in the bilayer the stacking is the same. We use the ba-
sis {ΨA1, ΨB1,ΨB2,ΨA2}, where the letter stands for the
sublattice label and the number represents the layer in-
dex. In this basis the SWMc tight-binding Hamiltonian
for the bilayer becomes22

H2 =




−V
2 + ∆ φ γ1 −v4φ

∗

φ∗ −V
2 −v4φ

∗ v3φ

γ1 −v4φ
V
2 + ∆ φ∗

−v4φ v3φ
∗ φ V

2


 , (6)

where φ = kx + iky and (kx, ky) is the in-plane momen-
tum. In the following we set v3 ≡ γ3/γ0 to zero for
reasons explained in Sec. IV.

Given V , it is easy to obtain the four band energies
εα(k) and the corresponding eigenstates |α,k〉 by numer-
ical diagonalization of the above Hamiltonian. However,
as mentioned in Sec. II, V should be determined self-
consistently as a function of Vg, or equivalently, the total
carrier concentration n. The algorithm for doing so is
given next.

B. Electrostatics

As discussed in the literature,22,36 the electric field of
the gate has two major effects on the bilayer graphene.
First, it modifies the bands by introducing a potential
difference between the layers and as a consequence opens
up the energy gap. Second, it induces charge carriers.
Electric field of the charged impurities can play a sim-
ilar role: it creates a layer asymmetry V0 and opens a
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FIG. 7: (a) Interlayer bias V and (b) chemical potential
µ as function of total density n. Three sets of curves in
(a) correspond to three values of V0, from top to bottom:
0.1γ1, 0,−0.1γ1. The curve in (b) correspond to V0 = −0.1γ1.
The curve labelled “Analytical” is computed from Eq. (12).

gap at the charge neutral point much like an external
gate. But the more important effect of the impurities is
presumably the broadening of the electron energy states,
which we describe by a phenomenological constant Γ. For
example, if the impurities are distributed symmetrically
between the two layers, then V0 is zero but Γ is still finite.
For simplicity, we assume Γ to be independent of energy,
momentum, or a band index.

To compute V (n) and µ(n) we set up a system of equa-
tions similar to those in Refs. 36 and 21. These equations
capture the dominant Hartree term of the interaction
but neglect exchange and correlation energies.18 The first
equation is [cf. Eq. (2)]

n = nt + nb = CbδV/e , (7)

where nt and nb are the carrier concentrations of the top
and bottom layers, andCb is the capacitance to the gate.
Second, the electrostatic potential difference between the
two layers V is given by

V =
4πe2

κ
(nt − nb)c0 , (8)

where κ is the dielectric constant and c0 is the distance
between the layers. Next, the Hamiltonian and therefore
wavefunction and the layer density nt and nb depend on
V . Therefore the quantities V , nt, and nb must be solved
for self-consistently. If the broadening Γ is neglected, this
can be done analytically in the limit V, µ ¿ γ1, which
gives V ' V(n, V0), where21,36

V(n, V0) =
Xγ1 + V0

Λ−1 + |X| − 1
2 ln |X| , X =

πn

n0
, (9)

n0 is defined by Eq. (1), and Λ ≡ e2c0n0/(πκγ1) is the
dimensionless strength of the interlayer screening. Using
the typical parameter values, one estimates36 Λ ∼ 1, and
so the interlayer screening is significant.18,36

For experimentally relevant broadening Γ ∼ 0.02γ1,
the approximation leading to Eq. (9) is no longer accu-
rate. Therefore, we computed the dependence of nt and
nb on V numerically as follows. We first define the re-
tarded Green’s function GR by the analytic continuation
GR (ε) = G (ε → ε + iΓ) of the following expression

G =
4∑

α=1

1
ε− εα (k)

|α,k〉 〈α,k| . (10)

Then we compute nt from

nt = −
∫

d2k

(2π)2

µ∫

−∞

dε

π
Im[GR

11(k, ε) + GR
22(k, ε)] , (11)

using numerical quadrature. Similarly, the formula for
nb is obtained by replacing G11 + G22 with G33 + G44.

The system of nonlinear equations (7), (8), and (11) is
solved by an iterative procedure. For a given chemical po-
tential µ we start from some initial guess on V . Then we
diagonalize the Hamiltonian and compute GR, nt, and
nb. Substituting them into Eq. (8), we get the value of
V for the next iteration. (Actually, we use not this value
directly but a linear combination of the new and old V .)
The iterations terminate when the values of V changes
by less than a desired relative accuracy (typically, 10−5).
The results of these calculations are in a good agreement
with Eq. (9) for Γ = 0, and so are not shown. On the
other hand, the results for Γ = 0.02γ1, which are plotted
in Fig. 7, appreciably deviate from Eq. (9). The agree-
ment greatly improves (see Fig. 7) if instead of Eq. (9)
we use, on heuristic grounds, the following formula:

V (n) = V(n∗, V0)− V(nΓ, 0) , (12)

n∗ = sign(n)
√

n2 + n2
Γ , nΓ = sign(n)

2Γn0

πγ1
. (13)

C. Dynamical Conductivity

The above procedure enables us to compute V and n
for a given chemical potential µ. With the former deter-
mining the Hamiltonian and therefore its eigenstates, and
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the latter determining their occupancy, we can now com-
pute the dynamical conductivity by the Kubo formula39

σxx (Ω) = i
ΠR

xx(Ω)−ΠR
xx(0)

Ω + i0
, (14)

where the polarization operator ΠR
xx(Ω) is given by

ΠR
xx(Ω) = ig

e2

~2

∫
d2k

(2π)2

µ∫

−∞

dε

2π
Tr

{
vx

[
GR (k, ε)−GA (k, ε)

]
vx

[
GR (k, ε + Ω) + GA (k, ε− Ω)

]}
. (15)

In this equation g = 4 is the spin-valley degeneracy of graphene, vx = ∂H/∂kx = σx⊗ I is the velocity operator, σx is
the Pauli matrix, and GR,A at the retarded and the advanced Green’s functions. Assuming again that the broadening
is momentum and energy independent, these functions are obtained by the analytic continuation of G in Eq. (10):
GR,A (ε) = G (ε → ε± iΓ). After some algebra, we find

ΠR
xx (Ω) = ig

( e

~

)2
∫

d2k

(2π)2
∑

α,β

|Mαβ(k)|2
∑

ξ,ζ=±1

ξK [εβ (k)− iΓξ, εα (k)− (iΓ + Ω) ζ] , (16)

where Mαβ (k) = 〈α,k |σx ⊗ I|β,k〉 is the interband
transition matrix element, and function K is given by

K(z1, z2) =
ln(µ− z1)− ln(µ− z2)

2π(z1 − z2)
(17)

with the branch cut for ln z taken to be the negative real
axis.

For zero V and Γ the conductivity can be computed
in the closed form, see Appendix B. For other cases, we
evaluated it numerically. The result is shown in Fig. 2.
The real part of the conductivity is plotted for large and
small Γ in Fig. 2(a). In the latter of the smaller broad-
ening, one can easily identify all six transition energies,
in agreement with previous calculations.21,22,31,33 As ex-
plained above, the interband transition at Ω ≈ 3200 cm−1

shows up as a pronounced peak because E2 and E3 are
close in energy and the optical density of state is high
at frequencies E2 < Ω < E3. The other tall feature at
Ω = 0 is the intraband Drude peak.

IV. DISCUSSION

In this paper we presented a joint experimental and
theoretical study of the infrared response of a bilayer
graphene. Our results demonstrate a complex interplay
among various interband transitions and their disorder-
induced broadening. Nevertheless, by means of a careful
analysis, we have been able to explain the major observed
features within the conventional SWMc model. The cor-
responding SWMc parameters are given in Table I, to-
gether with their estimated uncertainties. In particu-
lar, our γ1 should have a very high accuracy: at least
100 cm−1, i.e., 3%, or better.

Let us now compare our SWMc parameters with those
found in previous work on bilayers and bulk graphite.
For the bilayer case there is at present only one other
experimental determination14 of γj ’s. From Table I we
see that the difference between our and their values are
primarily in γ1 and γ4. Actually, our SWMc parameters
can describe the Raman data equally well40 as the pa-
rameters given in Ref. 14. Our parameter values have
smaller estimated errors and should be considered more
accurate.

For the bulk graphite, we see a good agreement with
the set of parameter obtained by Dillon et al .9 On the
other hand, it differs from the set recommended by the
MIT group,8 especially for γ4 and ∆. Parameter ∆ even
has the opposite sign. Recent experimental20 and the-
oretical13 studies have not yet come to a consensus on
this issue. We feel that further work is needed to settle
this discrepancy. Meanwhile, we can argue ∆ in the bi-
layer and in bulk graphite may not be the same. Recall
that the physical meaning of ∆ is the difference in the
onsite energies of the A and B sublattices7 due to the in-
terlayer coupling. Its physical mechanism is presumably
the short-range (exponentially decaying with distance)
exchange and correlation interactions between the elec-
tron states of the stacking partners. Indeed, it has been
pointed out repeatedly41,42 that neither Coulomb nor
even the van der Waals interaction have short enough
range to discriminate between the two sublattices, given
the relatively large interlayer distance of the graphite.

For this reason, we think that only the interactions
among the nearest and the next-nearest neighbor layers
are important for ∆. (This is also in the spirit of the
SWMc model.) Actually, in the Bernal (or AB) graphite
the next-nearest-layer interactions cannot contribute to
∆ simply by symmetry. This leaves us with the nearest-
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neighbor terms. Since ∆ is numerically small, we can ar-
gue that it can be studied by the perturbation theory. In
the bilayer each A atom has a single stacking partner but
in the Bernal graphite it has two of them, and so naively
we expect ∆graphite, AB ≈ 2∆bilayer. In real graphite sam-
ples, which usually contain other stacking orders (rhom-
bohedral and turbostratic), the ratio ∆graphite/∆bilayer

can be less than 2. This crude argument assumes of
course that the interlayer distance in the bilayer and in
the graphite are exactly the same, which may not be the
case. Measurements of trilayers and tetralayers may shed
further light on the question of the apparent difference
of the SWMc parameters in few-layer and bulk graphite
systems.

Returning to the possible discrepancy in γ4, we note
that our estimate of γ4 can be defended on the grounds
that it is comparable to the accepted value of γ3. These
two parameters describe hopping between pairs of atoms
at equal distances in the lattice, see Fig. 1(a), and theo-
retically are not expected to be vastly different from each
other. Large difference of γ4 between the bilayer and the
bulk graphite is not expected either. Indeed, even when
they disagree about the order of magnitude (or sign) of
∆, all electronic structure calculations to date find that
γ4 ∼ γ3 and are of the same order of magnitude in the
two systems, see Table I.

Parameter γ3 itself cannot be reliably extracted from
the experimental data28 we analyzed here. At the rel-
evant carrier concentrations the main effect of γ3 is to
produce a weak trigonal warping of the band dispersion.8
This warping averages out over the Fermi surface, and
does not affect the position of the γ1 conductivity peak.
It does contribute to the broadening Γ of the peak; how-
ever, it is difficult to separate this effect from the broad-
ening due to disorder.

Finally, regarding the latter, the dc mobility that we
find from our numerically computed σ(0) using Γ =
0.02γ1 ≈ 8meV is µ ≈ 3900 cm2 / Vs. This is close to
the transport mobility typical for bilayer graphene, sup-
porting our interpretation that Γ arises mainly due to
disorder.

One feature of the experimental data that is not
accounted for by our model is an unexpectedly large
amount of the optical weight in a range of frequencies
below the γ1 peak. It is present between the Drude peak
and 2µ, i.e., twice the chemical potential. For the cho-
sen Γ, our calculation predicts Re σ(Ω) ∼ 0.02e2/~ at
such Ω, see Fig. 3, whereas the measured value is a few
times larger.28 This extra weight is present also in the
monolayer graphene, in the same range of frequencies.37
A related issue is a very gradual rise of Re σ(Ω) around
the point Ω = 2µ compared to a sharp threshold expected
theoretically.

We can tentatively attribute both the broadening of
the Ω = 2µ threshold and the extra weight at Ω < 2µ
to significant long-range density inhomogeneities in the
sample. They can be caused by charge impurities and
remnants of the photoresist used in the sample process-

ing. The presence of such inhomogeneities would modu-
late the local chemical potential, and so in the infrared re-
sponse one would see a certain average of the σ (Ω) taken
at different δV . We illustrate this argument by calculat-
ing the arithmetic mean of σ (Ω)’s for positive (negative)
δV and superimposing the results (shown by the dashed
lines) on the σ (Ω) traces for δV = +50 V (−50V) in
Fig. 4(a). Such averaged conductivities indeed resem-
ble the experimental data [Fig. 4(b)] more faithfully. A
more quantitative analysis of this scenario warrants fur-
ther work.

We thank ... This work is supported by the NSF grant
DMR-0706654 and ...

APPENDIX A: REFLECTION AND
TRANSMISSION

To compute the transmission coefficient T and the re-
flection coefficient R we follow the standard procedure.43
In general, the result depends on the angle of incidence
and on the polarization of light. Abergel and Fal’ko44

derived the formulas for R and T for the S-polarization
where the electric field is perpendicular to the plane of
incidence (and parallel to the sample surface). We repro-
duce them here with a slight change in notation:

R =
∣∣∣∣−

C n1 cos θ1 −D [cos θ0 − 4πσ]
C n1 cos θ1 + D [cos θ0 + 4πσ]

∣∣∣∣
2

,

T =
∣∣∣∣−

2 cos θ0 n1 cos θ1 n2 cos θ2

C n1 cos θ1 + D [cos θ0 + 4πσ]

∣∣∣∣
2

,

(A1)

where A, B, C, and D are given by

A = cos θ2 sin δ2 + in2 cos θ0 cos δ2 ,

B = i cos θ2 cos δ2 + n2 cos θ0 sin δ2 ,

C = An1 cos θ2 sin δ1 + iB n2 cos θ1 cos δ1 ,

D = iAn1 cos θ2 cos δ1 + B n2 cos θ1 sin δ1 .

(A2)

In Eqs. (A1) and (A2), the index j = 0, 1, 2 represents
vacuum, SiO2, and Si layers respectively, nj are the index
of refraction of each layer, and θj are the angles the light
ray makes with the surface normal in each layer. They
satisfy Snell’s law nj sin θj = const. Finally, δj = kLj/nj

is the phase the light picks up as it makes one pass across
the layer of thickness Lj .

For the other, P -polarization, where the electric field
is not exactly parallel to the surface of the sample, we
find a different expression:

R =
∣∣∣∣
C n1 cos θ0 −D cos θ1 (1− 4πσ cos θ0)
C n1 cos θ0 + D cos θ1 [1 + 4πσ cos θ0]

∣∣∣∣
2

,

T =
∣∣∣∣

−2 cos θ0 n1 cos θ1 n2 cos θ2

C n1 cos θ0 + D cos θ1 [1 + 4πσ cos θ0]

∣∣∣∣
2

.

(A3)

For this polarization the conductivity enters R and T
multiplied by a cosine of the angle of incidence, i.e., its

Michael C. Martin
Rectangle
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effect is reduced. In our experiments, we typically have
θ0 ∼ 30◦, and so this reduction is quite small. It was not
included in the analysis.

APPENDIX B: CONDUCTIVITY OF AN
UNBIASED BILAYER AT VANISHING

BROADENING

The conductivity for the case Γ = V = 0 was com-
puted previously in Refs. 31 and 44. In our attempt to
reproduce their formula we discovered that it contains a
typographical sign error.45 For future reference, we give
the corrected expression below.

In the limit of zero broadening, Γ → 0, Eqs. (14)–(17)
reduce to the following expression for the conductivity:

σ (Ω) =
ge2v2

2iπ~
P

∞∫

0

dω

ω

Ω|Mαβ |2
ω2 − (Ω + i0)2

∑

j

kj(ω)k′j(ω) ,

(B1)
where P means principal value and the integration vari-
able ω = |εα − εβ | is the energy difference between two
states. The sum in Eq. (B1) is over all values of momen-
tum kj(ω) of which two states differing in energy ω exist.
For V = 0 where the the matrix elements Mαβ take a
simple form, the integration over ω in Eq. (B1) can be

done analytically. The result can be written as a sum of
three terms:

σ (Ω)
σ0

= σ̃0 (Ω) + σ̃γ1 (Ω) + σ̃2γ1 (Ω) , (B2)

where σ0 = e2/~ is the unit of conductivity, σ̃0 is contri-
bution from transitions between bands 2 and 3 that turn
on at Ω = 0, σ̃γ1 is contribution from transitions between
bands 1 and 3 and bands 2 and 4 that turn on at Ω = γ1,
σ̃2γ1 is contribution from transition between bands 1 and
4 that turn on at Ω = 2γ1. They are given by

σ̃0 =
g

8

[
1
2

Ω + 2γ1

Ω + γ1
− i

π

Ωγ1

γ2
1 − Ω2

ln
∣∣∣∣
Ω
γ1

∣∣∣∣
]

, (B3a)

σ̃γ1 =
g

8

[
γ2
1

Ω2
Θ(Ω− γ1)+

i

π

(
2γ1

Ω
− γ2

1

Ω2
ln

∣∣∣∣
γ1 + Ω
γ1 − Ω

∣∣∣∣
)]

,

(B3b)

σ̃2γ1 =
g

8

[
1
2

Ω− 2γ1

Ω− γ1
Θ(Ω− 2γ1)− i

π

(
1
2

Ω2 − 2γ2
1

Ω2 − γ2
1

× ln
∣∣∣∣
2γ1 + Ω
2γ1 − Ω

∣∣∣∣+
1
2

Ωγ1

Ω2 − γ2
1

ln
∣∣∣∣
4γ2

1 − Ω2

γ2
1

∣∣∣∣
)]

,

(B3c)

where, for ease of notation, Ω stands for ~Ω and g = 4.
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