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Abstract 

This project investigated the development and application of sensor networks to enhance 
building energy management and security.  Commercial, industrial and residential buildings 
often incorporate systems used to determine occupancy, but current sensor technology and 
control algorithms limit the effectiveness of these systems.  For example, most of these systems 
rely on single monitoring points to detect occupancy, when more than one monitoring point 
could improve system performance. 
Phase I of the project focused on instrumentation and data collection.  During the initial project 
phase, a new occupancy detection system was developed, commissioned and installed in a 
sample of private offices and open-plan office workstations.  Data acquisition systems were 
developed and deployed to collect data on space occupancy profiles.  Phase II of the project 
demonstrated that a network of several sensors provides a more accurate measure of occupancy 
than is possible using systems based on single monitoring points.  This phase also established 
that analysis algorithms could be applied to the sensor network data stream to improve the 
accuracy of system performance in energy management and security applications.  In Phase III 
of the project, the sensor network from Phase I was complemented by a control strategy 
developed based on the results from the first two project phases: this controller was implemented 
in a small sample of work areas, and applied to lighting control. 

Two additional technologies were developed in the course of completing the project.  A 
prototype web-based display that portrays the current status of each detector in a sensor network 
monitoring building occupancy was designed and implemented.  A new capability that enables 
occupancy sensors in a sensor network to dynamically set the “time delay” interval based on 
ongoing occupant behavior in the space was also designed and implemented. 
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Executive Summary 

Knowing how many people occupy a building, and where they are located, is a key component 
of building energy management and security.  Commercial, industrial and residential buildings 
often incorporate systems used to determine occupancy, however, current sensor technology and 
control algorithms limit the effectiveness of both energy management and security systems.  
Most current building occupancy detection systems use passive infrared (PIR) and/or ultrasonic 
technologies, signaling space occupancy based on changes in the temperature or sound profile of 
a space at a single monitoring point.  Yet, commercially available occupancy detection systems 
and products do not always perform according to specification. 
There is a growing literature that addresses the effectiveness of occupancy sensors for 
controlling office ambient lighting systems, and other studies have evaluated the effectiveness of 
occupancy-based switching for power management of office equipment.  This work shows that 
occupancy sensors reliably deliver significant energy and demand savings in infrequently or 
unpredictably occupied spaces, such as washrooms, stairwells, corridors, storage areas, and mail 
carrier sorting.  Comparable savings have eluded general office applications, and occupancy 
sensors have not achieved as wide use as other energy-saving lighting technologies.  There are 
often significant differences between actual observed savings and industry estimates of savings 
that can be realized through the application of current occupancy sensing control systems. 

Two simple premises motivate the work described in this report.  First, that more energy savings 
might be achieved if building occupancy could be determined more accurately.  Second, that 
more detailed and accurate occupancy information can be obtained by more extensive sensing, 
specifically through the use of a sensor network to measure occupancy. 

Highlights of the report are as follows: 
Previous research on occupancy detector performance has always assumed that any arbitrarily 
selected mounting position will accurately characterize occupancy, and thus the selection of 
mounting position depends only on ensuring that the controlled space was within the detection 
zone of the sensor.  However, work described in this report shows that several individual sensors 
of the same brand and manufacturer respond differently to occupancy, even in small enclosed 
private offices.  Single detectors mounted arbitrarily in a space will not reliably measure 
occupancy.  Thus, there can be considerable uncertainty associated with the measurement of 
occupancy using current systems. 
Current systems resolve this uncertainty by incorporating a “time delay" setting, manually 
activated at installation.  The time delay is the interval that must elapse before lights are switched 
off in an empty space.  Long time delay settings are used by current systems to compensate for 
uncertainty associated with occupancy measurement: a long time delay ensures lights are not 
inadvertently switched off in occupied spaces. 

All previous studies of occupancy sensor performance describe data resolved at intervals of 
greater than five minutes, or only report total occupied time.  The occupancy data collected, 
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analyzed, and reported here were resolved to one second or one-minute intervals.  It is only with 
such finer temporal resolution that the argument can be made that benefits will be realized by 
applying shorter time delay settings.  
All previous studies of occupancy sensor performance assume that the measurements collected 
by the sensor itself are accurate measures of occupancy.  Data reported here show that this 
assumption is incorrect.  A comparison of occupancy measured by motion sensor versus human 
observers shows that measurements from single sensors underpredict occupancy, sometimes by 
as much as 80% (even for properly functioning sensors).  The accurate determination of true 
occupancy is required to evaluate the performance of both single detectors and sensor networks.  
Statements comparing the performance of a sensor network against more traditional control 
methods are more persuasive when true occupancy data are available.  
Criteria to evaluate the performance of sensor networks against converging “truth” measures as 
determined by human observers were also described.  Sensor network outputs (stating whether or 
not a space was actually occupied) were compared against the total occupied time, accuracy (in 
terms of correlation with occupancy measured by human observers), and the number of times the 
lights were switched off in occupied spaces.  Previous investigators have recognized that while 
shorter time delay settings would lead to greater energy savings, they did not describe the 
increased number of times that lights would be switched off in an occupied space (and 
concomitant user dissatisfaction) that would result from these shorter time delay settings.  
Results reported here show that it is possible to set a shorter time delay setting with a sensor 
network, and achieve the same user satisfaction, as with a traditional control system using a 
longer time delay setting.  This leads to greater savings, especially in spaces with frequent 
occupancy changes. 
Having established the benefits of using more than one sensor for occupancy measurement and 
control, it is important to recognize that a data stream from a sensor network is only useful if an 
analysis framework is available that can be applied for the purposes of energy management.  
Eight data fusion methods were applied to sensor network data collected and described here.  
These algorithms characterized occupancy more reliably and more accurately than was possible 
using output from a single sensor.  The most sophisticated of these methods incorporate 
knowledge of detector performance and typical occupancy patterns, and this research shows that 
these more sophisticated methods can also self-diagnose, and identify faulty sensor(s), which 
will improve the reliability and robustness of the whole control system.   

A network of inexpensive occupancy sensors is more accurate, reliable and robust at measuring 
occupancy, and is potentially more economical in terms of initial investment and operating costs 
than a single-point detection system.  Based on the collected data, we show that it may be 
possible with a sensor network to reduce the operating time of occupancy-based building 
systems by an extra 20% (compared to current systems) without sacrificing user satisfaction: the 
simple payback periods associated with various control options in generic small and large 
commercial buildings estimated that wireless sensor networks may have payback periods less 
than 2 years. 
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1 Introduction 
Nearly 100 quadrillion BTU of energy is consumed annually in the United States, with 
about 18% being consumed by commercial buildings1-5.  About 76.7% of the energy 
consumed by commercial buildings is electrical, and most is derived from fossil fuels, 
which are nonrenewable1.  New technologies will therefore be crucial to ongoing 
initiatives related to the energy aspects of building operation and maintenance. 
Lighting and HVAC systems have been attractive targets for energy management in the 
buildings sector, since together they are responsible for about 61% of a building’s energy 
budget (lighting accounting for about 23%, with heating, ventilation and cooling 
accounting for about 38%)6-15.  One now near-ubiquitous strategy involves the 
application of occupancy sensing systems to manage lighting use: occupancy sensing 
control systems switch lights on in a space when motion is detected, then switch lights off 
if no motion is detected within a preset interval. 

The Energy Policy Act of 2005 (EPAct 2005) includes a tax deduction for energy 
efficient building systems11.  Qualified buildings must first satisfy the ASHRAE 90.1-
2001 Energy Standard for Buildings Except Low-Rise Residential Buildings, in which 
occupancy sensors are required for lighting control in most commercial and educational 
spaces12. 
Past studies show that occupancy sensing control systems do not function as well as 
manufacturers claim.  For example, the National Lighting Product Information Program 
(NLPIP)14, has published work showing that more than half of a small sample of motion 
sensing detectors did not respond to a movement occurring within the coverage area 
claimed for the device.  Other studies (described in the literature review) confirm the 
discrepancy between observed savings and manufacturer claims.  Several authorities have 
concluded that higher savings might be possible, but only after professional tuning and 
commissioning, which rarely occurs.   
Currently available occupancy sensing control systems are based on single-point 
detection, and measurements collected by a single unit are usually not shared with other 
building management systems, nor saved for further analysis or use.  Each space or zone 
is always controlled by a single stand-alone detector, which has no additional information 
available concerning occupancy, as it alone monitors and controls services to a specific 
assigned space.  There can be significant uncertainty associated with the measurement of 
occupancy using a single detector.  Long time delay and high detector sensitivity settings 
are used to compensate for this uncertainty (the time delay is the interval that must pass 
before the lights are switched off by the controller, after the last motion has been 
detected).  Time delay settings of 20 to 30 minutes are typical, and as a result more 
energy is wasted than if occupancy were more accurately measured, and light usage 
corresponded more closely to actual occupancy.  Even despite long time delay settings, 
lights are often switched off in occupied spaces (because the occupant is located outside 
the field of view of the single detector), resulting in complaints, which sometimes 
provokes users to disable sensors and control systems. 
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The discrepancy between actual sensor performance and manufacturer claims suggests 
that the design of current sensor and control systems that use occupancy sensors can be 
improved.  The basic premise of this project is that more effective indoor environmental 
control requires more extensive sensing, and more extensive analysis of sensor data.  The 
work described in this report shows that sensor networks, consisting of several 
independent detectors monitoring the same space, provide more accurate determination 
of space occupancy than is possible with a single point of detection.  More accurate 
occupancy measurements lead to more effective control. 
The second focus of the research described in this report relates to the analysis of sensor 
network data.  A rigorous analysis framework is required that takes into account 
additional information that can be applied to improve confidence that the system has 
made the correct determination about occupancy. 
Although the immediate goal of this research has been to enhance the energy 
management capabilities of occupancy-based control systems for indoor environment 
services like lighting and ventilation, there are other commercial and residential building 
applications that can be enabled by the availability of better sensing, and access to the 
sensor network data stream.  These are briefly discussed in the concluding chapter. 
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2 Occupancy Sensing Technology 

2.1 Introduction 
The most commonly used devices for detecting occupancy use PIR and/or ultrasonic 
technologies.  Other devices that have been used for occupancy sensing use microwave 
and audible technologies: these have been applied in relatively few buildings, and there 
are few studies evaluating the effectiveness of these systems.  Still other devices, such as 
light barriers, pressure sensors, video cameras and biometric systems have also been used 
to detect occupancy, but these are applied mostly for safety or security and almost never 
used for building systems control.  Each will be reviewed in turn. 

2.2 Current Occupancy Sensing Technology 
2.2.1 Passive infrared occupancy sensors 
One of the most popular technologies applied in commercially available occupancy 
sensors uses a pyroelectric detector as the main component in a system that is often 
referred to as a PIR occupancy or motion detector.  PIR sensors respond to the change in 
the temperature pattern across the field of view of the sensor.  The sensor is passive, 
because it does not emit any energy itself, but sends a signal based on the pattern of 
infrared radiation in the environment. 
The main components of PIR sensors are the pyroelectric detector and a Fresnel lens 16.  
In an occupancy detecting application, when the sensor detects the heat generated by a 
human body, the pyroelectric material undergoes a change in polarization.  This change 
in polarization induces a voltage signal.  The pyroelectric detector is most sensitive to 
moving objects that emit heat energy at around 10 µm, the peak wavelength of radiation 
coming from the human body16,17. 
The Fresnel lens is a thin plastic lens, which is flat on one side and ridged on the other.  
As shown in Figure 2-1, the construction of a Fresnel lens can be simply imagined as 
slicing a plano-convex lens in rings, then reforming the surface of the plano-convex lens 
to the planar side, so that each part of the ring has the same thickness.  The Fresnel lens is 
much thinner than the original convex lens and it has lower absorption losses, but it has 
the same ability as the convex lens to collect and redirect electromagnetic radiation.  In a 
PIR sensor, the infrared radiation from the human body is collected at the lens from a 
relatively large field of view, and then converged on the pyroelectric detector.  
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Figure 2-1. Fresnel and plano-convex lenses with the same optical properties 

The lens is further etched into fine patterns so that it divides the field of view of the 
detector into discrete cuneate zones.  The sensor responds when it detects a heat change 
moving from one zone to another.  The sensitivity of the sensor decreases as the distance 
between the sensor and a moving warm body increases, since the gaps between zones 
widen with distance, although the solid angle remains the same size.  Consequently, 
sensitivity decreases with distance, and it becomes more difficult for the sensor to detect 
small movements as the target moves further from the sensor.   
The orientation of the detector and the lens determine the coverage area and pattern of a 
PIR sensor.  When a PIR sensor senses movement and converts it to a voltage signal, a 
transducer magnifies this signal, so that the voltage is strong enough to trigger a switch, 
or to be measured by an external data acquisition system (DAS), as in the work described 
here. 

Most PIR sensors are sensitive to hand movements up to a distance of about 15 ft, arm 
and upper torso movements up to 20 ft, and full body movements up to about 40 ft17.  
Figure 2-2 shows the typical coverage pattern of PIR sensors17.  The discrete fan-shaped 
coverage pattern illustrates that the gaps between sensing zones widen as distance 
increases.  At a distance of 40 ft, these gaps can be as wide as 8 ft.  In most small office 
applications, the distance between the detector and the target is within 15 ft, so the 
detector should be able to detect small movements, however many commercially 
available sensors cannot detect small motion under these circumstances14.  
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Figure 2-2.  Typical coverage of wall-mounted passive infrared sensor17   

PIR sensors require “line of sight” in order to function properly, that is, the sensor must 
“see” the movement directly.  For example, if a movement is hidden behind a partition it 
will not be detected.  Consequently, PIR sensors often switch off services in occupied 
spaces, which result in user complaints17.   

2.2.2 Ultrasonic occupancy sensors 
Ultrasonic detectors are another popular occupancy sensing technology used in 
commercial buildings.  Unlike their PIR counterparts, ultrasonic sensors are active 
devices: they emit ultrasonic sound waves, and receive the sound energy reflected back to 
the sensor from the environment.  Sound waves reflected from a moving object will have 
a different wavelength when reflected back to the detector.  This phenomenon is more 
commonly known as the Doppler effect, which involves a measurable shift in the 
wavelength of a traveling wave, caused by the motion of a source relative to an 
observer18. 
The two main components of an ultrasonic motion sensor are an ultrasonic wave emitter 
and a receiver.  The sound source emits waves at frequencies between 25 to 40 kHz, and 
these waves are reflected when they meet an object.  If the object is moving, the reflected 
waves will have a different wavelength, and thus movement (and presumed occupancy) is 
detected. 

Figure 2-3 depicts the field of view of a typical ultrasonic sensor17.  Unlike a PIR sensor, 
ultrasonic sensors do not require “line of sight”, since the ultrasonic waves can 
theoretically be reflected by room surfaces and partitions, and reach every corner of a 
space.  Thus the detection pattern of this type of sensor is continuous, and movements 
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behind partitions may be detected.  Ultrasonic sensors are believed to be more effective 
than PIR detectors in partitioned and irregularly shaped spaces. 

 
Figure 2-3. Typical sensitivity pattern of wall-mounted ultrasonic sensor17 

However, the increased sensitivity can mean that ultrasonic sensors are more susceptible 
to false triggering due to non-occupant movements, or movements in adjacent areas.  For 
example, ultrasonic sensors can be triggered by the air turbulence from HVAC systems, 
waving leaves outside an open window, or even moving paper coming from a printer19.   
Besides the basic differences between the underlying technologies used to sense motion, 
PIR and ultrasonic sensors exhibit different detection patterns, effective ranges and 
sensitivities.  PIR sensors have wedged-shaped detection zones, and motions are defined 
as a target moves between the zones, so the detection pattern of PIR sensors is discrete.  
In contrast, the detection pattern of ultrasonic sensors is continuous.  Like PIR sensors, 
the sensitivity of the ultrasonic sensor also decreases as the distance between the detector 
and the target increases, but this is because waves reflected from a longer distance are 
weaker, not because gaps between zones are larger (as with a PIR sensor).  PIR sensors 
are prone to false-offs (lights switched off in occupied spaces), while ultrasonic sensors 
are more susceptible to false-ons (lights switched on in unoccupied spaces). 
Several other technologies have been deployed to detect occupancy in buildings, and 
these will be discussed in the following sections, but they are not as commonly used in 
building applications as PIR and ultrasonic detectors. 

2.2.3 Audible sound / Passive acoustic sensors 
Audible sound sensors listen for noise (from any source) using a microphone or other 
audio detector to determine occupancy20.  Like PIR sensors, they are passive devices, 
since they do not emit any signals, but instead await changes in received energy.  Audible 
sensors are best applied in an industrial facility or warehouse.  They respond to non-
human environmental noises, and noises from adjacent spaces, and thus are prone to 
false-ons. 
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This technology is relatively old, and is seldom applied alone because of the high false-
on rate.  Audible sensors have been included in dual-technology units to complement PIR 
sensors.  

2.2.4 Microwave sensors 
Microwave sensors are similar to ultrasonic sensors, in that they emit a signal and 
measure a change in the frequency of a reflected signal.  The frequency of signal emitted 
by a microwave sensor is around 10GHz20,21. 
Microwave sensors are usually designed to be used in larger public areas where typical 
movements are large-sized, such as corridors, sports halls and school halls.  Microwave 
sensors usually have elongated coverage patterns, and the coverage distance can be as 
long as 200 ft.  The long detection range also enables microwave sensors to be used in 
non-building applications such as vehicle detection22. 

Microwave sensors are also used in automatic door openers.  An emitter located above a 
door sends out a short burst of microwave radio energy and waits for the reflected wave.  
If a motion is detected near a door due to the Doppler effect, the door will open 
automatically. 

Microwave sensors are able to see through non-metallic materials, such as plastics, 
fiberglass and even brick walls.  This broadens their application to military or 
transportation uses, but has limited application in building occupancy detection, since 
they will be very sensitive to false-ons (occurring in response to occupancy of adjacent 
spaces).   

2.2.5 Light barriers 
A light barrier is a device that is installed at an entrance or a safety boundary.  These 
devices use an infrared beam, sent between a transmitter and receiver, usually installed at 
both sides of an entrance.  Passing objects or people interrupt the beam, thereby signaling 
occupancy. 
Safety light barriers are often used in industrial applications to protect machine operators 
from injury.  Sometimes they are installed for security reasons, to detect a burglar and 
trigger an alarm, for example.   

Installation of two horizontally separated pairs of light barriers at an entrance could 
provide information about movement direction and the number of occupants.  However, 
application of light barriers for the purpose of building system control is very rare. 

2.2.6 Video cameras 
Video cameras are another commonly used method to detect occupancy, most frequently 
used in building security systems.  Video images are either observed by human operators, 
or analyzed by computer software.  Video cameras are a reliable and accurate way to 
determine not only if a space is occupied, but also the number of occupants and their 
identities.  However, the cost of human observers to monitor and review video images is 
too high to be applied continuously, and the resolution of commercially available 
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software-based image analysis is low, and still under development.   Most problematic, 
occupants will likely object to the use of video monitoring as a violation of their privacy.  
As a result, these systems are rarely used for building energy management. 

2.2.7 Biometric systems 
A biometric system makes measurements of human physiognomy for identification23,24.  
These are often installed at entrances to restricted areas to identify authorized personnel, 
sometimes as a replacement or complement to other access methods that use passwords.  
Biometric systems are usually used to provide secure access control, and the costs of 
these systems are very high.   

2.2.8 Pressure sensors 
A pressure sensor utilizes a piezoelectric element that produces an electrical signal when 
exposed to a vibration or high acceleration25,26.  It responds to the pressure generated at a 
footpad, or sends a signal to an alarm when movement occurs at a door or window.   
Pressure sensors are usually mounted directly at the location they are intended to monitor; 
for example, sensors that measure the vibration of breaking glass are designed for 
mounting at the corner of the protected glass or the window frame.  Unlike passive 
infrared, ultrasonic, microwave and audible sensors that respond to airborne signals, 
pressure sensors sense the vibrations transmitted through solids. 
Pressure sensors are usually installed in residential buildings to detect break-ins and 
trigger alarms.      

2.2.9 Dual technology 
A dual-technology sensor, also called hybrid sensor, combines two basic occupancy-
sensing technologies in one unit to enhance performance. For example, PIR sensors are 
less susceptible to false-ons, but sometimes switch off services when the space is still 
occupied; and so incorporating another technology with a PIR sensor may help reduce 
false-offs.  The most popular combination of technologies is PIR and ultrasonic sensors; 
the combinations of PIR and microwave, PIR and audible sound are also commercially 
available.  These sensors switch services on when both technologies or the PIR sensor 
alone detect a motion, and switch services off if both sensors detect no activity.   

Dual-technology sensors are common in classrooms and private offices. They are subject 
to fewer false-ons and false-offs, which increases energy saving and user satisfaction, but 
prices are considerably higher than single-technology sensors.  For example, a simple 
PIR or ultrasonic sensor typically costs $60 or $125, respectively, while a dual-
technology sensor costs about $150.  Ultrasonic sensors cost more than PIR sensors 
because they are usually designed to cover larger areas, similar in size to those covered 
by dual-technology sensors (typical designed coverage area for ultrasonic and dual-
technology sensors is more than 1000 ft2, versus 300 ft2 for simple PIR sensors). 
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2.3 Summary 
In commercial buildings, PIR and ultrasonic sensors are typically used for lighting 
control applications.  Sensors that use microwave and passive acoustic technologies are 
also available, but they are not used as often.  Other systems that use video cameras or 
biometric identification may provide higher resolution for occupant identification and 
localization; however, at the present time, these are primarily used in security and alarm 
applications.  Hybrid occupancy sensors employ both infrared and ultrasonic capabilities 
in the same unit, offering improved operation with reduced false triggering. 

Table 2-1 provides a comparison of the different systems described in this chapter in 
terms of “resolution” and initial cost.  “Resolution” is defined as whether or not the 
system can measure the number of occupants in a space, identify, and localize individuals 
in a space.  The resolution of the sensors currently used in building energy management 
is low: they can only roughly tell if a space is occupied, but cannot provide information 
about the number and identification of occupants, or where they are located in a space.  
Video camera and biometric systems have high resolution, but they are also expensive.  
In building energy control, identification of individuals is usually not required, so video 
and biometric systems that provide too much detail might be considered an intrusion of 
privacy.  Spatial localization of individuals is important in security; for example, a rescue 
action would be more effective if occupant location was known.  Initial cost is also an 
important factor in sensor selection, and selection will be a compromise between function 
and price. 

Table 2-1.  Comparison of current occupancy sensing technologies 

Type of 
sensors Resolution Number of 

occupants 
Person 

identification 
Person 

localization 
Initial  
cost 

PIR Low No No No Low 

Ultrasonic Low No No No Low 

Microwave 
sensors Low No No No Low 

Audible 
sound 

sensors 
Low No No No Low 

Light 
barriers Low Yes No No Low 

Video 
camera Very high Yes Yes Yes High 

Biometric 
systems High Yes Yes No High 

Pressure 
sensors Low No No No Medium 

Sensor 
networks Medium Maybe No Maybe Medium 
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Having reviewed the basic technologies currently used in building energy management 
and security applications to detect occupancy, the next chapter summarizes past research 
investigating the performance of PIR, ultrasonic and hybrid PIR/ultrasonic systems in 
lighting control systems. 
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3 Performance of Occupancy-Based Lighting 
Control 

3.1 Lighting Control Strategies 
Occupancy sensing systems are currently used in commercial buildings primarily for 
lighting control, and so in this chapter, the popular lighting control strategies related to 
energy conservation are reviewed.  While occupancy-based controls are the subject of 
this report, it is useful to first briefly review other lighting control strategies, although a 
detailed discussion of all these various methods is beyond the scope of this document.  
From a simple on/off switch, to programmable intelligent systems, lighting controls are 
undergoing continuous development that makes them more flexible, reliable, and allows 
them to be integrated with other building management functions27-30.  For example, the 
industry standard protocol BACnet makes it possible to link all aspects of building 
controls such as heating, ventilating, air conditioning, lighting and security together into a 
network, using a common control system31. 
In addition to occupancy-based controls, other popular lighting control strategies for the 
purpose of energy savings include manual switching, scheduling, daylight-based controls, 
load shedding (or demand limiting) and task tuning32-62.  Each will be briefly discussed, 
and then a more detailed review of occupancy-based lighting control systems will be 
presented.   
The simplest form of lighting control is a manual switch, turning lights on or off, usually 
using a wall switch.  The effectiveness of this method depends greatly on occupant 
behavior and awareness about energy conservation.  Research shows that a reminder 
sticker attached to a wall switch reminding occupants to switch off the lights when they 
leave the room initially reduces lighting energy use by 15%, but these savings are not 
maintained, as occupants eventually ignore the reminder sticker with the passage of time.  
Savings strategies that rely on occupant behavior are not persistent32,52.  

Scheduling controls lights based on predetermined time schedules.  Energy savings 
depend on the occupancy pattern, but are typically 10-50% compared to manual 
switching20.  This control strategy is useful when the occupancy pattern is relatively fixed, 
and is often applied to open-plan offices.  Overrides to the schedule via manual wall 
switches allow occupants to turn lights on again, after the scheduled switch off. 
Some lighting controls take advantage of the availability of daylight, dimming or 
switching off lights when sufficient daylight is available to meet task requirements.  
Research shows that 50% of subjects will remain unaware of 15-20% lighting level 
reduction achieved by dimming36-38, and 80% subjects will accept a reduction in lighting 
level of up to 50%36,39.  The effectiveness of this strategy depends on building orientation, 
window size and other architectural features of the space, as well as local weather 
conditions.  Research shows that savings of 30% to 50% relative to manual switching can 
be achieved20,33,34.  In the case of a daylight-linked dimming system, a controller is 



 12 

University of Nebraska – Lincoln 

equipped with a photosensor, which measures the illuminance level (at the wall or ceiling) 
and attempts to adjust light output to meet task illuminance requirements.  Proper 
placement of the photosensor is important, since the photosensor measures the light level 
at one point (usually on the ceiling), but regulates the workplane illuminance throughout 
whole space.  If the availability of daylight is overestimated, for example, the space 
might be insufficiently illuminated, and vice versa.  Recently, computerized tools have 
become available to help with photosensor placement (e.g., SPOT: Sensor Placement and 
Optimization Tool), which takes the building location, orientation and geometry into 
consideration to determine the optimum photosensor placement relative to existing or 
proposed daylighting and electric lighting systems35. 
With load shedding, lights are automatically dimmed or turned off during peak demand 
periods to save energy and demand cost.  Electric utilities often charge higher rates for 
electricity at peak demand times, so load shedding may only save small amount of energy, 
but may save considerable demand.  The energy savings achieved by load shedding are 
usually not reported separately, because the implementation of load shedding depends 
greatly on local power management plans, and is usually accompanied with daylight-
based controls or scheduling.   

Task tuning is a local control strategy that allows occupants to switch or dim lights based 
on their preference.  It is usually implemented by manual adjustment of a local switch, 
and possible savings range from 10 to 50%, depending on users’ preference20.   
Table 3-1 summarizes important features of the different lighting control strategies 
discussed in this section.  It includes typical energy savings that can be achieved by each 
control method, whether the method offers possibility for zonal control (i.e., controlling a 
subset of the lights in a space), and whether the method relies on manual versus 
automatic control.  The savings that can be achieved in a real installation will vary greatly 
with site condition, space function and occupancy pattern.  Daylighting and task tuning 
are usually local control strategies, controlling one private office or workstation, while 
scheduling and load shedding usually apply to an entire floor or building.  All these 
control strategies are automatic, except task tuning, which aims to satisfy individual 
preference and is implemented locally. 
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Table 3-1.  Comparison of lighting control strategies 

Control Zone Automation 

Control Strategy 
Typical 
Energy 
Savings Local Centralized Manual Automatic 

Scheduling 10-50%  √  √ 

Daylight-based 
controls 30-50% √   √ 

Load Shedding 
 (or Demand 

Limiting) 
Small  √  √ 

Task Tuning 10-50% √  √  

All these control strategies attempt to save energy by restricting light usage to the needed 
time or area, in addition to providing adequate illuminance.  Scheduling is appropriate 
only when the occupancy pattern is predictable, and it usually cannot be used alone, but 
must be accompanied by manual or automatic override switching.  The effectiveness of 
daylighting-related control schemes depends on local weather conditions and building 
architecture.  The successful application of load shedding for building-level lighting 
control requires that the majority of the lighting systems are dimmable and controllable, 
and incorporate appropriate software tools to process the demand and utility pricing data. 
Task tuning control systems are more focused on providing lighting according to user 
preference, but there is some evidence that the application of these systems may also save 
energy because some occupants dim the light to a considerably lower than recommended, 
but apparently still acceptable level36,39,40. 

3.2 Performance of Current Occupancy-Based Control 
Systems 

Occupancy-based lighting control systems detect human movements, and switch lights 
off and on accordingly.  For all but the most diligent users, these systems save energy 
compared to manual switching, but the savings depend on proper installation and post-
installation commissioning.  Commissioning a control system usually involves changes to 
sensor mounting position, adjustment of sensor aiming angle, tuning of sensor 
sensitivity34,61, and sometimes even replacement of sensors45.  In this section, we present 
a detailed review of the performance of occupancy-based lighting control systems. 

Manufacturers usually claim 15-75% energy savings are possible from replacing the 
manual switches with occupancy sensors20,41.  Others estimate average energy savings of 
about 30%42.  There is a growing literature that addresses the effectiveness of occupancy 
sensors for controlling office ambient lighting systems, and other studies have evaluated 
the effectiveness of occupancy-based switching for power management of office 
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equipment43-53.  There are often significant differences between observed savings and 
industry estimated savings that result from the application of these systems. 
Richman et al. studied the factors affecting energy savings in 141 sample spaces in 
Hanford, WA, which included 13 space types for a total test time of more than 50,400 
hrs44.  They used lighting loggers to record the duration that lighting systems were 
switched on in the monitored spaces: each logger was also connected to a single 
ultrasonic occupancy sensor that was simultaneously recording space occupancy. 

They calculated the savings that could result from the application of occupancy sensors 
by adding time-delay settings of 5, 10, 15, and 20 minutes to the raw occupancy data: this 
simulates different control scenarios.  Savings were calculated by comparing the length 
of time the lighting systems were in use, relative to the occupied time plus the appropriate 
time delay.  For example, if the lighting in a space remained on for 21 minutes after the 
occupant departed, the savings for a 15 minute time delay would be 6 minutes.  The 
authors reported potential energy savings of between 50% and 3% for time delay settings 
of 5, 10, 15, and 20 minutes for private offices, and between 86% and 73% for restrooms.  
The study concluded that daylight availability, space function, occupancy patterns, and 
occupant density all affect the energy savings.  It is important to note that this paper 
assumes a single detector provides an accurate measure of occupancy.   
Floyd et al. studied the energy savings achieved by retrofitting occupancy sensors in one 
office building and two educational buildings in Florida, including a total of 56 offices 
and 72 classrooms45.  They monitored energy consumption in the different buildings 
studied for six months before installing occupancy-based lighting controllers, then 
monitored energy consumption for a similar period after the devices were installed.  
Savings were calculated as the difference in energy use between the pre- and post-
installation periods. 

The office building was occupied by the researchers themselves, at the Florida Solar 
Energy Center (Cape Canaveral, FL), and this facility incorporated a separate metering 
system for the building lighting system, making it easy to measure pre- and post-
installation lighting system use.  A total of 23 PIR and ultrasonic sensors were used in 
this building to control the lighting use. 
Monitoring the educational facilities was more difficult, as these buildings had not been 
constructed with energy studies in mind.  In one school, 46 PIR sensors were installed in 
33 classrooms, 7 offices and a cafeteria (two sensors were installed in each of the five 
larger areas); in the second school, 59 PIR sensors were installed in 39 classrooms and 20 
offices.  Electric power transducers monitored electrical energy and demand, and output 
from the transducers were converted to digital format and stored in a Campbell Scientific 
model CR10 data logger every 15 minutes.   

The study found that occupancy sensors contributed to a maximum of 19% energy saving 
in the office building and 11% in one of the schools, and in the other school building, 
unexpectedly, higher energy consumption was measured after the retrofit.  The energy 
saving in the office building was initially 10%.  All sensors were then carefully tuned and 
relocated for optimal performance.  Three out of the 23 sensors were replaced during this 
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process due to malfunction.  The time delay settings were changed from 15 minutes to 7 
minutes.  After these adjustments, the maximum saving of 19% was achieved.   
In one school building, 11% energy saving was achieved after professional 
commissioning and tuning, however, in the other school, energy consumption increased 
even after careful commissioning.  The authors speculated that this increase in lighting 
power consumption might have resulted from false triggering during the night, or 
momentary individual visits to spaces during which lights would not have been switched 
on at all if a manual switch was used to control lights.   
Maniccia et al. monitored energy use for four months in 60 perimeter and 21 interior 
private offices in an office building in Colorado and concluded that 43% energy savings 
could be achieved by the application of PIR occupancy sensors with a 30-minute time 
delay setting46.  The offices were equipped with manual dimmers and switches, 
occupancy sensors and photosensors, and these controls were integrated with a building 
automation system (BAS), which monitored the lighting and HVAC systems through a 
data acquisition system (DAS).  The DAS logged the current to each luminaire, the status 
of each occupancy sensor, and the status of all the other switches and controls.  An 
imaginary 10-hr scenario with lights on-full from 08:00 to 18:00 was adopted as the 
baseline for energy saving calculations.  Monitoring showed that, on average, only 31% 
of this 10-hr interval was actually occupied (as measured by the single occupancy sensor 
located in each space).  Since each occupancy sensor incorporated a 30-minute time delay 
setting, a further 8% was added to the total energy consumption, thus 39% of the 10-hr 
interval was logged energy consumption. 
The remaining 61% of the 10-hr period showed no energy consumption, and was 
considered by the authors to represent savings achieved by the different lighting control 
strategies used in this building.  Since they were able to monitor occupancy sensor and 
manual switch status, they concluded that 43% of these savings were due to the 
occupancy sensors, and other 18% were saved by dimming or manual override.   

In two subsequent papers, Maniccia et al. and von Neida et al. described a study 
conducted by the Environmental Protection Agency and the Lighting Research Center of 
Rensselaer Polytechnic Institute concerning the energy savings potential for occupancy 
sensors in commercial buildings.  The study involved a cross-section of building types 
including companies, education, healthcare organizations and government entities in 24 
states47,48.  The occupancy and lighting operating time were recorded for two weeks in 
158 rooms, including 37 private offices, 42 restrooms, 35 classrooms, 33 conference 
rooms and 11 break rooms where no automatic controls were implemented.  The lighting 
and occupancy status were monitored using Watt Stopper’s Intellitimer Pro IT110 light 
logger.  This device consists of a PIR occupancy sensor and a photosensor with an 
adjustable light pipe that can be aimed towards a luminaire to log the actual electrical 
lighting usage.  The PIR sensor is used to record occupancy.  Every time there is a 
change in the occupancy or lighting status, the data logger writes an entry, which is 
retrievable by a computer.  The measured lighting operating times served as “baseline” 
data in energy saving calculations.  Different lighting control scenarios were simulated by 
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applying 5, 10, 15, and 20-minute time delay to the logged occupancy data, and energy 
savings and demand reduction potentials were calculated by comparing these simulated 
data with the baseline lighting usage data.   

For the private offices, 28% energy savings could be achieved if the time delay setting 
was 20 minutes, and this saving increased to 38% if a short time delay of 5 minutes was 
applied.  In the irregularly occupied spaces, savings ranged from 17% to 60% for time 
delay settings of 20 and 5 minutes respectively. 

Jennings et al. studied the energy savings from various lighting control options, including 
occupancy sensing, light level adjustment, manual dimming, and daylighting, and 
concluded 20-26% of energy savings could be achieved by occupancy sensing with a 15 
to 20-minute time delay49.  Energy use was monitored for seven months in 99 private 
offices in a 21-story office building in California, and particularly, energy savings by 
occupancy sensing was calculated in 35 offices equipped with a manual switch and 
occupancy sensor.   The building included a distributed control system that also acted as a 
data acquisition system to collect data about energy use in each of the monitored zones.  

Events were logged each time the manual switch changed state, or the sensor detected a 
change of occupancy.  The savings achieved by occupancy sensing was calculated by: 

   ON isswitch  when Time

ONswitch th  vacant wiis office when Time
 (%) savingsEnergy =

 (3. 1) 
Where the numerator is the total time the space is vacant, but the manual switch was in 
the “ON” position: the denominator is the total time the manual switch was in the “ON” 
position.  The calculated daily energy savings ranged from 3% to 50%, with an overall 
average savings of 20% to 26%.    

Chung et al. developed a model to predict energy savings based on occupancy 
probabilities at different times throughout the day50.  The model was tested by comparing 
measured lighting energy consumption in an office building in Hong Kong against 
simulated energy consumption based on this model.  Sixty-eight “smart” sensors, which 
consisted of an occupancy sensor, a photosensor for illuminance measurement, and an 
infrared remote control, were installed on the open office area of one floor, each 
controlling about 10m2 of space.  Lighting loads under the control of these 68 sensors 
were connected to a switchboard, and an energy meter was installed at the switchboard to 
log the energy consumption of the whole area.  The monitoring period lasted for 21 days, 
and the measured and simulated energy consumptions showed good agreement with each 
other.   
Energy consumption after the application of 5, 10 and 20-minute time delay settings to 
the simulated occupancy profiles were calculated, and the savings achieved by occupancy 
sensing were calculated based on two baselines.  The first baseline was a 14-hr 
continuous occupancy scenario; the second was a predefined lighting profile as shown in 
Figure 3-1, which simulated lighting use assuming control by manual switches. 
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Figure 3-1.  Lighting profile for base line 2, by Chung et al. 

Predicted energy savings relative to continuous occupancy were 26.1% with a 20-minute 
time delay and 33.3% for 5-minute time delay.  Savings relative to the occupancy profile 
depicted in Figure 3-1 were calculated as 6% and 15.2% for 20 and 5-minute time delays. 

Table 3-2 summarizes the energy savings reported in the studies described above.  For 
comparison, the energy savings estimated by the Pacific Gas and Electric Company, 
based on manufacturer’s claims is also provided at the end of the table41. 
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Table 3-2.  Summary of energy savings achieved by application of occupancy sensors to 
lighting control 

Energy Savings 

Source Regularly 
occupied 
spaces 

Irregularly 
occupied 
spaces 

Time 
delay 
(min) 

Baseline for energy saving 
calculation 

Richman et al. 
1996 44 3-50% 46-86% 5-20 

Total lighted unoccupied time  
(Savings equal to 100% if no 
time delay applied) 

Floyd et al. 1996 45 10-19%(1) - 7-15 Pre-retrofit lighting energy 
consumption 

Maniccia et al. 
1999 46 43% - 30  10-hr lights continuously on 

scenario  

Maniccia et al. 
2001 47 28-38% 17-60% 5-20 Lighting usage measured by 

photosensor 

Jennings et al. 
2000 49 20-26% - 15-20 Lighting usage if lights were 

controlled by manual switch 

26.1-33.3% - 5-20 All lights on from 7AM to 9PM 
Chung et al. 2001 
50 6.9-15.2% - 5-20 Simulated occupancy pattern 

(Figure 3-1 ) 

PG & E  1997 41 25-50% 30-75% NA NA 

(1) Floyd et al. studied both commercial and school buildings, and found 10-19% energy savings 
in the commercial building and 11% in one school.  However, energy use was increased in the 
other school building.  

The large differences observed in actual measured energy savings are not surprising, 
since these studies were carried out in different building types, applied different time 
delay settings to switching operations, and used different baselines against which to 
calculate energy savings.  Some studies compared pre- and post-retrofit energy 
consumption, some compared energy consumption based on occupancy sensor versus 
manual switching, while others used simulated occupancy profiles as the baseline for 
energy savings calculations.  Many studies defined “true” occupancy based on the 
measurement from an occupancy sensor, and often included the sensor time delay setting 
in measuring occupancy (e.g., Richman).  Although these researchers attempted to 
eliminate extraneous factors that would adversely affect the sensor measurements, they 
offered no reassurances that many of the factors that are known to affect sensor 
performance did not compound in their own studies.  For example, it is well known that 
ultrasonic sensors are prone to false-ons (moving paper from a printer45 or the air flow 
from a fan can trigger ultrasonic sensors) but these factors were not discussed by 
Richman et al44.  Consequently, occupancy determination based on measures from a 
single sensor is questionable.   
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Similarly, in the study conducted by Maniccia et al.47, “true occupancy” was measured by 
an occupancy sensor, and energy savings were calculated by applying different time 
delay settings to this measured occupancy profile.  “Detection errors” (conditions in 
which no occupancy was measured by the occupancy sensors, but the lights were turned 
on and off), were manually modified in the raw data by changing the occupancy status 
from unoccupied to occupied.  All the different space types studied had such errors, and 
different spaces within a specific type were subject to varying error rates: for example, 
error rates of as much as 28% were observed in the private offices, up to 13% for 
classrooms, and up to 1% for restrooms.  Clearly, the requirement to extensively modify 
the raw data demonstrates that measurements of space occupancy that use single 
occupancy detectors may be less accurate than initially assumed. 

Studies using simulated occupancy profiles (e.g., lights on continuously for 10-hr) as the 
baseline for savings calculations showed higher percentage energy savings46,50, but (as 
other research shows), the actual savings that can be achieved in a specific building 
depends on the occupancy profile in that building. 

Some studies calculated savings based on short time delays, (e.g., 5 minutes), and 
declared good energy savings potential44,47,50.  Richman et al. noted that savings could be 
doubled if the time delay setting recommended by the manufacturer was reduced from 
the recommended 10-20 minutes, to 5 minutes.  While this strategy will no doubt increase 
energy savings, it will also increase the number of times lights are switched off in 
occupied spaces, which is unacceptable.  The short time delay settings advocated by these 
investigators were not actually applied in the field, but simulated by a mathematical 
model.  It is doubtful this short time delay could be actually applied in a real application 
and still maintain occupant satisfaction.   
In spite of these caveats, all the previous studies showed consistent energy savings but 
also recommended professional installation and tuning, and adequate instructions to 
occupants were also noted as key to energy savings.  Also interesting is the fact that 3 out 
of 23 sensors failed in the study conducted by Floyd et al.45.  If this study is 
representative, almost 13% of the occupancy sensors installed may not be functioning 
properly.  These were only identified as non-functional as they were included in a 
research project.  It is difficult, if not impossible, to diagnose sensor performance when 
only a single sensor is used, and in these situations one malfunction means the failure of 
control in that space.   

3.3 Summary and Prospect 
Past research investigating the effectiveness of occupancy sensors for controlling office 
ambient lighting systems shows that occupancy sensors reliably deliver significant energy 
and demand savings in infrequently or unpredictably occupied spaces, such as 
washrooms, stairwells, corridors and storage areas, while the savings achieved in 
regularly occupied spaces, such as private offices and classrooms, are much lower.   
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Different studies used different baselines to calculate energy savings.  Savings 
calculations based on actual pre-retrofit energy consumption, or energy consumption 
based on manual switching are more appropriate45,47,49 than calculations based on an 
assumed schedule (for example, all lights are on for 10 hours per day).  According to 
studies comparing energy use after installation of occupancy sensors with manual 
switching as the baseline, energy savings of about 25% can be achieved in private offices 
with a sensor time delay setting of 20 minutes, which is the lower bound for manufacturer 
claims.   
Although some investigators calculated higher energy savings that would be realized with 
shorter time delay settings (e.g. 5 minutes, based on a mathematical model), a 5-minute 
time delay is unlikely to meet with occupant acceptance, as lights will be switched off in 
occupied spaces.  The shortest time delay applied in a case study was 7 minutes45, and 
this was only possible after careful and professional commissioning, including changes to 
sensor mounting position, adjustment of sensor aiming angle, tuning of sensor sensitivity: 
this much care is rarely applied in real applications, and would greatly increase installed 
costs if widely implemented. 
Given the detection errors in previous research, and the variation in reported energy 
savings, there appears to be considerable uncertainty associated with the determination of 
occupancy using a single point of measurement (i.e., a single detector).  Uncertainty can 
arise from many factors, including occupancy pattern, sensor measurement noise, and/or 
the limited coverage area associated with a single sensor.  To compensate for this 
uncertainty, current systems usually set long time delays (at least 20 minutes) and high 
sensitivities, which saves energy relative to baseline conditions, but still may result in 
wasted energy relative to the maximum savings that might be possible. 
Collecting more data (as with a sensor network) is only advantageous if a rational 
analysis framework can be identified to treat the data stream from the sensor network.  
The next chapter describes several data processing methods that can be applied to a data 
stream from an occupancy sensor network. 
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4 Data Processing Techniques 

4.1 Introduction 
There can be uncertainty associated with the determination of occupancy using a single-
point of detection, and measured energy savings due to the application of occupancy 
sensors vary with field conditions, and depend greatly on control commissioning.  
Control system performance, energy savings and user satisfaction might be enhanced 
using a sensor network to detect occupancy that consists of multiple, inexpensive 
distributed detectors that together function as a system. 
The challenge in applying a sensor network to any application area relates to the data 
processing methods that are applied to the stream of data from the sensor network63-106.  
Information provided by the sensor network needs to be integrated, or “fused” based on 
an appropriate algorithm that can relate output from the network to the domain of interest 
(in this case space occupancy).  When properly processed and integrated, the outputs 
from multiple sensors should provide more reliable and accurate estimation and 
prediction than is possible using any single sensor: for example, with multiple sensors 
monitoring the same process, it should be possible to distinguish properly functioning 
from non-functioning sensors.  On the other hand, without proper integration and 
processing, it is possible that worse control performance might be obtained from a sensor 
network, compared to the operation of a single sensor. 

The sensor network proposed for occupancy detection represents a binary hypothesis 
testing problem76, because the status of any monitored space can only be either 1 
(occupied) or 0 (vacant).  In this scenario, the decision made by each sensor is: 
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where i=1, …, N, and N is the number of sensors in the network; H0 corresponds to the 
condition in which the space is vacant; H1 represents the condition in which the space is 
occupied.  The goal of multisensor data fusion is to make a global decision Y, which 
combines the outputs from several xi, and which best describes the truth. 

Algorithms applied to multisensor data fusion for different structured sensor networks 
have been studied in a variety of applications74-85.  Data fusion is defined as “the process 
of combining data to refine state estimates and predictions”75.  Data fusion was initially 
applied to military applications, as a means to detect and identify potential ground targets 
using electromagnetic and acoustical measurements.  In recent years, sensor data fusion 
has been more widely used in such diverse areas as ocean surveillance, remote sensing, 
medical diagnosis, and engineering, since these techniques are well-suited to fault 
detection and reliability of complex systems79,80. 

Valet, Mauri, and Bolon73 reviewed numerous articles published in refereed journals 
concerned with data fusion, published between 1997 to 1999, and found that data fusion 
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techniques were widely investigated and applied in military, geoscience, robotic and 
medical applications: engineering applications only accounted for 6% of the reviewed 
papers.  Consequently, the application of data fusion technologies in engineering, 
especially in building control, may advance the development and implementation of 
building automation systems, achieve energy savings, and more effective control system 
performance. 
Joshi and Sanderson74, Iyengar and Brooks76, Luo, Yih and Su77, Kokar and Kim78, Hall 
and Llinas80, Crowley and Demazeau81, have provided comprehensive reviews of 
multisensor data fusion technologies.  Data fusion techniques include estimation theory, 
statistical inference methods, information theory methods and artificial intelligence 
methods.  In a data fusion application, variables are commensurate if they can be 
measured in the same units.  As applied to lighting control, we combine data from several 
PIR sensors to find the best prediction of occupancy, and then make a control decision; 
all sensors are measuring the same physical phenomena in the same binary format, thus 
the sensor data are commensurate80.  Consequently, we only review the data fusion 
techniques that apply to commensurate data.  Eight methods are reviewed: logical 
function OR, logical function AND, logical function MAJORITY, moving average 
filtering, rule-based reasoning, Bayesian belief network, least squares estimation, and 
artificial intelligence methods.  Each will be discussed in turn. 

4.2 Logical Functions (OR, AND, & MAJORITY) 
The simplest approach to combining data from multiple sources would be to select a 
fusion rule from the set of commonly used logical functions, such as OR, AND, and 
MAJORITY functions.  For example, in the OR rule, the global decision y =1 (the space 
is occupied) is taken if the output from at least one of the sensors is 1.  For a three-sensor 
network: 
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The AND rule is that y =1 only when all of the local decisions are 1, i.e., 
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The MAJORITY rule is that y =1 if more than half of the local decisions are 1,  and in the 
case of three inputs, MAJORITY rule means at least two of the local decision must be 1, 
i.e., 
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A sample input and output of these logical functions is shown in Table 4-1. 
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Table 4-1.  Sample results of logical functions for three binary inputs 

Input  Output y 
X1 x2 x3  OR MAJORITY AND 
0 0 0  0 0 0 
0 1 0  1 0 0 
0 1 1  1 1 0 
0 0 1  1 0 0 
1 1 0  1 1 0 
1 0 0  1 0 0 
1 1 1  1 1 1 

The selection of logical functions is arbitrary, and a correct decision is not guaranteed.  
For example, if sensors exhibit high sensitivity, the output from the most sensitive sensor 
will have priority in determining occupancy, and will result in false triggering (e.g., lights 
switching on in an unoccupied space): in this case, the MAJORITY or AND rules will be 
more suitable than the OR rule.  On the other hand, if the sensors are not sensitive enough, 
the OR rule is more appropriate, because it takes full advantage of the data from each 
sensor.  In the most extreme case, if a sensor is malfunctioning and pulses continuously, 
applying the OR rule will generate continuous positive output and the result, obviously, 
will be worse than the output from any of the single properly functioning sensors.   

4.3 Moving Average 
Discrete measurements within the sensor network data stream will be subject to 
imprecision and errors.  Noise from external sources, random hardware noise, imperfect 
technology and the quality of the (usually inexpensive) sensors used in lighting control 
applications, all act to degrade the performance of individual sensors, and hence the 
sensor network.  Therefore it is often necessary to apply some form of preprocessing to 
sensor data, before making any control decision based on sensor output.  Preprocessing 
may occur at the same time as data fusion: for example, by comparing the behavior of 
several sensors to one another, a short fluctuation observed from one sensor may be 
discounted or even omitted.  Alternatively, the data from each sensor can be preprocessed 
before combining with others.  Data preprocessing may reduce the effect of random 
errors, detection of outliers, malfunctioning sensors, and the recovery of missing values76. 
A moving average is one type of digital signal filtering, and is also a common 
preprocessing technique.  Digital filters can be designed to modify the frequency of an 
input signal.  The frequency response of a digital filter can be characterized as all pass, 
band-pass, band-stop, high-pass and low-pass. Each describes which frequency band of 
the input sequence is allowed to pass through the filter.  For example, a low-pass filter is 
used to remove high-frequency noise.  Occupancy persists over time, which means the 
occupancy status during the present time slot is likely to remain the same into the next 
time slot.  High frequency activities are not likely to happen in an office application, so a 
low-pass filter, which filters out the short-term fluctuations, should be applied to the data 
before further processing.  A common form of low pass filter applied to time-series data 
is a moving average filter.  The formula for a simple M-term moving average is: 
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where 
ti
x  is the measured value of ith sensor at time slot t, and 

ti
Z  is the average ith sensor 

output, which is in fact the unweighted mean of the previous M data inputs.  

4.4 Rule-Based Reasoning 
Rule-based reasoning captures the reasoning capability of a human expert by specifying 
the rules that relate task inputs to specific outputs. 

In a sensor network, the inputs are: sensor pulses at different times, sensor mounting 
position, and the concurrent performance of other sensors (peers).  These can all be used 
to help define an accurate algorithm that relates sensor network performance to 
occupancy.   

The following simple rules were defined to examine the sensor status at any time slot.  If 
a majority of the sensors pulse (at least 2 out of 3), then the output will be 1 (and the 
space is deemed occupied).  However, if only one of the sensors pulses, the output from 
the sensor network in the previous time slot is examined, because small movements are 
likely to be missed by one or more sensors: if the sensor output in the previous time slot 
is determined to be 1, the output of current time slot will also be set to 1.  Finally, even if 
none of the sensors pulse, the output is not immediately set to 0 (in which case the space 
would be assumed empty), but a time delay is set before the system concludes that no 
occupants are present.  Pseudocode describing this relationship is as follows: 

if majority sensors pulsed (2 or 3 sensors pulsed) 

output(n)=1; 

if only one sensor pulsed  

if output(n-1)=1, output(n)=1  

else, output(n)=0; 

if none of the sensors pulsed,  

if output(n-1)=1, apply a time delay 

else, output(n)=0 
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4.5 Bayesian Belief Network 
Bayesian inference is a popular statistical method in which evidence or observations are 
used to infer the probability that a hypothesis may be true106.  In multisensor data fusion, 
Bayesian inference allows data to be combined based on the a priori probabilities of 
sensor behaviors, in other words, it updates the a posteriori probability of a hypothesis 
based on observational evidence, which includes the true reading from all sensors77.     

Bayesian inference can be implemented by a form of probabilistic graphical model, 
known as Bayesian belief network, or simply belief network.  A belief network comprises 
of a set of variables, and a graphical structure with attached probabilities connecting the 
variables.  It is commonly represented as a graph with a set of nodes and edges89.  The 
nodes represent the variables, and the edges represent the conditional dependencies.  If an 
edge e(i, j) is directed from node i to another node j, then variable j depends directly on 
variable i, and i is a parent of its child j.  
Suppose Xi (i = 1 to n) is the set of variables in a belief network, and parents (Xi) denotes 
the set of parent variables of Xi, then the joint distribution of the variables is product of 
the local distributions: 

 !
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For example, Figure 4-1 shows that a decision u is conditional on two factors: f1 and f2, 
and f1 is conditional on f0.  f0 is the parent of f1,  f1 and f2 are the parents of u, and f0 and f2 
have no parents90. 

 
Figure 4-1.  A sample Bayesian belief network describing influences among four variables 

The joint probability function depicted by the graph is 

 P(f0,  f1, f2, u) = P(u|f1, f2) P(f1| f0) P(f0) P(f2) (4. 7) 

f1 

u 

f0 

f2 
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The model can answer questions like “What is the likelihood that u is true, given that f1 is 
true?” by applying the conditional theory and summing over all the variables that are not 
of immediate interest to the joint probability (nuisance variables): 
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 (4. 8) 
The key feature of belief networks of use in this particular application is their ability to 
model and reason about uncertainty, in other words, to use probability as a measure of 
uncertainty.  In the previous example, if we define u as the response of a single 
occupancy sensor and f1 as the occupancy status, the fact that the space is occupied does 
not imply that the sensor will definitely pulse (because the sensor might be defective, or 
the occupant might not move at that moment). However, we can define an objective 
probability that the sensor will pulse.  In the belief network, we model this by filling in a 
conditional probability table for each node. For the node u the probability table might 
look like that presented in Table 4-2. 
Table 4-2.  A sample conditional probability table, showing the conditional probabilities of 

variable u given f1 and f2 

f1 f2 P(u=False) P(u=True) 

False False 0.5 0.5 

True False 0.5 0.5 

False True 0.99 0.01 

True True 0.4 0.6 

The table presents that, for example, when f1 is True (space occupied) and f2 is True (say, 
a sensor functions correctly, if f2 denotes sensor status), the probability of u=True (sensor 
pulses) is 0.6; whereas if the space is not occupied and the sensor functions correctly, the 
probability of sensor pulsing is only 0.01.  When the sensor is defective (f2 = False), the 
probability of sensor pulsing might be 0.5, regardless of occupancy status.   
The conditional probabilities of the variables may be determined using the probabilities 
of previously observed values; for example, the probability of sensor pulsing may be 
determined as previously measured pulse frequencies when a space is occupied or 
unoccupied. 
After defining the relationship between variables and the corresponding probabilities, we 
can input previously collected evidence to calculate the probabilities associated with a 
certain variable.  For example, we input u=True (sensor pulses) to calculate the 
probability of occupancy status (f1).  A detailed description of the methods used to 
determine the probabilities used in this research is described in 11Appendix A.   
Generally, Bayesian inference can reduce the uncertainty associated with noisy data by 
taking into account the conditional probabilities associated with the response of all 
sensors that prevail during occupied and unoccupied states. 
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The application of belief networks to sensor network occupancy detection was first 
studied by Dodier et al.88,107, 108; the work described in this document improves the initial 
model described by Dodier et al.108 and expands the model to more general office 
applications. 

4.6 Least Squares Estimation 
Least squares estimation fuses data by searching for a solution that minimizes the squared 
error between the observed data and the target data94.  Suppose our model is of the form:  
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Where ty  is the estimated value from sensor network at time t; 
it
x  is the measured value 

of ith sensor at time t.  N is the number of sensors. 

A mechanism is required to determine wi such that the error of the estimated value would 
be minimized, i.e., we need to minimize the function: 
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where ot is the true occupancy at time t; T is the total number of time slots.  
In other words, we present our model as a matrix equation: 

 OXW =  (4. 11) 

where X is the measured data from each sensor at each time slot (T × N matrix); O is the 
true occupancy at each time slot (T × 1 array). W is an unknown N × 1 array. 

 A least square estimate of W, W* is sought to minimize the squared error 2
OXW ! .  The 

W* can be solved as following:  

 OXXXW ')'(* 1!
=  (4. 12) 

where X’ is the transpose of X and ')'( 1
XXX

!  is the pseudo-inverse of X if XX '  is non-
singular. 
Once W* is determined using a set of training data (previously collected data set with a 
known occupancy profile), we can apply W* to a new data set with unknown occupancy, 
and calculate the predicted value as:  

 *XWY =  (4. 13) 

The 1!N  array W* can be considered as a series of weights applied to the original data 
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, is closest to the truth oi.   
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4.7 Artificial Neural Networks 
An Artificial Neural Network (ANN) is an information processing model that is designed 
to mimic the way biological nervous systems process information.  It is a system of 
interconnecting processing elements (neurons) working together to solve specific 
problems91,97.  Figure 4-2 illustrates an example of a two-layer artificial neural network 
with nodes interconnected in a feed-forward way.  The networks receive three inputs and 
integrate them to produce an output.   

 
Figure 4-2.  A simple example of artificial neural networks 

In more practical terms neural networks are non-linear statistical data modeling tools.  
They can be used to model complex relationships between inputs and outputs or to find 
patterns in data. 

The most attractive feature of a neural network is that it includes the possibility of 
learning.  Neural networks learn by example, like humans, which involves adjustments to 
the strength of the synaptic connection between neurons.  Generally, learning means 
using a set of previously collected observations to find an optimal solution f* from a class 
of functions F to solve a specific task.  For the optimal solution f*, FffCfC !"# )(*)( (no 
solution has a cost less than the cost of the optimal solution). 

There are three major learning paradigms: supervised learning, unsupervised learning and 
reinforcement learning.  In supervised learning, a set of example pairs is given, and the 
aim is to find a function that matches the examples in an optimal sense.  A commonly 
used cost function in supervised learning is the mean-squared error, which tries to 
minimize the average error between the network's output, f(x), and the target value y over 
all the example pairs, or, to minimize the cost function: 
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In multi-layer neural networks, the cost function is usually minimized with a back-
propagation algorithm.  The general process of back-propagation is: 1) A training sample 
is presented to the neural network.  2) The network's output is compared to the desired 
output from that sample, and the error in each output neuron is calculated.  3) Weights of 
each neuron are then adjusted to lower the local error.  4) The neurons at the previous 
level will be “responsible” for the local error, with greater responsibility to neurons 
connected by stronger weights.  5) Repeat the steps above on the neurons at the previous 
level until error is minimized. 
In unsupervised learning, a target is not specified, and the cost function can be any 
functions of input data x and the network output f(x).  The specific cost function chosen 
depends on the task and a priori assumptions.  For example, the cost function can be 
defined as the mean square error between the input and the output data.  Tasks utilizing 
unsupervised learning are generally estimation problems, including clustering, the 
estimation of statistical distributions, and filtering. 
In reinforcement learning, input data x are usually not given, but generated by an agent's 
interactions with the environment99.  The aim is to discover a policy for selecting actions 
that minimize some measure of a long-term cost, i.e. the expected cumulative cost.  The 
environment's dynamics and the long-term cost for each policy are usually unknown, but 
can be estimated.  Thus, reinforcement learning is particularly suitable for problems that 
include a long-term versus short-term reward tradeoff.  It has been applied successfully to 
various problems, including computer chess game, robot control, and telecommunications, 
i.e., any sequential decision making task.   
Artificial neural networks are especially suitable in applications where they are able to 
infer a function from existing observations (using supervised learning).  This is 
particularly useful in applications where the complexity of the data or task makes the 
design of such a function by hand impractical. 

4.8 Evaluation Criteria Applied to Data Fusion 
The data fusion process will produce an output, namely a determination of occupancy at a 
given time slot.  This output should be as close as possible to the truth, which can be 
expressed as the correspondence between predicted and actual measured occupancy.  The 
correspondence with truth can also be expressed through the total occupied time, the 
number of false switching actions (false-ons and false-offs) that are observed, and a 
statistical measure of the association between binary variables, namely the ϕ  
correlation100-106.  These criteria will be used to evaluate the effectiveness of the different 
data fusion methods. 

4.8.1 Total occupied time 
The total occupied time is the time of occupancy as measured by each sensor or 
determined by a calculation method during a specified period (e.g., one day, one week or 
one month).  Total occupied time is useful in calculating energy savings, as energy 
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consumption is the product of power and operating time.  When operating time is reduced, 
energy savings are achieved.   

4.8.2 Accuracy (ϕ ) 
While the total occupied time measured by sensors is useful, it is imprecise, as sensors do 
not always respond to occupancy (i.e., do not pulse even though a space is occupied), and 
sometimes pulse even though a space is unoccupied.  A coefficient that takes into account 
both correct and incorrect measures to characterize the correspondence between 
occupancy measured by individual sensors and true occupancy (measured via some other 
method) is useful.  Since occupancy and sensor data can be coded dichotomously (where 
“1” indicates occupancy, and “0” indicates empty), the ϕ correlation provides a suitable 
measure of the association between measured value and the truth.  The ϕ coefficient is a 
special case of Pearson’s product moment correlation coefficient used to show the 
correspondence between two dichotomous variables.  

The ϕ correlation is given in cross-table format100,105, as in Table 4-3. 
Table 4-3.  Cross table for the calculation of ϕ correlation 

          Measured 

  Truth 
1 0  

1 N11 N10 r1=N11+N10 

0 N01 N00 r2=N01+N00 

 c1=N11+N10 c2=N10+N00  

 2121

01100011

ccrr

NNNN !
="

 (4. 15) 

where N11 is the number of minutes when the space is occupied, and the sensor detects 
motion; N10 is the number of minutes when the space is occupied, but the sensor does not 
detect motion; N01 is the number of minutes when the space is vacant, but the sensor 
measures occupancy; and finally, N00 is the number of minutes when the space is vacant, 
and the sensor also indicates it is unoccupied. 
The marginal values can be calculated as the sum of the row or column.  For example, r1 
in Table 4-3 represents the true occupied time, while c1 is the measured occupied time.  
Table 4-4 shows a sample sensor measured and true occupancy data time series, where a 
“1” in the “Measured” column represents motion as detected by the sensor, while a “1” in 
the “Truth” column means the space is occupied., The corresponding cross table is 
described in Table 4-5:  
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Table 4-4.  Sample sensor and true occupancy data 

Sensor Truth 

0 0 

0 0 

1 0 

0 0 

0 0 

0 0 

1 1 

1 1 

1 1 

1 0 

0 0 

0 0 

Table 4-5.  Sample cross table for the calculation of ϕ  correlation 

            Measured 

  Truth 
1 0  

1 3 0 3 

0 2 7 9 

 5 7  

And applying equation 4.15, as follows: 

683.0

7593

0273

2121

01100011 =
!!!

!"!
=

"
=

ccrr

NNNN
#  

The maximum value of ϕ correlation is 1, which occurs when the two arrays of binary 
variables in comparison are identical (both N10 and N01 equal to 0). The minimum value 
of ϕ correlation is -1, which occurs when none of the corresponding elements in the two 
arrays are the same (both N11 and N00 equal to 0). 

4.8.3 Number of false switches 
Increased accuracy implies a reduction in error.  In occupancy measurement, there can be 
two types of errors: a false-off, and a false-on.  A false-off occurs when a switching 
action is initiated in an occupied space.  False-offs result in user complaints, and in 
extreme cases will lead users to disable sensors and control systems.  Table 4-6 illustrates 
how the false-offs are counted in this research.  A false-off is counted only when the 
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sensor status changes from “1” to “0”, and the corresponding true occupancy status is 1”.  
The example shows one false-off.   

Table 4-6.  Counting of false-offs, showing 1 false-off 

Sensor Truth 

0 0 

1 1 

1 1 

1 1 

0 1 

1 1 

1 1 

1 1 

In contrast, false-ons occur when a space is vacant but the sensor pulses.  In a control 
application, this error results in the switching on of services in empty spaces: energy is 
wasted.  Table 4-7 shows how the false-ons are counted in this research.  A false-on is 
counted only when the sensor status changes from “0” to “1”, and the corresponding true 
occupancy status is 0”.  The example shows one false-on.   

Table 4-7.  Counting of false-ons, showing 1 false-on 

Sensor Truth 

0 0 

0 0 

1 0 

0 0 

0 0 

1 1 

1 1 

0 0 

Ideally, both types of errors should be eliminated to achieve maximum energy savings 
and user satisfaction.  However, as the literature review shows, it is not always possible 
to accurately measure occupancy using a single sensor. In current occupancy sensor 
applications, the elimination of false-offs is of primary importance.  In current practice, 
applying a long time delay before switching off the lights reduces the number of false-
offs.  This strategy eliminates most false-offs, but prolongs system use in vacant spaces, 
compromising energy savings. 

False-off 

False-on 
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4.9 Summary 
Having proposed that a network of sensors may provide superior occupancy 
measurement than is possible using a single detector, this chapter discussed several 
analysis techniques for application to the sensor network data stream, and described 
metrics that can be applied to evaluate the effectiveness of occupancy determination by 
sensor network.   

Eight data fusion methods were described in this chapter.  One salient difference between 
these various methods is that they can be divided into three groups, based on their 
dependency on pre-existing occupancy and sensor response data. 
The following methods do not require pre-existing data: logical functions (AND, 
MAJORITY, and OR) and the moving average method.  These methods extend the 
spatial coverage of single sensors, but like single-sensor applications, are not able to self-
diagnose and self-adjust.  They may yield good system output, but performance depends 
on sensor status, and cannot be guaranteed.     

The following methods need prior knowledge about the general occupancy pattern or 
sensor characteristics: rule-based reasoning and belief network.  The rule-based reasoning 
method defines rules based on general knowledge about the system.  The effectiveness of 
this method depends on how well the system is understood. 
Bayesian belief networks, which define the relationship between variables and the 
conditional probabilities of each variable (e.g. sensor pulsing probability given different 
time of day and sensor status), can reduce uncertainty and identify abnormally behaving 
sensors, and thus have the ability to self-adjust.  The output of the belief network depends 
on the graphic structure and the probabilities attached to the network.  It can be 
implemented without measured truth data, but requires more general information 
concerning the behavior of properly functioning sensors (so-called sensor models).   

Finally, the least squares estimation and neural network methods (with supervised 
learning) need pre-existing data to “train” the system with parameters to achieve best 
performance.  These two methods are good at adjusting parameters based on measured 
truth data, and generating an output close to the truth.  However, if truth data are not 
available, the application of these methods is limited. 
Generally, the parameters of rule-based reasoning, belief network, least squares 
estimation, and neural network methods can be tuned and optimized if the general 
knowledge of system performance, or the “Truth” is given, and all will perform better 
than the algorithms that do not need any pre-existing data.  However, truth data can be 
difficult to obtain in real applications, and thus the optimization of a training-data 
dependent algorithm is seldom achieved. An algorithm that incorporates the general 
character of the system, but does not need real-time training (e.g. belief network method) 
will be most appropriate to the occupancy sensing application. 
The chapter described three metrics that will be applied to evaluate the effectiveness of 
the data fusion methods as these are applied to a sensor network data stream.  These are 
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the total occupied time, ϕ coefficient, and the number of times that a controller using the 
associated method would have taken an inappropriate action (i.e., switching the lights off 
in an occupied space (a false-off) or switching the lights on in a vacant space). 
The following chapters describe application of these methods to actual occupancy data. 
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5 Pilot Study 

5.1 Introduction 
This chapter describes a pilot study conducted to evaluate the prospects for sensor 
networks applied to the problem of lighting control.  This study had two goals.  The first 
goal was to evaluate the utility of using more than one sensor to detect occupancy.  If a 
single measurement point is sufficient to accurately characterize occupancy in a given 
space, the total occupied time as measured by several independent detectors monitoring 
that space should be about the same.  On the other hand, observed differences in 
occupancy measured by several independent detectors suggests that each detector, on it’s 
own, provides a less accurate measure of occupancy than might be obtained using a 
“fused” signal from several individual detectors.  

The second goal was to explore the application of the analysis techniques and methods 
described in the previous chapter to sensor network data.  A sensor network is only useful 
to the extent that an appropriate analysis method can be developed or identified for 
application to the sensor network data stream, one that results in improved system 
performance relative to current practice. 

5.2 Methods and Procedures 
A sensor network was designed and installed in two, 13’ x 10’ private faculty offices, 
located at the University of Nebraska’s Peter Kiewit Institute, in Omaha, NE.  The sensor 
network consisted of three PIR occupancy sensors, one each mounted on three of the four 
walls in each room (mounting position and location were selected based on furniture 
location and the requirement that each detector have a clear view of the occupant’s 
customary work position).  Each sensor provides an independent measure of space 
occupancy, and taken together, the combination of measurements provides a converging 
and redundant sensor network.  Figure 5-1 shows a plan view of the two rooms, and 
sensor location.   
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Figure 5-1.  Plan view of the private offices used in pilot study 

Figure 5-2 shows both sides of the PIR sensors used in the study.  This sensor was 
purchased as a self-assembly kit, and it offered more flexibility with respect to sensitivity 
setting and signal output wiring than can be achieved with commercially available units 
sold by home renovation and construction retailers. 

 
Figure 5-2.  Both sides of the assembled PIR sensor used in pilot study 

All six PIR sensors were connected to a USB PC-based data acquisition system 
manufactured by Data Translation, model number DT9806.  The electrical signals from 
the PIR sensors were connected to the digital inputs on the DT9806 terminal block.   
The data acquisition and control software was developed using the Data Translation 
Measure Foundry programming environment.  This data acquisition system polled each 
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PIR sensor every second, writing a single character to a text file to indicate whether or 
not each respective detector was sending a signal to indicate occupancy (a “0” indicated 
no signal from the detector, and a “1” indicated a signal – and assumed occupancy – from 
the detector). 
Occupancy data from the six PIR sensors (three in each room) were collected over a two-
day monitoring period.  The sensor network data were validated by comparing occupancy 
as determined by the PIR sensors with two independent measures: occupancy as recorded 
by human observers who monitored entry and exit to each office from a seated position in 
the hallway outside the two offices, and subsequent review of a digital video record 
continuously collecting images in each room. 
There were three human observers tasked with monitoring occupancy in the two rooms 
over the two days: one of these three individuals was always present between the hours of 
7:00am to 7:00pm on both days.  Both monitored rooms were simultaneously visible 
from the vantage point of the human observer: a large piece of black electrical tape was 
mounted on the doorframe of each room being monitored, to ensure that the observers 
only recorded entry and exit from the rooms of interest, and not from adjacent rooms.  
The human observer recorded the time associated with all occupant entry and exit events 
occurring over the two-day period. 
A digital video record of room occupancy complemented the human observations and 
PIR data.  Apple iSight digital video cameras were mounted in each room diagonally 
opposite the single door, providing a clear record of each entry and exit event.  The 
software controlling each camera recorded the date and time of each image (in 
date:hour:minute:second format), writing this information clearly in the lower right area 
of each image frame.  A separate image was collected every two seconds, and individual 
images were automatically appended to a QuickTime file, which provided a time-lapse 
movie showing activity in each room over the two-day monitoring period.  A human 
observer, who recorded occupant entry and exit times, manually reviewed the time-lapse 
movies.  

5.3 Results 
The discussion of results is divided into two sections.  The first section describes 
individual differences in PIR sensor response to occupancy; the second section focuses 
on application of the data fusion techniques described in the previous chapter to the PIR 
sensor network data. 

5.3.1 PIR sensor Response to Occupancy 
Over the two-day monitoring period, there were 43 events in Room 1 and 36 events in 
Room 2.  Slight differences in event time and duration were apparent in the occupancy 
data recorded by each method.  These are due to asynchrony between the clocks used to 
record events by the human observers, the computers collecting PIR data, and digital 



 38 

University of Nebraska – Lincoln 

video images.  Although an attempt was made to closely synchronize all clocks, it was 
not possible to achieve exact synchrony. 
Table 5-1 shows the start and end time for each event in the two rooms as observed by in 
situ observers and review of the digital video record.  Columns 1 and 2 show the original 
data recorded by the human observers.  There were transcription errors related to some 
events: for example, in the case of event 41 in room 1, the human observer incorrectly 
noted the event ending on minute 23, when the other two methods showed the event 
ending sometime between 16:31 and 16:33.  In this instance we infer that the human 
observer incorrectly recorded “23” instead of “32”.  In Room 1, 10 out of 86 start/end 
times were modified to correct transcription errors, and in Room 2, 11 out of 62 start/end 
times were so modified, as indicated in the shaded cells of the tables.  The modified data 
(showing “corrected clock entries) are shown in column 3 and 4.  Data in columns 5 and 
6 are based on human review of the digital video.  Digital image collection was not 
initiated in Room 1 until 8:39am, and in Room 2 until 9:52am, so several events are 
missing from the digital video records for the first day for both rooms. 
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Table 5-1. Start and end time of occupancy events in pilot study as determined by human 
observers and video cameras (Shaded cells indicate transcription errors) 

Room 1: 
1 2 3 4 5 6

Start End Start End Start End

1 7:53:15 7:53:45 7:53:15 7:53:45

2 7:54:00 7:55:31 7:54:00 7:55:31

3 7:57:55 8:23:05 7:57:55 8:23:05

4 8:24:11 8:46:15 8:24:11 8:46:15 8:39:27 8:45:16

5 8:59:20 8:59:37 8:58:20 8:59:37 8:57:19 8:58:30

6 9:18:17 9:43:10 9:18:17 9:42:10 9:17:26 9:41:11

7 9:58:20 10:20:10 9:58:20 10:20:10 9:57:17 10:19:10

8 10:27:35 10:29:12 10:27:35 10:29:12 10:26:35 10:28:12

9 11:50:40 11:55:10 11:50:40 11:55:10 11:49:43 11:54:11

10 12:04:35 12:05:15 12:04:35 12:05:15 12:03:35 12:04:15

11 12:05:25 12:06:00 12:05:25 12:06:00 12:04:26 12:05:00

12 13:07:05 14:13:30 13:07:05 14:12:30 13:06:08 14:12:27

13 14:17:45 14:18:25 14:17:45 14:18:25 14:16:48 14:17:25

14 14:20:10 14:21:25 14:20:10 14:21:25 14:19:09 14:20:18

15 14:22:40 14:23:53 14:22:40 14:23:53 14:21:39 14:22:48

16 14:25:35 15:37:05 14:25:35 15:37:05 14:24:33 15:35:57

17 15:44:00 16:27:15 15:44:00 16:32:15 15:42:58 16:31:25

18 16:28:19 16:31:29 16:33:19 16:36:29 16:32:54 16:35:31

19 7:44:25 7:44:30 7:44:25 7:44:30 7:43:31 7:43:44

20 9:36:49 9:38:02 9:36:49 9:38:02 9:35:58 9:37:07

21 9:42:50 9:50:20 9:42:50 9:50:20 9:41:43 9:49:26

22 9:50:50 12:24:40 9:50:50 12:24:40 9:49:59 12:23:49

23 13:30:25 13:30:45 13:30:25 13:30:45 13:29:19 13:29:43

24 13:32:35 13:33:25 13:32:35 13:33:25 13:31:48 13:32:32

25 13:34:35 13:52:00 13:34:35 13:52:00 13:33:46 13:51:07

26 14:22:50 14:23:40 14:22:50 14:23:40 14:21:56 14:22:47

27 14:24:30 14:28:05 14:24:30 14:28:05 14:23:40 14:27:07

28 14:28:25 14:41:00 14:28:25 14:41:00 14:27:31 14:40:05

29 14:45:25 14:47:12 14:45:25 14:47:12 14:44:35 14:46:18

30 14:47:30 14:47:38 14:47:30 14:47:38 14:46:38 14:46:47

31 14:49:35 14:50:40 14:49:35 14:50:40 14:48:47 14:49:45

32 14:51:27 14:59:25 14:51:27 14:58:25 14:50:36 14:57:49

33 15:01:30 15:04:55 15:01:30 15:04:55 15:00:38 15:04:01

34 15:06:44 15:09:30 15:06:44 15:09:30 15:05:54 15:08:31

35 15:10:50 15:18:15 15:09:50 15:18:15 15:08:58 15:17:22

36 15:21:47 15:24:46 15:21:47 15:24:46 15:20:56 15:23:53

37 15:25:23 15:26:46 15:25:23 15:26:46 15:24:32 15:25:54

38 15:40:04 15:35:55 15:35:04 15:35:55 15:34:16 15:35:03

39 15:39:25 15:47:00 15:39:25 15:47:00 15:38:36 15:46:09

40 15:49:15 16:17:55 15:49:15 16:17:55 15:48:25 16:17:02

41 16:21:20 16:23:44 16:21:20 16:32:44 16:20:30 16:31:50

42 17:00:37 17:03:21 17:00:37 17:03:21 16:59:47 17:02:28

43 19:00:51 19:01:52 19:00:51 19:01:52 19:00:01 19:01:02

Video Camera

D
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y 
2

Column Number
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1

Event 

number

Human Observer

Raw Modified
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Table 5-1. Start and end time of occupancy events in pilot study as determined by human 
observers and video cameras (Shaded cells indicate transcription errors) (Cont’d) 

Room 2: 
1 2 3 4 5 6

Start End Start End Start End

1 7:30:18 7:52:15 7:30:18 7:52:15

2 7:53:10 7:53:28 7:53:10 7:53:28

3 7:54:35 8:25:14 7:54:35 8:25:14

4 8:26:15 8:36:25 8:26:15 8:36:25

5 8:40:34 8:59:28 8:39:34 8:59:28

6 8:59:45 10:06:30 8:59:45 10:06:30 9:52:01 10:07:30

7 10:07:35 11:59:05 10:07:35 11:59:05 10:08:43 12:00:11

8 12:00:10 12:39:15 12:00:10 12:39:15 12:01:19 12:40:23

9 12:42:35 12:42:40 12:42:35 12:42:40 12:43:44 12:43:48

10 12:44:52 13:09:45 12:43:52 13:09:45 12:45:03 13:10:50

11 13:36:55 14:34:20 13:36:55 14:34:20 13:38:07 14:35:25

12 15:28:20 15:29:05 15:28:20 15:29:05 15:29:29 15:30:08

13 15:29:30 15:31:10 15:29:30 15:31:10 15:30:42 15:32:16

14 15:33:25 15:51:40 15:33:25 15:51:40 15:34:44 15:52:46

15 15:52:35 15:59:10 15:52:35 15:58:10 15:53:45 15:59:10

16 16:00:05 16:35:58 15:59:05 16:34:58 16:00:13 16:36:03

17 16:38:00 16:38:25 16:38:00 16:38:25 16:39:10 16:39:34

18 16:39:15 16:57:15 16:39:15 16:57:15 16:40:24 16:58:21
19 17:02:04 17:13:49 17:02:04 17:12:49 17:03:14 17:13:57

20 17:15:14 17:21:15 17:15:14 17:21:15 17:16:22 17:22:25

21 17:24:52 17:27:23 17:23:52 17:27:23 17:25:02 17:28:27

22 17:29:03 17:57:22 17:29:03 17:56:22 17:30:14 17:57:32

23 18:02:20 18:04:15 18:01:20 18:04:15 18:02:32 18:05:21

24 18:05:28 18:49:50 18:05:28 18:48:50 18:06:37 18:49:54

25 18:53:41 18:58:50 18:52:41 18:58:50 18:53:51 18:59:59

26 19:04:47 19:06:11

27 7:20:20 9:02:50 7:20:20 9:02:50 7:21:28 9:03:57

28 9:07:12 9:38:15 9:07:12 9:38:15 9:08:21 9:39:17

29 9:42:15 10:21:25 9:42:15 10:21:25 9:43:21 10:22:33

30 10:22:20 10:32:08 10:22:20 10:32:08 10:23:30 10:33:07

31 10:37:28 10:40:05 10:37:28 10:40:05 10:38:39 10:41:12

32 10:47:17 10:48:00 10:47:17 10:48:00 10:48:27 10:49:07

33 10:53:05 10:55:25 10:53:05 10:55:25 10:54:02 10:56:31

34 11:05:45 11:06:15 11:05:45 11:06:15 11:06:58 11:07:23

35 11:18:05 11:20:25 11:18:05 11:20:25 11:19:03 11:21:31

36 11:20:35 11:20:58 11:20:35 11:20:58 11:21:43 11:22:07

Video Camera

Column Number

Event 

number

Human Observer

Raw Modified
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Table 5-2 shows the cumulative time (in seconds) that each room was occupied, as 
measured by individual PIR sensors, human observers, and review of digital video.  One 
sensor pulsed continually: these data appear in low contrast gray type, and were not 
included in further analyses.  Although the three PIR sensors faced the occupied area in 
each room, there were large differences between the measurements of occupied time 
collected using the different methods.  In the most extreme case, the maximum measured 
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occupied time was more than four times the minimum (comparing PIR2 versus PIR3 in 
Room 2 on the second day). 

Table 5-2.  Cumulative occupied time (sec) measured by PIR sensors, and human 
observers 

 Room 1 
Day 1 

Room 1 
Day 2 

Room 2 
Day 1 

Room 2 
Day 2 

PIR1 7021 6889 16709 6193 

PIR2 11517 13080 25384 9540 

PIR3 (1) 21058 23388 6901 2254 

Observer 17723 16789 33881 11494 

Video (2) 15085 16766 25829 11543 

(1) PIR3 in Room 1 was defective as it pulsed throughout the day (see also Figure 5-3). 
(2) Video records in both rooms were not initiated at the same time as data collection 
by human observers. 

While the differences in the total occupied time measured by several sensors monitoring 
the same room are interesting and potentially meaningful, this analysis ignores the time 
stamp at each datum, and could therefore be misleading.  For example, two sensors could 
measure the same cumulative occupied time, but this does not mean that the occupancy 
measured by these two sensors occurred at the exact same time slot (in this case, at the 
same second).  Indeed, with data resolved to the second, it would not be surprising if the 
measurements were out of phase (not occurring at the exact same second). 
Table 5-3 shows the total number of seconds during which 1, 2, or 3 out of the three 
sensors indicated occupancy when polled by the DAS in Room 2 (data from room 1 were 
not analyzed, as one of the sensors in this room was faulty).  The “Sum” column is the 
addition of number of sensors pulsing under each of the three conditions (1/3+2/3+3/3) 
and it shows the total occupied time (in seconds) indicated by any of the three sensors.  
These data show that almost 39% of the indicated occupancy was the result of a single 
sensor pulsing alone (14274/36578=0.39), while most of the occupied time was the result 
of 2 (39%) or 3 (22%) out of three sensors pulsing in any one second.   

Table 5-3.  Number of sensors pulsing in Room 2 

Day 1/3 2/3 3/3 Sum 

1 10612 10032 6106 26750 

2 3662 4173 1993 9828 

Sum 14274 14205 8099 36578 

Although there are differences in the occupancy pattern measured by several independent 
detectors, most of the detectors responded during occupied intervals.  This 
correspondence is striking, given the fine temporal resolution of the data. 
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The large differences in measured occupied time between sensors suggests that different 
control actions would have occurred in the two rooms if the lighting systems had been 
controlled by only one of the three sensors in each room. 

We now turn to compare the occupied time measured by the sensors in each room, with 
the occupied time measured by the human observers.  The occupied time as measured by 
review of the digital video for the first day was lower than the other measures, because 
video collection started after the human observers took their post: digital video collection 
in Room 1 was started about 40 minutes after the room was occupied, and in Room 2 it 
was not initiated until about 2 hours and 20 minutes after the first occupancy event.  
Figure 5-3 depicts the hourly occupancy measured by the different methods.  Inspection 
of this figure shows that except for the beginning part of the first day, the occupied time 
measured by the human observers and review of the digital video were very similar.  In 
the remainder of the chapter, we will take the data from the in situ human observers as 
showing the true occupancy profile over the two monitored days.  
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Room 1, Day 1 

 
Room 1, Day 2 

 

 
Figure 5-3.  Number of occupied seconds in each hour measured by PIR sensors, human 

observers and video cameras 
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Room 2, Day 1 

 
Room 2, Day 2 

 
Figure 5-3.  Number of occupied seconds in each hour measured by PIR sensors, human 

observers and video cameras (Cont’d) 

On both days in both rooms, there is better agreement between the occupied times 
measured by humans (whether observed in real time in situ, or via subsequent review of 
digital video record), than there is between occupancy as measured by the three PIR 
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sensors in each room.  Further, individual sensors consistently underestimate occupancy.  
The reason for this is that the data collected by human observers show all elapsed time 
during occupied intervals, whereas the PIR data show occupancy at the second polling 
was initiated by the data acquisition system.  Consequently, the PIR data do not 
uniformly show occupancy throughout any occupied interval. 

For example, Figure 5-4 compares measurements taken by PIR sensors versus the truth 
(as determined by the human observer in situ), over a single hour in Room 2 Day 2.  Note 
the spikes in the PIR occupancy record within each occupied interval, compared to the 
data from the human observer.  The PIR sensors do not usually pulse continuously, and 
as a result, there are “gaps” in sensor response within each occupancy event. 

 

 
Figure 5-4.  Detail of Room 2 occupancy profile from morning of Day 2 as measured by PIR 

sensors, and video image (Truth)  

While it is possible to manually recode PIR data to show continuous occupancy, this 
agreement is achieved only through the application of a post hoc correction to the sensor 
network data, based on the information collected by the human observers in situ.  This 
will be problematic for a real control application, because it assumes knowledge of the 
actual occupied state to optimize the performance of the sensor network, which would not 
be available. 

Further analysis shows that temporal aspects of the sensor network data stream can be 
used to define an objective measure to determine whether or not the space is actually 
occupied.  The proposed measure takes into account the duration and frequency of time 
slots that the space was actually occupied (as indicated by human observer in this study), 
but during which the PIR sensors indicated it was vacant (which for the purpose of this 
discussion we call the sensor network silent interval).   
Figure 5-5 depicts the observed frequency of silent intervals of different durations for 
each sensor over the two-day period, where the x-axis is the duration of the silent interval, 

Time of Day (hr) 
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and the y-axis is the frequency of occurrence.  Each bar in the histograms represents a 5-
second class interval.  For example, for PIR1 in room 1, there were about 1000 silent 
intervals lasting between 1 to 5 seconds.  Most of the silent intervals lasted between 1 and 
15 seconds, but they could last as long as 6 minutes (e.g., PIR 2 Room 1, PIR 3 Room 2).  

 
 

 
 

 

Figure 5-5.  Frequency distribution of silent intervals of each sensor used in pilot study 
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The duration of the silent interval may provide an objective method that can be used to 
help define the control system time delay setting: recall that the time delay setting is the 
period of time that must elapse before lights are switched off. 

As discussed in the literature review, current systems use long time delay settings 
(typically 15 to 30 minutes), due to the uncertainty associated with the determination of 
occupancy using a single detector.  The analysis of the durations of the silent intervals 
reported here suggests that much shorter time delay settings are possible with a sensor 
network, as opposed to a system that uses a single sensor.  For example, Figure 5-5 
suggests that silent intervals of less than 5 seconds in duration can be ignored, as the 
probability is high that the space is still occupied.  As the duration of the silent interval 
increases, the probability that the space is actually occupied decreases significantly, and 
the appropriate control actions related to building systems can be initiated.  However, 
with a sensor network, since there were no silent intervals longer than six minutes in 
these data, it would be possible to significantly reduce the duration of the time delay used 
to switch off lights from the 20 to 30 minutes currently used in most systems. 

Figure 5-6 extends this analysis, showing the relationship between the percent deviation 
from actual occupied time (measured in seconds), as a function of the time delay setting.  
In this analysis, the effect of the time delay setting on assumed occupancy is modeled by 
transforming the raw occupancy data measured by PIR sensors to include time delay of 
varying duration.  Intervals in the raw data file having a duration of less than or equal to 
the modeled time delay are marked as occupied rather than unoccupied, and the new 
value of assumed occupancy using the defined time delay setting is calculated. 
Table 5-4 provides an example, and shows how the application of a three-second time 
delay affects the duration of assumed occupancy and system use over a short time series: 
the transformed data are highlighted in bold type.   In this example, a “1” indicates a 
sensor network signal indicating occupancy, a “0” indicates no signal from the sensor 
network, and the space is assumed to be empty.  The raw data show 5 seconds occupancy.  
Applying a 3-second delay replaces each 3 second unoccupied interval with an occupied 
signal, thereby increasing the total occupancy to 13 seconds. 
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Table 5-4.  Raw and transformed occupancy pattern assuming three-second time delay   

 Raw Data (sec) Three Seconds Time Delay 

 1 1 

 0 1 

 0 1 

 1 1 

 1 1 

 1 1 

 0 1 

 0 1 

 0 1 

 0 0 

 0 0 

 1 1 

 0 1 

 0 1 

 0 1 

Sum 5 13 

Figure 5-6 shows the percent deviation of occupied time from true occupancy, measured 
by each individual sensor at different time delay settings ranging from 30 seconds to 40 
minutes.  In Room 1, PIR3 was faulty (pulsing continuously), and so application of 
defined delays to the time series for this sensor resulted in large increases in occupied 
time.  As noted above (i.e., Figure 5-4), PIR sensors do not pulse continually within each 
occupied event, so the raw sensor data underestimate occupied time: in the case of PIR1 
in Room 1, the raw data underestimated true occupancy by as much as 80%.  As the 
modeled time delay was increased, the assumed occupied time in the space increased: 
applying a 20 to 30-minute time delay to PIR1 and PIR2 increased the modeled occupied 
time in Room 1 by 70% to nearly 100%. 
Similar trends were observed in Room 2.  All three sensors functioned properly in this 
room over the two day monitoring period.  Again, the raw time series from the sensor 
network underestimated true occupancy, and applying time delays to these data resulted 
in different increases in the assumed occupied time in the space for the three sensors: in 
this case applying a 20 to 30-minute time delay to the sensor time series data produced 
increases in modeled occupancy from between 30% (PIR3) to 75% (PIR2) 
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Figure 5-6.  Effect of time delay settings on accuracy of total occupied time determination.  

Plots show time delay settings of 0, 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40 minutes 
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The analysis reported in this section shows the following: 

• There is considerable uncertainty associated with the determination of occupancy 
using measurements from a single detector mounted at a potentially non-optimal 
location. 

• The particular PIR detectors used in this study underestimated occupancy relative 
to “Truth”. 

• The uncertainty and underestimated occupied time together account for the 
requirement for long time delay used in commercial control systems. 

A network of sensors monitoring the same space would reduce uncertainty because data 
from other detector provides converging information that can be used to determine if a 
space is occupied or vacant. 

While a network of sensors may help eliminate the uncertainty associated with individual 
sensor measurements, the usefulness of the network depends on the analysis techniques 
applied to the data stream, and the ability of these techniques to produce results that 
correspond to occupancy better than current systems.  The next section discusses the 
application of the 8 data fusion methods described in Chapter 4 to these occupancy data. 

5.3.2 Fusion of PIR sensor data 
In Chapter 4, several data fusion techniques that may reduce the uncertainty associated 
with the measurement of occupancy were described in detail.  These data fusion 
techniques are: 

• Three logical functions (OR, AND and MAJORITY); 
• Moving average; 

• Rule-based reasoning; 
• Belief network (BN)  

• Least squares estimation (LSE), and; 
• Artificial neural network (NN). 

The moving average method, as introduced in section 4.3, averages readings from each 
individual sensor over a past time period, and then sums the averaged output from all 
three sensors.  A 5-second averaging period was initially used in the moving average 
calculations, and later this period was expanded to 60, 300, 600, and 1200 seconds, 
respectively, to further smooth out the data. 
The rule-based reasoning method described in section 4.4 essentially takes into account 
the performance of most sensors and the time persistence of occupancy status.  In this 
study, if the space is judged by the rule as occupied during a single second, it will be 
considered occupied for the next five seconds. 
The belief network is constructed based on a general model of room occupancy and 
conditional probabilities associated with sensor pulsing, as described in section 4.5.  The 
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construction and the parameter determination of the network are described in 
11Appendix A. 
Two of these methods require training data to refine system parameters (least squares 
estimation, described in section 4.6, and the feed-forward back-propagation supervised 
neural network, described in section 4.7).  The first-day readings from three PIR sensors 
along with the “Truth” data collected by the human observers comprised the training data, 
and parameters were calculated and then applied to the PIR readings over both days to 
calculate the sensor network output.  The length of the training period is arbitrary in an 
actual application, and the training period could be several hours, or even several days 
duration. 
As discussed in Chapter 4 (section 4.8), the estimated occupancy using each of the eight 
data fusion methods were compared against several criteria, as follows: 

• The true occupied time (“Truth”), as measured by the human observers who 
monitored the two spaces (in seconds); 

• The percentage deviation of the predicted occupied time from the truth.  Ideally, 
the occupied times calculated by each individual method should be close to the 
truth, and this percentage deviation should be close to zero; 

• The accuracy in terms of ϕ correlation, and the four occupancy status components 
of ϕ (namely N11 , N10, N01  and N00: where N11 is the number of seconds when the 
space is occupied, and the sensor detects a motion; N10 is the number of seconds 
when the space is occupied, but the sensor does not detect a motion; N01 is the 
number of seconds when the space is vacant, but the sensor measures occupancy; 
and finally, N00 is the number of seconds when the space is vacant, and the sensor 
also indicates it was unoccupied). The maximum value of ϕ is 1, representing 
perfect agreement between the measured value and the truth.  The desired N11 
equals the true occupied time, and the desired N00 is the total number of seconds 
in a day (86400) minus the occupied seconds.  These two desired values again 
depict the situation in which the calculated value perfectly matches the truth.  N10 
and N01 represent the time (in seconds) when a false-off or a false-on occurs, 
respectively.  N01 is useful in energy saving calculations, since it essentially 
represents “wasted on-time” (the number of seconds when the space is vacant, but 
sensor measures occupancy, and ambient systems remain switched on in a vacant 
space), and obviously should be minimized.   

• The number of false switches (false-ons occurring when lights are switched on in 
an unoccupied space; false-offs occurring when lights are switched off in an 
occupied space). 

The eight data fusion methods were applied to the sensor network data collected in the 
two rooms, and the results are shown in Table 5-5, which depicts results for each room 
and each day.  
The columns identified as PIR1, PIR2 and PIR3 show direct readings from each sensor.  
As in Table 5-2, differences in occupied time measured by each sensor show that the 
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performance of individual sensors varied even though they were measuring the same 
phenomena in the same space.  Except for the defective sensor (PIR3 in Room 1), each 
individual sensor underestimated the total occupied time. 

Table 5-5.  Comparison of data fusion techniques  

Room 1, Day 1 

Criteria
Truth 

(Desired)
PIR1 PIR2 PIR3 OR AND MAJORITY

Moving 

Average

Rule-

Based
BN LSE NN

Occupied Time (sec) 17723 7021 11517 21058 23213 5161 11222 12936 16181 13750 12267 13014

PCT Dev. from Truth 0 -60.4% -35.0% 18.8% 31.0% -70.9% -36.7% -27.0% -8.7% -22.4% -30.8% -26.6%

Accuracy ( !) 1 0.57 0.76 0.53 0.63 0.49 0.75 0.81 0.92 0.78 0.79 0.81

N11  (Truth=1, Measured=1) 17723 6865 11400 12304 14430 5073 11066 12736 15857 12835 12103 12838

N10  (Truth=1, Measured=0) 0 10858 6323 5419 3293 12650 6657 4987 1866 4888 5620 4885

N01  (Truth=0, Measured=1) 0 156 117 8754 8783 88 156 200 324 915 164 176

N00  (Truth=0, Measured=0) 68677 68521 68560 59923 59894 68589 68521 68477 68353 67762 68513 68501

No. of False-offs 0 787 1313 968 824 841 1124 427 121 255 1193 1155

No. of False-ons 0 20 15 2807 2813 11 16 12 11 272 18 22  
Room 1, Day 2 

Criteria
Truth 

(Desired)
PIR1 PIR2 PIR3 OR AND MAJORITY

Moving 

Average

Rule-

Based
BN LSE NN

Occupied Time (sec) 16789 6889 13080 23388 25101 5448 12808 14760 16977 16813 13631 14055

PCT Dev. from Truth 0 -59.0% -22.1% 39.3% 49.5% -67.6% -23.7% -12.1% 1.1% 0.1% -18.8% -16.3%

Accuracy ( !) 1 0.58 0.85 0.61 0.69 0.51 0.84 0.91 0.97 0.87 0.87 0.88

N11  (Truth=1, Measured=1) 16789 6712 12927 13840 15510 5332 12637 14519 16524 15015 13435 13846

N10  (Truth=1, Measured=0) 0 10077 3862 2949 1279 11457 4152 2270 265 1774 3354 2943

N01  (Truth=0, Measured=1) 0 177 153 9548 9591 116 171 241 453 1798 196 209

N00  (Truth=0, Measured=0) 69611 69434 69458 60063 60020 69495 69440 69370 69158 67813 69415 69402

No. of False-offs 0 1026 1233 836 528 1122 1160 346 34 154 1119 1010

No. of False-ons 0 10 20 3169 3175 11 8 2 4 415 16 19  
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Table 5-5.  Comparison of data fusion techniques (Cont’d) 

Room 2, Day 1 

Criteria
Truth 

(Desired)
PIR1 PIR2 PIR3 OR AND MAJORITY

Moving 

Average

Rule-

Based
BN LSE NN

Occupied Time (sec) 33881 16709 25384 6901 26750 6106 16138 20764 29983 21435 25384 26750

PCT Dev. from Truth 0 -50.7% -25.1% -79.6% -21.0% -82.0% -52.4% -38.7% -11.5% -36.7% -25.1% -21.0%

Accuracy ( !) 1 0.60 0.79 0.35 0.82 0.33 0.58 0.68 0.89 0.71 0.79 0.82

N11  (Truth=1, Measured=1) 33881 16531 25070 6714 26394 5990 15931 20482 29569 21318 25070 26394

N10  (Truth=1, Measured=0) 0 17350 8811 27167 7487 27891 17950 13399 4312 12563 8811 7487

N01  (Truth=0, Measured=1) 0 178 314 187 356 116 207 282 414 117 314 356

N00  (Truth=0, Measured=0) 52519 52341 52205 52332 52163 52403 52312 52237 52105 52402 52205 52163

No. of False-offs 0 2809 1855 1692 1804 1564 2616 1098 264 708 1855 1804

No. of False-ons 0 23 44 40 49 27 26 12 8 14 44 49  
 

Room 2, Day 2 

Criteria
Truth 

(Desired)
PIR1 PIR2 PIR3 OR AND MAJORITY

Moving 

Average

Rule-

Based
BN LSE NN

Occupied Time (sec) 11494 6193 9540 2254 9828 1993 6166 7965 10869 4934 9540 9828

PCT Dev. from Truth 0 -46.1% -17.0% -80.4% -14.5% -82.7% -46.4% -30.7% -5.4% -57.1% -17.0% -14.5%

Accuracy ( !) 1 0.70 0.89 0.41 0.91 0.39 0.70 0.81 0.96 0.62 0.89 0.91

N11  (Truth=1, Measured=1) 11494 6156 9491 2228 9767 1975 6133 7916 10772 4878 9491 9767

N10  (Truth=1, Measured=0) 0 5338 2003 9266 1727 9519 5361 3578 722 6616 2003 1727

N01  (Truth=0, Measured=1) 0 37 49 26 61 18 33 49 97 56 49 61

N00  (Truth=0, Measured=0) 74906 74869 74857 74880 74845 74888 74873 74857 74809 74850 74857 74845

No. of False-offs 0 1020 633 653 546 610 979 373 65 169 633 546

No. of False-ons 0 5 4 7 9 4 3 2 3 6 4 9  
It is interesting to note that sometimes the percent deviation of occupied time from truth 
does not coincide with accuracy (ϕ).  For example, in Room1, Day2, the percent 
deviation and accuracy for rule-based reasoning method are 1.1% and 0.97, respectively.  
The occupied time determined by belief network method is closer to the truth (deviation 
from truth = 0.1%), but the measurement is less accurate (ϕ = 0.87).  The occupied time 
is useful in determining system usage, but since it ignores the time stamp (it simply 
equals to N11 + N01), sometimes it is misleading, as this example shows.  In contrast, 
accuracy accounts for all four possible sensor status conditions (N11, N10, N01  and N00): 
“correct measurements” (N11 and N00) increase accuracy, while “incorrect measurements” 
(N10 and N01) reduce accuracy.  
The three logical functions combine the outputs from three sensors without any additional 
knowledge (of the operating characteristics of individual sensors, or other probabilities 
related to occupancy).  The predictive accuracy of the logical functions depends on the 
operating properties of individual sensors.  In terms of occupied time, the OR function 
always yields a result higher than or equal to the largest value measured by any 
individual sensor; the AND function always generates a value lower than or equal to the 
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smallest number as determined by any individual sensor, and; the MAJORITY function 
always outputs a value in between these two. 
Since individual sensors underestimate occupied time, the OR function will be most close 
to the truth among the three logical functions, as can be seen from the Room 2 data 
(assuming, of course, that all sensors are functioning correctly).  However, if any sensor 
within a sensor network is prone to false triggering, the OR function will overestimate 
occupancy, based on the response of the most sensitive (in this case faulty) sensor.  This 
is demonstrated by the Room 1 data. 
The AND function defines occupancy only when all sensors pulse.  Since each individual 
sensor underestimates occupancy, this function will always underpredict occupied time.  
In this data set, this function shows a large deviation from the truth (-69.3% in Room 1 
and -82.2% in Room 2) and a low accuracy (ϕ =0.5 in Room 1 and ϕ =0.35 in Room2). 

Of the three logical functions, the MAJORITY is the “safest” method.  It eliminates 
signals from failed sensors in determining occupancy (it is unlikely that a majority of 
sensors monitoring a space will fail).  This algorithm yielded moderate accuracy in the 
two rooms (ϕ =0.79 in Room 1 and ϕ =0.64 in Room 2). 

The moving average method, which averaged the measurements from three sensors over 
the past 5 seconds, enhanced the accuracy of individual sensors (ϕ =0.86 in Room 1 and 
ϕ =0.75 in Room 2).  The results still showed unnecessary short fluctuations (as 
demonstrated by the 387 and 736 daily false-offs).  This suggests that a longer moving 
average interval (greater than 5 seconds) is required. 
Among the eight data fusion methods, the rule-based reasoning method most accurately 
estimated the occupancy (with ϕ =0.95, percent deviation from truth = -3.9% in Room 1 
and ϕ =0.92, percent deviation from truth = -10% in Room 2).  This is reasonable since 
the rule was defined after examining the patterns of sensor measurements, and tuned for 
best performance.  A five-second “sensor performance persistence” rule was also defined 
in the algorithm and filled out most of the silent intervals, so it is not surprising that this 
method yielded the smallest number false-offs. 
The belief network method, based on a general model of room occupancy and conditional 
probabilities associated with sensor pulsing, shows good agreement with the truth in 
Room 1 (ϕ =0.83), but only moderate agreement in Room2 (ϕ =0.66).  The 
measurements from all sensors during a single time slot are the most important factor in 
determining occupancy in a belief network (other factors that are included are time of the 
day, sensor status persistence, and occupancy status persistence).  Thus during typical 
office hours, a belief network yields a result similar to majority voting.  Two sensors in 
Room 2 (PIR1 and PIR3) underestimated the occupied time (by 49.5% and 79.8%, 
respectively), and these explain why the output from the belief network was not 
satisfactory.  
The least squares estimation and neural network methods both utilized truth data from the 
first day as the training data, and both show good agreement with the truth (ϕ ≈ 0.85 in 
both rooms).  This is not surprising since the system parameters were tuned based on the 
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true occupancy from the same data set used to evaluate the method (i.e., the training data 
were highly correlated with the evaluated data set).  In any real application, the training 
data would also be highly correlated with the actual application data, and it is not 
unreasonable to assume that a longer training period would have improved the 
performance of these two algorithms.  Nevertheless, neither of these two methods was 
able to eliminate false-offs.   
None of the methods achieved satisfactory performance in terms of the number of false 
switches.  The high frequency of false-offs and ons observed after application of all 
methods indicated that if the lighting system had been controlled by any of these methods 
as applied to sensor network data, lights would have been frequently and inappropriately 
switched on and off.  At least in this data set, a supplementary time delay is required, 
because even correctly functioning sensors do not pulse continually during occupied 
periods (since people do not continually move when they are in an office – e.g., Figure 
5-4), and the application of all processing algorithms to the data stream eliminated neither 
false-offs nor false-ons.  The next section describes the effects of an application of time 
delay to fused occupancy data. 

5.3.3 Effects of time delay on fused occupancy data 
Time delay settings of 1, 5, 10 and 20 minutes were applied to the fused data, using the 
same method described in Table 5-4, with the goal of modeling the effects of different 
time delay settings on fused data.  This method was applied to all the algorithms except 
the moving average method, for which no time delay was applied, but a different duration 
was used to average the data.  Consequently, at the four time delay settings, data were 
averaged over the last 60, 300, 600, 1200 steps (seconds).  Generally, a longer duration in 
moving average calculation further smoothes out the raw data.   
Since the ultimate goal of this research is to achieve energy efficiency and user 
satisfaction, the correspondence between true occupied time and false-offs, as a function 
of time delay settings applied to the fused data are of particular interest.  Figure 5-7, 
Figure 5-8 and Figure 5-9 show the results of the modeling in terms of percent deviation 
of total occupied time from the truth, accuracy (ϕ) and number of false-offs, respectively. 

Figure 5-7 shows the percent deviation from truth for time delay settings of 1, 5, 10 and 
20 minutes.  As expected, with a time delay of 1 minute, the occupied time calculated by 
most methods (except “AND”), was closer to the truth than all the other time delay 
settings.  However, as shown by Figure 5-9, with a time delay of 1 minute, the existence 
of many false-offs shows this short delay will not be long enough to ensure user 
satisfaction.   
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Figure 5-7.  Percent deviation of occupied time from truth as measured by each sensor 

and determined by 8 data fusion algorithms 

As expected, data from a defective sensor (PIR3) fused with the OR function showed 
large deviation from the true occupied time (Figure 5-7, Room 1) and low accuracy 
(Figure 5-8, Room 1) at all time delay settings.  For all the data fusion algorithms, the 
percent deviation from the occupied time increased as the time delay increased, 
demonstrating that a long time delay setting is unfavorable to energy savings. 
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Figure 5-8.  Accuracy (φ) of each sensor and each data fusion algorithm 

The accuracy of most methods (Figure 5-8) peaks when the time delay equals 1 minute, 
and then decreases as the time delay setting was increased.  The decreased accuracy 
observed under the longer time delay settings is due to the increased time that lights are 
on in an empty space (wasted on-time) that prevails under these conditions. 
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Figure 5-9.  Number of false-offs as measured by each sensor and determined by eight 

data fusion algorithms 

Finally, the number of false-offs (Figure 5-9) were plotted on logarithmic axes, because 
when the length of the time delay was increased, the number of false-offs drops 
exponentially.  Figure 5-9 shows that at a time delay setting of 10 minutes, all false-offs 
have been eliminated by all the fusion algorithms.  This indicates that a time delay setting 
shorter than the currently used settings of between 20 to 30 minutes is possible, if a 
sensor network is used instead of a single sensor. 

5.4 Discussion 
The two goals of the pilot study described in this chapter were to evaluate the utility of 
using more than one sensor to detect occupancy, and to explore the application of the 
analysis methods described in Chapter 4 to sensor network data. 
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If a single measurement point is sufficient to accurately characterize occupancy in a 
given space, the total occupied time as measured by several independent detectors 
monitoring that space should be about the same.  On the other hand, observed differences 
in occupancy measured by several independent detectors suggests that each detector, on 
it’s own, provides a less accurate measure than might be obtained using a “fused” signal 
from several detectors.  
An examination of raw sensor data collected from three different PIR sensors in each of 
two rooms over a two-day monitoring period revealed that the occupancy patterns 
measured by these sensors were different, even though they faced the occupied area(s) in 
each room.  Thus, there is considerable uncertainty about the occupancy status if a single 
sensor is used. 

This uncertainty can be reduced if a network of more than one sensor is used to monitor 
occupancy: further analysis comparing the sensor network response against true 
occupancy showed that there were no intervals longer than six minutes duration during 
which the space was occupied but there were no pulses from at least one of the three 
sensors in the network (the sensor network silent interval).  The duration of the silent 
interval in a sensor network that is being used for occupancy-based control can be used to 
more precisely define (and in fact reduce) the time interval that must elapse before the 
system initiates a control action.  In this data set, properly functioning sensors always 
underestimated the occupied time, because the sensors did not pulse continuously even 
though the space was occupied.  Thus, a time delay setting will always be needed, even 
for fused sensor network data. 
The second goal was to explore the application of the analysis techniques and methods 
described in Chapter 4 to sensor network data.  A sensor network is only useful to the 
extent that an appropriate analysis method can be developed or identified for application 
to the sensor network data stream, one that results in improved system performance 
relative to current practice.  The two most important performance criteria that can be 
applied to evaluate the performance of the sensor network relate to the number of false-
offs observed under a given set of operating conditions, and wasted on-time observed 
under a given set of operating conditions.  With a proper data fusion algorithm, which 
combines the outputs from several sensors, it is possible to improve the accuracy of 
occupancy measurement and apply a shorter time delay.  We can expect greater energy 
savings achieved from a sensor network since with a shorter time delay, less wasted on-
time will result. 
The results described in this chapter show that the different data fusion methods could be 
fruitfully applied to the time series data produced by a network of PIR sensors. 
Generally, in terms of ϕ correlation, the more a priori information about the response of 
individual sensors to occupancy that is provided, the more accurate the fusion algorithm 
will be.  The eight individual algorithms studied here can be divided into three groups 
based on how much previous knowledge they need.  The first group, consisting of rule-
based reasoning, neural network, and least squares estimation, provided the most accurate 
estimates of occupancy in both offices.  The next most accurate estimates were provided 
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by the belief network (which models occupancy using a probabilistic model of office 
occupancy and sensor response) and moving average methods (which assumes that no 
short-term fluctuations will exist in an occupancy event).  Finally, the logical functions 
(OR, AND, MAJORITY) fall to the last group providing the least accurate estimates of 
occupancy. 

Most false-offs were eliminated with a time delay setting of 5 minutes for all the data 
fusion methods.  This is reasonable since only one silent interval longer than 5 minutes 
was observed in these two rooms over the two-day period.   
While these results are encouraging, additional work is necessary to confirm the main 
findings reported in this chapter given the small sample size and monitoring period used 
in the pilot study.   
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6 Study II: Sensor Networks for Occupancy 
Detection 

6.1 Introduction 
The pilot study suggested that with proper data fusion techniques, the output from a 
sensor network might characterize occupancy more reliably and more accurately than the 
output from any individual sensor.  The study also demonstrated that there were large 
variations between the occupancy patterns measured by different sensors installed in a 
single private space, which implies that a single detection point cannot guarantee optimal 
sensor performance.  These conclusions were based on a small sample of offices 
measured over a very short period (two-day data collection in two private offices), so 
more extensive data and analysis are required to generalize the results and conclusions.  

The goal of the work described in this chapter, therefore, is to confirm and extend the 
findings from the pilot study.  Occupancy sensor networks were installed in a sample of 
private and open-plan offices, and monitored for about two months.  There were two 
goals for this study.  The first was to study and confirm the performance differences 
between the individual sensors installed in the same space, as were observed in the pilot 
study.  If a single sensor can accurately characterize occupancy, measures from each 
individual sensor should be similar, as long as the monitored space is within the coverage 
area for the sensor.  If the occupancy measured by each sensor is different, then a 
combined output from the sensor network may be more accurate than any single sensor.  

The second goal of this study was to characterize possible reductions in system use that 
can be produced using a shorter time delay setting.  Since it is possible to more accurately 
characterize occupancy with a sensor network, a shorter time delay setting should be 
possible, which will reduce operating time while maintaining user satisfaction.  That is, 
there might be less “wasted on time” if a space is controlled by a sensor network instead 
of a single point of detection: further, since occupancy is characterized more accurately 
by a sensor network, fewer false-offs are expected, even though the time delay is shorter. 

6.2 Methods and Procedures 
Sensor networks were designed, installed, and monitored in a sample of private offices 
and open plan work areas located at the University of Nebraska’s Peter Kiewit Institute, 
located in Omaha, NE, and at the University of California’s Lighting Technology Center, 
located in Davis, CA.  Ten private faculty offices and 23 cubicle workstations in an open-
plan work area were studied at the University of Nebraska (monitored for 59 days and 63 
days, respectively).  In the open-plan work area, a digital video record of office 
occupancy complemented the sensor data: four AXIS digital video cameras were 
mounted at ceiling level in the four corners of the room.  The software controlling each 
camera recorded the date and time of each image (in date:hour:minute:second format), 
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writing this information clearly in the lower right area of each image frame.  A separate 
image was collected every two seconds, and these separate images were automatically 
appended to a QuickTime file, which provided a time-lapse movie showing activity in the 
room.  These time-lapse movies were manually reviewed by a human observer, who 
recorded the maximum number of occupants who were in the room at each minute of the 
day.  As described in the results, the maximum number of occupants in the room was 
compared with the number of PIR sensor pulses that occurred each minute.  

The sample of work areas monitored at the University of California included six private 
offices, three partially open laboratory, technology demonstration and storage areas, and 
one corridor (all monitored for 71 days). 
The sensor network monitoring each respective area consisted of three commercially 
available wireless PIR occupancy sensors.  Sensor mounting positions varied as each 
space included slightly different arrangements of furniture, equipment and other materials; 
however, all sensors were mounted so they had a direct and unobstructed view of the 
customarily occupied area in the space.  Each detector sent a wireless signal to a centrally 
located data acquisition system whenever a change in occupancy was detected.  The 
sensor network recorded space occupancy every minute: when a signal was received from 
any of the three PIR sensors in a space, the space was considered occupied for the 
duration of that minute.  

The occupancy sensors used in this study were different from those used in the pilot 
study because this system and components functioned more reliably over the data 
collection period.  The wireless occupancy detectors used were Activehome X10 model 
RMS18 PIR sensors, as shown in Figure 6-1.  These commercially available devices are 
intended for use by home automation hobbyists, and each requires two 1.5V AAA 
batteries.  Individual sensors are identified by a user-programmable alphanumeric address: 
this unique alphanumeric address was recorded by a computer-based data acquisition 
system used to collect occupancy data over the monitoring period. 

 
Figure 6-1.  Wireless PIR sensor 

The signals transmitted by these PIR sensors are received by a model number W800RF32 
310mhz antenna, connected via an RS232 serial to USB computer interface that records 
the signals from the sensors, using a commercially available home automation software 
control package called XTension, which runs under the Apple Macintosh OS X operating 
system.  Figure 6-2 shows the computer system logging activity. 
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Figure 6-2.  Wireless data acquisition system (DAS)  

An entry recording the date, time and unique sensor identification number was recorded 
to a computer hard disk log file when each wireless signal was received.  Figure 6-3 
shows part of a sample log file.   

.  
Figure 6-3.  A sample log file showing the status of individual sensors 

For the purposes of this analysis, the raw log file was converted to one-minute resolution 
time series data:  if a sensor was logged “ON” for a particular time within a minute, the 
sensor output of that minute was considered ON and coded as “1”.  Otherwise, the sensor 
status was coded as “0”, indicating no signal was received or an “OFF” signal was 
received from the detector for that minute.  In the previous study, data were collected at a 
resolution of one-second, which is too fine for a control application.  Since the time 
delays applied for the purposes of control are typically on the order of (at least) tens of 
minutes, data collected at a resolution of one minute are acceptable to adequately 
characterize occupancy. 

Fri, May 13, 2005 5:49:20 PM Received ON for B6 (w) 
Fri, May 13, 2005 5:49:21 PM Received ON for C5 (w) 
Fri, May 13, 2005 5:49:24 PM Received ON for C2 (w) 
Fri, May 13, 2005 5:49:25 PM Received ON for C4 (w) 
Fri, May 13, 2005 5:49:32 PM Received ON for C4 (w) 
Fri, May 13, 2005 5:49:33 PM Received ON for C1 (w) 
Fri, May 13, 2005 5:49:40 PM Received ON for C1 (w) 
Fri, May 13, 2005 5:49:41 PM Received ON for C4 (w) 
Fri, May 13, 2005 5:49:42 PM Received ON for C3 (w) 
Fri, May 13, 2005 5:49:44 PM Received ON for C2 (w) 
Fri, May 13, 2005 5:49:45 PM Received ON for B6 (w) 
Fri, May 13, 2005 5:49:48 PM Received ON for C4 (w) 
Fri, May 13, 2005 5:49:54 PM Received ON for C4 (w) 
Fri, May 13, 2005 5:49:55 PM Received ON for C2 (w) 

Antenna 
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6.3 Results 
The description of the results is divided into four sections.  The first section examines the 
differences among occupied time (in minutes) measured by each sensor.  The second 
section describes the relationship between sensor pulse rate and occupancy in the data set 
collected from the open-plan work area at the University of Nebraska.  The third section 
describes the sensor network outputs from six data fusion methods as applied to the data 
collected from private offices at the University of Nebraska.  Finally, occupied times as 
determined by individual sensors and the sensor network are compared at different time 
delay settings, and the savings that result from the use of the fused sensor network signal 
(compared to individual sensors), are described as applied to the data collected from 
private offices at the University of Nebraska. 

6.3.1 Individual differences in sensor performance 
Table 6-1 shows the total occupied time (in minutes) measured by each of the three 
detectors mounted in each work area over the monitoring period.  The percent difference 
was calculated as (max-min)/max, since the maximum is the most conservative estimate 
of occupancy. 
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Table 6-1. Occupied time (min) measured by three PIR occupancy detectors 

Occupied time (min) in 10 private offices over 59 days (University of NE) 

Room PIR 1 PIR 2 PIR 3 Percent  
Difference  

1 1620 3533 3427 54.1 

2 156 599 423 74 

3 3763 6702 7268 48.2 

4 3503 6756 8573 59.1 

5 6018 6408 4356 32 

6 3216 1618 3296 50.9 

7 4804 4940 3653 26.1 

8 1058 2603 913 64.9 

9 7179 6279 6025 16.1 

10 8462 9005 10794 21.6 
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Table 6-1. Occupied time (min) measured by three PIR occupancy detectors (cont’d) 
Occupied time (min) in 10 work areas over 71 days (University of CA) 

Area PIR 1 PIR 2 PIR 3 Percent  
Difference 

1 9769 2334 1543 84.2 

2 6368 7412 6529 14.1 

3 11508 994 1504 91 

4 10671 16076 3555 33.6 

5 8157 1599 6364 -- 

6 991 14494 10483 93.2 

7 593 1829 1219 -- 

8 3616 1601 1416 60.8 

9 1 1619 729 55 

10 8462 9005 10794 21.6 
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Table 6-1. Occupied time (min) measured by three PIR occupancy detectors (cont’d) 
Occupied time (min) in 23 cubicle workstations over 63 days (University of NE) 

Workstation PIR 1 PIR 2 PIR 3 Percent  
Difference 

1 3210 1101 1005 68.7 

2 5065 5300 2734 48.4 

3 5800 9457 4720 50.1 

4 4936 6170 2451 60.3 

5 8123 2328 726 68.8 

6 2849 2670 2451 14 

7 11740 12223 6568 46.3 

8 7196 8455 6099 27.9 

9 7225 7122 3155 56.3 

10 667 535 76 88.6 

11 5 2727 2012 26.2 

12 1832 4295 1628 62.1 

13 3898 0 7506 48.1 

14 3935 5142 3393 34 

15 960 666 146 84.8 

16 2585 1508 0 41.7 

17 5312 4554 2564 51.7 

18 3846 6300 3397 46.1 

19 2991 4387 2731 37.7 

20 1801 4743 2667 62 

21 2466 4816 1920 60.1 

22 2663 5074 3124 47.5 

23 1520 8257 3352 81.6 
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Large individual differences in sensor response to occupancy were observed in all 
monitored areas.  Some of these differences were the result of sensor failure, or caused by 
sensors falling or being moved from their original mounting locations by occupants (this 
was especially true for data collected at the University of CA).  Occupancy times 
measured by these sensors have not been included in the analyses, and are identified in 
the Tables in low contrast gray type. 
Even excluding these data, the differences in measured occupancy among sensors 
monitoring the same space are quite noticeable: the percent difference in occupied time 
for sensors measuring the ten private offices at the University of NE ranged from 16.1% 
to 74.0%, with an average of 44.7%.  For the eight work areas with valid data monitored 
at the University of CA, the differences ranged from 14.1% to 93.2%, with an average of 
56.7%.  Finally, the differences between detectors monitoring individual cubicle 
workstations monitored at the University of NE ranged from 14% to 91%, with an 
average difference between detectors of 53.7%.  Over all three data sets, the differences 
ranged from 14% to 93.2%, with an overall mean difference of 51.7%. 

More detailed analysis of the data collected from the ten private offices at the University 
of Nebraska helps elucidate the nature of the individual differences in sensor response.  
The differences among the sensors were examined in terms of hourly distribution of 
occupied time.  Figure 6-4 shows the average daily profile of occupied time (in minutes) 
over the 59 days in each of the ten private offices as measured by each sensor.  Most PIR 
sensors in the same room measured similar shapes of occupancy, specifically, showing 
routines of coming to the office, having lunch and leaving the office at the end if the 
working day. 
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Figure 6-4.  Hourly occupied time (min) of each room over 59 days 

Room 2 

Room 1 
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Figure 6-4.  Hourly occupied time (min) of each room over 59 days (Cont’d) 

 

Room 3 

Room 4 



 71 

University of Nebraska – Lincoln 

 

 
Figure 6-4.  Hourly occupied time (min) of each room over 59 days (Cont’d) 

 

Room 5 

Room 6 
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Figure 6-4.  Hourly occupied time (min) of each room over 59 days (Cont’d) 

 

Room 7 

Room 8 
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Figure 6-4.  Hourly occupied time (min) of each room over 59 days (Cont’d) 

Differences between individual sensors were also noticeable: some sensors were 
consistently less sensitive than others (for example, PIR1 in Room 1 was less sensitive 
than PIR2 and PIR3).  Consequently, sensors measuring different occupied time would 
have different durations and frequencies of silent intervals (recall that silent interval is the 
interval that the space was actually occupied, but the PIR sensor did not pulse).  To 
achieve maximum energy savings, different time delays would be required for different 
sensors, to fill up silent intervals and eliminate false-offs, i.e., a longer time delay would 
be needed in the case of a less sensitive sensor.  Since sensor performance usually cannot 
be determined before installation, the safe solution is to apply a long time delay to all 
sensors.  In other words, the uncertainty in occupancy measurement is typically 
compensated for in real applications with long time delays, and sometimes, by 

Room 10 

Room 9 
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professional commissioning to find the best mounting position, viewing angle and time 
delay. 
The average hourly occupancy (in minutes), depicted in Figure 6-4, was generally low 
(the maximum occupied time was around 22 minutes, in Room 10).  These occupancy 
rates are due to the fact that the first month of data collection occurred during the 
university summer break, when university faculty are frequently away from their offices.  
In addition, the data set included weekends, during which occupancy was very low 
(coded in the data as mostly zeros).  
Figure 6-5 depicts the daily occupied time over the monitoring period for all ten offices, 
over the complete 59-day monitoring period.  As expected, measured occupancy was 
higher during the weekdays than over the weekends.  Furthermore, as the left panel 
demonstrates, during the summer months, occupancy is lower than would be expected in 
a more traditional office setting.  Once the academic term commenced (right panel), 
observed occupancy in these offices increased as expected. 
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Figure 6-5.  Total occupied time (min) per day of 10 rooms over 59 days 

 

6.3.2 Relationship between sensor pulse rate and occupancy 
A network of sensors provides more extensive measures of occupancy than single sensors, 
and it may also be possible that the sensor network response to occupancy could be used 
to differentiate between one or more occupants in a monitored space.  Figure 6-6 depicts 
the relationship between room occupancy and PIR sensor pulse rate over the monitoring 
period in the data collected from the open-plan work area at the University of Nebraska.  
The relationship between sensor pulse rate and occupancy was weak.  This is due to two 
factors, one related to human behavior, the second related to limitations with the sensors 
and DAS used to collect these data. 

In the case of few occupants, even a single person can generate many sensor pulses 
within a minute if they walk around the space.  This often occurred early in the mornings 
in this space when a custodial staff member entered the room to vacuum the carpet and 
empty the trash.  In these instances, occupancy was low, but the number of sensor pulses 
received at the DAS was high because the occupant moved throughout the entire space, 
triggering pulses from all sensors.  This aspect of these data also prevented the fruitful 
application of more extensive data fusion to this set of data. 
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When the room was more heavily occupied, limitations in the wireless communications 
protocol used by these sensors to transmit signals to the DAS reduced the number of 
signals recorded by the DAS.  This is apparent in Figure 6-6, which shows fewer pulses 
received by the DAS once occupancy reached about 11 persons in the space.  The 
wireless sensors employed to collect these data use a relatively unsophisticated 
communications protocol: if two signals were received at the DAS at the same time, 
neither was recorded.  As room occupancy increased, it became more likely that two or 
more signals arrived at the DAS at the same instant.  When this occurred, none of the 
signals were recorded by the DAS, and as a result the recorded sensor pulse rate, and the 
absolute number of sensor pulses received, fell slightly relative to occupancy. 

 
Figure 6-6. Relationship between sensor pulse rate and occupancy 

Better communications protocols that include signal error checking and verification are 
required before the relationship between occupancy and sensor network pulse rate can be 
established, but even with these improvements, the correlation between pulse rate and 
occupancy is still likely to remain weak. 

6.3.3 Comparison of individual measurements and sensor 
network outputs 

Fusing the measurements from a network of sensors to produce a more accurate 
determination of occupancy might reduce the uncertainty associated with individual 
sensors.  In the pilot study, eight data fusion techniques were utilized to calculate the 
sensor network output.  This section describes the application of the following data fusion 
methods to the data collected from the ten private offices located at the University of 
Nebraska: 

• Three logical functions (OR, AND and MAJORITY); 
• Moving average;   

• Rule-based reasoning, and; 
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• Belief network (BN). 

The moving average was initially calculated as averaging back one step, i.e., the average 
of the current and the immediately past minute.  The rule-based reasoning assumed 1-
minute time persistency of sensor status, that is, if the algorithm determined occupancy at 
one particular minute, it assumed the space will be continuously occupied for another 
minute.   
The belief network method adopted the same parameters as were used in the pilot study.  
These parameters include the probabilities of sensor pulsing conditional on sensor status 
and time of day, and the probabilities of time persistence of occupancy and sensor status. 

Table 6-2 shows the average daily occupied time (in minutes) measured by each of the 
three detectors mounted in each room, along with the total occupied time (in minutes) 
determined by the six data fusion algorithms over the monitoring period. 

Table 6-2.  Average occupied time (min) for 10 private offices monitored over 59 days. 

Room

Number
PIR1 PIR2 PIR3 OR AND MAJORITY

Moving

Average

Rule-

Based
BN

1 27.5 59.9 58.1 67.4 24.1 54.0 78.1 78.5 71.4

2 2.6 10.2 7.2 12.3 1.8 5.8 17.8 12.4 10.0

3 63.8 113.6 123.2 143.5 50.9 106.2 166.5 163.2 152.5

4 59.4 114.5 145.3 154.4 40.3 124.5 168.3 166.2 147.3

5 102.0 108.6 74.0 114.8 68.0 101.8 124.9 124.3 117.4

6 54.5 27.4 55.9 87.8 9.0 41.1 109.4 88.2 82.4

7 81.4 83.7 61.9 109.7 42.0 75.3 132.8 131.5 123.6

9 121.7 106.4 102.1 157.7 57.3 115.3 181.8 184.4 160.0

10 143.4 152.6 183.0 210.5 94.3 174.2 235.5 236.1 215.3

 
It is interesting to note that although the occupied times determined by each sensor were 
quite different, varying on average by 44.7% (calculated as (max-min)/max), the results 
determined by the logical function OR, moving average, rule-based reasoning and belief 
network, were more similar, varying only by 18.0%. 
As discussed in the pilot study, a functioning sensor always underestimates the total 
occupied time.  Thus, among the three logical functions, OR yields results closest to the 
truth, if all sensors work properly: however, although it combines the output from all 
sensors, the logical function OR would still be expected to underestimate the occupied 
time.  Unlike the pilot study, none of the sensors collecting occupancy data from private 
faculty offices at the University of NE were defective, so we can infer that the true 
occupied time will still be higher than the results calculated by the logical function OR 
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(for example, in Room 2 of the pilot study, OR function underestimated true occupied 
time by about 20%). 
The fusion methods of moving average, rule-based reasoning and belief network all 
generally yielded similar and slightly higher occupied time than the OR function. 
Although we cannot make the statement that these methods are more accurate than any 
individual sensor measurements at this point, since truth data were not available, the 
statement is consistent with data previously described in Chapter 5. 

The other two logical functions, AND and MAJORITY, should have underestimated the 
occupied time, given the fact that no sensor failures were observed in this data set. 

6.3.4 Modeling the effects of different time delays 
Chapter 5 argued that if occupancy could be more accurately determined, a shorter time 
delay could be applied to achieve greater energy savings.  Table 6-3 shows the modeled 
occupied time (in minutes) after the application of 5, 10, and 20-minute time delays to the 
data described in Table 6-2 (this is the same analysis as described in section 5.3.3).  For 
the moving average method, data were averaged over intervals of 5, 10, and 20 minutes, 
respectively, instead of applying the corresponding time delay. 
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Table 6-3.  Average occupied time (min) for 10 private offices monitored over 59 days with 
5, 10, 20-minute time delay. 

Time

Delay

(min)

Room

Number
PIR1 PIR2 PIR3 OR AND MAJORITY

Moving

Average

Rule-

Based
BN

1 65.9 95.8 92.4 97.9 63.0 88.2 93.8 90.1 90.9

2 6.2 27.4 24.3 35.5 5.3 16.0 31.4 17.2 22.6

3 138.2 172.2 183.8 200.3 115.5 170.4 194.0 178.4 177.4

4 75.3 174.3 188.8 194.9 66.1 175.0 189.7 181.7 173.7

5 134.3 139.8 131.0 146.2 121.7 133.3 142.0 134.4 135.5

6 99.1 80.9 104.8 149.1 30.9 88.1 141.7 109.1 125.9

7 138.6 149.7 135.9 162.9 104.5 137.6 157.7 147.0 149.1

8 54.3 67.8 46.7 77.7 28.8 57.4 72.5 63.5 66.1

9 181.6 196.5 195.8 215.4 147.2 195.6 209.4 203.2 191.9

10 197.4 242.3 254.3 266.4 171.3 247.0 260.9 251.4 246.9

1 86.2 113.5 109.7 115.6 83.1 102.3 107.2 103.4 103.9

2 9.1 41.3 37.8 55.3 7.8 23.5 26.1 23.9 33.4

3 176.7 191.7 202.4 227.6 148.3 187.3 190.5 192.3 191.5

4 83.0 195.4 210.2 216.3 74.3 195.3 201.4 203.0 191.2

5 147.5 157.1 154.1 164.4 139.8 146.3 150.5 146.8 147.9

6 116.2 114.6 127.5 178.2 45.8 109.9 143.6 129.5 152.7

7 155.0 171.6 162.8 183.2 131.5 157.3 161.1 161.5 162.4

8 74.3 85.0 69.1 102.1 43.3 75.3 76.8 77.5 84.2

9 204.9 226.3 223.0 240.3 184.7 218.2 218.2 221.7 209.9

10 213.7 262.3 274.8 290.8 189.5 264.4 265.5 266.9 265.7

1 112.6 143.9 138.5 146.3 108.9 124.1 115.7 124.6 125.4

2 15.1 67.3 62.5 93.1 12.7 36.7 30.2 37.4 53.3

3 223.8 223.7 233.9 272.7 186.6 211.2 208.5 214.1 215.2

4 93.7 228.7 242.6 249.6 86.5 225.9 214.3 233.3 217.8

5 168.7 187.6 186.0 196.9 160.7 167.3 161.6 168.9 169.2

6 138.7 162.9 159.5 216.8 69.6 139.4 158.0 167.8 189.3

7 177.7 202.1 196.0 214.7 162.6 180.9 173.4 182.3 183.1

8 102.6 109.3 99.8 137.8 65.9 98.4 84.4 112.0 109.1

9 240.2 265.9 258.8 278.0 225.4 248.6 242.4 250.9 239.0

10 240.1 288.2 305.8 330.3 207.0 288.9 277.8 297.0 295.8

5

10

20

 

The predictions of occupied time (in minutes) determined by every method increased as 
the time delay increased, as expected.  If the sensor network determines occupancy more 
accurately, potential savings might arise from reductions in the time delay setting. Tables 
Table 6-4Table 6-5 model the reductions in occupied time that would have been achieved 
had these ten offices been controlled using a network of three PIR sensors using a 5 or 
10-minute time delay setting, versus the operating time that would have been observed 
using a single sensor with a 20-minute time delay.   
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Table 6-4.  Total occupied time (min) and percent reductions in cumulative occupied time 
between sensor network outputs plus 5-minute time delay, versus the maximum occupied 

time determined by individual sensor plus 20-minute time delay. 

Max of 

PIR + 20

OR 

+ 5

Moving 

Average 

+ 5

Rule-

Based 

+ 5

BN

+ 5

OR 

+ 5

Moving 

Average 

+ 5

Rule-

Based 

+ 5

BN

+ 5

1 143.9 97.9 93.8 90.1 90.9 -32.0% -34.8% -37.4% -36.8%

2 67.3 35.5 31.4 17.2 22.6 -47.2% -53.3% -74.5% -66.4%

3 233.9 200.3 194.0 178.4 177.4 -14.4% -17.1% -23.7% -24.1%

4 242.6 194.9 189.7 181.7 173.7 -19.7% -21.8% -25.1% -28.4%

5 187.6 146.2 142.0 134.4 135.5 -22.1% -24.3% -28.3% -27.8%

6 162.9 149.1 141.7 109.1 125.9 -8.4% -13.0% -33.0% -22.7%

7 202.1 162.9 157.7 147.0 149.1 -19.4% -22.0% -27.3% -26.2%

8 109.3 77.7 72.5 63.5 66.1 -28.9% -33.6% -41.9% -39.5%

9 265.9 215.4 209.4 203.2 191.9 -19.0% -21.3% -23.6% -27.8%

10 305.8 266.4 260.9 251.4 246.9 -12.9% -14.7% -17.8% -19.3%

Average -22.4% -25.6% -33.3% -31.9%

Occupied minutes Percent Reduction

Room 

Number

 

delay  min  20  tsmeasuremen individual of Maximum

delay)min  20  tsmeasuremen individual of (Maximum - delay)min  5 output  (Fused
 (%)reduction Percent 

+

++
=  (6. 1) 

Table 6-5.  Total occupied time (min) and percent reductions in cumulative occupied time 
between sensor network outputs plus 10-minute time delay, versus the maximum 

occupied time determined by individual sensor plus 20-minute time delay. 

Max of 

PIR + 20

OR 

+ 10

Moving 

Average 

+ 10

Rule-

Based 

+ 10

BN

+ 10

OR 

+ 10

Moving 

Average 

+ 10

Rule-

Based 

+ 10

BN

+ 10

1 143.9 115.6 107.2 103.4 103.9 -19.6% -25.5% -28.1% -27.8%

2 67.3 55.3 26.1 23.9 33.4 -17.8% -61.1% -64.5% -50.3%

3 233.9 227.6 190.5 192.3 191.5 -2.7% -18.5% -17.8% -18.1%

4 242.6 216.3 201.4 203.0 191.2 -10.8% -17.0% -16.3% -21.2%

5 187.6 164.4 150.5 146.8 147.9 -12.4% -19.8% -21.7% -21.2%

6 162.9 178.2 143.6 129.5 152.7 9.4% -11.8% -20.5% -6.2%

7 202.1 183.2 161.1 161.5 162.4 -9.3% -20.3% -20.1% -19.6%

8 109.3 102.1 76.8 77.5 84.2 -6.5% -29.7% -29.1% -22.9%

9 265.9 240.3 218.2 221.7 209.9 -9.6% -18.0% -16.6% -21.1%

10 305.8 290.8 265.5 266.9 265.7 -4.9% -13.2% -12.7% -13.1%

Average -8.4% -23.5% -24.7% -22.2%

Room 

Number

Occupied minutes Percent Reduction

 

delay  min  20  tsmeasuremen individual of Maximum

delay)min  20  tsmeasuremen individual of (Maximum - delay)min  10 output  (Fused
 (%)reduction Percent 

+

++
=  (6. 2) 

Tables Table 6-4Table 6-5 show that using an output from a sensor network for system 
control would have produced reductions in system use, relative to what would have been 
observed if the systems in these offices were controlled using any of the three single 
points of detection applied in this study (differences between the sensor network +5 
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minutes signal and the maximum observed for the three individual sensors +20 minutes 
range from -22.4% to -33.3%; differences between the sensor network +10 minutes signal 
and the maximum observed for the three individual sensors +20 minutes range from -
8.4% to -24.7%).  Since no a priori information is available which of the three detectors 
provides the best measure of occupancy, it is appropriate to use the maximum total 
occupied time obtained from the three individual sensors, because this value provides the 
most conservative estimate that would have been obtained, had these ten spaces been 
monitored and controlled by any single points of detection. 

6.4 Discussion 
The two goals of this chapter were to confirm and extend the findings from the pilot 
study that showed individual differences in sensor performance, and to explore the 
reductions in system use that would result from application of a shorter time delay setting.  
Results confirmed that for single-point detection, there are large uncertainties associated 
with individual sensor performance.  Thus, each individual sensor is less capable at 
characterizing occupancy than a sensor network consisting of several individual detectors.  
Six of the data analysis techniques introduced in Chapter 4 were applied to a subset of the 
raw data to calculate the sensor network output. 

We concluded from the pilot study that properly functioning sensors always 
underestimate the occupied time, because sensors do not pulse continually even though 
the space is occupied.  Four of the fusion methods, namely logical function OR, moving 
average, rule-based reasoning and belief network, yielded occupancies that are higher 
than any individual measurements, and close to each other.  With more accurate 
occupancy measurements, shorter time delays can be applied to reduce system operating 
time and save energy.  In the pilot study, the application of a 5-minute time delay to the 
sensor network resulted in a similar number of false-offs (i.e., similar degree of user 
satisfaction) as were observed through control with a single-detector and a 20-minute 
time delay.  If a 5-minute time delay was applied to the sensor network instead of the 
typical 20 minutes in current single sensor applications, operating time would be reduced 
by an additional 22.4% to 33.3% (relative to the reductions that would have resulted from 
use of a single optimally placed sensor).  A longer time delay of 10 minutes applied to the 
sensor network data stream eliminates false-offs (as demonstrated in the pilot study), and 
produces reductions of 8.4% to 24.7%, relative to the reduction that would have resulted 
from use of a single sensor with a 20-minute time delay. 
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7 Study III: Effects of Sensor Type and 
Mounting Position on Measured Occupancy 

7.1 Introduction 
The work described so far has revealed that there can be considerable uncertainty 
associated with the measurement of occupancy by individual occupancy sensors; 
consequently, long time delay settings are used by current systems to compensate for this 
uncertainty.  A sensor network with proper data fusion methods, on the other hand, can 
characterize occupancy more accurately, and a shorter time delay can be applied.  This 
can result in greater energy savings without increasing the number of false-offs when the 
sensor network is applied to lighting control.   
This chapter describes a round-robin study conducted to directly compare occupancy 
measured by PIR sensors from several different manufacturers, mounted at different 
locations in a private office.  This study had four goals.  The first was to confirm that 
differences in measured occupancy would also be observed using sensors intended for 
use in commercial applications, rather than for home automation. 
The second goal was to evaluate the effects of sensor position on measured occupancy.  
Previous studies described in this report show large differences in measured occupancy 
for the same brand of sensor; however, whether these differences are due to mounting 
position or individual sensor characteristics is unclear.  This study was designed to 
evaluate the effect of sensor type and mounting position on measured occupancy. 

The third goal was to confirm the advantages of sensor networks with more extensive 
truth data.  The pilot study (described in Chapter 5) showed that a sensor network 
provided more accurate and reliable measurement of occupancy than a single sensor, but 
this conclusion was based on only two days data: in this chapter, the data collection 
period was extended to six weeks. 
The fourth goal was to confirm the findings concerning possible reductions in system use 
that result from shorter time delay settings that can be applied to the sensor network, 
versus time delay applied to single sensors.  The study described in Chapter 6 suggested 
that further reductions in system use were possible using shorter time delays applied to 
sensor network control, in addition to the savings that would have resulted from 
application of a 20-minute time delay when using a single sensor, and it would be useful 
to confirm this finding. 

7.2 Methods and Procedures 
The experiment was conducted in two private faculty offices located at the University of 
Nebraska’s Peter Kiewit Institute, in Omaha, NE.  Four groups of occupancy sensors 
were mounted on three of the four walls in each office to record occupancy over a six-
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week data collection period.  At the end of every week, all sensors were moved to an 
adjacent wall in the same office.  The occupancies measured by different sensor types at 
respective locations were compared to evaluate the effects of sensor type and mounting 
location on measured occupancy. 
A set of four sensors was mounted on each of three walls in each office.  Each set of four 
sensors consisted of a commercially available wall sensor, one assembled sensor, and two 
wireless sensors mounted adjacent to one another on one wall, as shown in Figure 7-1. 

 
Figure 7-1.  Sensor arrangement on one wall in the round-robin study 

Specific details on each sensor are summarized in Table 7-1.  Two of the same brand 
wireless sensors were mounted on each wall, to test the variation within this sensor type.  
Since an identical set of four sensors was deployed on three walls, each office was 
monitored by a total of 12 sensors.     

Table 7-1.  Sensors used in round-robin study 

Sensor Type Picture Model Manufacturer Number used in 
each office 

Commercial 

 

Motion Sensing 
Wall Switch 

6105 

Cooper Wiring 
Devices 3 

Assembled 

 

DIY Kit 30.  PIR 
Detector 

Packed by 
A1parts 3 

Wireless 

 

PMS18 Indoor 
Occupancy 

Sensor 
X10 Inc. 6 

The commercial and the assembled sensors were connected to the same DAS described in 
Chapter 5; the wireless sensors sent signals to the DAS described in Chapter 6. 
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All sensors were set at maximum sensitivity.  The commercial and assembled sensors 
were equipped with photosensors that prevent pulsing, and thereby switching lights on, in 
the event of adequate lighting at the sensor.  This feature was disabled to ensure that the 
sensors always responded to motion. 
Apple iSight digital video cameras were mounted in each room diagonally opposite the 
single door, providing a clear record of each entry and exit event.  A separate image was 
collected every two seconds, and individual images were automatically appended to a 
QuickTime file, which provided a time-lapse movie showing activity in each room over 
the two-day monitoring period.  A human observer manually reviewed the time-lapse 
movies, and occupancy within each minute was recorded in a spreadsheet file, for later 
comparison with the occupancy data collected by the sensors. 

Raw data collected by both data acquisition systems were converted to time-series data 
with one-minute resolution.  The data conversion rule was the same as used in the 
previous chapter:  if a sensor pulsed within a minute, the sensor output for that minute 
was coded as “1”, otherwise, the sensor status was coded as “0” for that minute. 

The room dimensions and overall sensor arrangement are shown in Figure 7-2.  Each of 
the shaded boxes in the figure represents the location of each set of four sensors shown in 
Figure 7-1.  From Figure 7-2 we can see that sensors mounted on the East and South 
walls were closer to the occupant than those mounted on the North wall, for the 
“customary” seating position in each office.  
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Figure 7-2.  Room dimensions and overall sensor arrangement.  Each of the shaded areas 

represents the mounting location of a set of four sensors. 

At the beginning of each week, the four sensor sets were rotated in a clockwise fashion, 
as shown in Figure 7-3.   
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Week 1 & 4 

 
Week 2 & 5 

  
Figure 7-3. Round-robin rotation of sensor mounting positions.  The mounting positions in 
the sketches are not to scale; all four sensors mounted on the same wall were in a much 

smaller area, as Figure 7-2 shows. 
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Week 3 & 6 

 
Figure 7-3. Round-robin rotation of sensor mounting positions.  The mounting positions in 
the sketches are not to scale; all four sensors mounted on the same wall were in a much 

smaller area, as Figure 7-2 shows. (Cont’d) 

During the first three weeks, two of the assembled sensors in Room 2 were defective, 
pulsing continually throughout the day: these two sensors were replaced at the beginning 
of the fourth week, and data collection continued.   

7.3 Results 
The discussion of the results is divided into four sections.  The first section summarizes 
the occupied time (in minutes) measured by each sensor.  This analysis showed the 
general occupancy pattern in these two offices during the data collection period, and 
identified defective sensors.  The second section reports the results of a mixed-design 
ANOVA109, which was applied to evaluate the effects of sensor type and mounting 
position on measured occupancy.  The third section compares the occupancy determined 
by individual sensors versus the sensor network.  Finally, the fourth section compares the 
energy savings that can be achieved through the use of a sensor network versus a single 
sensor. 

7.3.1 Occupied time  
The occupied time (in minutes) measured each day as a function of sensor type is 
presented in Table 7-2.  Occupied  The first day in each week is Sunday, and the last day 
is Saturday.  The data are arranged such that numbers in the same column represent the 
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measured occupancy from the same sensor.  The sensor location listed in the first column 
indicates the arrangement of sensors at that week.  For example, “ESN” means Sensor 1 
was mounted on the East wall, Sensor 2 was on the South wall, and Sensor 3 was on the 
North wall.  The true occupied time (in minutes), as determined by human review of the 
digital video, is also listed in the table. 
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Table 7-2.  Occupied time (min) measured by each sensor in each day 

Room 1: 

1 2 3 1 2 3 1 2 3 1 2 3

1 5 4 5 5 6 6 5 4 5 6 5 5 5

2 415 44 93 202 281 398 406 21 134 129 20 129 65

3 437 38 106 185 220 422 420 23 186 143 29 178 83

4 445 38 115 207 154 412 425 26 147 135 30 166 64

5 428 47 106 225 150 413 416 191 149 162 34 178 54

6 386 38 113 157 139 363 382 17 157 101 27 178 47

7 0 0 0 0 1 1 0 0 2 1 1 1 1

8 177 49 106 31 142 177 106 77 45 31 94 38 27

9 435 116 172 29 259 430 259 136 52 36 125 56 25

10 402 90 176 40 290 386 255 141 76 32 129 55 21

11 451 112 181 48 312 447 316 200 81 49 185 63 27

12 435 105 230 45 351 431 331 202 93 33 173 73 27

13 416 93 173 32 268 395 220 143 64 25 148 55 17

14 0 0 0 0 0 0 1 0 2 1 1 1 1

15 0 0 0 0 1 0 0 0 1 1 1 1 1

16 398 214 23 115 387 343 380 195 23 237 173 22 159

17 507 270 55 119 497 416 482 214 43 272 230 38 204

18 334 140 52 107 325 264 307 162 39 136 122 30 120

19 365 185 35 119 358 286 354 157 33 172 141 28 140

20 387 224 53 117 360 273 361 176 40 193 149 39 134

21 0 0 0 0 0 4 0 0 1 1 1 1 1

22 5 4 4 5 7 9 75 3 4 6 3 4 4

23 210 65 113 166 133 204 207 38 151 99 53 127 82

24 214 66 127 180 151 216 212 34 158 123 52 131 95

25 314 135 179 281 221 311 298 91 230 203 104 234 153

26 28 17 20 25 22 27 30 14 18 21 13 21 18

27 183 107 132 165 145 186 181 78 136 104 80 131 96

28 2 3 2 3 2 3 135 0 1 4 1 1 3

29 6 6 6 5 9 52 43 4 6 4 5 8 4

30 332 223 252 149 335 334 280 200 140 122 227 182 89

31 276 129 191 46 290 294 191 136 121 27 153 115 20

32 234 154 201 102 236 235 205 176 136 100 172 163 83

33 299 210 237 110 300 303 249 206 145 117 218 171 86

34 212 155 183 120 218 220 209 146 123 80 149 120 76

35 0 0 0 0 0 36 2 0 1 1 1 2 1

36 7 7 4 7 32 12 8 4 3 5 6 2 3

37 251 243 149 222 252 242 259 201 157 214 205 153 201

38 142 119 38 93 146 127 146 126 18 79 91 27 78

39 404 348 151 293 364 361 390 273 175 271 302 152 224

40 215 186 69 154 196 207 221 154 65 152 141 64 120

41 119 118 71 101 117 111 124 102 49 107 106 50 83

42 0 0 0 0 0 0 0 0 1 1 1 1 1

322 134 127 132 249 302 284 133 105 122 126 104 90

-58.4% -60.8% -59.1% -22.7% -6.4% -12.0% -58.9% -67.6% -62.0% -60.9% -67.7% -72.2%PCT Dev. From Truth

Week5

E S N

Week6

S N E

Weekday Average

Week1

N E S

Week2

E S N

Week3

S N E

Week4

N E S

Location Days Truth
Commercial Assembled Wireless1 Wireless2
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Table 7-2.  Occupied time (min) measured by each sensor in each day (Cont’d) 

Room 2: 

1 2 3 1 2 3 1 2 3 1 2 3

1 0 0 0 0 1015 1 1137 0 1 1 1 1 1

2 2 2 2 2 1020 3 1168 1 3 1 2 1 2

3 181 51 176 146 1069 190 1183 42 150 105 38 127 156

4 15 15 15 15 1037 17 1138 15 15 15 15 14 14

5 146 70 148 121 1142 154 1223 57 132 102 53 104 118

6 159 100 160 130 1055 176 1181 82 149 107 76 118 127

7 0 0 0 0 1044 2 1167 0 1 1 1 1 1

8 0 0 0 0 812 2 951 0 1 1 1 1 1

9 309 249 172 135 918 348 928 266 256 45 216 187 42

10 546 401 272 236 978 540 899 429 426 114 383 244 102

11 415 266 181 141 912 408 815 340 320 53 253 154 50

12 267 191 154 134 843 267 779 213 210 75 199 144 60

13 2 2 2 2 616 3 672 2 5 2 1 5 1

14 0 0 0 0 677 3 778 0 1 1 1 1 1

15 0 0 0 0 1131 2 439 0 1 1 1 1 1

16 39 32 13 29 1147 36 420 19 8 31 26 6 28

17 1 0 0 0 1114 1 430 1 2 2 0 3 2

18 223 245 108 213 1186 217 594 192 86 130 202 67 194

19 0 0 0 0 1155 1 322 0 1 1 1 1 1

20 469 425 185 386 1228 419 717 307 93 275 358 67 347

21 28 28 21 25 1163 30 431 11 5 2 23 5 20

22 0 0 0 0 0 2 1 0 1 1 1 1 1

23 395 110 358 328 159 398 395 83 308 318 67 329 327

24 286 163 273 249 175 287 289 112 240 241 81 241 247

25 314 89 275 242 75 314 317 34 228 237 40 223 249

26 218 89 185 173 96 220 233 48 164 169 43 160 169

27 351 145 328 276 152 353 362 103 282 279 83 272 292

28 0 0 0 0 0 2 0 0 2 1 1 1 1

29 0 0 0 0 0 7 0 0 1 1 1 1 1

30 306 286 286 126 283 318 255 229 230 75 205 191 72

31 374 339 339 101 339 368 321 304 301 79 262 257 84

32 192 181 183 51 180 204 152 165 168 41 135 119 32

33 500 421 448 174 454 503 425 384 390 162 332 291 161

34 363 322 346 158 339 376 344 308 310 155 268 237 154

35 304 282 269 49 292 302 227 251 270 32 187 188 34

36 0 0 0 0 0 1 0 0 2 1 1 1 1

37 384 382 220 325 363 364 385 290 148 296 311 122 305

38 371 378 170 315 296 333 366 268 126 261 296 115 267

39 401 383 182 312 360 384 402 261 131 258 308 105 265

40 273 302 119 226 275 251 274 207 88 203 247 63 203

41 358 342 106 286 326 332 356 258 87 242 286 66 261

42 0 0 0 0 0 0 1 0 1 1 1 1 1

All 6 weeks 262 199 180 168 167 169 136 160 134 144

First 3 weeks 185 1028 185 831

Last 3 weeks 339 258 334 325

All 6 weeks -23.9% -31.2% -36.0% -36.1% -35.7% -48.2% -39.1% -48.7% -44.9%

First 3 weeks 455.9% 0.2% 349.5%

Last 3 weeks -23.9% -1.6% -4.1%

PCT Dev. 

From Truth

Weekday 

Average

Location Days Truth
Commercial Assembled (1) Wireless1 Wireless2

Week5

E S N

Week6

S N E

Week1

N E S

Week2

E S N

Week3

S N E

Week4

N E S

 
(1) Assembled 1 and Assembled 3 in Room 2 were replaced at the beginning of the fourth week. 

Two of the assembled sensors in Room 2 (Assembled 1 and Assembled 3) pulsed 
continually through the first three weeks of data collection (generating about 1000 pulses 
per day out of a total of 1440 possible pulses [or minutes] per day).  These two sensors 
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were defective and were therefore replaced at the beginning of the fourth week.  Data 
from the defective sensors were not included in subsequent statistical analyses. 
Since there was little occupancy during the weekends (and the data file for the weekends 
were mostly zeros), these time periods were less meaningful in comparing the 
performance of sensors than the weekday data, so they were also excluded from further 
analysis.  The weekday average occupancies are listed in the bottom row(s) of the table.  
For the assembled sensors in Room 2, two averages were calculated: before and after the 
sensor replacement.   
In terms of weekday average, all properly functioning sensors underpredicted occupancy.  
In Room 1, sensors underpredicted occupied time by 6.4% to 72.2%, while in Room 2, 
the occupied time was underestimated by 1.6% to 48.7%.  It is noticeable that when 
sensors were mounted on the North wall (furthest from the occupant), they pulsed less 
frequently than when they were mounted on the East or South wall (closest to the 
occupant). 
More detailed analysis of daily occupied time shows that the assembled sensors were 
most sensitive, and sometimes slightly overestimated occupied time.  The daily deviation 
of occupied time measured by assembled sensors in both rooms ranges from -76.1% 
(underestimation) to 7.1% (overestimation). 

7.3.2 Effects of sensor type and mounting position 
To study the differences in sensor performance, the accuracy (φ correlation of measured 
occupancy compared against truth) was used as the dependent variable instead of the 
occupied time.  The sensors were measuring different days of occupancy when they were 
mounted at different locations, and so the occupied time (in minutes) can be expected to 
vary as a function of office and day.  While the effect of mounting location and the sensor 
type are of the most interest, the value of the φ correlation is preferable for use in this 
analysis because it is a characteristic of the sensor itself, and does not vary with true 
occupancy.   
Table 7-3 shows the summary of weekday average occupied time (in minutes) and the φ 
correlation.  The number in each cell was averaged over data collected from all the 
properly functioning sensors: for the commercial and wireless sensors, and the assembled 
sensors in Room 1, data were averaged over six week period; for the assembled sensor in 
Room 2, only data from the last three weeks was used in calculating the mean since two 
out of the three assembled sensors were defective during the first three weeks. 
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Table 7-3.  Mean occupied time (min) and accuracy (φ) of the two rooms over six weeks 

Room 1 Room 2 

Sensor Type Location 
Mean 

Occupied 
time (in 

minutes) 

Mean 
Accuracy  

(φ) 

Mean 
Occupied 
time (in 

minutes) 

Mean 
Accuracy  

(φ) 

Commercial North 67.07  0.4253  106.50  0.6460  

  East 131.03  0.6031  222.33  0.8945  

  South 194.53  0.7497  218.47  0.8815  

Assembled(1) North 225.37 0.7881 254.53  0.8128 

  East 294.50 0.9320 330.00 0.9736 

  South 315.13 0.9672 332.33 0.9406 

Wireless 1 North 59.87 0.3749 71.60  0.5181  

  East 166.17 0.6842  200.33  0.8301  

  South 133.70 0.5976  199.77  0.7924  

Wireless 2 North 50.53  0.3610  62.37  0.4544  

  East 153.83  0.6564  190.53  0.7556  

  South 115.67  0.5627  185.50  0.7846  

All North 100.71  0.4873  123.75  0.6078  

  East 186.38  0.7189  235.80  0.8635  

  South 189.76  0.7193  234.02  0.8498  

(1) In Room 2, only data from the last three weeks are used. 

As can be observed from the above table, in each group, the sensors pulsed least 
frequently, and accuracy was lowest, when they were mounted on the North wall, where 
sensors were located furthest from the nominal occupant position (refer to Figure 7-2 for 
a plan view of the offices).  Further, the assembled sensors pulsed more frequently than 
all the other sensor types, suggesting that this particular sensor type was more sensitive 
than either the commercial or wireless sensors.  The assembled sensors were also always 
more accurate than the two other sensor types.  The φ correlation essentially checks the 
similarities between two series of binary data: for a functioning sensor, more sensitive 
usually means having more correct and fewer missed pulses, thus the φ correlation is 
usually higher.  Finally, the two groups of wireless sensors behaved similarly to each 
other, as expected.   
These conclusions were confirmed using a mixed design ANOVA109, with sensor group 
and room number representing the between-subjects factors, and mounting position 
representing the within-subjects factor in the analysis.  The dependent variable was the 
accuracy of sensor response, quantified using the φ correlation between the measured 
value and the truth.  Table 7-4 summarizes the results of the between-subjects tests 
applied to data from the two rooms.  This analysis showed statistically significant main 
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effects of sensor type and room on sensor accuracy, and a statistically significant 
interaction effect between room and sensor type on accuracy, suggesting the effect of 
sensor type on accuracy in Room 1 was different than in Room 2.   

Table 7-4.  Tests of between-subjects effects (Sensor Type) 

Dependent variable: Accuracy (φ) 

Source Sum of Squares df Mean Square F Sig. 

Intercept 12.022 1 12.022 6377.728 0.000 

Sensor Type 0.337 3 0.112 59.506 0.000 

Room 0.104 1 0.104 55.336 0.000 

Room  
* Sensor Type 0.033 3 0.011 5.789 0.007 

Error 0.030 16 0.002     

Figure 7-4 plots the mean φ correlation with 95% confidence interval in each room for all 
sensor types, and Table 7-5 describes the results of the post-hoc ANOVA paired 
comparison tests. 

 
 

Figure 7-4.  Estimated marginal means of accuracy (φ) by sensor type and room with error 
bar showing 95% confidence interval of accuracy (φ) 
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Table 7-5.  Pairwise comparisons of accuracy (φ) by sensor type 

Room 
(I) Sensor 

Type 
(J) Sensor 

Type 

Mean 
Difference 

(I-J) 
Std. 
Error Sig.(a) 

1 Commercial Assembled -0.303 0.035 0.000 

  Commercial Wireless1 0.041 0.035 0.270 

  Commercial Wireless2 0.066 0.035 0.081 

  Assembled Wireless1 0.344 0.035 0.000 

  Assembled Wireless2 0.369 0.035 0.000 

  Wireless1 Wireless2 0.026 0.035 0.481 

2 Commercial Assembled -0.102 0.035 0.011 

  Commercial Wireless1 0.094 0.035 0.018 

  Commercial Wireless2 0.142 0.035 0.001 

  Assembled Wireless1 0.195 0.035 0.000 

  Assembled Wireless2 0.244 0.035 0.000 

  Wireless1 Wireless2 0.049 0.035 0.189 

These analyses show the following: 

• The assembled sensors were more accurate than the other sensor types; 
• The sensors in Room 2 were slightly more accurate than the sensors in Room 1 

(digital video showed that the occupant in Room 2 moved more frequently than 
the occupant in Room 1); 

• The two wireless sensors in each room had almost the same accuracy; 
• In Room 2, the commercial sensors were more accurate than the two wireless 

sensors, but in Room 1, these two types of sensors had almost the same accuracy. 
Table 7-6 summarizes the results of the within-subjects test of the two rooms.  This 
analysis showed a statistically significant main effect of mounting position on sensor 
accuracy, and a statistically significant interaction between mounting position and sensor 
type on accuracy. 
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Table 7-6.  Tests of within-subjects effects (mounting position) 

Dependent variable: Accuracy (φ correlation) 

Source Sum of 
Squares df Mean 

Square F Sig. 

Position 0.924 2 0.462 109.069 0.000 

Position * Room 0.002 2 0.001 0.206 0.815 

Position * Sensor Type 0.071 6 0.012 2.810 0.026 

Position * Room  * Sensor 
Type 0.040 6 0.007 1.556 0.192 

Error (Position) 0.136 32 0.004   

Figure 7-5, plots the mean φ correlation at each mounting position for all sensor type and 
Table 7-7 describes the results of the post-hoc ANOVA paired comparison test. 
 

 
Figure 7-5.  Estimated marginal means of accuracy (φ) by sensor type and mounting 

position with error bar showing 95% confidence interval of accuracy (φ)  

 

Commercial 

Assembled 

Wireless 1 

Wireless 2 
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Table 7-7.  Pairwise comparisons of accuracy (φ) by mounting position  

Position 
(I) Sensor 

Type (J) Sensor Type 

Mean 
Difference 

(I-J) 
Std. 
Error Sig.(a) 

North Commercial Assembled -0.265 0.049 0.000 

  Commercial Wireless1 0.089 0.049 0.088 

  Commercial Wireless2 0.128 0.049 0.019 

  Assembled Wireless1 0.354 0.049 0.000 

  Assembled Wireless2 0.393 0.049 0.000 

  Wireless1 Wireless2 0.039 0.049 0.441 

East Commercial Assembled -0.204 0.024 0.000 

  Commercial Wireless1 -0.008 0.024 0.731 

  Commercial Wireless2 0.043 0.024 0.091 

  Assembled Wireless1 0.196 0.024 0.000 

  Assembled Wireless2 0.247 0.024 0.000 

  Wireless1 Wireless2 0.051 0.024 0.047 

South Commercial Assembled -0.138 0.042 0.004 

  Commercial Wireless1 0.121 0.042 0.010 

  Commercial Wireless2 0.142 0.042 0.004 

  Assembled Wireless1 0.259 0.042 0.000 

  Assembled Wireless2 0.280 0.042 0.000 

  Wireless1 Wireless2 0.021 0.042 0.615 

These analyses show the following: 

• All sensors were less accurate when mounted on the North wall (located furthest 
from the occupant) compared to East and South wall mounting locations (located 
closer to the occupant). 

• When mounted on the North wall, commercial sensors exhibited about the same 
accuracy as Wireless 1, but were more accurate than Wireless 2; when mounted 
on the East wall, commercial and wireless sensors all had almost the same 
accuracy; however when mounted on the South wall, commercial sensors were 
more accurate than the wireless sensors. 

It is interesting to note that these results confirm the uncertainty associated with single-
points of detection, since they show that sensor performance will vary with sensor type 
and mounting position.  A single measurement point provides a less accurate measure of 
occupancy than a sensor network.  
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7.3.3 Comparison of individual measurements and sensor 
network outputs 

To reduce the uncertainty associated with individual sensors (due to unpredictable 
mounting position, for example), the outputs from each sensor in a sensor network can be 
combined using a fusion technique to produce a more accurate determination of 
occupancy.  In this section, the outputs from different data fusion techniques are 
compared against one another, and actual occupancy.  The eight data fusion techniques 
applied to these data were: 

• Three logical functions (OR, AND and MAJORITY); 
• Moving average; 

• Rule-based reasoning; 
• Belief network (BN); 

• Least squares estimation (LSE), and; 
• Artificial neural network (NN). 

As in Chapter 6, the moving average was initially calculated as averaging back one step 
(i.e. one minute).  The rule-based reasoning method assumed a 1-minute time persistency 
of sensor status, that is, if the algorithm determined occupancy during one minute, it 
assumed the space was continuously occupied for the next minute.  In subsequent 
applications of different time delay settings to the fused data, the moving average outputs 
were calculated by averaging over longer intervals. 
The belief network is constructed based on a general model of room occupancy and 
conditional probabilities associated with sensor pulsing, as described in section 4.5.  The 
determination of network parameters is described in 11Appendix A. 

Table 7-8 shows the comparison of measures by various methods.  The outcomes of each 
method are compared by means of total occupied time (in minutes), accuracy, number of 
false-ons, number of false-offs, as well as the different values in the cross table used to 
calculate the ϕ coefficient.   

Overall, as already noted, the sensors installed in Room 1 pulsed less frequently than 
those in Room 2 when the space was occupied, as shown by the over 50% deviation of 
measured occupied time from truth for the commercial and wireless sensors, while in 
Room 2, the deviation between sensor measurements and truth was usually from 20% to 
50%.  Although there might be some individual differences in the sensitivities of sensors 
from the same group, review of the digital video showed that the occupant in Room 1 
was less active than the occupant in Room 2.  Since sensors are less responsive to small-
sized movements42, these observations are reasonable since the characteristics of 
movements will have an impact on the sensor pulsing frequency. 
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Table 7-8.  Comparison of data fusion techniques  

Room 1: 

Room 1
Truth 

(Desired)
Sensor 1 Sensor 2 Sensor 3 OR AND MAJORITY

Moving 

Average

Rule-

Based
BN LSE NN

Occupied Time (min) 322 134.3 126.5 131.8 201.4 65.8 125.4 258.2 215.6 225.5 201.0 201.1

PCT Dev. from Truth 0 -58.3% -60.7% -59.1% -37.4% -79.6% -61.0% -19.8% -33.0% -30.0% -37.6% -37.5%

Accuracy ( !) 1 0.58 0.56 0.58 0.73 0.40 0.56 0.82 0.73 0.77 0.73 0.73

N
11

 (Truth=1, Measured=1) 322 132 124 130 198 65 123 246 204 220 198 198

N
10

 (Truth=1, Measured=0) 0 191 198 193 124 258 200 76 118 103 125 125

N
01

 (Truth=0, Measured=1) 0 3 2 2 3 1 3 12 11 6 3 3

N
00

 (Truth=0, Measured=0) 1118 1115 1115 1115 1114 1116 1115 1105 1106 1112 1114 1114

No. of False-offs 0 36 37 37 48 20 40 27 19 18 48 48

No. of False-ons 0 1 1 1 1 0 1 1 1 1 1 1
1

Occupied Time (min) 322 249.2 301.9 283.9 325.2 214.1 295.7 341.8 334.0 344.6 323.9 320.7

PCT Dev. from Truth 0 -22.6% -6.2% -11.8% 1.0% -33.5% -8.2% 6.2% 3.7% 7.0% 0.6% -0.4%

Accuracy ( !) 1 0.84 0.94 0.90 0.97 0.77 0.93 0.96 0.97 0.95 0.97 0.97

N
11

 (Truth=1, Measured=1) 322 246 297 280 317 213 293 321 320 322 316 315

N
10

 (Truth=1, Measured=0) 0 76 25 43 6 109 30 2 2 1 6 8

N
01

 (Truth=0, Measured=1) 0 3 5 4 9 1 3 21 14 23 8 6

N
00

 (Truth=0, Measured=0) 1118 1114 1113 1113 1109 1117 1115 1097 1104 1095 1110 1112

No. of False-offs 0 32 16 23 4 46 19 1 1 0 4 6

No. of False-ons 0 2 3 3 5 0 1 4 1 7 4 3
1

Occupied Time (min) 322 132.6 104.6 122.5 216.4 34.1 109.3 282.9 218.6 248.1 215.3 216.4

PCT Dev. from Truth 0 -58.8% -67.5% -62.0% -32.8% -89.4% -66.1% -12.1% -32.1% -23.0% -33.1% -32.8%

Accuracy ( !) 1 0.56 0.50 0.56 0.74 0.29 0.53 0.83 0.75 0.81 0.74 0.74

N
11

 (Truth=1, Measured=1) 322 127 102 121 207 34 109 262 211 240 206 207

N
10

 (Truth=1, Measured=0) 0 195 221 201 115 288 214 61 112 82 116 115

N
01

 (Truth=0, Measured=1) 0 5 3 1 9 0 0 21 8 8 9 9

N
00

 (Truth=0, Measured=0) 1118 1112 1115 1116 1109 1118 1117 1096 1110 1110 1109 1109

No. of False-offs 0 50 43 47 54 18 48 25 17 16 55 54

No. of False-ons 0 3 2 1 6 0 0 4 0 2 5 6
1

Occupied Time (min) 322 126.0 104.3 89.7 192.4 31.7 96.0 258.6 188.0 214.0 191.4 192.4

PCT Dev. from Truth 0 -60.9% -67.6% -72.1% -40.2% -90.2% -70.2% -19.7% -41.6% -33.5% -40.6% -40.2%

Accuracy ( !) 1 0.56 0.51 0.47 0.71 0.28 0.49 0.81 0.68 0.76 0.71 0.71

N
11

 (Truth=1, Measured=1) 322 124 103 89 188 32 95 244 180 210 188 188

N
10

 (Truth=1, Measured=0) 0 198 220 234 134 291 227 78 143 112 135 134

N
01

 (Truth=0, Measured=1) 0 2 2 1 4 0 1 14 8 4 4 4

N
00

 (Truth=0, Measured=0) 1118 1116 1116 1116 1114 1117 1117 1103 1109 1114 1114 1114

No. of False-offs 0 46 43 40 56 17 40 29 15 18 56 56

No. of False-ons 0 2 1 1 3 0 1 3 1 1 3 3
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Table 7-8.  Comparison of data fusion techniques (Cont’d) 

Room 2: 

Room 2
Truth 

(Desired)
Sensor 1 Sensor 2 Sensor 3 OR AND MAJORITY

Moving 

Average

Rule-

Based
BN LSE NN

Occupied Time (min) 262 199.4 180.2 167.7 241.5 102.9 202.9 266.0 271.9 257.1 223.4 238.6

PCT Dev. from Truth 0 -23.9% -31.2% -36.0% -7.8% -60.7% -22.6% 1.5% 3.8% -1.9% -14.7% -8.9%

Accuracy ( !) 1 0.81 0.78 0.75 0.91 0.58 0.84 0.93 0.94 0.93 0.87 0.91

N
11

 (Truth=1, Measured=1) 262 192 176 165 233 102 199 249 253 245 216 230

N
10

 (Truth=1, Measured=0) 0 70 86 97 29 160 63 13 9 17 46 32

N
01

 (Truth=0, Measured=1) 0 7 4 3 9 1 4 17 19 12 8 8

N
00

 (Truth=0, Measured=0) 1178 1171 1174 1175 1169 1177 1174 1161 1159 1166 1170 1170

No. of False-offs 0 22 28 32 17 33 31 6 2 4 17 18

No. of False-ons 0 2 1 1 3 0 2 2 1 2 3 3
1

Occupied Time (min) 339 258.1 333.7 325.1 347.8 244.3 324.8 362.6 351.5 345.1 345.0 342.9

PCT Dev. from Truth 0 -23.9% -1.6% -4.1% 2.6% -27.9% -4.2% 7.0% 3.7% 1.8% 1.8% 1.2%

Accuracy ( !) 1 0.83 0.96 0.95 0.97 0.81 0.97 0.95 0.97 0.96 0.97 0.97

N
11

 (Truth=1, Measured=1) 339 255 326 320 335 243 323 338 338 331 335 334

N
10

 (Truth=1, Measured=0) 0 84 13 19 4 96 16 1 1 8 4 5

N
01

 (Truth=0, Measured=1) 0 3 8 5 13 1 2 25 14 14 10 9

N
00

 (Truth=0, Measured=0) 1101 1098 1093 1096 1088 1100 1099 1076 1087 1087 1091 1092

No. of False-offs 0 28 9 11 3 34 12 1 1 0 3 4

No. of False-ons 0 2 3 1 6 0 0 5 0 2 4 4
1

Occupied Time (min) 262 167.3 168.6 135.8 238.9 55.9 176.8 271.4 256.0 255.5 235.6 218.6

PCT Dev. from Truth 0 -36.1% -35.7% -48.2% -8.8% -78.7% -32.5% 3.6% -2.3% -2.5% -10.1% -16.6%

Accuracy ( !) 1 0.75 0.75 0.67 0.90 0.42 0.78 0.93 0.94 0.94 0.90 0.86

N
11

 (Truth=1, Measured=1) 262 164 164 133 230 56 175 252 246 245 228 211

N
10

 (Truth=1, Measured=0) 0 99 98 129 32 206 87 10 16 17 34 51

N
01

 (Truth=0, Measured=1) 0 4 4 3 9 0 2 20 10 10 8 8

N
00

 (Truth=0, Measured=0) 1178 1174 1174 1175 1169 1178 1177 1158 1168 1168 1170 1170

No. of False-offs 0 34 34 36 22 26 43 6 5 3 24 28

No. of False-ons 0 2 3 2 6 0 1 5 1 2 5 5
1

Occupied Time (min) 262 159.6 134.4 144.4 232.2 47.9 158.3 268.6 247.2 246.2 229.7 230.6

PCT Dev. from Truth 0 -39.1% -48.7% -44.9% -11.4% -81.7% -39.6% 2.5% -5.6% -6.0% -12.3% -12.0%

Accuracy ( !) 1 0.72 0.66 0.69 0.89 0.39 0.74 0.92 0.92 0.92 0.88 0.88

N
11

 (Truth=1, Measured=1) 262 155 131 142 223 48 157 249 239 236 222 222

N
10

 (Truth=1, Measured=0) 0 107 131 120 39 214 105 13 23 26 40 40

N
01

 (Truth=0, Measured=1) 0 5 3 3 9 0 2 20 9 10 8 9

N
00

 (Truth=0, Measured=0) 1178 1173 1175 1175 1169 1178 1177 1158 1169 1168 1170 1170

No. of False-offs 0 37 40 34 25 24 46 8 7 4 26 26

No. of False-ons 0 3 2 2 6 0 1 5 1 2 6 6
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Table 7-8 also shows that, on average, all sensors underestimated the total occupied time.  
In the most extreme case, the total occupied time was underestimated by over 70% 
(Room 1, Wireless 2, Sensor 3).  The assembled sensors pulsed more often than the other 
types of sensors.  When the data were fused using the logical function OR, since the 
assembled sensors were slightly “over sensitive”, this resulted in higher total occupied 
time than the truth (as shown in Table 7-8, on average, the OR function overestimated the 
occupied time by 1.0% in Room 1, and 2.6% in Room 2 for the last three weeks).  This 
contradicts our previous conclusion that for proper functioning sensors, the OR function 
will always underestimate the total occupied time.  Recall that we used the same 
assembled sensors in the round-robin study as the ones used in the pilot study, however, 
in the pilot study, the data were resolved to one-second intervals, whereas in this study, 
the data were resolved to one minute intervals.  The conversion rule was that if the sensor 
pulsed at any second within a minute, that minute was considered occupied.  As 
demonstrated in the pilot study, most silent intervals lasted less than one minute (Figure 
5-5), thus after conversion, most silent intervals were deemed occupied.  Although each 
of the individual assembled sensors still underestimated occupied time, the combination 
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of the three, plus some false triggering, resulted in slightly higher estimates of occupied 
time than the truth. 
The other two logical functions, as already seen from previous studies, underestimated 
the occupied time.  The AND function underestimated occupancy by 27.9% to 90.2%, 
while the MAJORITY function underestimated occupancy by 4.2% to 70.2%.  The 
deviations from truth were larger as the sensor sensitivity decreased. 
The moving average, rule-based reasoning and belief network methods generally 
generated accurate estimates of occupancy, since they considered the general occupancy 
pattern or the characteristics of individual sensors.  The moving average and rule-based 
reasoning methods take into account a 1-minute time delay, and so they sometimes 
slightly overestimated occupied time.  The occupied time determined by the moving 
average method deviated from truth by -19.8% to 7.0%, while the occupied time 
determined by rule-based reasoning deviated from truth by -41.6% to 3.8%.  A similar 
range in deviation was found for the results generated by the belief network method, as 
the percent deviation ranged from -33.5% to 7.0%.  The moving average method had the 
highest accuracy among all the methods (over 0.8 for all sensors installed in Room 1, and 
over 0.9 for sensors installed in Room 2).  These methods were also better at eliminating 
false-offs than other fusion algorithms: the number of false-offs in Room 1 was reduced 
from around 40 to around 20; in Room 2, false-offs were reduced from around 30, to 
fewer than 10. 
The least squares estimation and neural network methods, both utilized the first-day data 
from each week as the training data, and parameters were defined based on the truth, 
generated results similar to the OR function: slightly improved performance for 
commercial and wireless sensors, and these marginally overestimated the occupied time 
measured by assembled sensors.  

Recall that during the first three weeks in Room 2, two out of the three assembled sensors 
were defective, and their measurements were therefore not included in the ANOVA.  
However, these data are useful in discussing the effectiveness of data fusion algorithms 
since they challenge the ability of the various methods to correctly handle data from 
faulty sensors.  The results of various algorithms applied to these data are shown in Table 
7-9. 

Table 7-9. Comparison of data fusion techniques when two out of three sensors were 
defective 

Room 2
Truth 

(Desired)
Sensor 1 Sensor 2 Sensor 3 OR AND MAJORITY

Moving 

Average

Rule-

Based
BN LSE NN

Occupied Time (min) 185 1028.0 185.3 831.3 1097.7 165.7 781.1 1293.0 1230.4 271.0 211.7 179.1

PCT Dev. from Truth 0 455.7% 0.2% 349.3% 493.4% -10.4% 322.2% 598.9% 565.1% 46.5% 14.4% -3.2%

Accuracy ( !) 1 0.22 0.95 0.26 0.20 0.92 0.33 0.13 0.16 0.75 0.88 0.96

N
11

 (Truth=1, Measured=1) 185 180 178 167 183 162 180 185 185 176 178 176

N
10

 (Truth=1, Measured=0) 0 5 7 17 2 23 5 0 0 9 7 9

N
01

 (Truth=0, Measured=1) 0 848 8 664 915 3 601 1108 1046 95 34 3

N
00

 (Truth=0, Measured=0) 1255 407 1248 591 340 1252 654 147 210 1160 1221 1252

No. of False-offs 0 4 5 13 2 16 4 0 0 0 5 7

No. of False-ons 0 213 4 226 192 2 244 78 75 5 28 2
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When applied with two faulty sensors, the OR and MAJORITY functions, moving 
average and rule-based reasoning methods all failed, overestimating occupied time by 
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322.2% to 598.9%.  The OR function returned TRUE when any of the three sensors 
pulsed, so it is not surprising that it generated a higher deviation from truth than any of 
the individual sensors.  The MAJORITY function, moving average and rule-based 
reasoning methods essentially adopted the majority sensor responses: since two of the 
three sensors were faulty, all these methods output unusually high estimates of occupied 
time. 
The AND function, belief network, least squares estimation and neural network methods, 
however, generated more accurate estimates of occupied time.  The AND function was 
the only acceptable logical function, since in this two-sensor failure case, its output was 
similar to the only functioning sensor.  Remember that in the more general cases, when 
all or most of the sensors work properly, the AND function exaggerates the silent 
intervals, and underestimates the occupied time, so the performance of AND function is 
not guaranteed. 

The output from the belief network was moderately accurate (ϕ =0.75) in this case, and it 
overestimated occupancy by 46.5% (however, defective sensors overestimated the 
occupied time by 455.7% and 349.3%, respectively).  In defining belief network 
parameters, sensors are deemed less likely to pulse during the night, thus when those two 
sensors pulsed continuously at night, they were defined as defective by the algorithm.  
Since the pulsing patterns remained constant during the day, the condition of these two 
sensors was locked at “defective”, and they were weighted less in outputting the fused 
results. 

The least squares estimation and neural network methods yielded the most accurate 
estimates in this case, as they defined parameters by comparing the measured and truth 
data, and thus these two methods have the ability to self-diagnose and identify faulty 
sensors.  The measurements from the faulty sensors were greatly different from the true 
occupancy data determined by human observer, so they were neglected by these two 
methods.  The outputs from the least squares estimation and neural network methods 
were then similar to the measurements from Sensor 2, the only properly functioning 
sensor.  These methods are most reliable and robust, however, their applications are 
limited by the availability of truth data.   
In both cases (whether or not data from faulty sensors were included), the fusion 
algorithms generated more accurate outputs than obtained from individual sensors, and 
reduced the number of false-offs, especially for the methods that incorporate knowledge 
about the system or true occupancy data.  However, the number of false-offs was still at 
the scale of tens, which is not acceptable.  Different time delay settings are applied to the 
individually measured and the fused data, and the results are compared in the next section. 

7.3.4 Modeling the effects of different time delays 
Figure 7-6 shows the percent deviation of occupied time from true occupancy, measured 
by each individual sensor at different time delay settings ranging from 5 to 40 minutes.  
Only data from the properly functioning sensors are included.  The curves describing the 
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sensors of the same type are similar, since the data were averaged over all the three 
mounting locations, and the effect of mounting location was eliminated.   
PIR sensors do not pulse continually within each occupied event, so the raw sensor data 
underestimate occupied time (in one case up to 72.1%).  As the modeled time delay was 
increased, the assumed occupied time in the space increased: applying a 20-minute time 
delay to the commercial and wireless sensors, the occupied time increased by 
approximately 20% in both rooms.  For the more sensitive assembled sensors, the 
increment is even larger, at about 40%.  Almost all sensors measured the “correct” 
occupied time (with 0% deviation) with a time delay between 5 and 10 minutes, except 
the most sensitive assembled sensors, which measured the “correct” occupied with a time 
delay less than 5 minutes.  This suggests that a short time delay is possible, with a proper 
data fusion method.   
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Room 1, Commercial 
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Room 1, Assembled 
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Figure 7-6.  Effect of time delay settings on total occupied time determination.  Plots show 

time delay settings of 0, 5, 10, 20, 30, 40 minutes 
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Room 1, Wireless 1 
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Room 1, Wireless 2 
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Figure 7-6.  Effect of time delay settings on total occupied time determination.  Plots show 

time delay settings of 0, 5, 10, 20, 30, 40 minutes (Cont’d) 
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Room 2, Commercial 
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Room 2, Assembled 
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Figure 7-6.  Effect of time delay settings on total occupied time determination.  Plots show 

time delay settings of 0, 5, 10, 20, 30, 40 minutes (Cont’d) 
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Room 2, Wireless 1 

 

 

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45

Time Delay (min)

P
e

rc
e

n
t 

D
e

v
ia

ti
o

n

Wireless 1-1

Wireless 1-2

Wireless 1-3

 
 

Room 2, Wireless 2 
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Figure 7-6.  Effect of time delay settings on total occupied time determination.  Plots show 
time delay settings of 0, 5, 10, 20, 30, 40 minutes (Cont’d) 
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Similar results were observed in the pilot study (as depicted on Figure 5-6, page 49).  The 
pilot study showed that false-offs could not be eliminated with a 5-minute time delay 
(Figure 5-9), so time delays of 5 minutes or less are not recommended in control 
applications.  For the study described in this chapter, only time delay settings greater than 
or equal to 5 minutes were applied.  Figure 7-7 summarizes the effect of time delay 
setting found in both the pilot and round-robin studies.  The figure shows the average 
percent deviation of occupied time from true occupancy as a function of time delay.  
Each line plots average effects across all properly functioning sensors installed in the 
space (i.e., Pilot Study Room 1 was averaged over two functioning sensors; Pilot Study 
Room 2 was averaged over all three installed sensors; Round-robin Study Room 1 was 
averaged over all the 12 commercial, assembled, and wireless sensors for the six-week 
data collection period; Round-robin Study Room 2 was averaged over commercial and 
wireless sensors for the six-week data collection period, but assembled sensors only  for 
the last three weeks of the data collection period). 
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Figure 7-7.  Effect of time delay settings on total occupied time in two studies 

The remainder of this section concludes the analysis of data by comparing the 
performance of data fusion algorithms with shorter time delays of 5 and 10 minutes, 
versus a single sensor with a conventional 20-minute delay, not only in terms of occupied 
time, but also accuracy (ϕ correlation), and the number of false switches.   

 Table 7-10 shows the percent deviation of occupied time that would have resulted had 
these two offices been controlled using a network of three PIR sensors using 5 or 10-
minute time delay settings, versus the operating time that would have been observed 
using a single sensor with a 20-minute time delay.   

In both rooms, the AND rule underestimated the occupied time with 5 and 10-minute 
time delays, and in Room 1, the MAJORITY rule also underestimated the occupied time 
with a 5-minute delay for all except the assembled sensors.   
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In the case of Room 2, Table 7-10 plots the outputs observed when two faulty sensors 
(Assembled 1 and Assembled 3) were providing input to the data stream, showing the 
large difference in the effectiveness of the eight algorithms.  Simple fusion algorithms, 
such as logical functions OR and MAJORITY, moving average and rule-based reasoning 
cannot account for sensor malfunction, and so generate a larger deviation from true 
occupied time. 

Table 7-10  Percent deviation of occupied time from truth of individual sensors with 20-
minute time delays versus fusion algorithm with 5 or 10-minute time delays 

 
The AND function outputs a positive signal only when all sensors pulse, so it generated a 
good result similar to the only functioning sensor (Assembled 2).  The more complicated 
methods, least squares estimation, belief network and neural network methods identify 
faulty sensors, and generate acceptable results (reducing the over 600% deviation to 
around 100%).  The neural network methods only overestimate the occupied time by 
13.8% at 5-minute time delay when majority of the sensors fail, demonstrating superior 
performance in occupancy measurements.   

For functioning sensors, fused results with a short time delay of 5 minutes are always 
closer to the truth, as compared to individual measurements with a long time delay.  The 
percent deviation from truth of fused sensor network data with a 10-minute time delay is 
similar to that of individual sensors with a 20-minute time delay. 

The plots of the percent deviation from true occupied time were complemented by the 
accuracy of each method, as shown in Table 7-11.  When compared with Table 7-10, it is 
clear that the larger the deviation from the truth, the less accurate the method.  
Furthermore, the fused outputs with a 5-minute time delay were slightly more accurate 
than the individual sensors with a 20-minute delay.  When a longer time delay of 10 
minutes was applied to the sensor network data stream, the accuracy generally decreased 
slightly, as compared to fused sensor network data with a 5-minute time delay.  
 

Room 1

Sensor Sensor 1 Sensor 2 Sensor 3

Type +20 +20 +20 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10

Commercial

(6 weeks)

Assembled

(6 weeks)

Wireless 1

(6 weeks)

Wireless 2

(6 weeks)

Room 2

Sensor Sensor 1 Sensor 2 Sensor 3

Type +20 +20 +20 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10

Commercial

(6 weeks)

Assembled

(first 3 weeks)

Assembled

(last 3 weeks)

Wireless 2

(6 weeks)

Wireless 2

(6 weeks)

OR AND MAJORITY Moving Average Rule-Based BN LSE NN

21.9%

35.3%

21.6%

24.5%

22.6%

40.5%

23.8%

21.9%

22.6%

39.2%

27.3%

15.8%

7.4%

18.5%

15.8%

10.3%

19.5%

30.0%

29.6%

25.2%

-41.7%

6.5%

-66.1%

-67.6%

-27.0%

17.7%

-30.6%

-32.6%

-8.7%

12.2%

-15.4%

-15.0%

9.3%

20.7%

4.0%

-3.4%

4.8%

10.9%

0.6%

6.1%

15.4%

20.2%

17.3%

13.9%

0.8%

14.5%

4.3%

7.8%

14.2%

22.5%

9.6%

29%

1.7%

24.3%

6.4%

5.8%

16.0%

35.6%

19.4%

10.7%

7.4%

16.9%

15.4%

9.7%

19.5%

27.3%

29.0%

24.3%

7.4%

15.1%

15.8%

10.3%

19.5%

24.9%

29.6%

25.2%

OR AND MAJORITY Moving Average Rule-Based BN LSE NN

27.6% 27.7% 26.1% 12.1% 18.8% -14.4% 4.5% 8.3% 16.5% 10.4% 16.3% 11.2% 18.0% 10.5% 17.3% 3.7% 9.5% 11.2% 17.9%

678.2% 46.6% 677.2% 673.7% 678.1% 136% 22.3% 631.0% 667.6% 669.5% 677.4% 662.8% 674.2% 60.5% 68.2% 83.3% 122.8% 13.8% 22.7%

27.7% 39.7% 32.3% 17.1% 27.2% 22% 13.3% 9.9% 16.8% 15.0% 17.2% 11.7% 18.3% 10.8% 17.4% 15.2% 25.0% 14.4% 22.5%

24.5% 34.5% 27.3% 17.5% 27.8% -41.0% -20.5% 7.1% 15.5% 15.1% 18.0% 10.1% 17.0% 10.5% 17.9% 15.6% 24.7% 13.9% 23.9%

27.1% 27.9% 18.2% 16.4% 8.1%29.1% -46.0% -26.1% 3.5% 26.6% 17.4% 27.9%30.0% 15.3% 8.0% 15.8% 16.6%13.1% 15.6%
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Table 7-11.  Accuracy (φ) of individual sensors with 20-minute time delays versus fusion 
algorithm with 5 or 10-minute time delays 

 
Another parameter important to justify selection of a fusion algorithm is the number of 
false-offs.  The occupied time relates to the energy savings that could be achieved for a 
given method, while the number of unwanted switch offs while a space is occupied is 
associated with user satisfaction.   
Table 7-12.  Number of false-offs for individual sensors with 20-minute time delays versus 

fusion algorithm with 5 or 10-minute delays 

 

As Table 7-12 shows, the number of false-offs for the fused data with a short time delay 
(5 minutes) is comparable to the number of false-offs observed for single-sensor control 
with a longer time delay (20 minutes).  With a time delay of 10 minutes, all false-offs are 
eliminated for all the fusion methods, except for the logical functions AND and 
MAJORITY.  Since the logical functions AND and MAJORITY underestimate 
occupancy, longer time delays are required to eliminate false-offs, so these two functions 
are not recommended for occupancy sensor data fusion.   

Room 1

Sensor Sensor 1 Sensor 2 Sensor 3

Type +20 +20 +20 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10

Commercial

(6 weeks)

Assembled

(6 weeks)

Wireless 1

(6 weeks)

Wireless 2

(6 weeks)

Room 2

Sensor Sensor 1 Sensor 2 Sensor 3

Type +20 +20 +20 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10

Commercial

(6 weeks)

Assembled

(first 3 weeks)

Assembled

(last 3 weeks)

Wireless 2

(6 weeks)

Wireless 2

(6 weeks)
0.78 0.90 0.770.87 0.90 0.81 0.900.88 0.90 0.82 0.930.77 0.61 0.71 0.920.79 0.81 0.79 0.89

0.91 0.79 0.91 0.790.93 0.83 0.91 0.810.93 0.84 0.91 0.83

0.86 0.91 0.87

0.82 0.81 0.77 0.90 0.77 0.64 0.69

0.89 0.91 0.87 0.910.90 0.91 0.90 0.930.85 0.89 0.88 0.940.84 0.79 0.82 0.90

0.69 0.57 0.93 0.750.05 0.08 0.71 0.620.10 0.36 0.04 0.41

0.90 0.92 0.85

0.01 0.80 0.01 0.03 0.54 0.93 0.76

0.85 0.91 0.85 0.890.86 0.93 0.86 0.920.85 0.79 0.80 0.920.84 0.85 0.84 0.92

Rule-Based BN LSE NNOR AND MAJORITY Moving Average

0.88 0.83 0.87 0.820.74 0.76 0.83 0.820.70 0.75 0.81 0.84

0.83 0.91 0.84

0.72 0.72 0.68 0.87 0.82 0.40 0.47

0.85 0.87 0.79 0.900.86 0.93 0.86 0.910.82 0.90 0.86 0.92

OR AND MAJORITY Moving Average Rule-Based BN LSE NN

0.75 0.75 0.75 0.89 0.86 0.50 0.57 0.76 0.80 0.84 0.85 0.81 0.81 0.85 0.84 0.89 0.86 0.89 0.86

0.81 0.79 0.80 0.89 0.82 0.90 0.86 0.92 0.86 0.93 0.86 0.91 0.85 0.87 0.79 0.90 0.83 0.91 0.84

0.81 0.79 0.80 0.89

Room 1

Sensor Sensor 1 Sensor 2 Sensor 3

Type +20 +20 +20 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10

Commercial

(6 weeks)

Assembled

(6 weeks)

Wireless 1

(6 weeks)

Wireless 2

(6 weeks)

Room 2

Sensor Sensor 1 Sensor 2 Sensor 3

Type +20 +20 +20 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10

Commercial

(6 weeks)

Assembled

(first 3 weeks)

Assembled

(last 3 weeks)

Wireless 2

(6 weeks)

Wireless 2

(6 weeks)
0 0 1 01 0 1 03 0 1 0

0 1 0

1 1 1 0 0 9 4

0 0 0 00 0 0 10 9 4 21 0 1 0

0 0 0 00 0 0 00 0 0 0

0 0 0

0 0 0 0 0 4 2

0 0 0 00 0 0 0

1 0

0 0 0 0 0 0 0 0

1 0 1 01 0 1 0

NN

0 0 1 0 0 9 2 1 0

0 1 0

OR AND MAJORITY Moving Average Rule-Based BN LSE

0 2 0 10 3 0 40 5 2 32 2 2 1

1 0 1 03 0 2 05 0 2 0

0 0 0

1 2 2 1 0 5 2

0 0 0 00 0 0 0

1 0

0 0 0 0 0 1 1 0

2 0 1 02 0 4 0

NN

2 2 1 1 0 6 3 5 3

OR AND MAJORITY Moving Average Rule-Based BN LSE
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Table 7-13. Number of false-ons for individual sensors with 20-minute time delays versus 
fusion algorithm with 5 or 10-minute delays 

 
While minimizing false-offs is key to user satisfaction, false-ons (the number of times 
lights are switched on in an empty space) may also be problematic.  Table 7-13 shows the 
number of false-ons for the fused data with shorter time delays (5 and 10-minutes), 
compared to the number of false-ons observed for single-sensor control with a longer 
time delay (20 minutes). 

In the case of Room 1, if the lighting were controlled by any one of the three individual 
sensors, lights would have been switched on in an empty space for an additional 20 
minutes (all sensor types showed one false-on, and the lights would have remained 
switched on for the duration of the 20 minute time delay setting).  This would have been 
exceeded by only one of the fusion algorithms (OR+10 minutes), which would have left 
the lights on in an empty space for 30 minutes, a ten minute increase.  Room 2 included 
sensors that did not function properly: if these had been controlling the lights, there 
would have been numerous false-ons, with concomitant increase in light use.  However, 
one benefit of a sensor network is that it can diagnose faulty sensors.  Ignoring data from 
faulty sensors in this room shows that if the lighting were controlled by one of the 
individual sensors, the lights would have been switched on in an empty space for an 
additional 40 minutes (two false-ons for Assembled Sensor 2 at 20 minutes each).  None 
of the fusion algorithms applied to the sensor network data would have resulted in the 
lights being switched on in a vacant space for this length of time. 

Table 7-14 and Table 7-15 show the percentage reductions in system use (characterized 
by occupied time) by applying 5 or 10-minute time delays, versus a single sensor with a 
20-minute delay.  The comparisons are carried out between the maximum occupied time 
measured by an individual sensor, and the occupied time after application of each fusion 
algorithm.  The logical functions AND and MAJORITY have not been included since 
their application does not correspond well with measured occupancy, and they are not 
recommended for use in control applications.   

Room 1

Sensor Sensor 1 Sensor 2 Sensor 3

Type +20 +20 +20 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10

Commercial

(6 weeks)

Assembled

(6 weeks)

Wireless 1

(6 weeks)

Wireless 2

(6 weeks)

Room 2

Sensor Sensor 1 Sensor 2 Sensor 3

Type +20 +20 +20 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10 +5 +10

Commercial

(6 weeks)

Assembled

(first 3 weeks)

Assembled

(last 3 weeks)

Wireless 2

(6 weeks)

Wireless 2

(6 weeks)
2 3 20 1 0 20 3 1 02 0 0 01 1 1 3

2 1 2 20 0 1 00 0 3 1

2 2 1

0 1 1 3 2 0 0

0 1 0 20 3 0 03 0 0 00 2 1 3

16 10 2 19 2 3 124 5 8 1

0 0 0

0 1 1 4 1 1 1

0 0 0 00 1 0 00 0 0 00 0 0 1

Rule-Based BN LSE NNOR AND MAJORITY Moving Average

2 2 2 20 0 0 00 0 1 1

2 2 2

1 1 1 2 2 0 0

0 1 1 20 1 1 02 0 0 00 1 1 2

2 2 1 11 1 2 21 1 1 1

0 0 0

1 1 1 3 3 0 0

0 0 0 00 0 0 00 0 0 00 0 0 0

Rule-Based BN LSE NNOR AND MAJORITY Moving Average
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Table 7-14 models the reductions in occupied time that would have been achieved had 
these two offices been controlled using a network of three PIR sensors using a 5-minute 
time delay setting, versus the operating time that would have been observed using a 
single sensor with a 20-minute time delay.  Table 7-14 shows that using an output from a 
sensor network for system control would have produced reductions in system use, 
relative to what would have been observed if the systems in these offices were controlled 
using single points of detection (differences between the sensor network +5 minutes 
signal and the maximum observed for the three individual sensors +20 minutes range 
from -12.3% to -17.0%).   
Table 7-14.  Total occupied time (min) and percent reductions in cumulative occupied time 
between sensor network outputs plus 5-minute time delay, versus the maximum occupied 

time determined by individual sensor plus 20-minute time delay  

Group

Max of 

Individual 

Sensor 

+20

OR +5

Moving 

Average 

+5

Rule-

Based 

+5

BN +5 LSE +5 NN +5 OR +5

Moving 

Average 

+5

Rule-

Based 

+5

BN +5 LSE +5 NN +5

Commercial 

 (6 weeks) 394.9 345.9 337.6 324.7 327.4 345.9 345.9 -12.4% -14.5% -17.8% -17.1% -12.4% -12.4%

Assembled 

 (6 weeks) 452.6 381.5 357.1 368.7 400.2 376.6 370.8 -15.7% -21.1% -18.5% -11.6% -16.8% -18.1%

Wireless 1  

(6 weeks) 409.8 372.8 324.1 335.9 342.6 371.5 372.8 -9.0% -20.9% -18.0% -16.4% -9.3% -9.0%

Wireless 2  

(6 weeks) 400.9 355.2 341.7 347.1 340.7 353.2 355.2 -11.4% -14.8% -13.4% -15.0% -11.9% -11.4%

Commercial  

(6 weeks) 334.6 293.6 289.3 291.3 289.5 271.7 291.4 -12.2% -13.5% -12.9% -13.5% -18.8% -12.9%

Assembled 
(1)  

(first 3 weeks) 1439.6 1431.3 1423.6 1411.1 296.9 339.1 210.6 -0.6% -1.1% -2.0% -79.4% -76.4% -85.4%

Assembled  

(last 3 weeks) 473.7 397.1 389.8 378.7 375.7 390.4 387.7 -16.2% -17.7% -20.1% -20.7% -17.6% -18.2%

Wireless 1 

 (6 weeks) 352.4 307.9 301.7 288.4 289.5 303.0 298.5 -12.6% -14.4% -18.2% -17.9% -14.0% -15.3%

Wireless 2 

 (6 weeks) 340.6 309.6 302.8 283.1 283.0 305.6 307.7 -9.1% -11.1% -16.9% -16.9% -10.3% -9.7%

Average -12.3% -16.0% -17.0% -16.1% -13.9% -13.4%

R
o

o
m

 1
R

o
o

m
 2

Occupied Time (minutes) Percent Reduction

 
(1) Data from assembled sensors during the first 3 weeks were not included in the average calculation. 

Table 7-15 models the reductions in occupied time that would have been achieved had 
these two offices been controlled using a network of three PIR sensors using a 10-minute 
time delay setting, versus the operating time that would have been observed using a 
single sensor with a 20-minute time delay.  Table 7-15 shows that using an output from a 
sensor network for system control would have also produced reductions in system use, 
relative to what would have been observed if the systems in these offices were controlled 
using single points of detection (differences between the sensor network +10 minutes 
signal and the maximum observed for the three individual sensors +20 minutes range 
from -3.6% to -12.3%).   
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Table 7-15.  Total occupied time (min) and percent reductions in cumulative occupied time 
between sensor network outputs plus 10-minute time delay, versus the maximum 

occupied time determined by individual sensor plus 20-minute time delay  

Group

Max of 

Individual 

Sensor 

+20

OR +10

Moving 

Average 

+10

Rule-

Based 

+10

BN +10
LSE 

+10
NN +10 OR +10

Moving 

Average 

+10

Rule-

Based 

+10

BN +10
LSE 

+10
NN +10

Commercial 

 (6 weeks) 394.9 384.9 371.7 367.7 373.4 384.9 384.9 -2.5% -5.9% -6.9% -5.5% -2.5% -2.5%

Assembled 

 (6 weeks) 452.6 418.6 386.9 394.6 436.7 409.9 402.1 -7.5% -14.5% -12.8% -3.5% -9.4% -11.2%

Wireless 1  

(6 weeks) 409.8 417.4 377.7 352.9 384.5 415.3 417.4 1.9% -7.8% -13.9% -6.2% 1.3% 1.9%

Wireless 2  

(6 weeks) 400.9 403.3 366.8 331.2 356.3 400.2 403.3 0.6% -8.5% -17.4% -11.1% -0.2% 0.6%

Commercial  

(6 weeks) 334.6 311.4 304.7 309.3 307.4 286.8 308.8 -6.9% -8.9% -7.6% -8.1% -14.3% -7.7%

Assembled 
(1)  

(first 3 weeks) 1439.6 1439.4 1438.1 1432.2 311.2 412.3 227.1 0.0% -0.1% -0.5% -78.4% -71.4% -84.2%

Assembled  

(last 3 weeks) 473.7 431.3 397.3 400.9 397.9 423.9 415.4 -9.0% -16.1% -15.4% -16.0% -10.5% -12.3%

Wireless 1 

 (6 weeks) 352.4 334.9 309.1 306.6 308.8 326.6 324.7 -5.0% -12.3% -13.0% -12.4% -7.3% -7.9%

Wireless 2 

 (6 weeks) 340.6 338.2 304.9 302.0 303.0 331.6 335.2 -0.7% -10.5% -11.3% -11.0% -2.6% -1.6%

Average -3.6% -10.6% -12.3% -9.2% -5.7% -5.1%

Occupied Time (minutes) Percent Reduction

R
o

o
m

 1
R

o
o

m
 2

 
(1) Data from assembled sensors during the first 3 weeks were not included in the average calculation. 

The savings that result from the sensor network with a 10-minute time delay are less than 
those from the system with a shorter 5-minute time delay, the 10-minute time delay 
eliminates false-offs. 
Table 7-16 compares the measured occupied time of sensors and data fusion with no time 
delay, while  Table 7-17 shows the same data compared to the actual occupied time 
(“Truth).  As previously noted, these data show that most individual sensors underpredict 
occupied time, with the exception of the assembled sensors.  We have previously 
speculated that this may be due to an artifact of the data processing, or the fact that all the 
other sensors have been designed to be less sensitive (to avoid false-ons), since they are 
all commercially available products. 
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Table 7-16. Total occupied time (min) and percent differences in cumulative occupied time 
between sensor network outputs versus the maximum occupied time determined by 

individual sensors 

 (1) Data from assembled sensors during the first 3 weeks were not included in the average calculation. 

Table 7-17. Total occupied time (min) and percent differences in cumulative occupied time 
between sensor network outputs versus the true occupied time 

(1) Data from assembled sensors during the first 3 weeks were not included in the average calculation. 

 

 

 

Group

Max of 

Individual 

Sensor

OR
Moving 

Average

Rule-

Based
LSE BN NN OR

Moving 

Average

Rule-

Based
LSE BN NN

Commercial 

 (6 weeks) 134.3 201.4 258.2 215.6 201.0 225.5 201.1 50.0% 92.3% 60.6% 49.6% 67.9% 49.8%

Assembled 

 (6 weeks) 301.9 325.2 341.8 334.0 323.9 344.6 320.7 7.7% 13.2% 10.6% 7.3% 14.1% 6.2%

Wireless 1 

(6 weeks) 132.6 216.4 282.9 218.6 215.3 248.1 216.4 63.1% 113.3% 64.8% 62.3% 87.0% 63.1%

Wireless 2 

(6 weeks) 126.0 192.4 258.6 188.0 191.4 214.0 192.4 52.7% 105.2% 49.2% 51.8% 69.8% 52.7%

Commercial  (6 

weeks) 199.4 241.5 266.0 271.9 223.4 257.1 238.6 21.1% 33.4% 36.4% 12.1% 28.9% 19.7%

Assembled*  

(first 3 weeks) 1028.0 1097.7 1293.0 1230.4 211.7 271.0 179.1 6.8% 25.8% 19.7% -79.4% -73.6% -82.6%

Assembled  (last 

3 weeks) 333.7 347.8 362.6 351.5 345.0 345.1 342.9 4.2% 8.7% 5.3% 3.4% 3.4% 2.8%

Wireless 1 

 (6 weeks) 168.6 238.9 271.4 256.0 235.6 255.5 218.6 41.7% 61.0% 51.9% 39.8% 51.6% 29.7%

Wireless 2 

 (6 weeks) 159.6 232.2 268.6 247.2 229.7 246.2 230.6 45.5% 68.3% 54.9% 44.0% 54.3% 44.5%

Average 35.8% 61.9% 41.7% 33.8% 47.1% 33.6%

R
o
o
m

 1
R

o
o
m

 2

Occupied Time (minutes) Percent Difference

Group Truth OR
Moving 

Average

Rule-

Based
LSE BN NN OR

Moving 

Average

Rule-

Based
LSE BN NN

Commercial 

 (6 weeks) 322 201.4 258.2 215.6 201.0 225.5 201.1 -37.4% -19.8% -33.0% -37.6% -30.0% -37.5%

Assembled 

 (6 weeks) 322 325.2 341.8 334.0 323.9 344.6 320.7 1.0% 6.2% 3.7% 0.6% 7.0% -0.4%

Wireless 1 

(6 weeks) 322 216.4 282.9 218.6 215.3 248.1 216.4 -32.8% -12.1% -32.1% -33.1% -23.0% -32.8%

Wireless 2 

(6 weeks) 322 192.4 258.6 188.0 191.4 214.0 192.4 -40.2% -19.7% -41.6% -40.6% -33.5% -40.2%

Commercial 

 (6 weeks) 262 241.5 266.0 271.9 223.4 257.1 238.6 -7.8% 1.5% 3.8% -14.7% -1.9% -8.9%

Assembled*  

(first 3 weeks) 185 1097.7 1293.0 1230.4 211.7 271.0 179.1 493.4% 598.9% 565.1% 14.4% 46.5% -3.2%

Assembled  

(last 3 weeks) 339 347.8 362.6 351.5 345.0 345.1 342.9 2.6% 7.0% 3.7% 1.8% 1.8% 1.2%

Wireless 1 

 (6 weeks) 262 238.9 271.4 256.0 235.6 255.5 218.6 -8.8% 3.6% -2.3% -10.1% -2.5% -16.6%

Wireless 2 

 (6 weeks) 262 232.2 268.6 247.2 229.7 246.2 230.6 -11.4% 2.5% -5.6% -12.3% -6.0% -12.0%

Average -16.9% -3.9% -12.9% -18.3% -11.0% -18.4%
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Occupied Time (minutes) Percent Difference
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The intent of the data and analyses described throughout this report is to show benefits of 
networking versus single sensors.  Table 7-18 and Table 7-19 show the true occupied 
time (in minutes) and the increases in occupied time that would result from sensor 
network control with 5 and 10-minute time delay settings.  These data characterize the 
increases in light use that would be observed in the case of a retrofit from no occupancy 
detection to a networked sensor system, rather than an upgrade from a single detector to a 
networked system.  
Table 7-18. Total occupied time (min) and percent differences in cumulative occupied time 
between sensor network outputs plus 5-minute time delay versus the true occupied time 

(1) Data from assembled sensors during the first 3 weeks were not included in the average calculation. 

Group Truth OR +5

Moving 

Average 

+5

Rule-

Based 

+5

BN +5 LSE +5 NN +5 OR +5

Moving 

Average 

+5

Rule-

Based 

+5

BN +5 LSE +5 NN +5

Commercial 

 (6 weeks) 322 345.9 337.6 324.7 327.4 345.9 345.9 7.4% 4.8% 0.8% 1.7% 7.4% 7.4%

Assembled 

 (6 weeks) 322 381.5 357.1 368.7 400.2 376.6 370.8 18.5% 10.9% 14.5% 24.3% 16.9% 15.1%

Wireless 1 

(6 weeks) 322 372.8 324.1 335.9 342.6 371.5 372.8 15.8% 0.6% 4.3% 6.4% 15.4% 15.8%

Wireless 2 

(6 weeks) 322 355.2 341.7 347.1 340.7 353.2 355.2 10.3% 6.1% 7.8% 5.8% 9.7% 10.3%

Commercial  (6 

weeks) 262 293.6 289.3 291.3 289.5 271.7 291.4 12.1% 10.4% 11.2% 10.5% 3.7% 11.2%

Assembled (1)  

(first 3 weeks) 185 1431.3 1423.6 1411.1 296.9 339.1 210.6 673.7% 669.5% 662.8% 60.5% 83.3% 13.8%

Assembled  

(last 3 weeks) 339 397.1 389.8 378.7 375.7 390.4 387.7 17.1% 15.0% 11.7% 10.8% 15.2% 14.4%

Wireless 1 

 (6 weeks) 262 307.9 301.7 288.4 289.5 303.0 298.5 17.5% 15.1% 10.1% 10.5% 15.6% 13.9%

Wireless 2 

 (6 weeks) 262 309.6 302.8 283.1 283.0 305.6 307.7 18.2% 15.6% 8.1% 8.0% 16.6% 17.4%

Average 14.6% 9.8% 8.6% 9.7% 12.6% 13.2%

Occupied Time (minutes) Percent Difference
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Table 7-19. Total occupied time (min) and percent differences in cumulative occupied time 
between sensor network outputs plus 10-minute time delay versus the true occupied time 

(1) Data from assembled sensors during the first 3 weeks were not included in the average calculation. 
Finally, Table 7-20 shows the minimum time delay settting at which false-offs were 
eliminated for all sensor types and fusion methods.  In all cases the time delay was less 
than 10 minutes, considerably less than used in current systems. 

Table 7-20.  Minimum time delay at which false-offs are eliminated and corresponding 
occupied time (min), and percent difference from truth 

(1) Data from assembled sensors during the first 3 weeks were not included in the average calculation. 

 

Group Truth OR +10

Moving 

Average 

+10

Rule-

Based 

+10

BN +10 LSE +10 NN +10 OR +10

Moving 

Average 

+10

Rule-

Based 

+10

BN +10 LSE +10 NN +10

Commercial 

 (6 weeks) 322 384.9 371.7 367.7 373.4 384.9 384.9 19.5% 15.4% 14.2% 16.0% 19.5% 19.5%

Assembled 

 (6 weeks) 322 418.6 386.9 394.6 436.7 409.9 402.1 30.0% 20.2% 22.5% 35.6% 27.3% 24.9%

Wireless 1 

(6 weeks) 322 417.4 377.7 352.9 384.5 415.3 417.4 29.6% 17.3% 9.6% 19.4% 29.0% 29.6%

Wireless 2 

(6 weeks) 322 403.3 366.8 331.2 356.3 400.2 403.3 25.2% 13.9% 2.9% 10.7% 24.3% 25.2%

Commercial  (6 

weeks) 262 311.4 304.7 309.3 307.4 286.8 308.8 18.8% 16.3% 18.0% 17.3% 9.5% 17.9%

Assembled (1)  

(first 3 weeks) 185 1439.4 1438.1 1432.2 311.2 412.3 227.1 678.1% 677.4% 674.2% 68.2% 122.8% 22.7%

Assembled  

(last 3 weeks) 339 431.3 397.3 400.9 397.9 423.9 415.4 27.2% 17.2% 18.3% 17.4% 25.0% 22.5%

Wireless 1 

 (6 weeks) 262 334.9 309.1 306.6 308.8 326.6 324.7 27.8% 18.0% 17.0% 17.9% 24.7% 23.9%

Wireless 2 

 (6 weeks) 262 338.2 304.9 302.0 303.0 331.6 335.2 29.1% 16.4% 15.3% 15.6% 26.6% 27.9%

Average 25.9% 16.8% 14.7% 18.7% 23.2% 23.9%

Occupied Time (minutes) Percent Difference
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Occupied 

Time (min)
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Time (min)
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Min 

Time 

Delay

Occupied 

Time (min)
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Diff.

Min 

Time 

Delay

Occupied 

Time (min)

Pct. 

Diff.

Min 

Time 

Delay

Occupied 

Time (min)

Pct. 

Diff.

Commercial 

 (6 weeks) 322 8 352.0 9.3% 8 344.3 6.9% 7 339.4 5.4% 6 349.8 8.6% 7 367.0 14.0% 9 346.1 7.5%

Assembled 

 (6 weeks) 322 2 338.7 5.2% 2 342.1 6.2% 2 335.1 4.1% 1 325.1 0.9% 3 359.3 11.6% 2 365.4 13.5%

Wireless 1 

(6 weeks) 322 7 381.6 18.5% 8 347.8 8.0% 8 352.0 9.3% 9 360.9 12.1% 7 386.8 20.1% 7 383.2 19.0%

Wireless 2 

(6 weeks) 322 9 401.0 24.5% 9 354.8 10.2% 6 337.3 4.8% 8 345.4 7.3% 8 384.8 19.5% 8 379.3 17.8%

Commercial  (6 

weeks) 262 6 293.8 12.1% 8 296.2 13.0% 9 300.9 14.9% 9 289.8 10.6% 8 273.7 4.5% 7 300.8 14.8%

Assembled (1)  

(first 3 weeks) 185 1 1206.2 552.0% 0 1301.1 603.3% 0 1280.0 591.9% 1 222.5 20.3% 2 272.4 47.2% 1 185.6 0.3%

Assembled  (last 

3 weeks) 339 1 363.6 7.2% 1 380.5 12.2% 1 364.4 7.5% 3 366.5 8.1% 1 364.9 7.7% 4 380.2 12.2%

Wireless 1 

 (6 weeks) 262 9 315.0 20.2% 7 304.9 16.4% 7 301.2 14.9% 8 297.1 13.4% 7 326.2 24.5% 9 303.6 15.9%

Wireless 2 

 (6 weeks) 262 8 332.6 26.9% 8 304.5 16.2% 8 301.2 15.0% 6 294.4 12.4% 8 331.4 26.5% 9 324.2 23.8%

Average 15.5% 11.2% 9.5% 9.2% 16.0% 15.5%
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7.4 Discussion 
The goals of the study described in this chapter were to explore the sources of variation 
among sensor measurements and confirm the advantages of a sensor network versus 
single sensors in terms of accuracy and reduced system operating time. 

Both mounting position and sensor type were shown to have significant effects on 
measured occupancy.  When sensors were mounted on the North wall, where they were 
furthest from the normal sitting position of the occupant, they pulsed less frequently than 
in the other two mounting locations, although the occupant position was always within 
the coverage area claimed for the sensor at all mounting locations.  This indicates that 
since sensors are less sensitive as the distance between the sensor and the target increases, 
mounting position will be critical to sensor performance. 
Manufacturers of occupancy sensors rarely address the importance of mounting location.  
Most previous research concluded that commissioning and tuning were necessary to 
ensure the best performance19, 45, 48, 44, but the mounting location of sensors in these 
studies, and indeed in practice, is quite arbitrary.  A point that can “see” the whole 
controlled space is usually randomly selected, and the mounting location remains static.  
Past research and application has assumed that measured occupancy would not vary with 
mounting position; however, these results clearly show that mounting position can have a 
significant effect on measured occupancy, even in small enclosed office spaces. 

We utilized three types of sensors in this study, and only the assembled sensors were 
significantly more sensitive than the other sensors.  The commercial and wireless sensors 
used in this study were less sensitive than the assembled sensors; it is possible they were 
designed deliberately to reduce false-ons.  Most of the time they only respond to middle 
and large movements, ignoring small but typical office movements such as typing, 
reading, and even hand waving.  The commercial and wireless sensors are therefore 
prone to false-offs, and as such these individual sensors will require long time delay 
settings.  

These results confirm that a sensor network provides superior occupancy detection.  
When all sensors function properly, a simple algorithm, such as logical function OR will 
provide a reasonably accurate prediction of occupancy, and the network performance will 
always be better than that provided by any individual sensor.  The AND and MAJORITY 
functions always underestimate occupancy, and both functions are not recommended for 
use in a sensor network analysis algorithm. 

Moving average and rule-based reasoning yielded similar results in total occupied time.  
These two methods were better at reducing false-ons since they considered the 
persistence of sensor performance to some extent.  Neither the logical functions, nor the 
moving average, nor rule-based reasoning methods, include the ability to handle faulty 
sensor data. These simple algorithms will fail to determine occupancy accurately if one or 
more of the sensors in a network are not functioning properly.  

Least squares estimation and neural networks are able to “learn” from true occupancy 
data, and can provide good results even in cases of sensor failure.  However, pre-existing 
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occupancy data are needed to “train” new systems, which is usually not available in real 
applications. 
Bayesian belief networks, which define the relationships between variables and the 
conditional probabilities associated with each variable, such as the sensor pulsing 
probability given different time of day and sensor status, can also identify abnormally 
behaving sensors.   
The least squares estimation and neural network methods identify defective sensors based 
on the large differences between that sensor measurement and the truth, while the belief 
network identifies the abnormally behaved sensors based on predefined conditional 
probabilities.  Thus the effectiveness of the belief network will depend on the accuracy of 
the defined sensor model. 

If occupancy is more accurately determined, it is possible to apply shorter time delay and 
achieve greater savings.  Data described here showed that with a time delay of 5 minutes, 
the outputs from the sensor network were more accurate than those of individual sensors 
with a 20-minute time delay, and produced a similar number of false-offs.  By switching 
from the single-detector based system to the sensor network with 5-minute time delay, 
with the same level of user satisfaction, a reduction of 12.3% to 17.0% in system use 
could be achieved.  If a time delay of 10 minutes was applied to the sensor network, all 
the false-offs could be eliminated by the data fusion methods, and a reduction of 3.6% to 
12.3% was possible.  Although these reductions are not as large as the percentages 
calculated from the second study (Chapter 6), which showed reductions of 22.4% to 
33.3% at 5-minute time delay and 8.4% to 24.7% at 10-minute time delay, they are also 
remarkable since they are in addition to the savings already achieved by the application 
of single sensor. 
The next chapter describes the implementation of a prototype sensor network for lighting 
control in a small sample of work areas. 
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8 A Prototype Sensor Network for Lighting 
Control 

8.1 Introduction 
The final phase of the project involved the development and application of a prototype 
sensor network lighting control system.  The sensor network is expected to allow for 
more accurate switching because it measures occupancy more accurately than any 
individual sensor.  Improved accuracy means that the time delay parameter used to 
specify when the lights are switched off in an empty space can be shortened. 
A control system was implemented based on the same home automation technologies 
used to collect the occupancy data described in previous chapters.  This solution 
supplemented the wireless occupancy sensors with additional power control modules that 
were individually addressed and switched in response to signals from the wireless 
occupancy sensors used in previous phases of the project. 

8.2 Methods and Procedures 
Space occupancy was monitored using three wireless passive infrared (PIR) occupancy 
detectors (Activehome X10 model RMS18), each sensor facing the customarily occupied 
area in the controlled space.  Wireless signals transmitted by these sensors were received 
using a Power Linc Model 1132 CU Controller, connected to a personal computer via an 
RS232 serial to USB computer interface.  This unit was capable of receiving occupancy 
signals, and sending powerline carrier control signals to switch power on and off to 
connected luminaires. 

The alphanumeric addresses associated with pulses from wireless sensors received in 
response to space occupancy were recorded on a personal computer using a commercially 
available home automation software package called Indigo, which runs under the Apple 
Macintosh OS X operating system.  For the purposes of subsequent analyses, the raw log 
files were converted to one-minute resolution time series data: if a signal from a PIR 
sensor was logged “ON” for a particular time within a minute, the sensor output of that 
minute was considered ON and coded as “1”.  Otherwise, the sensor status was coded as 
“0”, indicating no signal was received or an “OFF” signal was received from the detector 
for that minute. 
Besides recording occupancy data, features of the Indigo home automation software 
package were used to switch power to a single luminaire using the sensor network data 
stream as the basis for the control signal.  A single luminaire was powered using an X10 
plug-in module (3-pin Appliance Module Model AM466), which was in turn connected 
to the same electrical circuit into which the wireless interface was plugged and powered. 
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Indigo was configured to send a signal to switch off power to the luminaire module three 
minutes after the sensor network data stream indicated that the room was vacant. 
Light usage in each room was monitored using commercially available HOBO U9 Light 
On/Off data loggers from Onset Computer Corporation (Figure 8-1).  These relatively 
small and compact devices (1.8 x 2.38 x 0.77 inches) are intended for mounting in close 
proximity to a light source.  A light sensitive detector protrudes from one side of the 
device (circled in the figure), and is used to detect the time associated with changes in the 
state of the light source.  The time associated with every state change was recorded to the 
logger onboard memory.  A USB interface cable is used to download the raw state 
change data to a personal computer for further analysis.  For the purposes of this analysis, 
the raw log file was converted to one-minute resolution time series data.  The status of 
the lighting system being monitored by a lighting logger was coded as “ON” (with a 
value of “1”), for all minutes after the light was switched “ON” until the raw log file 
indicated that the state of the light sensor changed to the “OFF” condition.  All other 
minutes were coded as “0”, indicating that the light being monitored was switched off 
during these minutes. 

 

Figure 8-1.  Lighting data logger 

Three rooms were included in this study.  Each room incorporated different lighting 
systems, as follows.  Room 1 was illuminated by two independent systems: a recessed 
ceiling-mounted direct-indirect fluorescent system provided ambient lighting; this system 
was complemented by a halogen wall-wash system that provided accent lighting along 
one wall.  The second room was illuminated by four independent lighting systems.  
Ambient illumination was provided by a suspended direct fluorescent system.  A halogen 
wall-wash system providing accent lighting along one wall complemented this system.  
This room also incorporated two additional lighting systems that were designed to 
showcase features of the ceiling and plenum, using two independently controlled indirect 
fluorescent systems.  All illumination in the third room was provided by a suspended 
direct fluorescent system.  In the case of rooms with more than one lighting system, light 
use was coded as “ON” if any of the systems in the room were switched on.  Lighting 
control in all three rooms was provided by manual wall switches; a time clock system in 
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the second room automatically turned the lights on and off at specific times throughout 
the day. 
Occupancy and light usage were monitored in these spaces for about 1 month during the 
spring of 2007.  The number of days each room was monitored differed slightly, as 
follows: room 1, 47 days; room 2, 31 days; room 3, 38 days.  

After the initial monitoring period, our original plan had been to implement sensor 
network lighting control in each room, but the control system did not perform reliably 
enough to be installed in all three rooms, despite a period of apparently successful 
laboratory bench testing.  When the system was initially installed in two of the three 
rooms, repeated episodes of power cycling to the controlled luminaires in both rooms 
were observed, in which the control system repeatedly switched the luminaire on and off: 
this was only remedied by turning off all power to the system, and then turning it back on 
again.  In addition, on two separate mornings the occupant of one room arrived to find the 
lights switched on: further examination of the log files revealed that the lights had been 
switched on late the previous evening and they had remained on overnight, despite the 
fact that the room was unoccupied during the overnight period.  In these cases, manually 
switching the luminaire on and off was sufficient to correct the problem. 

As a result of these performance failures, the decision was made to implement the sensor 
network lighting control system in only one room, and monitor occupancy and light 
usage in this space for another month.  Data collection continued in the other two spaces, 
and the sensor network lighting control policy was applied to the occupancy and light 
usage data, to outline the usage patterns that would have arisen in these spaces if the 
lighting systems had been controlled by sensor network as well. 
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8.3 Results 
Table 8-1 summarizes occupancy and light usage collected from the three rooms prior to 
the installation of the sensor network. 

Table 8-1.  Occupancy and light use in three rooms over about one month 

(A) Room 1 (47 days) 

Condition Minutes Percent Total 

Empty, Lights Off 61263 91 

Empty, Lights On 2893 4.3 

Occupied, Lights Off 2017 3 

Occupied, Lights On 1507 2.2 

 (B) Room 2 (31 days) 

Condition Minutes Percent Total 

Empty, Lights Off 36900 82.7 

Empty, Lights On 3436 7.7 

Occupied, Lights Off 873 2 

Occupied, Lights On 3431 7.7 

(C) Room 3 (38 days) 

Condition Minutes Percent Total 

Empty, Lights Off 53353 97.5 

Empty, Lights On 620 1.1 

Occupied, Lights Off 179 0.3 

Occupied, Lights On 568 1 

Occupancy and light use in all three rooms was very low, which as we have previously 
discussed is due to the fact that the rooms were occupied by university faculty and staff, 
who have more flexible schedules than other office workers and spend large portions of 
their days in classrooms teaching or in laboratories. 
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Table 8-2 summarizes occupancy and light usage observed in Room 1 after the sensor 
network was installed to control one of the luminaires in the room.  Even though 
monitoring in the space continued for a month, actual occupancy and light usage were 
observed in the space for only 19 days over the course of the month. 

Table 8-2.  Room 1 occupancy and lighting use (19 days) 

Condition Minutes Percent Total 

Empty, Lights Off 25696 93.9 

Empty, Lights On 451 1.6 

Occupied, Lights Off 1000 3.7 

Occupied, Lights On 213 0.8 

Occupied 1213 4.4 

Sensor Network 1388 5.1 

Lights 664 2.4 

In this case, the luminaire controlled by the sensor network remained switched on for 
slightly more than twice the time than any of the manually controlled lights in the room 
were illuminated (the luminaire controlled by the sensor network was switched on for 
1,388 minutes, while the manually controlled luminaires were switched on for 664 
minutes.  Nevertheless, this somewhat unexpected result at least demonstrated that the 
sensor network was able to closely tailor the lighting use to actual occupancy, because 
the usage time (at 1,388 minutes) is relatively close to the occupied time (at 1,213 
minutes). 
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Table 8-3 shows occupancy and light usage data in Room 2 observed in the second 
monitoring period. 

Table 8-3.  Room 2 occupancy and lighting use (32 days) 

Condition Minutes Percent Total 

Empty, Lights Off 30076 65.3 

Empty, Lights On 11893 25.8 

Occupied, Lights Off 521 1.1 

Occupied, Lights On 3590 7.8 

Occupied 4111 8.9 

Sensor Network 4363 9.5 

Sensor Network + 5 Minutes 4426 9.6 

Sensor Network + 10 Minutes 4712 10.2 

Sensor Network + 20 Minutes 5207 11.3 

Sensor Network + 30 Minutes 5596 12.1 

Lights 15483 33.6 

The lights in this room remained switched on even though the space was empty for a 
significant portion of the monitored period (nearly 26%).  Modeling shows that in this 
case application of the sensor network to control the lighting with a 5 or 10 minute time 
delay would have resulted in less than a 2% increase (from 8.9% to 10.2%, with a 10-
minute time delay applied to the sensor network data).  This small increase contrasts with 
the light usage of nearly 34% (of which nearly 26% occurred in an empty space.  Hence, 
if a sensor network with a 10 minute time delay had controlled the lights in this space, 
light usage would have been reduced by about 46% ([11,893-4,712]/15,483). 

Table 8-4 shows occupancy and light usage data in Room 3 observed in the second 
monitoring period. 
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Table 8-4.  Room 3 occupancy and lighting use (33 days) 

Condition Minutes Percent Total 

Empty, Lights Off 44896 94.5 

Empty, Lights On 530 1.1 

Occupied, Lights Off 504 1.1 

Occupied, Lights On 1590 3.3 

Occupied 2094 4.4 

Sensor Network 2306 4.9 

Sensor Network + 5 Minutes 2354 5.0 

Sensor Network + 10 Minutes 2585 5.4 

Sensor Network + 20 Minutes 2975 6.3 

Sensor Network + 30 Minutes 3311 7.0 

Lights 2120 4.5 

Occupants in this room used the manual control effectively, as the lights were switched 
on just slightly longer than the time that the room was occupied (lights on for 2,120 
minutes, room occupied for 2,094 minutes).  Therefore, applying the sensor network 
control policy to the lighting in the space would have resulted in small increases to the 
lighting use. 
Finally, modeled light usage that would have prevailed with sensor network lighting 
control in the room containing the 23 cubicle workstations (open-plan work area studied 
at the University of Nebraska, monitored for 63 days, and described in Chapter 6) is 
described in Table 8-5.  In this room, application of sensor network lighting control with 
a 5 minute time delay would have increased light usage by just over 10%; a 20 minute 
time delay would have increased light usage by about third, and a 30 minute time delay 
applied to the occupancy data collected in this space would have increased light usage by 
42.5%.  A very short time delay could have been applied in this space, because the room 
was monitored by 69 independent detectors (3 in each of the 23 cubicle workstations 
located in the room). 
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Table 8-5.  Modeled light usage under sensor network lighting control in room containing 
23 cubicle workstations lighting use (63 days) 

Condition Minutes Percent Total 

Occupied 26848 N/A 

Sensor Network 29476 9.8 

Sensor Network + 5 Minutes 29945 11.5 

Sensor Network + 10 Minutes 32077 19.5 

Sensor Network + 20 Minutes 35536 32.4 

Sensor Network + 30 Minutes 38267 42.5 

8.4 Discussion 
The results of this phase of the project were disappointing.  The prototype sensor network 
developed to control the lighting did not function well enough to deploy in more than one 
space, and in this space, lighting control by sensor network showed an increase relative to 
use of the manually switched luminaires that were available to the occupant.  This finding 
was at least in part due to the fact that the study was carried out during the summer 
months, when plentiful daylight was available in the monitored space, and the occupant 
did not use the manually switched luminaires.  Nevertheless this unexpected result at 
least demonstrated that the sensor network was able to tailor the lighting use to actual 
occupancy. 

Savings from the application of any lighting control strategy will only accrue if the lights 
remain switched on in an empty space.  Few savings were observed in the two rooms that 
had low occupancy and lighting use, whereas larger savings were modeled for the room 
in which the lights remained switched on for long time periods even though the space 
was empty.  Thus, we conclude from these results that a compelling demonstration of the 
actual benefits of sensor network control of lighting in a real application is still needed. 

8.5 Future Work 
When this project was proposed in 2002, our goal was to improve the performance of 
occupancy sensing control systems through the application of more extensive sensing.  
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The results reported in earlier chapters of the document show that more extensive sensing 
leads to more accurate measurement of occupancy.  As a result, the time delay applied by 
occupancy sensing control systems to switch off systems can be shortened, leading to 
greater potential savings than can be achieved using current control systems. 
The time delay parameter is the key to system performance and savings.  In current 
systems, the time delay is manually set (usually using dip switches on the sensor itself) at 
installation, and thereafter remains unchanged.  In rare occasions, the time delay setting is 
adjusted as part of post-installation commissioning, but even in these cases the time delay 
setting remains unchanged after commissioning has been completed.  Throughout this 
project, our own work has been focused on establishing the shortest, but fixed, time delay 
setting that would lead to savings without compromising occupant satisfaction (as occurs 
when lights are switched off in occupied rooms). 
At the conclusion of this project, we believe that the technologies developed and 
described herein offer the possibility of more sophisticated control, even though the 
results described in this chapter were disappointing.  At the conclusion of the project we 
extended the control system described in this chapter so that the time delay interval could 
be dynamically set, and indeed individually tuned, in response to occupant behavior in 
the space.  Thus, the time delay interval using this newest technology is not fixed (as in 
current systems), but is dynamic, and set in response to occupant behavior. 

With this new control strategy, each individual space has the possibility to operate under 
a unique control setting tuned to take account of occupant behavior.  Control settings can 
also automatically adjust to changes in occupancy patterns that might result from changes 
in furniture layout, or if a new occupant moves into a space. 

Our immediate plan is to undertake experimental work to evaluate two aspects of the 
performance of this new control strategy.  First, we expect that much shorter time delay 
settings should be established, and indeed hypothesize that the optimization process 
should converge on a setting of between 5 and 10 minutes, based on the data described in 
Figure 7-7, which shows that a sensor network measures the “correct” occupied time with 
a 5 to 10 minute time delay.  We also expect that the new system should converge on an 
optimal time delay setting based on actual occupancy relatively quickly (in less than 2 
weeks). 
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9 Summary 
The research described in this report is based on the simple notion that a network of 
occupancy sensors will provide more accurate and reliable measurements of building 
occupancy, and building system control, than are provided by current occupancy sensing 
systems that rely on single points of detection.  More extensive sensing and more 
sophisticated control algorithms are required to maximize energy efficiency and user 
satisfaction.   

The effectiveness of traditional single-point detection is restricted by sensor mounting 
position and inherently simple detector technologies.  A sensor network, consisting of 
several independent detectors monitoring the same space, provides more information 
about occupancy than is possible from a single point of detection.  In contrast to 
technologies that use single-points of detection, a sensor network estimates occupancy 
based on measurements from all the networked sensing elements, and combines these 
measurements using a robust data fusion technique that can also take into account, for 
example, the history of performance of individual sensors in the network, and/or the 
typical occupancy pattern of a specific space. 
This chapter concludes the report, summarizing results from the studies described in the 
report, presenting a discussion of the economics associated with the sensor network 
approach (based on occupancy and cost data collected as part of this project and 
published elsewhere110-116), and discussing some technology developments that will be 
required for wide implementation of sensor networks for building control and 
management117-122. 

9.1 Summary of studies 
The effectiveness of a sensor network for occupancy monitoring and lighting control was 
evaluated in several studies.  The first study was conducted in two relatively small private 
offices over a two day period, and was designed to evaluate the utility of using a network 
of sensors to detect occupancy, and explore data fusion methods that could be applied to 
determine occupancy.  Three PIR sensors were deployed in each office, and all the 
sensors were wired to a central computer that recorded the occupancy data from these 
sensors.  The data from the sensors was complemented by two other “true” measures of 
occupancy: a digital video record collected from each office over the two day period, and 
occupancy records collected by human observers who monitored the status of each office 
during working hours over the two day period.   

If a single sensor can accurately characterize occupancy, the occupied times measured by 
the different methods (individual PIR sensors, digital video and human observers), should 
all be about the same.  In fact, results showed differences in occupied time measured by 
the three different sensors in each office, while the occupied times measured by the 
human observers and digital video were more similar.   
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The deviations between occupied times measured by the sensors versus the true total 
occupied time (measured by the human observers) ranged from -17% to -80%.  Single 
sensors underestimated occupied time, and there were also differences in measured 
occupied time between the three sensors located in each office.  For example, in the most 
extreme case, there was a 76.4% difference in the occupied time measured by two of the 
sensors in one room on the second monitored day. 
Given that these results were obtained in relatively small private offices with a single 
occupant, the differences in measurements between sensors accentuate the difficulty in 
obtaining an accurate measure of occupancy with a single sensor.  The performance of a 
single sensor will be affected by numerous factors, such as sensor type, mounting 
position and occupant behavior patterns.  As a result of the operation of these factors, 
there can be considerable uncertainty in the determination of occupancy by a single 
sensor. 

Control applications that use occupancy sensors compensate for these uncertainties with a 
long time delay setting (e.g., 20 to 30 minutes).  The long time delay setting ensures that 
services are not inadvertently switched off in an occupied space (a so-called “false-off”: 
the use of additional sensors helps reduce this uncertainty, and the number of false-offs.  
False offs should be avoided if at all possible, as they sometimes lead occupants to 
disable control systems).  However, a long time delay also means energy waste, as energy 
is the product of power and time.  Conventional time delay settings of 20 to 30 minutes, 
while eliminating many false-offs, can considerably increase the operating time.   

Data collected from all three sensors installed in the same space were fused to generate a 
sensor network output.  The results were encouraging: sensor network outputs were more 
reliable than any single-point detection in terms of accuracy and ability to reduce number 
of false-offs.  Because occupancy could be determined more accurately using fused 
sensor network data, shorter time delays could be applied, and more energy savings 
would result without sacrificing user satisfaction. 

To confirm and extend the findings observed in the pilot study, PIR sensor networks were 
deployed in a larger sample of work areas for a longer monitoring period in the second 
study.  The results from the first study were confirmed.  There were large differences in 
the measured occupied time between the three individual sensors monitoring occupancy 
in each office: the differences in total occupied time measured by individual sensors 
ranged from 14% to 93.2%, with an overall mean difference of 51.7%. 

A subset of these data were then used to model the system use that would have resulted 
had the lighting systems in these spaces been controlled by any one of the three sensors 
alone (with a longer [20 minute] time delay), versus the on-time that would have 
prevailed using the sensor network for control (using a shorter [5 or 10 minutes] time 
delay).  Applying a 5 or 10-minute time delay to occupancy measured by the sensor 
network resulted in reductions of 22.4% to 33.3% or 8.4% to 24.7%, respectively, 
relative to the maximum on-time that would have prevailed in the space using single 
point occupancy measurement, with a longer time delay of 20 minutes. 
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Although the first two studies concluded that individual sensors installed in the same 
space behaved differently, and that shorter time delay settings that result in greater energy 
savings are possible, the differences in measured occupancy between more than one 
sensor monitoring the same space could come from random individual sensor 
characteristics, or some other factor, such as sensor mounting position and/or sensor type.  
If all sensors mounted in a single room perform the same anywhere in the space, then the 
solution for best occupancy determination might be several sensors placed adjacent to 
one another anywhere in the space, instead of the widely spaced mounting used in the 
first two studies (which was used to ensure the whole space was covered).  A third study 
was therefore designed and completed to evaluate the effects of sensor type and mounting 
location on occupancy measurements.  

This “round-robin” study involved three sensor types (wired self-assembly kits, wired 
commercial sensors and wireless sensors) and three mounting positions, conducted in two 
private offices over a six week monitoring period.  Signals from each sensor, as well as 
the true occupancy data recorded by video cameras were collected during the study.  The 
true occupancy data were compared with the individual sensor measurements and fused 
data network occupancy estimates to evaluate the accuracy of these measurements.  At 
the start of each week over the 6-week data collection period, all sensors were removed 
from the wall they were mounted on, and then moved to the next adjacent wall in a 
clockwise direction.  The occupancy data measured by the three different sensor types at 
their respective locations were compared to evaluate the effects of sensor type and 
mounting location. 
Statistical analysis (ANOVA) showed that sensor mounting position and sensor type had 
significant effects on sensor performance.  Generally, the wired self-assembled sensors 
pulsed more often than the wireless and commercial sensors at all mounting positions, 
while the wireless and commercial sensors measured about the same occupancy when 
mounted adjacent to one another on the same wall.  All three types of sensors pulsed 
more often when they were mounted closer to occupants.  The finding that there were 
significant differences in measured occupancy as a function of mounting location 
underlines the difficulty and uncertainty associated with occupancy measurement using a 
single randomly mounted sensor, even though the control areas of all the sensors used 
were well within the coverage area claimed by the manufacturer.  This explains why post 
installation commissioning is important in real situations, and why long time delays are 
required to ensure satisfactory control. 
The sensor network produced good estimates of occupancy, even when two out of the 
three wired sensors were observed defective in the first half of the round robin study.  
The results confirmed that an appropriate algorithm applied to the sensor network data 
stream has the ability to self-diagnose, and thus sensor network control can be more 
robust than control using a single sensor, which would have no additional information to 
use in diagnosing sensor performance. 
As in the second study, outputs from the sensor network with a 5 or 10-minute time delay 
were compared with the measures from each individual sensor with a 20-minute delay.  
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At these settings, control by sensor network with a 5-minute time delay versus individual 
sensors with a 20-minute time delay produced the same number of false-offs, and the 
system usage with the sensor network could be reduced by 12.3% to 17.0%.  At a 10- 
minute time delay, false-offs were eliminated, and control by sensor network would have 
reduced system use by 3.6% to 12.3%, compared with individual sensors with a 20-
minute time delay.   

Table 9-1.  Summary of the three studies 

  Pilot Study Study II Round-robin 
Study 

Sample size (Number of private office 
studied) 2 10(1) 2 

Data collection period 2 days 59 days 42 days 

Difference in measured occupied time 
between individual sensors (2) 66.7% to 76.4% 16.1% to 74.0% 5.8% to 82.0% 

Deviation of measured occupied time from 
truth (3) -80.4% to 39.3% N/A -72.1% to 455.7% 

All sensors were 
functioning 21.4% to 31.3%  22.4% to 33.3% 12.3% to 17.0% 

Percentage of the 
reduced system time 
(5 vs. 20) (4) 

One or two 
sensors were 
defective(5) 

59.6% to 75.5%   N/A 76.4% to 85.4%  

All sensors were 
functioning 12.5% to 28.6% 8.4% to 24.7% 3.6% to 12.3% 

Percentage of the 
reduced system time 
(10 vs. 20) (6) 

One or two 
sensors were 
defective(5) 

 55.1% to 72.1%  N/A 71.4% to 84.2%  

 

(1) Only data collected from private faculty offices at the University of NE are summarized here. 

(2) Calculated as (max-min)/max. 

(3) Calculated as (Measured-Truth)/Truth.  A sensor usually underestimates the occupied time; 
the overestimation (percentage>0) therefore often indicates a sensor malfunction. 

(4) Modeled reduction in on time using sensor network with 5-minute time delay versus single 
sensor with 20-minute time delay, calculated as ((max of individually measured time + 20-min 
delay) - (output from sensor network + 5-min delay))/ (max of individually measured time + 
20-min delay).   

(5) Only considered results from data fusion methods that can identify faulty sensor(s), i.e., for 
the pilot study, moving average, rule-based reasoning, BN, LSE and NN methods were 
considered; for the round-robin study, only BN, LSE and NN methods were considered. 

(6) Modeled reduction in on time using sensor network with 10-minute time delay versus single 
sensor with 20-minute time delay, calculated as ((max of individually measured time + 20-min 
delay) - (output from sensor network + 10-min delay))/ (max of individually measured time + 
20-min delay).   
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Table 9-1 summarizes findings from the three studies.  The results in the table 
demonstrate that the occupied time measured by individual sensors varies significantly, 
and therefore each individual sensor will be a poor predictor of occupied time, as 
demonstrated by the large deviation between the occupied time measured by the sensors 
versus the “true” occupied time measured directly by human observers or by human 
review of digital video.  Properly functioning sensors usually underestimate the occupied 
time and do not pulse continuously in an occupied space (in contrast to malfunctioning 
sensors, which were observed to pulse continually, even when the space was unoccupied).   
Long time delay settings are used in traditional control applications to compensate for 
this uncertainty.  When occupancy is measured more accurately using a network of 
sensors, 5-minute time delay can be applied to achieve the same user satisfaction, 
reducing system use by a further 12.3% to 33.3%, relative to the savings that could be 
achieved using a single detector with a longer time delay.  While a single sensor with 20-
minute time delay produces about 0.8 false-offs/day (observed in the round-robin study), 
a sensor network with a 5-minute delay produces about 0.6 false-offs/day (also observed 
in the round-robin study).  Applying a time delay of 10 minutes can eliminate false-offs 
and reduce system use by 3.6% to 28.6%. 

Sensor failure is hard to predict and prevent in real applications.  Numerous sensor 
failures were observed in the course of this work.  The whole control system would have 
failed if only a single sensor was used, but with a proper data fusion method, it was 
possible to identify defective sensors. 

9.2 Summary of Data Fusion Algorithms 
Eight data fusion techniques were applied to evaluate the performance of the sensor 
network in the pilot and the round-robin studies, and these were introduced in Chapter 4.  
They were: logical functions OR, AND and MAJORITY, moving average, rule-based 
reasoning and Bayesian belief network, least squares estimation and neural network 
methods.  Since the true occupancy data were not collected as part of the second study, 
the data fusion methods that require supervised training (least squares estimation, and 
neural network) were not applied.  Instead, the three logical functions, moving average, 
rule-based reasoning and Bayesian belief network methods were applied to this data set.   
The comparison of the effectiveness of the 8 different methods to predict occupancy was 
made by means of total occupied time, the accuracy (in terms of ϕ correlation) and the 
number of false-ons and false-offs.  If all sensors function properly, a simple algorithm 
such as logical function OR produces a more accurate prediction of occupancy better than 
any single detector, because the combination of the underestimates from each individual 
sensor is always closer to the truth.  However, in the case of sensor failure, simple 
algorithms fail to identify faulty sensor(s), and so produce an incorrect result.  To ensure 
system performance, more sophisticated methods that take into account additional factors 
are recommended. 
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The data fusion techniques described and applied in this report can be classified into three 
groups.  The first group is composed of methods that do not need any a priori 
information about the system and true occupancy: these include logical functions OR, 
AND and MAJORITY, and the moving average method.  Occupancy predictions using 
these methods are inaccurate in the case of sensor failure.  However, if all sensors 
function correctly, the logical function OR and the moving average methods usually 
generate accurate prediction of occupancy that are closer to the truth than any single 
measurements. 
Methods in the second group require some general knowledge about the expected 
occupancy pattern or general sensor response to occupancy: these include rule-based 
reasoning and Bayesian belief network methods.  The rule-based reasoning method 
defines rules based on observed sensor behavior.  For example, a rule can be defined as: 
during the day, the space is considered occupied if one sensor pulses, while during the 
night, two sensors must pulse at the same time to indicate occupancy.  This rule is based 
on the knowledge that all sensors do not pulse at the same time, even when the space was 
occupied (e.g. Table 5-3), and that there is a higher probability of occupancy during the 
day than at night.  The effectiveness of this method depends on the understanding of the 
system and the definition of the rules 
The belief network method needs similar information, but rather than defining some 
“rule”, this method interprets the propositions making up the rule statement statistically 
in terms of conditional probabilities.  Depending on the definition of the belief network 
structure, various conditional probabilities are required.  For example, we need to know 
the probability of sensor pulsing when a room is occupied and the sensor in that room is 
functioning correctly.  Again, the effectiveness of this method depends on the 
understanding of the system and the definition of the network structures and the 
characteristics of sensors (sensor model).   
The third group of data fusion algorithms requires “true” occupancy data to train 
parameters used to complete the fusion algorithm.  These include: least squares 
estimation and neural network methods.  Basically, these methods used a sample of 
sensor network measurements and the true occupancy information as inputs to calculate 
values for parameters that ideally map sensor readings to the truth.  The calculated 
parameters were then applied to other sensor readings, and a predicted occupancy was 
calculated.  Back propagation supervised learning was applied to the neural network 
methods used in this report.  Although neural networks can also be trained in an 
unsupervised fashion (no training data used), the networks developed in this research 
used true occupancy data to train the network.   
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Table 9-2.  The accuracy (ϕ) of algorithms in the pilot and round-robin studies 
Study

Room Number 1 2

Sensor Type Assembled (1) Assembled Commercial Assembled Wireless (3) Commercial Assembled1 (2) Assembled Wireless (3) Average Variance

Logic Function AND 0.50 0.36 0.42 0.78 0.29 0.64 0.93 0.80 0.49 0.58 0.048

Logic Function  MAJORITY 0.79 0.64 0.59 0.94 0.54 0.86 0.34 0.97 0.79 0.72 0.042

Logic Function OR 0.66 0.86 0.76 0.97 0.75 0.92 0.24 0.97 0.86 0.78 0.051

Moving Average 0.86 0.75 0.83 0.94 0.83 0.92 0.18 0.95 0.87 0.79 0.058

Rule-based Reasoning 0.95 0.92 0.75 0.96 0.74 0.92 0.20 0.97 0.92 0.81 0.061

Belief Network 0.83 0.66 0.80 0.95 0.81 0.94 0.67 0.96 0.92 0.84 0.013

Least Squares Estimation 0.83 0.84 0.76 0.97 0.75 0.93 0.86 0.97 0.87 0.86 0.007

Neural Network 0.85 0.86 0.76 0.97 0.75 0.92 0.95 0.97 0.85 0.88 0.007

Pilot Study Round-robin Study

1 2

 
(1) One out of the three sensors installed in this room was malfunctioning. 
(2) Two out of the assembled sensors were malfunctioning. 
(3) This column shows the average of two groups of wireless sensors. 

Table 9-2 summarizes the accuracy of the eight data fusion methods as applied in two 
studies with true occupancy data.  The accuracy is designated by ϕ correlation:  a special 
case of Pearson’s r, which describes the similarity between two sets of dichotomous data.  
In this study, ϕ correlation was used to compare the measured or estimated data with the 
truth, and the higher the ϕ value (with a maximum of 1), the more accurate the method.  
Only data from the pilot and the round-robin tests were evaluated here since the accuracy 
calculation cannot be applied to data from the second study due to the absence of truth 
data.  The data fusion methods were ordered by increasing accuracy, and interestingly, 
this order is coincident with the complexity of the methods.  The simple methods that do 
not need expert knowledge and parameter training have low accuracy and high variance, 
which indicates unstable performance.  As the fusion algorithm utilizes more information, 
the application of that algorithm produces more accurate and reliable estimates of 
occupancy.  This should not be surprising. 

In conclusion, to guarantee accurate occupancy measurement, at least one of the 
following three conditions should be satisfied: 1) Accurate definition of sensor model 
(probability of sensor pulsing under occupied versus empty space conditions); 2) Real 
occupancy data for calibration (training data) is available, and; 3) The general occupancy 
patterns associated with specific building types is known (e.g., the probability of 
occupancy in each hour of the day in private offices). When values for these parameters 
can be defined, advanced algorithms such as Bayesian belief networks, or neural 
networks, can be constructed and will generate good predictions about occupancy.   

9.3 Limitations and Suggestions 
9.3.1 Limitations in network topology  
The sensor network developed and deployed in this research is only a prototype; many 
improvements are needed before commercialization is possible.  The system described 
here used a centralized network structure, or a so-called “star” network topology: all 
sensors were connected to a central processor where the decision concerning occupancy 
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was made, and there was no communication between the sensors themselves, as depicted 
in Figure 9-1. 

 
 Figure 9-1. Star network topology 

A node is a connection point in a network, which can be a computer, a router, or a hub, 
for example.  A coordinator is the processing center of the whole network.  It maintains 
overall network knowledge, and needs most computing power of the three node types.  
Each network only has one coordinator.  An end device usually has limited functionality.  
It can be a sensor, controller or an actuator.  Each end device communicates directly with 
a network coordinator in a star network structure.   
This structure improves the accuracy of decision and reduces the probability of a network 
failure relative to a single sensor since the redundant information provided by the 
peripheral nodes (PIR sensors) are all considered at the central node (computer).  The 
failure of a transmission line linking any peripheral node to the central node will result in 
the isolation of that peripheral node from all others, but the remaining peripheral nodes 
will be unaffected.  Decisions can still be made based on the remaining nodes, so the 
structure is more robust than a single sensor.  However, the failure of the central node 
will cause the failure of the whole system.  Furthermore, data transmission is restricted by 
distance; if a node is located far away from the central processor, it will result in extra 
wiring cost or weak wireless signal.   
So-called “mesh” or “peer- to-peer” networks provide more effective data transmission 
and processing.  Nodes within a mesh network can communicate with each other to form 
a mesh, and data processing in a mesh network can be completed by many different 
nodes in the network.  Thus, mesh networking enables the most efficient use of 
processing power, and full services remain available regardless of the failure of 
individual parts of the network.  Figure 9-2 illustrates the layout of a mesh network and 
the three common types of nodes within a mesh network.  The router acts as a junction 
between two or more network nodes to buffer and transfer data packets among them.  It 
can communicate with all three types of nodes.  The end device only communicates with 
a network coordinator or router.   

Peripheral node 

(End device)  

 

Central node 

(Coordinator) 
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 Figure 9-2. Mesh network topology 

Mesh networks enable high degrees of reliability and robustness.  There is usually a 
choice of more than one route that one part of the network can communicate with the 
coordinator.  If a malfunction occurs in one section of a network, then another route can 
be used, and the network still maintains the maximum functionality.  In the future, a 
wireless mesh network is preferable for occupancy monitoring, due to improved 
effectiveness, robustness and low installation cost. 
Another limitation of the current sensor network relates to the communications protocols 
used in the research.  The occupancy sensors used in the research were either self-
assembly kits for electronic amateurs, commercially available products, or wireless 
sensors used by home automation hobbyists.  The wired sensors (self-assembled, or 
commercially available) differentiate an “occupied” from an “unoccupied” signal by 
sending a change in voltage to a data acquisition system or controller, while the wireless 
sensors send a signal based on the X10 protocol, a narrowband communication protocol 
used primarily for home automation.  The X10 protocol is typically used in powerline 
carrier applications (relatively few of the devices currently available have wireless 
capability), and it uses a small address space with no error checking or correction. 
To commercialize a sensor network for lighting control, faster data communication 
mechanisms and more reliable communication protocols are required.  For example, 
BACnet is a data communications protocol for building automation and control networks.  
Currently, it is an ASHRAE, ANSI, and ISO standard protocol.  LonWorks is another 
networking platform specifically created for building control applications.  LonWorks is 
based on a low bandwidth protocol for networking devices over media such as twisted 
pair, power lines, fiber optics, and radio frequency. It is popular for the automation of 
various functions within buildings such as lighting and HVAC.  ZigBee is a suite of high-
level communication protocols using small, low-power digital radios based on the IEEE 
802.15.4 standard for wireless personal area networks (WPANs).  Since wireless sensors 
are preferable in our sensor network due to ease of installation, and low power 
consumption, ZigBee might be a good choice for future distributed occupancy sensor 
networks.  Compared with wireless standards such as Wi-Fi and Bluetooth, ZigBee is 
focused on building monitoring and control and, in theory, offers unlimited network size, 
high reliability, low power consumption and low cost117-121 . 

End device  

Router 

Coordinator 
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Power management is important in a sensor network.  The wired sensors used in this 
research were powered by 9V DC adapters and the wireless sensors need two 1.5V AAA 
batteries.  These may be suitable for small scale or home automation uses but is not 
acceptable for large commercial applications.  Battery replacement is impractical and 
uneconomical, so complementary power management devices and protocols will be 
required in a sensor network for measuring occupancy.  Again, ZigBee enables low-
power data transmission and so would be a good candidate for commercial occupancy 
sensor network applications.  Other solutions that do not require batteries, such as 
photovoltaics, which convert solar energy directly into electricity, or EnOcean 
technology122, which harvests environmental energy fluctuation (such as change in 
pressure and temperature) and converts it into electricity, may also be useful. 

9.3.2 Limitations in algorithms and criteria 
This research investigated the application of several algorithms to occupancy sensor 
network data.  Algorithms that incorporate information about general occupancy patterns 
and sensor characteristics, such as the belief network algorithm, enhance the performance 
of the sensor network in terms of accurately predicting occupancy, and diagnosing and 
accounting for the existence of sensors generating faulty or inaccurate data.  Although 
this algorithm is better at determining occupancy and identifying faulty sensors than data 
from a single sensor, the belief network algorithm requires information concerning the 
probability of occupancy at different times: in this research, these data were determined 
empirically, and from occupancy data published roughly 20 years ago by ASHRAE 
Standard 90.1-1989.  A larger sample of more contemporary occupancy data would help 
improve the performance of this algorithm.  This study concentrated on commercial 
buildings, and intuitively, industrial and residential buildings can also be benefit from the 
sensor network, if a suitable occupancy patterns are available and can be incorporated 
into the data fusion algorithm. 

Other advanced algorithms, like the supervised neural network method, need training 
information to refine the parameters incorporated in the methods.  Future research is 
encouraged to integrate this algorithm within a more preferable network structure (e.g. 
mesh network).  The system, for example, might have a “Training On/Off” button at the 
router, which also includes one of the three occupancy sensors installed in a single space.  
The commissioning staff or the occupant would be instructed to stay in the space when 
the system training mode was enabled.  When the “Training On/Off” button is pushed, 
enabling the training mode, the system assumes the space is occupied, and adjusts the 
sensitivity and time delay settings based on this “true occupancy” information.  The user 
would disable the training mode by pushing the “Training On/Off” button again, thus 
storing the new parameters.  A longer training process would be expected to increase the 
accuracy of the system parameters. 

The criteria used in this research to evaluate the performance of the sensor network can 
also be improved.  The two major criteria used in this study were accuracy (in terms of ϕ 
correlation), and the number of false-offs.  Recall the formulation of the ϕ correlation is 
as follows: 
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N11 and N00 relate to correct measurements, while N10 and N01 represent incorrect 
measurements: N10 is the number of instances the space was occupied but the sensor(s) 
did not detect motion, while N01 is the number of instances when the space was vacant, 
but the sensor(s) measured occupancy.  When the time delay was increased, N01 also 
inevitably increased, and the overall accuracy decreased.  The formula does not 
distinguish between the two kinds of incorrect measurements: N10, which is closely 
related to false-offs, should be more highly weighted in the calculation, since it is the 
major source of user complaints.   
For example, the accuracy of the belief network algorithm for wireless sensors in Room 2 
in the round-robin study was 0.94 (N10=16.9, N01=10.4) without any time delay (and 
which underestimated the occupied time by 2.5%).   If a 5-minute time delay was applied, 
the accuracy decreased slightly to 0.91 (N10=7.7, N01=35.2), and in this case, the 
operating time exceeded the true occupied time by 10.5%.  Adding a 5-minute time delay 
reduced the number of false-offs to 0.4 (from 3.1, with no time delay).  The reduction in 
the number of false-offs is preferred, but it is not reflected in the change in the value of ϕ 
from 0.94 to 0.91.  If N10 is given a weighting of 1.5, and N01 a weighting of 0.5, the ϕ 
values change to 0.92 (no time delay) and 0.93 (5-minute time delay), which may be a 
more reasonable description of the measurement accuracy. 
User satisfaction was only evaluated in terms of the number of false-offs.  Research 
shows that dimming lights, rather than switching them off completely, might also be 
acceptable, and save noticeable amount of energy36-40.  The sensor network, with 
enhanced capability endowed with an advanced network topology, might also consider 
the energy saving and user satisfaction in a more effective manner. 

9.4 Economic Analysis 
This section provides an economic analysis associated with the application of sensor 
networks.  Previously in this document, energy savings were discussed in terms of 
reduced operating time.  A more sophisticated analysis incorporating all the initial and 
operating costs is provided in this section.  Simple payback periods for single-point 
detection and sensor network systems are calculated in this section as estimates of the 
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economic advantage of the sensor networks.  The simple payback period is calculated by 
Equation 8.1. 

 
  

! 

Payback Period (in years) =
Incremental Investment

Annual Savings
 (9. 1) 

where the incremental investment is the increase in initial cost of switching from one 
system to another, and the annual savings is the reduction in operating costs under the 
alternative system. 
Occupancy sensors used in current building systems are usually used to control lighting 
systems only, so the economic analysis in this section is restricted to lighting systems.  If 
occupancy-based building control were expanded to all applicable systems, greater 
energy savings and shorter payback periods would be expected because of the reduction 
in overall operating time and associated costs for these other systems.  

The analysis in this section involves three building types, one based on data collected in 
this report, the other two based on data provided by DOE.  The studies described in this 
report were carried out in small private offices used by university faculty.  Compared 
with the office data provided by DOE, occupancy in these offices is usually lower.  Thus, 
they might result in different payback periods. 
Two other building types were defined by DOE112.  DOE classified office buildings into 
two general groups: large with floor area greater than 25,000 ft2 (having power densities 
of 1.3-1.8 watts/ft2, and lighting usage of 4190 hours per year), versus small, with floor 
area less than 25,000 ft2, power densities of 1.7-2.2 watts/ft2, and annual lighting usage of 
3340 hours. 

In each building type, the lighting system control options compared were: a manual wall 
switch, a single PIR wall switch, a single ceiling or wall mounted dual-technology sensor, 
and the sensor network.  The initial and operating costs for the four control strategies 
were calculated and compared, using the manual wall switch as the baseline for economic 
analysis.   

9.4.1 Initial cost 
The initial costs of the control system included the material cost of the switch, sensors, 
and all ancillary material (wiring, conduit, junction boxes, etc.), and the installation labor 
cost.  Table 9-3 shows total prices for typical manual switches and occupancy sensors.  
Prices were obtained from major manufacturers, and are described in Appendix D.  Costs 
for accessories (electric metallic tubing conduit (EMT), wire, steel outlet box and plaster 
ring, wall plate) and labor come from RSMeans 2006 electrical cost data116.  Occupancy 
sensors are assumed to have the same tubing and wiring requirements as manual switches.  
Ceiling or wall mounted sensors usually operate at low voltage (24 or 12 VDC), and a 
power pack is needed to transform the line voltage to the sensor operating voltage.  The 
material and installation costs of power packs are therefore also included in the total cost 
of ceiling or wall mounted sensors. 
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The costs of mounting and wiring sensors can exceed the cost of the sensors themselves.  
As Table 9-3 shows, labor for tubing and wiring alone costs around $120 
($88.44+$29.93), while the cost of a manual switch itself is only $1.35.  The high 
material and labor costs make a wireless solution desirable.   
Table 9-3.  Material and installation costs for manual wall switches and occupancy sensors 
Manual wall switch Unit Price Quantity Unit Material Installation Total

Electric metallic tubing conduit (EMT) $1.09 22 Ft $23.98 $88.44 $112.42

Wire $16.70 0.63 CLF $10.52 $29.93 $40.45

Steel outlet box $2.59 1 Ea. $2.59 $26.00 $28.59

Steel outlet box plaster rings $2.76 1 Ea. $2.76 $8.15 $10.91

Wall plate $0.34 1 Ea. $0.34 $6.55 $6.89

Manual switch $1.35 1 Ea. $1.35 $13.05 $14.40

Total $41.54 $172.12 $213.66

PIR wall switch

Electric metallic tubing conduit (EMT) $1.09 22 Ft $23.98 $88.44 $112.42

Wire $16.70 0.63 CLF $10.52 $29.93 $40.45

Steel outlet box $2.59 1 Ea. $2.59 $26.00 $28.59

Steel outlet box plaster rings $2.76 1 Ea. $2.76 $8.15 $10.91

Wall plate $0.34 1 Ea. $0.34 $6.55 $6.89

PIR occupancy sensor $60.00 1 Ea. $60.00 $14.65 $74.65

Total $100.19 $173.72 $273.91

Ceiling/Wall mounted dual-technology sensor

Electric metallic tubing conduit (EMT) $1.09 22 Ft $23.98 $88.44 $112.42

Wire $16.70 0.63 CLF $10.52 $29.93 $40.45

Steel outlet box $2.59 1 Ea. $2.59 $26.00 $28.59

Steel outlet box plaster rings $2.76 1 Ea. $2.76 $8.15 $10.91

Wall plate $0.34 1 Ea. $0.34 $6.55 $6.89

Dual-tech occupancy sensor $150.00 1 Ea. $150.00 $50.00 $200.00

Power pack $40.00 1 Ea. $40.00 $10.00 $50.00

Total $230.19 $219.07 $449.26  
For the sensor network, costs are largely unknown, as a sensor network for lighting 
control does not yet exist.  The analysis is therefore based on a combination of known 
and estimated costs, as follows.   
The wireless sensors used in this research cost $13.00 each.  Installation costs for 
wireless sensors are lower than for wired sensors or switches, as they involve no EMT or 
wire, and therefore less associated labor.  While the installation labor fee for the manual 
switch is $13.05, this analysis conservatively estimates the labor per sensor in a sensor 
network at $10.00 per sensor, since it involves no wiring.   In our research, wireless 
sensors were mounted to the wall surface using a product called “sticky wax”, which 
adds material cost of $1.00, and labor costs of $5.00, for each of the 3 sensors used in 
each office.  Computer hardware and software at $480.00 were required for data 
acquisition and control in 10 offices (consisting of a $400.00 Macintosh computer and 
$80.00 software).  Costs to commission the system are estimated at about $50.00 per 
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office.  A lamp module that provides X10 switching capability currently costs about 
$14.00. The installation cost of this module is assumed to be $5.00. 
We have suggested that ZigBee networks would be preferable for this application, and so 
calculations for network hardware costs are based on the current prices of ZigBee 
components.  A ZigBee network consists of one coordinator and several routers and end 
devices.  The retail price of a ZigBee compliant end device module is about $3.00 as of 
2006118.  The ZigBee end device module would be incorporated into an occupancy sensor, 
and the same unit cost as the X10 based wireless sensors used in this study is assumed 
($13.00 each).  Commercially available ZigBee routers cost about $60.00.  Each office 
needs two end devices (i.e., occupancy sensors) and one router (which also incorporates a 
third occupancy sensor).  In a commercialized ZigBee-based lighting control network, a 
ZigBee compatible ballast would also be required.   A ZigBee compatible ballast adds 
$5.00 to material costs 119, and does not affect the installation cost. 

Mounting accessories are needed to install wireless sensors.  These include the same 
products as needed for a wired sensor (including material and labor costs associated with 
a metal box in which to place the sensor, plaster ring and wall plate).  No EMT or wires 
are required.  The end devices and routers (all of which incorporate an occupancy sensor), 
communicate with a ZigBee-enabled coordinator, which is anticipated to include 
software to manage the data stream from the sensor network, and switch lights.  Costs for 
the coordinator and control center are estimated at $5,500.00.  Fifty offices are assumed 
to share one coordinator in a small office building, while in a large building, one 
coordinator is assumed to control 500 offices: note that costs for the control center are 
divided by the number of offices controlled by the device.  Table 9-4 lists all the above-
mentioned devices and labor costs associated with the sensor network used in the 
research project, and estimated costs for a commercially available system in generic large 
and small office buildings.    
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Table 9-4.  Material and installation costs per office for sensor networks  

Unit Price Quantity Unit Material Installation Total

Wireless sensor (X10 protocol) $13.00 3 Ea. $39.00 $30.00 $69.00

Mounting accessory $1.00 3 Ea. $3.00 $15.00 $18.00

Control Module $14.00 1 Ea. $14.00 $5.00 $19.00

Central computer $480.00 0.1 Ea. $48.00 $50.00 $98.00

Total $104.00 $100.00 $204.00

Sensor network (General small office)

Electric metallic tubing conduit (EMT) $1.09 0 Ft $0.00 $0.00 $0.00

Wire $16.70 0 CLF $0.00 $0.00 $0.00

Steel box $2.59 3 Ea. $7.77 $78.00 $85.77

Steel box plaster rings $2.76 3 Ea. $8.28 $24.45 $32.73

Wall plate $0.34 3 Ea. $1.02 $19.65 $20.67

Incremental cost for Zigbee ballast $5.00 4 Ea. $20.00 $0.00 $20.00

Wireless sensor (Zigbee module) $13.00 2 Ea. $26.00 $20.00 $46.00

Zigbee router $60.00 1 Ea. $60.00 $10.00 $70.00

Control center $5,500.00 0.02 Ea. $110.00 $0.00 $110.00

Total $233.07 $152.10 $385.17

Sensor network (General large office)

Electric metallic tubing conduit (EMT) $1.09 0 Ft $0.00 $0.00 $0.00

Wire $16.70 0 CLF $0.00 $0.00 $0.00

Steel box $2.59 1 Ea. $2.59 $78.00 $80.59

Steel box plaster rings $2.76 1 Ea. $2.76 $24.45 $27.21

Wall plate $0.34 1 Ea. $0.34 $19.65 $19.99

Incremental cost for Zigbee ballast $5.00 4 Ea. $20.00 $0.00 $20.00

Wireless sensor (Zigbee module) $13.00 2 Ea. $26.00 $20.00 $46.00

Zigbee router $60.00 1 Ea. $60.00 $10.00 $70.00

Control center $5,500.00 0.002 Ea. $11.00 $0.00 $11.00

Total $122.69 $152.10 $274.79

Prototype sensor network 

(Private faculty office)

 
9.4.2 Operating cost 
Lighting load (Power density) 

Lighting loads are expressed as lighting power density, the electrical load per unit area.  
The power density of the private faculty offices used in this research was approximately 
2.0 watts/ft2.  Power densities applicable to general small and large commercial buildings 
have been determined by DOE survey (DOE 2006 Buildings Energy Data Book) to be 
1.7-2.2 watts/ft2, and 1.3-1.8 watts/ft2, respectively112.  We therefore use 2.0 watts/ft2 as a 
“typical” value for small buildings and 1.5 watts/ft2 for large buildings.  This 1.5 watts/ft2 
also coincides with the allowable lighting power density set by ASHRAE 90.1, which has 
been adopted by more than 30 states.  For a 200 ft2 private office, the load will be 400 
watts (small building) or 300 watts (large building) respectively. 
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Hours of usage (Time) 

Baseline lighting use of 3340 hours per year for small commercial, buildings and 4190 
hours per year for large commercial buildings are from DOE (2006) Buildings Energy 
Data book. 

Past research shows that single-sensor control typically reduces operating time by 25%.   
Further reductions are possible by the utilization of a sensor network, as documented in 
this report.  With a 5-minute time delay, reductions of 21.4% to 31.3%, 22.4% to 33.3%, 
and 12.3% to 17.0% were found in the three studies of this research, respectively, and 
similar user satisfaction was achieved as compared to a single sensor with 20-minute time 
delay.  With a 10-minute time delay, reductions of 12.5% to 28.6, 8.4% to 24.7%, and 
3.6% to 12.3% of were found, and all false-offs were eliminated.  This economic analysis 
therefore assumes a further 20% or 10% reduction applicable to the sensor network, at 
time delay settings of 5 or 10 minutes, respectively. 
For the private faculty offices in our project, DOE specified lighting hours for small 
offices (3340 hours/year) are adopted as the baseline, and the actually measured 
operating time for the single-point detection sensor and the sensor network are used to 
calculate the payback periods for corresponding systems. 
HVAC interaction 

While there might be additional savings from reductions in the cooling load due to lights, 
we have not included these effects in this analysis.  Sezgen and Koomey have noted “the 
net reduction in HVAC bills due to a reduction in lighting is about 3.4% of the change in 
lighting bill … However, for the … commercial building area, the change in HVAC 
source energy due to lighting/HVAC interactions is approximately zero.”113 They further 
noted that although reducing lighting energy can lead to a reduction in cooling, this can 
sometimes produce a slight increase in required heating, hence the net effect of lights 
depends on building characteristics and climate, and for the “75% of the commercial 
building area in the US” they surveyed, Sezgen and Koomey concluded that “a reduction 
in lighting energy that is well-distributed geographically and across building types will 
induce neither significant savings nor significant penalties in HVAC primary energy and 
small benefits in HVAC energy expenditures.”  Nevertheless, there may be potential for 
energy savings in controlling HVAC operation (air distribution) based upon occupancy.  
Conditioning (i.e., heating and cooling) and ventilation (i.e., air exchanges) of spaces 
based on true occupancy offers greater benefit to make this technology feasible, however, 
the accuracy of the sensor network system would have to advance significantly to support 
these functions. 
Energy cost  

As of 2006, the commercial average retail price of electricity per kWh was 8.67 cents for 
the United States, and was 5.98 cents for Nebraska111.  Both numbers are used in the 
payback calculations. 
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9.4.3 Simple payback period 
Table 9-5 summarizes the simple payback period associated with the prototype system 
deployed in the private faculty offices studied in this research.  According to these 
operating scenarios, since the sensor network cost less than manual switching it generates 
an immediate saving (and consequently no payback period).  While encouraging, these 
calculations are too optimistic, as the estimated costs associated with a commercial 
sensor network control system (at about $385.00 and $275.00 per office in small and 
large commercial buildings, respectively), are higher than those incurred in this research 
project (at only $204.00 per office). 

Table 9-5 Simple payback analysis of manual wall switch, PIR wall switch, ceiling/wall 
mounted dual-technology sensor, and sensor network in a private faculty office 

Base line 

(Manual 

switch)

PIR wall 

switch

Dual-tech 

sensor

Sensor 

network with 5-

min delay

Sensor 

network with 

10-min delay

A B C D E

Initial 1) Unit price (dollars) $41.54 $100.19 $230.19 $104.00 $104.00

2) Installation Cost (dollars) $172.12 $173.72 $219.07 $100.00 $100.00

3) Total (dollars)  [1+2] $213.66 $273.91 $449.26 $204.00 $204.00

4) Incremental Cost (dollars) $60.25 $235.60 -$9.66 -$9.66

5) [B3-A3] [C3-A3] [D3-A3] [E3-A3]

Energy 6) Average electricity cost(dollars/kWh) $0.0598

7) Load (Watts) [8 X 9] 260

8) Power Density (watts/ft2) 2.0

9) Area (ft2) 130

10) Time of operation (hours) 3340 1717 1717 1374 1545

11) Total Energy (kWh)  [7 X 10]/1000 868.4 446.4 446.4 357.1 401.8

12) Energy Cost (dollars) [6 X 11] $51.9 $26.7 $26.7 $21.4 $24.0

13) Annual Savings (dollars) $25.2 $25.2 $30.6 $27.9

14) [A12-B12] [A12-C12] [A12-D12] [A12-E12]

15) Payback (years) [13/5]  2.4 9.3 0.0 0.0

Private Faculty Office

 
 Table 9-6 summarizes the simple payback periods associated with the various control 
options in generic small and large commercial buildings, using more realistic estimates of 
commercial sensor network control system costs.  The table uses the DOE typical private 
office data (power density and lighting operating hours) as baseline; a 25% reduction is 
applied to the baseline as the operating time of single sensor, and an additional 20% or 
10% reduction is assumed for the sensor networks with 5 or 10-minute time delay, 
respectively.  Estimated costs for a ZigBee based system are used for sensor network. 
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Table 9-6.  Simple payback analysis of manual wall switch, PIR wall switch, ceiling/wall 
mounted dual-technology sensor and sensor network in a generic small and large 

commercial building 
Base line 

(Manual 

switch)

PIR wall 

switch

Dual-tech 

sensor

Sensor 

network with 5-

min delay

Sensor 

network with 

10-min delay

A B C D E

Initial 1) Unit price (dollars) $41.54 $100.19 $230.19 $233.07 $233.07

2) Installation Cost (dollars) $172.12 $173.72 $219.07 $152.10 $152.10

3) Total (dollars)  [1+2] $213.66 $273.91 $449.26 $385.17 $385.17

4) Incremental Cost (dollars) $60.3 $235.6 $171.5 $171.5

5) [B3-A3] [C3-A3] [D3-A3] [E3-A3]

Energy 6) Average electricity cost(dollars/kWh) $0.0867

7) Load (Watts) [8 X 9] 400

8) Power Density (watts/ft
2
) 2.0

9) Area (ft
2
) 200

10) Time of operation (hours) 3340 2505 2505 2004 2255

11) Total Energy (kWh)  [7 X 10]/1000 1336 1002 1002 801.6 901.8

12) Energy Cost (dollars) [6 X 11] $115.8 $86.9 $86.9 $69.5 $78.2

13) Annual Savings (dollars) $29.0 $29.0 $46.3 $37.6

14) [A12-B12] [A12-C12] [A12-D12] [A12-E12]

15) Payback (years) [13/5]  2.1 8.1 3.7 4.6

General Private Office in Small Commercial Buildings

 
Base line 

(Manual 

switch)

PIR wall 

switch

Dual-tech 

sensor

Sensor 

network with 5-

min delay

Sensor 

network with 

10-min delay

A B C D E

Initial 1) Unit price (dollars) $41.54 $100.19 $230.19 $122.69 $122.69

2) Installation Cost (dollars) $172.12 $173.72 $219.07 $152.10 $152.10

3) Total (dollars)  [1+2] $213.66 $273.91 $449.26 $274.79 $274.79

4) Incremental Cost (dollars) $60.3 $235.6 $61.1 $61.1

5) [B3-A3] [C3-A3] [D3-A3] [E3-A3]

Energy 6) Average electricity cost(dollars/kWh) $0.0867

7) Load (Watts) [8 X 9] 300

8) Power Density (watts/ft2) 1.5

9) Area (ft2) 200

10) Time of operation (hours) 4190 3142.5 3142.5 2514 2828

11) Total Energy (kWh)  [7 X 10]/1000 1257 942.75 942.75 754.2 848.5

12) Energy Cost (dollars) [6 X 11] $109.0 $81.7 $81.7 $65.4 $73.6

13) Annual Savings (dollars) $27.2 $27.2 $43.6 $35.4

14) [A12-B12] [A12-C12] [A12-D12] [A12-E12]

15) Payback (years) [13/5]  2.2 8.6 1.4 1.7

General Private Office in Large Commercial Buildings

 
Under all the scenarios, the simple payback associated with installing a single PIR wall 
switch instead of a manual switch is similar, at about 2 years.  Switching from a manual 
wall switch to a ceiling/wall mounted dual-technology sensor results in much longer 
simple payback periods (8 to 9 years).  

While the simple payback periods associated with the sensor networks varied with the 
number of offices controlled by the network, these costs are less than those associated 
with the ceiling/wall mounted dual-technology sensors.  This is because the estimated 



 144 

University of Nebraska – Lincoln 

material and installation costs associated with the sensor network (at about $385.00 and 
$275.00 for small and large buildings, respectively), are lower than those associated with 
ceiling/wall mounted dual-technology sensors (at about $449.00).  At a time-delay of 10 
minutes, the sensor network with a proper data fusion method is able to eliminate all the 
false-offs, and the payback period is just increased around 25% from the sensor network 
with a 5-minute time delay. 
It is important to note that these calculations were based on conservative assumptions.  
For example, mounting accessories for wireless sensors might cost considerably less than 
those used by traditional control systems, as they may not need to take into account code 
issues related to line voltage, and this might yield lower costs. 
Finally, the reduction in electricity usage may also reduce secondary non-financial costs, 
such as CO2, SO2 and NOx emissions from electricity production.  The generation of 
electricity from fossil fuel power plant accounts for a significant part of both air 
pollutants and greenhouse gas emissions, thus the reduction of electricity consumption 
can also help environmental conservation. 

9.5 Building Applications Enabled by Sensor Network 
Occupancy Detection 

We close the report by briefly considering other commercial and residential applications 
that could be enabled through the availability of sensor network occupancy data. 
Casualty estimates in the days immediately following the September 11th 2001 attacks 
varied widely.  French brothers and filmmakers Jules and Gedeon Naudet were filming a 
documentary about the experiences of a probationary firefighter.  This work took them to 
the Twin Towers, where they recorded the day’s events.  This film was subsequently 
broadcast by CBS in March 2002.  One scene depicted a firefighter in the lobby of one of 
the Towers attempting to determine if any of the elevators in that building were occupied, 
using a public address system that linked the lobby with the elevators.  A dynamically 
updated building occupancy map stored offsite on Internet servers and updated in real 
time would have provided vital information to emergency first responders about building 
occupancy: data from networked occupancy detection systems in elevators could have 
told firefighters immediately which elevators were occupied. 

A prototype of an occupancy monitoring system has been developed to remotely display 
the current status of each sensor in a sensor network.  This system provides an illustrative 
view of the occupancy status of the whole monitored area.  As Figure 9-3 shows, sensor 
status can be checked by opening a web browser from any computer connected to the 
Internet.  Highlighted cells indicate the sensors sent an “ON” signal and did not send an 
“OFF” signal, while gray cells mean no signal or an “OFF” signal was received.  A 
detailed description of the program is provided in 11Appendix C.  This prototype can 
also display time-series graphs showing the occupancy profiles for one or more 
offices/areas over defined time intervals (e.g., last hour, last day, etc.), and provide 
statistical summaries of the aggregated occupancy profiles. 
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Figure 9-3. Real-time display of PIR sensor status  

The prototype system currently only displays raw information sent by the installed PIR 
sensors, before applying any data fusion algorithm.  An extension to the monitoring 
system would be to incorporate an appropriate inference engine with the basic display 
that provides an accurate and robust judgment about space occupancy.  This web-based 
monitoring system provides an accurate measurement comparable to video cameras used 
in security applications, but is considerably less expensive, and provides more anonymity 
than security video monitoring systems.  The anonymous feature makes it useful when 
occupant identities are not important, and since the system is not as intrusive as a video 
camera, it is likely to be more acceptable to commercial and residential users.   

Sensor networks for occupancy detection can also be used to improve the performance of 
home security systems.  The International Association of Chiefs of Police123 estimates 
that 70% of homes and 40% of businesses in the U.S. have security alarm systems: this 
translates to 7 to 15 million security alarm systems.  Each of these systems generates 
about 2.2 false alarms per year, and security system alarms account for 10-30% of calls 
for police services.  The City of Oxnard CA police have reported that in 1995, only about 
2% of security alarms represented an actual or attempted crime.  Oxnard police 
determined that the average cost for police response to an alarm call was $62.04.  Since 
98% of alarm calls were determined to be false, the cost of police response to false 
alarms was $424,725.00124. 

Many home security system false alarms are the result of a single sensitive detector 
responding to the movement of inanimate objects in the field of view of the detector (e.g., 
curtains above a ventilation duct moving in response to airflow).  A sensor network could 
be designed to respond only to certain patterns of signals from more than one occupancy 
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detector, reducing the cost of false alarms, improving the performance of home security 
systems, and freeing police officers to deal with more pressing matters. 
Sensor networks for occupancy detection could also be used to improve the performance 
of residential ventilation systems.  Temperature stratification in houses is common and 
costly: depending on the season, lowering or raising a thermostat just 4°F can cost an 
additional $35.00 to $50.00 per month.  Most residential ventilation systems maintain a 
set temperature at the thermostat itself.  The location of the thermostat rarely corresponds 
with actual occupancy.  Consequently, many houses often have unpleasantly hot or cold 
rooms, which could be more effectively ventilated by redirecting conditioned air from 
unoccupied areas.  Retrofit in-line duct fans are available, which boost airflow to rooms, 
thereby raising or lowering ambient temperature.  These devices are currently controlled 
thermostatically, or by occupants using a wall switch.  A system based on networked 
occupancy detectors could be designed to control the operation of residential air 
conditioners, and in-line duct fans so that these devices direct air only to occupied rooms, 
and only when the residence was actually occupied.  Such a system could function in a 
manner that was completely transparent to users, and would ensure that conditioned air 
was provided only when and where it was needed, thereby saving energy. Hydronic 
heating systems, common in Europe, are typically equipped with one thermostatic control 
valve per zone, and modern thermostatic valves are equipped with digital timers allowing 
for setback during unoccupied periods. The proposed application would be similar in 
spirit but applied to forced air heating and cooling typical of North America. 

Sensor networks could also be used to reduce the electrical demand due to the operation 
of residential air conditioning units cooling unoccupied houses during the daytime when 
homeowners are away.  Programmable thermostats allow users to establish different 
temperature settings at which residential air conditioning units operate at different times 
of the day, for example, letting the space temperature rise during the day when occupants 
are at work, then setting a lower temperature just before the normal time that occupants 
expect to return.  These schedules are applied whether or not a house is occupied.  Sensor 
networks could be used to switch off residential air conditioning units during the daytime 
when houses are vacant, letting the house temperature “float” during the unoccupied 
hours.  Comfort would be maintained by applying an intelligent algorithm to the sensor 
network occupancy data to start cooling an empty house, based on a probabilistic 
determination of the likely time that occupants normally return, and the cooling required 
to achieve the desired temperature setting. 
Finally, there are substantial economic and mental health benefits if the elderly live at 
home as long as possible, rather than in hospitals or nursing homes.  The technologies 
developed as part of this research can facilitate independent living, by providing basic 
sensors and monitoring systems that will extend the time that the elderly can remain in 
their own homes (e.g., stoves could be turned off if the kitchen or adjacent spaces have 
been unattended for a defined period, lights automatically switched on and off as needed, 
and health monitored when required).  A sensor network could be developed to monitor 
activity in different areas in the home, and display sensor activity on a web page, or 
notify caregivers by email or telephone in the event of unusual sensor network activity.  
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Appendix A Construction of Belief Network 
A.1 Introduction 

This appendix describes the construction and the parameter derivation of the belief 
networks introduced in section 4.5 and applied in Chapters 5 through 7 of this report.  
Generally, a belief network comprises of a set of variables, and a graphical structure with 
attached probabilities connecting the variables.  The variables incorporated in the 
occupancy sensor network were: true occupancy, the condition of each sensor 
(functioning or defective), the output from each sensor, and the time of day.  The output 
from each sensor mostly depends upon true occupancy: if the sensor works properly, then 
the sensor output is consistent with true occupancy.  However, if the sensor is not 
functioning properly, the relationship between true occupancy and sensor output can be 
vague.  True occupancy is a function of the time of the day, for example, at 03:00, there 
would be a low probability of occupancy.  
Besides the interrelationship between these variables, true occupancy and sensor 
operating condition are time persistent. For example, if a space is occupied, it is more 
likely to remain occupied for some time, and vice versa; sensor condition also persists 
over time, indicating if a given sensor pulses more frequently than others, if will continue 
to pulse at a higher rate.   

The conditional probabilities of sensor output are determined by the measured frequency 
of sensor pulsing at each sensor condition and occupancy status combination (the pulsing 
rate when the sensor is functioning and the space is occupied, the pulsing rate when the 
sensor is functioning and the space is vacant, the pulsing rate when the sensor is defective 
and the space is occupied, and finally, the pulsing rate when the sensor is defective and 
the space is vacant).  The probability of occupancy conditional on time of day is 
determined based on true occupancy during the data collecting period of this study, with 
reference to the general occupancy profile for private offices provided by ASHRAE42.  
The detailed derivation of each conditional probability will be introduced later in this 
appendix. 

A.2 Structure of Belief Network 

The variable of interest is whether the space is occupied, and we measure the occupancy 
using three PIR sensors.  Figure A-1 shows the dependency of three sensors on real 
occupancy, where a shaded oval means an observable variable, and clear oval means a 
hidden variable. 
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Sensor 1

Sensor 2

Sensor 3

 

Figure A-1.  Belief network showing sensor outputs are conditional on the occupancy 

Sensor output is not only affected by true occupancy, but is also affected by the condition 
of the sensor itself (Figure A-2).  If a given sensor is malfunctioning, readings from this 
device are less likely to reflect real occupancy.   

Occupancy

Sensor

Sensor 

Condition

  

Figure A-2.  Belief network showing the measurement of sensor is conditional not only on 
the actual occupancy, but also on the sensor condition  

Figure A-3 shows the time persistency of occupancy.  Occupancy information from the 
last time slot is passed to the current time slot, that is, if the space is occupied at time (t-
1), then the probability of occupancy at time (t) is high. 

Occupancy

(t-1)

Occupancy

(t)

Occupancy

(t+1)

 

Figure A-3.  Belief network showing the occupancy in a space persists over time 

Sensor condition also persists over time.  If a sensor is properly functioning at time (t-1), 
then there is a high probability that this sensor will continue to function properly at time 
(t), as depicted in Figure A-4. 



 159 

University of Nebraska – Lincoln 

 

Sensor 

Condition

(t-1)

Sensor 

Condition

(t)

Sensor 

Condition

(t+1)  

Figure A-4.  Belief network showing the sensor status persists over time 

The occupancy pattern is affected by other factors, such as time of day, day of week, 
function of the space, and occupant behavior.  This work has focused on private offices.  
Thus data concerning the probability of occupancy at each hour will be helpful in 
determining the occupancy pattern (Figure A-5).   

Occupancy

Time of Day

 

Figure A-5.  Belief network showing occupancy is conditional on the time of day 

Combining the interrelated relationships described above, a belief network is constructed 
as shown in Figure A-6. 
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Figure A-6.  Belief network to model occupancy, showing that occupancy is affected by 

the time of day, sensor outputs affected by the occupancy and the sensor condition, and 
the occupancy and the sensor condition are time persistent. 

 

A.3 Parameter Derivation for the Pilot Study 

This section describes the definition of the probabilities of sensor pulsing conditional on 
occupancy and sensor condition, the probabilities of occupancy conditional on the time of 
day, and probability of occupancy and sensor condition persistence over time, using the 
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data collected in two offices over two days in the pilot study (Chapter 5).  The parameters 
were applied in the fusion of sensor network data using the belief network method. 

A.3.1 Sensor response (conditional on occupancy and 
sensor condition) 

Sensor response (pulse or not pulse) depends on the real occupancy and sensor condition.  
Occupancy has two possible values: occupied (T) or vacant (F).  Sensor condition also 
has two possible values:  functioning (T) or defective (F).  For the properly functioning 
sensors, the probabilities of sensor response associated with real occupancy were 
modeled using the average pulse rates observed from each functioning sensor in two 
offices during the two days, as shown in Table A-1. 

Table A-1.  Average sensor pulsing rate in pilot study 

Occupied, 
pulsed 

Occupied, 
didn't pulse 

Vacant,  
pulsed 

Vacant,  
didn't pulse 

Room Sensor  
(Occupancy=T, 

Sensor=T) 
(Occupancy=T, 

Sensor=F) 
(Occupancy=F, 

Sensor=T) 
(Occupancy=F, 

Sensor=F) 

PIR1 0.393 0.607 0.00234 0.99766 
1 

PIR2 0.704 0.296 0.0019 0.9981 

PIR1 0.500 0.500 0.00163 0.99837 

PIR2 0.761 0.239 0.00279 0.99721 2 

PIR3 0.197 0.803 0.00159 0.99841 

Average 0.511 0.489 0.0021 0.9980 

Ideally, if a sensor always responds when the space is occupied (Occupancy=T, 
Sensor=T), the pulsing rate would be 1.0, in contrast to the measured 0.511.  This low 
actual pulsing rate means that during more than 40% of the occupied time, individual 
sensors did not respond.  When the space was vacant, the pulsing rate was 0.002, 
showing a low rate of pulsing in an empty space. 
Based on the measured pulsing rate, the probabilities of sensor response are described in 
Table A-2. 
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Table A-2.  Sensor pulsing probabilities conditional on true occupancy and sensor 
condition in pilot study 

Occupancy Sensor 
Status P(Sensor=F) P(Sensor=T) 

F F 0.5 0.5 
T F 0.5 0.5 
F T 0.998 0.002 
T T 0.489 0.511 

When the sensor functions correctly, it has a probability of 0.511 of pulsing when the 
space is occupied, and a probability of 0.002 of pulsing when the space is vacant.  When 
the sensor is defective, the pulsing rates are not based on occupancy, and so have an 
equal probability of pulsing when the space is occupied or vacant, as shown in the table 
(a probability of 0.5 for all cases). 

A.3.2 Persistence of occupancy  
The persistence of occupancy was defined as follows: if the space is occupied during one 
time slot, the probability it will continue to be occupied during the next time slot is 90%; 
if the space is vacant, it also has 90% probability of remaining vacant during the next 
time slot.  Table A-3 describes these probability values. 

Table A-3.  Probabilities of occupancy persistence 

Occupancy (t-1) P(Occupancy (t)=T) P(Occupancy (t)=F) 

T 0.9 0.1 

F 0.1 0.9 

A.3.3 Persistence of sensor status 
The probability that the operating condition of a sensor will change is very low, but exists 
nevertheless and should be included.  If a sensor is currently functioning, it will continue 
to function during the next few time slots, and may remain functioning over the next days 
or even weeks.  The probability of sensor condition change was defined as 10-10, as 
shown in Table A-4: a properly functioning sensor has a very low probability of 
becoming defective in the next time slot. 
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Table A-4.  Probabilities sensor status persistence 

Sensor Status (t-1) P(Sensor Status(t)=T) P(Sensor Status(t)=F) 

T 1-10-10 10-10 

F 10-10 1-10-10 

A.3.4 Occupancy (conditional on time of day) 
The occupancy pattern in private offices during weekdays follows routine patterns, for 
example, between 09:00 and 17:00, there is a high probability that the space is occupied, 
and the space is likely to be vacant between 20:00 and 05:00.  The average fractions of 
occupied time observed in two offices over two days (pilot study, 5) are plotted in Figure 
A-7, which also shows the typical office occupancy pattern defined by ASHRAE42.   
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Figure A-7.  Occupancy profiles  

Based on the measured true occupancy pattern of the two offices and the shape of 
ASHRAE occupancy profile, the probability of occupancy at different times are 
described in Table A-5. 
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Table A-5.  Probability of occupancy conditional on time of day in pilot study 

Time of 
Day P(Occupancy=T) P(Occupancy=F) 

1-6 0.02  0.98  

7 0.40  0.60  

8-11 0.76  0.24  

12 0.36  0.64  

13-17 0.76  0.24  

18 0.48  0.52  

19-21 0.08  0.92  

22-24 0.02  0.98  

A.4 Parameter Derivation for the Round-Robin 

Study 

In the round-robin study, parameters defining persistence of occupancy and sensor 
condition were determined in the same manner as parameters used in the pilot study.  
However, the probabilities of sensor pulsing conditional on occupancy and sensor 
condition, and the probabilities of occupancy conditional on the time of day were 
redefined, using the data collected during the round-robin study. 

A.4.1 Sensor response (conditional on occupancy and 
sensor status) 

Sensor response (pulse or not pulse) depends on real occupancy and sensor condition.  
Occupancy has two possible values: occupied (T) or vacant (F).  Sensor condition also 
has two possible values:  functioning (T) or defective (F).  For properly functioning 
sensors, the probabilities of sensor response associated with real occupancy were 
modeled using the average pulse rates observed from each functioning sensor in two 
offices during the six-week data collection period of the round-robin study, as shown in 
Table A-6. 
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Table A-6.  Average sensor pulsing rate in round-robin study 

Room Sensor 
Group 

Sensor 
Number 

Occupied, 
pulsed 

(Occupancy=T, 
Sensor=T) 

Occupied, didn't 
pulse 

(Occupancy=T, 
Sensor=F) 

Vacant, pulsed 
(Occupancy=F, 

Sensor=T) 

Vacant, didn't 
pulse 

(Occupancy=F, 
Sensor=F) 

1 0.40779  0.59221  0.00251  0.99749  

2 0.38547  0.61453  0.00200  0.99800  Commercial 

3 0.40180  0.59820  0.00200  0.99800  

1 0.76845  0.23155  0.00940  0.99060  

2 0.92330  0.07670  0.01032  0.98968  Assembled 

3 0.86862  0.13138  0.01456  0.98544  

1 0.39487  0.60513  0.00716  0.99284  

2 0.31600  0.68400  0.00868  0.99132  Wireless1 

3 0.37523  0.62477  0.00131  0.99869  

1 0.38454  0.61546  0.00182  0.99818  

2 0.31828  0.68172  0.00149  0.99851  

R
oo

m
 1

 

Wireless2 

3 0.27465  0.72535  0.00101  0.99899  

1 0.73448  0.26552  0.00589  0.99411  

2 0.67201  0.32799  0.00351  0.99649  Commercial 

3 0.62863  0.37137  0.00257  0.99743  

1 0.75147  0.24853  0.00303  0.99697  

2 0.96127  0.03873  0.00702  0.99298  Assembled 
(1) 

3 0.94514  0.05486  0.00418  0.99582  

1 0.62405  0.37595  0.00325  0.99675  

2 0.62748  0.37252  0.00354  0.99646  Wireless1 

3 0.50751  0.49249  0.00241  0.99759  

1 0.59148  0.40852  0.00390  0.99610  

2 0.50115  0.49885  0.00266  0.99734  

R
oo

m
 2

 

Wireless2 

3 0.54059  0.45941  0.00235  0.99765  

Average 0.57934  0.42066  0.00444  0.99481  

(1) Only considered the functioning sensor in the last 3 weeks. 

Ideally, if a sensor always responds when the space is occupied (Occupancy=T, 
Sensor=T), the pulsing rate would be 1.0, in contrast to the measured 0.579.  This low 
actual pulsing rate means that during more than 40% of occupied time, sensors did not 
respond.  When the space was vacant, the pulsing rate was 0.004, showing a low 
possibility of false triggering. 
Based on the measured pulsing rate, the probabilities of sensor pulsing are described in 
Table A-7. 
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Table A-7.  Sensor pulsing probabilities conditional on true occupancy and sensor 
condition in round-robin study  

Occupancy Sensor 
Status P(Sensor=F) P(Sensor=T) 

F F 0.5 0.5 

T F 0.5 0.5 

F T 0.996 0.004 

T T 0.4 0.6 

When the sensor functions correctly, it has a probability of 0.6 of pulsing when the space 
is occupied, and a probability of 0.004 of pulsing when the space is vacant.  When the 
sensor is defective, the pulsing rates are not based on occupancy, and so have an equal 
probability of pulsing when the space is occupied or vacant, as shown in the table (a 
probability of 0.5 for all cases). 

A.4.2 Occupancy (conditional on time of day) 
The occupancy pattern in private offices during weekdays follows routine patterns, for 
example, between 09:00 and 17:00, there is a high probability that the space is occupied, 
and the space is likely to be vacant between 20:00 and 05:00.  The average fractions of 
occupied time observed in two offices over six weeks (round-robin study, 7) are plotted 
in Figure A-8, which also shows the typical office occupancy pattern defined by 
ASHRAE42.  
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Figure A-8.  Occupancy profiles measured in the two rooms in round-robin study, provided 

by ASHRAE and finally adopted in the belief network 

Based on the measured true occupancy pattern of the two offices and the shape of 
ASHRAE occupancy profile, the probabilities of occupancy at different times are 
described in Table A-8. 

Table A-8.  Probability of occupancy conditional on time of day in round-robin study 

Time of 
Day P(Occupancy=T) P(Occupancy=F) 

1-6 0.02  0.98  

7 0.04  0.96  

8 0.08  0.93  

9 0.15  0.85  

10-12 0.71  0.29  

13 0.34  0.66  

14-18 0.71  0.29  

19 0.45  0.55  

20-22 0.08  0.92  

23 0.04  0.96  

24 0.02  0.99  
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Appendix B Data Fusion Algorithms Source Code 
B.1 Moving Average 

% M-point Moving Average Filter 

% In our sensor network, this function firstly smoothing the outputs 
from each  
% sensor, then sum the results together to get the final out put of 
network. 

  

function [averaged]= MovAve3(data,M);   % Define function name and 
parameters 

  

num=ones(1,M);              % Create an 1-by-M matrix of ones 
for c=1:3 

y(:,c)=filter(num,1,data(:,c))/M;   % Use the filter function to 
calculate % the moving average of each column of  
% matrix “data” over M steps  
end 

  

averaged =sum(y,2);             % Sum the averaged results by column 

 

B.2 Rule-Based Reasoning 

% Determine occupancy based on objective criteria 
% data: row x 3 matrix, the original outputs from 3 sensors 
% Time delay: Time delay to be applied in reasoning 

  

function [result]=ObjCri(data,TimeDelay) % Define function name and 
parameters 
row = size(data,1);              % Calculate the length of the inputs 

result=zeros(row,1);             % Initialize the output 
sumcol=sum(data,2);              % Sum the inputs by column 
countp=[0 0 0];               % initialize a variable recording the  
 % times that a sensor functioned  
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 % differently from others 

Problem=0;                   % A variable used to record a sensor  
 % number if it behaved differently  
 % from others  
delaycount=TimeDelay;            % initialize the time delay counting 

  

for i=2:row                  
    if sumcol(i)>1              % If there is at least two sensor 
pulsed 

        result(i)=1;            % Set the output to be 1 
        delaycount=0;           % Starts time delay counting 
    elseif sumcol(i)==1         % If only one sensor pulsed 
        if result(i-1)==1       % If the system output of the 
        % previous time slot is 1 

            result(i)=1;            % Set the output to be 1 
            delaycount=0;           % Starts time delay counting 
        else                     
            where = find(data(i,:)==1); % Locate which sensor pulsed 
differently  

% from others 
            if where(1,1)==Problem 
                countp(where(1,1))=countp(where(1,1))+1; 
                        % Count the times that a sensor  
                        % functioned differently from others 

            else 
                Problem=where(1,1); 
            end 

                 

        end 
    else 
        if delaycount<TimeDelay     % If none sensor pulses, apply the 
time  
% delay 
            result(i)=1; 
            delaycount=delaycount+1; 
        end 
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    end 

end 

 

B.3 Least Squares Estimation 

% A1: training data; A2: new data 
function [out,x]=LSE(A1,b,A2)            

x=inv(A1'*A1)*A1'*b;            % Solve x for A1*x=b 
    % fout2=data*x; 
out=A2*x;                   % Apply the calculated x to new data 

B.4 Belief Network 

% Define the structure and parameter of the Belief network and 
calculate the  
% network output 

% data: The readings of all three sensors (T x 3 matrix) 
% outo: Occupancy prediction (T x 1 array) 
% outStn: Status of sensor n (functioning or not) (T x 1 array) 

  

function [outo,outSt1,outSt2,outSt3]=bnt_HMM(data) 
occupancy_profile=[0.02 0.02    0.02    0.02    0.02    0.02    0.05    
0.1 0.2 0.95    0.95    0.95    0.45    0.95    0.95    0.95    0.95    
0.95    0.6 0.1 0.1 0.1 0.05    0.02]; 
                    % occupancy_profile: probability of occupancy 
% at different time of day 
occupancy_profile=occupancy_profile*0.75; 

% sensor pulsing rate conditional on occupancy and sensor status (Table 
A-7) 
sensor_profile=[0.5 0.5 0.996 0.4 0.5 0.5 0.004 0.6]; 

 

sensor_status=[0.5 0.5]; 
occupancy_persistence=[0.9 0.1 0.1 0.9]; % Table A-3.  Probabilities of 
occupancy persistence  
E=1e-12; 
status_persistence=[1-E E E 1-E];        %Table A-4.  Probabilities 
sensor status persistence  
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N=8;                         % # of nodes in each time slot 

dag_intra = zeros(N);            
O=1; StS1=2; StS2 =3; StS3=4; Time = 5; S1=6; S2=7; S3=8; 
            % Number the nodes. Parents should be in front of children  

  

% Following statements define the topology within each time slot 
dag_intra(O,Time)=1; % node 1 in slice t connects to node 5 in slice t 
dag_intra([O StS1], S1) = 1; % nodes 1 and 2 connect to node 6 (sensor 
output  

  % is conditional on occupancy and sensor status 
dag_intra([O StS2], S2) = 1; 
dag_intra([O StS3], S3) = 1; 

  

% Following statements define the topology between time slots 
dag_inter = zeros(N); 
dag_inter(1,1) = 1;     % node 1 in slice t-1 connects to node 1 in 
slice t 
dag_inter(2,2) = 1;         
dag_inter(3,3) = 1; 
dag_inter(4,4) = 1; 

  

node_sizes=[2 2 2 2 24 2 2 2 2];  % Possible number of states of each 
node 
discrete_nodes = 1:N;       % Discrete hidden variable 

onodes = [Time S1 S2 S3];       % Observable nodes (input) 
bnet = mk_dbn(dag_intra, dag_inter, node_sizes,'discrete', 
discrete_nodes, 'observed', onodes);     % Create the belief network 

  

% Conditional probability distributions are represented as tables 
bnet.CPD{O} = tabular_CPD(bnet, O, [0.5 0.5]); 
bnet.CPD{Time} = tabular_CPD(bnet, Time,  [1-occupancy_profile; 
occupancy_profile]); 

bnet.CPD{StS1} = tabular_CPD(bnet, StS1, sensor_status); 
bnet.CPD{StS2} = tabular_CPD(bnet, StS2, sensor_status); 
bnet.CPD{StS3} = tabular_CPD(bnet, StS3, sensor_status); 
bnet.CPD{S1} = tabular_CPD(bnet, S1, sensor_profile); 
bnet.CPD{S2} = tabular_CPD(bnet, S2, sensor_profile); 
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bnet.CPD{S3} = tabular_CPD(bnet, S3, sensor_profile); 

  

bnet.CPD{9} = tabular_CPD(bnet, 9, occupancy_persistence); 
for nm=10:12 

    bnet.CPD{nm} = tabular_CPD(bnet,nm, status_persistence); 
end 

  

% construct a smoother engine out of lower-level hmm_2TBN_inf_engine to  
% implement forward/backward operators 

  

engine = smoother_engine(hmm_2TBN_inf_engine(bnet)); 

  

%---------------------------------------------------------------------- 
% Apply the defined BNT to data 

  

T=size(data,1); 
evidence = cell(N,T);                  % N:slice size; T: number of 
slices 

  

% Create evidence: read the time (hour only) and each sensor reading to 
the evidence cell 
for i=1:T 
    evidence(Time,i)=num2cell(ceil(i/60));  

end 
evidence(S1:S3,:) = num2cell(data(:,1:3)'+1); 

  

% Apply the defined BNT engine to evidence 
% The result N x T cell contains the conditional probability of each 
node 
[engine, ll] = enter_evidence(engine, evidence); 

for i=1:T 
% compute the probability of occupancy  
margo = marginal_nodes(engine, O, i); 
outo(i)=margo.T(2); 
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% compute the probability of sensor status  

margSt1 = marginal_nodes(engine, StS1, i);   
margSt2 = marginal_nodes(engine, StS2, i); 
margSt3 = marginal_nodes(engine, StS3, i); 
outSt1(i)=margSt1.T(2);   
outSt2(i)=margSt2.T(2); 

outSt3(i)=margSt3.T(2); 
end 

B.4.1 Tabular_CPD 
%Computation of tabular_CPD (tabular conditional probability 
distributions)  

%from the Bayes Net Toolbox for Matlab, written by Kevin Patrick Murphy 
et al. 

% Downloaded from http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html 

 

function CPD = tabular_CPD(bnet, self, varargin) 
% TABULAR_CPD Make a multinomial conditional prob. distrib. (CPT) 
% 
% CPD = tabular_CPD(bnet, node) creates a random CPT. 

% 
% The following arguments can be specified [default in brackets] 
% 
% CPT - specifies the params ['rnd'] 
%   - T means use table T; it will be reshaped to the size of node's 
family. 
%   - 'rnd' creates rnd params (drawn from uniform) 
%   - 'unif' creates a uniform distribution 
% adjustable - 0 means don't adjust the parameters during learning [1] 
% prior_type - defines type of prior ['none'] 

%  - 'none' means do ML estimation 
%  - 'dirichlet' means add pseudo-counts to every cell 
%  - 'entropic' means use a prior P(theta) propto exp(-H(theta)) (see 
Brand) 
% dirichlet_weight - equivalent sample size (ess) of the dirichlet 
prior [1] 
% dirichlet_type - defines the type of Dirichlet prior ['BDeu'] 
%  - 'unif' means put dirichlet_weight in every cell 
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%  - 'BDeu' means we put 'dirichlet_weight/(r q)' in every cell 

%    where r = self_sz and q = prod(parent_sz) (see Heckerman) 
% trim - 1 means trim redundant params (rows in CPT) when using 
entropic prior [0] 
% entropic_pcases - list of assignments to the parents nodes when we 
should use  

%      the entropic prior; all other cases will be estimated using ML 
[1:psz] 
% sparse - 1 means use 1D sparse array to represent CPT [0] 
% 
% e.g., tabular_CPD(bnet, i, 'CPT', T) 

% e.g., tabular_CPD(bnet, i, 'CPT', 'unif', 'dirichlet_weight', 2, 
'dirichlet_type', 'unif') 
% 
% REFERENCES 
% M. Brand - "Structure learning in conditional probability models via 
an entropic  prior 
%   and parameter extinction", Neural Computation 11 (1999): 1155--1182 
% M. Brand - "Pattern discovery via entropy minimization" [covers 
annealing] 
%   AI & Statistics 1999. Equation numbers refer to this paper, which 
is available from 
%   www.merl.com/reports/docs/TR98-21.pdf 
% D. Heckerman, D. Geiger and M. Chickering,  
%   "Learning Bayesian networks: the combination of knowledge and 
statistical data", 

%   Microsoft Research Tech Report, 1994 

  

if nargin==0 

  % This occurs if we are trying to load an object from a file. 
  CPD = init_fields; 
  CPD = class(CPD, 'tabular_CPD', discrete_CPD(0, [])); 
  return; 
elseif isa(bnet, 'tabular_CPD') 

  % This might occur if we are copying an object. 
  CPD = bnet; 
  return; 
end 



 175 

University of Nebraska – Lincoln 

CPD = init_fields; 

  

ns = bnet.node_sizes; 
ps = parents(bnet.dag, self); 

fam_sz = ns([ps self]); 
psz = prod(ns(ps)); 
CPD.sizes = fam_sz; 
CPD.leftright = 0; 
CPD.sparse = 0; 

  

% set defaults 
CPD.CPT = mk_stochastic(myrand(fam_sz)); 

CPD.adjustable = 1; 
CPD.prior_type = 'none'; 
dirichlet_type = 'BDeu'; 
dirichlet_weight = 1; 

CPD.trim = 0; 
selfprob = 0.1; 
CPD.entropic_pcases = 1:psz; 

  

% extract optional args 
args = varargin; 
% check for old syntax CPD(bnet, i, CPT) as opposed to CPD(bnet, i, 
'CPT', CPT) 

if ~isempty(args) & ~isstr(args{1}) 
  CPD.CPT = myreshape(args{1}, fam_sz); 
  args = []; 
end 

  

for i=1:2:length(args) 
  switch args{i}, 
   case 'CPT', 

    T = args{i+1}; 
    if ischar(T) 
      switch T 
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       case 'unif', CPD.CPT = mk_stochastic(myones(fam_sz)); 

       case 'rnd',  CPD.CPT = mk_stochastic(myrand(fam_sz)); 
       otherwise,   error(['invalid CPT ' T]);        
      end 
    else 
      CPD.CPT = myreshape(T, fam_sz); 

    end 
   case 'prior_type', CPD.prior_type = args{i+1}; 
   case 'dirichlet_type', dirichlet_type = args{i+1}; 
   case 'dirichlet_weight', dirichlet_weight = args{i+1}; 
   case 'adjustable', CPD.adjustable = args{i+1}; 

   case 'clamped', CPD.adjustable = ~args{i+1}; 
   case 'trim', CPD.trim = args{i+1}; 
   case 'entropic_pcases', CPD.entropic_pcases = args{i+1}; 
   case 'sparse', CPD.sparse = args{i+1}; 
   otherwise, error(['invalid argument name: ' args{i}]);        

  end 
end 

  

switch CPD.prior_type 
 case 'dirichlet', 
  switch dirichlet_type 
   case 'unif', CPD.dirichlet = dirichlet_weight * myones(fam_sz); 
   case 'BDeu',  CPD.dirichlet = (dirichlet_weight/psz) * 
mk_stochastic(myones(fam_sz)); 
   otherwise, error(['invalid dirichlet_type ' dirichlet_type]) 
  end 
 case {'entropic', 'none'} 
  CPD.dirichlet = []; 

 otherwise, error(['invalid prior_type ' prior_type]) 
end 

    

% fields to do with learning 
if ~CPD.adjustable 
  CPD.counts = []; 
  CPD.nparams = 0; 
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  CPD.nsamples = []; 

else 
  %CPD.counts = zeros(size(CPD.CPT)); 
  CPD.counts = zeros(prod(size(CPD.CPT)), 1); 
  psz = fam_sz(1:end-1); 
  ss = fam_sz(end); 

  if CPD.leftright 
    % For each of the Qps contexts, we specify Q elements on the 
diagoanl 
    CPD.nparams = Qps * Q; 
  else 

    % sum-to-1 constraint reduces the effective arity of the node by 1 
    CPD.nparams = prod([psz ss-1]); 
  end 
  CPD.nsamples = 0; 
end 

  

CPD.trimmed_trans = []; 
fam_sz = CPD.sizes; 

  

%psz = prod(fam_sz(1:end-1)); 

%ssz = fam_sz(end); 
%CPD.trimmed_trans = zeros(psz, ssz); % must declare before reading 

  

%sparse CPT 
if CPD.sparse 
   CPD.CPT = sparse(CPD.CPT(:)); 
end 

  

CPD = class(CPD, 'tabular_CPD', discrete_CPD(~CPD.adjustable, fam_sz));  
%%%%%%%%%%% 

  

function CPD = init_fields() 
% This ensures we define the fields in the same order  
% no matter whether we load an object from a file, 
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% or create it from scratch. (Matlab requires this.) 

  

CPD.CPT = []; 
CPD.sizes = []; 

CPD.prior_type = []; 
CPD.dirichlet = []; 
CPD.adjustable = []; 
CPD.counts = []; 
CPD.nparams = []; 

CPD.nsamples = []; 
CPD.trim = []; 
CPD.trimmed_trans = []; 
CPD.leftright = []; 
CPD.entropic_pcases = []; 

CPD.sparse = []; 

B.5 Neural Network 

%input and test: n* number of sensors,typically [86400 X 3] 
function [out,net]=neuralnet(input,target,test)   

  

% Define feed forward input-delay back propagation neural network  
net = newfftd([0 1; 0 1;0 1],[0 5],[3 1])   
input=input';       % Transpose matrix to fit the input requirement 
target=target'; 

test=test'; 
net.trainParam.show=NaN; 
net  = train(net,input,target); % Star train process 
out = sim(net,test);           % Apply the trained network to test data 
out=out'; 

B.6 Calculate ϕ Correlation 

%Phi correlation 
%Cross Table 

% a:Measured 
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% b:Truth 

  

function [N11,N10,N01,N00,PhiCorr]=FuncPhiCross(a,b); 

  

    N11=sum(a & b);     % True occupancy = 1, Measured = 1 
    N10=sum(~a & b);    % True occupancy = 1, Measured = 0 
    N01=sum(a & ~b);    % True occupancy = 0, Measured = 1 

    N00=sum(~(a | b));  % True occupancy = 0, Measured = 0 

    % � is calculated by equation 4.15� 2121

01100011

ccrr

NNNN !
="

 (4. 15)  
    den=sqrt((N11+N10)*(N11+N01)*(N10+N00)*(N01+N00)); 
    if den==0  
    PhiCorr=1; 
    else 
    PhiCorr=(N11*N00-N10*N01)/den;  

    end 
  

B.7 Miscellaneous Subroutines 

B.7.1 Apply time delay 
% Set time delay as Table 5-4 shows 
% OrigData: the original data (MRow x NCol matrix) 

  

function [AfterDelay]=SetTimeDelay(OrigData,TimeDelay) 

  

[MRow,NCol] = size(OrigData); % Get the size of the original data 
AfterDelay=zeros(MRow,NCol);  % Initialize the output matrix 
for j=1:NCol               % Start to scan the original matrix 

    for i=1:MRow 
        if OrigData(i,j)==1   % If reads 1, start to apply time delay 
            AfterDelay(i,j)=1; 
            for k=1:min(TimeDelay,MRow-i) 
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                if OrigData(i+k,j)==0   

                    AfterDelay(i+k,j)=1;  
                Else      
                    i=i+k;   
                    break; 
                end 

            end 
        end 
    end 
end 

B.7.2 Count occurrence of sub-matrix in another matrix 
% count how many times matrix B appears in matrix A 
function [n]=countm(B,A); 
[r1,c1]=size(B); 

[r,c]=size(A); 
n=0; 
for i=1 : r-1 
    if B==A(i:i+r1-1,:) 
        n=n+1; 

        pos(n)=i; 
    end 
end 

B.8 Raw Data Conversion 

B.8.1 Convert XTension logs to time series data 
% Sample original XTension log: 
% 'Thu, Dec 1, 2005 5:50:30 AM Received ON for A2 (w)'; 

% They will be converted to [0 1] form 
% List of sensors reflect the round-robin setting: the result will be 
ordered  
% by mounting postion [N E S] 

  

%listSensor = 'B2 B3 B1 B5 B6 B4 A2 A3 A1 A5 A6 A4 '; 
%listSensor = 'B1 B2 B3 B4 B5 B6 A1 A2 A3 A4 A5 A6 '; 
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listSensor = 'B3 B1 B2 B6 B4 B5 A3 A1 A2 A6 A4 A5 '; 

for i=1:21 
    fid=fopen(['back\XTension Log ' int2str(i)]); % Open the log for 
reading 
    sensordata=zeros(1440,10);     % Initialize output 
    while 1             % Read line-by-line 

        tline = fgetl(fid); 
        if ~ischar(tline),   break,   end % Break at the end of line 
        ArrayLine=strread(tline, '%s');   % Read the line to array, 
separated  
                          % by space 

        [m,n]=size(ArrayLine);         
        if m>7                % If it is a regular log line 
            sStatus = ArrayLine(8);   % Get sensor reading (ON or OFF) 
            if isequal(sStatus,{'ON'}) 
           sSensor = ArrayLine(11);  % Read sensor number    

                sTime=strcat(ArrayLine(5),ArrayLine(6));  
                          % Concatenate strings to get the time                 
                nTime = Hour(sTime) * 60 + Minute(sTime)+1;  
                          % Convert time to number 
                nCol = (strfind(listSensor,char(sSensor))-1)/3+1; 

                          % Find the right column to write  
                if ~nCol==0  
                    sensordata(nTime,nCol)=1;   % Write sensor reading 
(always 1)  
                            % to the right position 

                end 
            end 
        end 
    %    disp(tline) 
    end 

    dlmwrite(['back\Wireless_' int2str(i) '.txt'],sensordata, ' '); 
                         % Write results to a text file 
    fclose(fid); 
end 
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B.8.2 Convert 1-sec resolution to 1-min resolution 
for d=1:21 
    secdata=load(['session2sec\Commercial_' int2str(d) '.txt']); 
        % secdata=yout; 

    mindata=zeros(1440,21); % Initialize output 
    for col=1:21 
      for i=1:1440 
            for j=1:60 

  

          % Within a minute, if read 1 at any second, the minute is 
          % assigned 1. 
                if secdata((i-1)*60+j,col)==1      

                    mindata(i,col)=1; 
                    break; 
                end 
            end 
      end 

end 

end 
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Appendix C Web Display Software Programs 
This appendix describes software programs used to display and analyze occupancy data 
on the World Wide Web. 

C.1 Real time occupancy monitoring 

C.1.1 Introduction 
This is a web-based program showing the real time occupancy profile, developed in 
Mac+Apache+perl environment.  This program is essentially a perl CGI script, which 
reads the current occupancy sensor log file and displays the current sensor status on a 
web page, as depicted in Figure C-1. 

 

Figure C-1.  Web-based real-time occupancy display 

C.1.2 Source code 
#!/usr/bin/perl 

  

# tell the server the results will be displayed as html web page 
print "Content-Type: text/html\n\n";   
# Specify the file to be read 

$path=" /Documents/XTension/XTension Log"; 



 184 

University of Nebraska – Lincoln 

  

# String list all the sensor IDs  
$listSensor="A1A2A3B1B2B3B4B5B6C1C2C3D4D5D6E4E5E6F1F2F3F4F5F6G1G2G3G7G5
G6"; 

$ColorON ="#00FF66";  # Green 
$ColorOFF="#cccccc";  # Gray 

  

#Following loop initialize all display color to be gray 
for ($i=0;$i<30;$i++) 
{ 
    @colors[$i]=$ColorOFF; 
    @sensors[$i]=substr($listSensor,$i*2,2); 

} 

  

open(logfile,$path) || die print("Can't open $path !"); 
    # Look back from the bottom of the log file to around 20 lines 
    seek(logfile,-1500,2);   
    # Put the lines into array  "lines" 
    @array = <logfile>; 

    @lines=split(chr(13),@array[0]);   
    $size=@lines; 
#print $size; 

  

for ($i=0;$i<$size;$i++) 
{ 
    #read the space separated line to array "vars" 
    @vars=split(" ",@lines[$i]); 

    if (@vars[7] eq "ON") 
    { 
    # if the sensor sent a ON signal, set its corresponding color to 
green 
        $sTime=@vars[4]; 

        $nCol=(rindex $listSensor,@vars[10])/2; 
        @colors[$nCol]=$ColorON; 
    } 
    if (@vars[7] eq "OFF") 
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        { 

    # if the sensor sent a OFF signal, set its corresponding color to 
gray 
                $sTime=@vars[4]; 
                $nCol=(rindex $listSensor,@vars[10])/2; 
                @colors[$nCol]=$ColorOFF; 

        }; 
} 

  

close(logfile); 

  

#--------------------------------------------------------------------- 

#Output the results as html format, thus it is viewable from any 
computer connected to the internet 

  

# Define the table  
print "<table width=\"400\" border=0 cellpadding=3 cellspacing=3> 
<br/>"; 
print " <tr bgcolor=#9999FF align=center >"; 

print "<td width=\"100\"> Office Number </td>"; 
for($i=1;$i<11;$i++) { 
    print "<td> $i</td>";} 

  

print "</tr><tr><br\/><td bgcolor=#FFFFCC align=center> Sensor1</td>"; 
for($i=0;$i<10;$i++){ 
    print "<td bgcolor= @colors[$i*3]> <font color=#FFFFFF size=-1> 
@sensors[$i*3] </font></td>" 

} 
print "</tr> <tr align=center> <td bgcolor=#FFFFCC> Sensor2</td>"; 
for($i=0;$i<10;$i++){ 
        print "<td bgcolor= @colors[$i*3+1]> <font color=#FFFFFF size=-
1> @sensors[$i*3+1] </font></td>" 

} 
print "</tr> <tr align=center> <td bgcolor=#FFFFCC> Sensor3</td>"; 
for($i=0;$i<10;$i++){ 
        print "<td bgcolor= @colors[$i*3+2]> <font color=#FFFFFF size=-
1> @sensors[$i*3+2] </font></td>" 
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} 

  

print "</tr></table>"; 
exit; 

C.2 Web-based querying 

C.2.1 Introduction 
All sensor readings are stored in a Microsoft Access database.  This program is a web-
based querying tool that displays hourly occupancy profiles or the total time of each day 
that satisfies the querying criteria, as shown in Figure C-2 throughFigure C-5.   
Figure C-2 depicts the main query interface. 

 

Figure C-2.  Web-based occupancy querying interface 

 
If the “Hourly Profile” button is clicked, the hourly distribution of occupancy profiles of 
each space within the database will be displayed in a new page, as shown in Figure C-3. 
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Figure C-3.  Query results of hourly occupancy profiles 

If the “Total Minutes Per Day” button is clicked, the total occupied time (in minutes) of 
each day as measured by each sensor will be displayed in a new page.  Results can be 
displayed in tabular (Figure C-4) or graphical form (Figure C-5). 
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Figure C-4.  Tabulated query results showing total occupied time (min) of each day, each 

sensor 

 
Figure C-5.  Graphical query results showing total occupied time (min) of each day, each 

sensor 
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C.2.2 Source code - Hourly occupancy profile 
'queryResultTime.asp 
<%@LANGUAGE="VBSCRIPT" CODEPAGE="1252"%> 
<!--#include file="Connections/sensornet.asp" --> 

<!--#include file="sensorlist.asp" --> 
<% 
Dim Recordset1 
Dim Recordset1_numRows 

  

Set Recordset1 = Server.CreateObject("ADODB.Recordset") 
Recordset1.ActiveConnection = MM_sensornet_STRING 
Recordset1.Source = "SELECT count(*)  FROM DistinctDay" 

Recordset1.CursorType = 0 
Recordset1.CursorLocation = 2 
Recordset1.LockType = 1 
Recordset1.Open() 

  

Recordset1_numRows = 0 
%> 

  

<% 
Dim result(24,31) 

for i=0 to 23 
    result(i,0)=i 
    for j=1 to 30 
        result(i,j)=0 
    next     

next 
%> 

  

<% 
Dim rsHourlySum 
Dim rsHourlySum_numRows 
Set rsHourlySum = Server.CreateObject("ADODB.Recordset") 
rsHourlySum.ActiveConnection = MM_sensornet_STRING 
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rsHourlySum.Source = GetQuerySQL 

'rsHourlySum.Source ="SELECT hour(TTime) AS TimeHour, sum(v01), 
sum(v02), sum(v03), sum(v04), sum(v05), sum(v06), sum(v07), sum(v08), 
sum(v09), sum(v10), sum(v11), sum(v12), sum(v13), sum(v14), sum(v15), 
sum(v16), sum(v17), sum(v18), sum(v19), sum(v20), sum(v21), sum(v22), 
sum(v23), sum(v24), sum(v25), sum(v26), sum(v27), sum(v28), sum(v29), 
sum(v30) From LogData GROUP BY hour(TTime)" 
'rsHourlySum.Source ="SELECT * from hourly" 
sqlTemp=sqlTemp & "From LogData" 
rsHourlySum.CursorType = 0 
rsHourlySum.CursorLocation = 2 

rsHourlySum.LockType = 1 
rsHourlySum.Open() 

  

rsHourlySum_numRows = 0 
%> 

  

<% 
 function GetQuerySQL 
    mySQL = "SELECT hour(TTime) AS TimeHour" 
    for i=1 to 30 

        mySQL=mySQL + ",sum(v" & right("0" & CStr(i),2) & ")" 
    next 
    mySQL=mySQL & " From LogData" 
    ' Limit the search result in the time range specified 
    DateAndTime = Request.Form("fromYear") & "-" & 
Request.Form("fromMONTH") & "-" & Request.Form("fromDAY") 
    CFilter = " where (DDate >= CDate('" & DateAndTime & "'))" 

     

    DateAndTime = Request.Form("toYear") & "-" & Request.Form("toMONTH") 
& "-" & Request.Form("toDAY") 
    CFilter = CFilter & " and (DDate <= CDate('" & DateAndTime & "'))" 

  

     GetQuerySQL = mySQL & CFilter & "GROUP BY hour(TTime)" 
End Function 

  

%> 
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<% 
Dim Repeat1__numRows 
Dim Repeat1__index 

  

Repeat1__numRows = -1 
Repeat1__index = 0 

rsHourlySum_numRows = rsHourlySum_numRows + Repeat1__numRows 
%> 
<% 
'  *** Recordset Stats, Move To Record, and Go To Record: declare stats 
variables 

  

Dim Recordset1_total 

Dim Recordset1_first 
Dim Recordset1_last 

  

' set the record count 
Recordset1_total = Recordset1.RecordCount 

  

' set the number of rows displayed on this page 
If (Recordset1_numRows < 0) Then 
  Recordset1_numRows = Recordset1_total 
Elseif (Recordset1_numRows = 0) Then 
  Recordset1_numRows = 1 

End If 

  

' set the first and last displayed record 

Recordset1_first = 1 
Recordset1_last  = Recordset1_first + Recordset1_numRows - 1 

  

' if we have the correct record count, check the other stats 
If (Recordset1_total <> -1) Then 
  If (Recordset1_first > Recordset1_total) Then 
    Recordset1_first = Recordset1_total 
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  End If 

  If (Recordset1_last > Recordset1_total) Then 
    Recordset1_last = Recordset1_total 
  End If 
  If (Recordset1_numRows > Recordset1_total) Then 
    Recordset1_numRows = Recordset1_total 

  End If 
End If 
%> 

  

<% 
' *** Recordset Stats: if we don't know the record count, manually 
count them 

  

If (Recordset1_total = -1) Then 

  

  ' count the total records by iterating through the recordset 
  Recordset1_total=0 
  While (Not Recordset1.EOF) 

    Recordset1_total = Recordset1_total + 1 
    Recordset1.MoveNext 
  Wend 

  

  ' reset the cursor to the beginning 
  If (Recordset1.CursorType > 0) Then 
    Recordset1.MoveFirst 
  Else 

    Recordset1.Requery 
  End If 

  

  ' set the number of rows displayed on this page 
  If (Recordset1_numRows < 0 Or Recordset1_numRows > Recordset1_total) 
Then 
    Recordset1_numRows = Recordset1_total 
  End If 
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  ' set the first and last displayed record 
  Recordset1_first = 1 
  Recordset1_last = Recordset1_first + Recordset1_numRows - 1 

   

  If (Recordset1_first > Recordset1_total) Then 
    Recordset1_first = Recordset1_total 

  End If 
  If (Recordset1_last > Recordset1_total) Then 
    Recordset1_last = Recordset1_total 
  End If 

  

End If 
%> 

  

<html> 
<head> 

<title>Untitled Document</title> 
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1"> 
</head> 
<body bgcolor="#FFFFFF" text="#000000"> 

<p align="left"><strong><font size="2">Hourly occupancy profile of all 
sensors  
  <% if request.form("Time")="All" then %> 
  <% dislayTim="All" %> 
  <% else  

    dislayTime= "from " & Request.form("FromMonth") & "/" & 
request.form("FromDay") & "/" & request.form("FromYear") & " to " & 
Request.form("ToMonth") & "/" & request.form("ToDay") & "/" & 
request.form("ToYear")%> 
  <% = dislayTime %> 

  <% end if %> 
  (  
  <%'=(Recordset1.Fields.Item("Expr1000").Value) &  Days%> 
  ) </font></strong></p> 
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 <%  

While ((Repeat1__numRows <> 0) AND (NOT rsHourlySum.EOF))  
v_Hr=(rsHourlySum.Fields.Item(0).Value) 
for j=1 to 30 
    result(v_Hr,j)=(rsHourlySum.Fields.Item(j).Value)  
next 

  

  Repeat1__index=Repeat1__index+1 
  Repeat1__numRows=Repeat1__numRows-1 

  rsHourlySum.MoveNext() 
Wend 
%> 
‘Define the output table 
<table border="1" cellpadding="1" cellspacing="0" 
bordercolor="#FFFFFF"> 
  <tr>  
    <td  width="30" bgcolor="#A3A9C7"><div align="center"><font 
size="2">Hours</font></div></td> 
    <%for i=1 to 30%> 

    <td  width="30" bgcolor="#A3A9C7"><div align="center"><font 
size="2"><%=sensors(i)%></font></div></td> 
    <%next%> 
  </tr> 
<%  for i=0 to 23 %> 

  <tr bordercolor="#A3A9C7">  
      <td>  
      <div align="center"><font size="2"><%=result(i,0)%> 
</font></div></td> 
   <% for j=1 to 30 %> 

  

     <td>    

      <div align="right"><font size="2"><%=result(i,j)%> 
</font></div></td> 
    <%  next%> 
  </tr> 
 <%next %>  
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</table> 

<p> 

  

<table width="75%" border="0"> 

<% for r = 0 to 4 %> 
  <tr> 
    <td><% GenChartFile(r*2)%></td> 
    <td><% GenChartFile(r*2+1)%></td> 
  </tr> 

 <%next%>  

  

</table> 

  

</p> 

  

  

<p>&nbsp;</p> 

  

</body> 
</html> 
<% 
Recordset1.Close() 
Set Recordset1 = Nothing 

%> 
<% 
rsHourlySum.Close() 
Set rsHourlySum = Nothing 
%> 

C.2.3 Source Code - Total occupied time of each day 
'queryResultMinutes.asp 
<%@LANGUAGE="VBSCRIPT" CODEPAGE="1252"%> 
<!--#include file="Connections/sensornet.asp" --> 
<!--#include file="sensorlist.asp" --> 
<% 
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Dim rsResultMinutes 

Dim rsResultMinutes_numRows 

  

Set rsResultMinutes = Server.CreateObject("ADODB.Recordset") 

rsResultMinutes.ActiveConnection = MM_sensornet_STRING 
rsResultMinutes.Source =GetQuerySQL 
rsResultMinutes.CursorType = 0 
rsResultMinutes.CursorLocation = 2 
rsResultMinutes.LockType = 1 

rsResultMinutes.Open() 

  

rsResultMinutes_numRows = 0 

%> 
<% 
Dim result(500,31) 

  

%> 
<% 
 function GetQuerySQL 

    mySQL = "SELECT DDate" 
    for i=1 to 30 
        mySQL=mySQL + ",sum(v" & right("0" & CStr(i),2) & ")" 
    next 
    mySQL=mySQL & " From LogData" 

    ' Limit the search result in the time range specified 
    DateAndTime = Request.Form("fromYear") & "-" & 
Request.Form("fromMONTH") & "-" & Request.Form("fromDAY") 
    CFilter = " where (DDate >= CDate('" & DateAndTime & "'))" 

     

    DateAndTime = Request.Form("toYear") & "-" & Request.Form("toMONTH") 
& "-" & Request.Form("toDAY") 
    CFilter = CFilter & " and (DDate <= CDate('" & DateAndTime & "'))" 

  

     GetQuerySQL = mySQL & CFilter & "GROUP BY DDate" 
End Function 
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%> 
<% 
Dim Repeat1__numRows 

Dim Repeat1__index 

  

Repeat1__numRows = -1 

Repeat1__index = 0 
rsResultMinutes_numRows = rsResultMinutes_numRows + Repeat1__numRows 
%> 

  

<table border="1" cellpadding="1" cellspacing="0" 
bordercolor="#FFFFFF"> 
  <tr bgcolor="A3A9C7">  

    <td width="170"><div align="center"><font 
size="2">Date</font></div></td> 
    <%for i=1 to 30%> 
    <td  width="50" bgcolor="#A3A9C7"><div align="center"><font 
size="2"><%=sensors(i)%></font></div></td> 

    <%next%> 
  </tr> 
  <%  
While ((Repeat1__numRows <> 0) AND (NOT rsResultMinutes.EOF))  
result(Repeat1__index,0)=rsResultMinutes.Fields.Item("DDate").Value  

for j=1 to 30 
    result(Repeat1__index,j)=rsResultMinutes.Fields.Item(j).Value  
next 
%> 
  <tr bordercolor="#A3A9C7">  

    <td><font size="2"><%=result(Repeat1__index,0)%></font></td> 
    <%for i=1 to 30%> 
    <td><div align="right"><font 
size="2"><%=result(Repeat1__index,i)%></font></div></td> 
    <%next%> 

  </tr> 
  <%  
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  Repeat1__index=Repeat1__index+1 

  Repeat1__numRows=Repeat1__numRows-1 
  rsResultMinutes.MoveNext() 
Wend 
nRow=Repeat1__index 
%> 

</table> 
<table width="75%" border="0"> 
  <% for r = 0 to 9 %> 
  <tr> 
    <td><% GenChartFile(r)%></td> 

  </tr> 
 <%next%>  

  

</table> 
<p> 
  <% 
rsResultMinutes.Close() 
Set rsResultMinutes = Nothing 

%> 
</p> 
</body> 
</html> 
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Appendix D Sensor Unit Price 
Table D-1 lists unit prices for popular commercial occupancy sensors by major 
manufacturers.  The list includes single (PIR or ultrasonic) or dual (PIR+ Ultrasonic or 
PIR+ Microphonic) technology sensors at various mounting position (wall switch or 
ceiling/wall mounted).   

Table D-1.  Occupancy sensor list prices by major manufacturers 
 

Manufacturer  Catalog No.   Technology Mounting 

 U.S. 
List 

Price 
($) 

 
Coverage 

View  
(°) 

Wattstopper CW-100 PIR Wall switch 33 300 ft2 180 

Wattstopper CN-100 PIR Wall switch 37 300 ft2 180 

Wattstopper WS-200  PIR Wall switch 58 900 ft2 180 

Wattstopper WA-300   PIR Wall switch 84 300 ft2 180 

Wattstopper WI-300   PIR Wall switch 84 1000 ft2 180 

Wattstopper WN-100-120   PIR Wall switch 58 300 ft2 180 

Wattstopper WD-180   PIR Wall switch 80 300 ft2 180 

Wattstopper WD-270  PIR Wall switch 84 300 ft2 180 

Wattstopper WPIR   PIR Ceiling 72 300 ft2 360 

Wattstopper CX-100   PIR Ceiling 106 2000 ft2 360 

Wattstopper CI-200   PIR Ceiling 106 1200 ft2 360 

Wattstopper CI-200-1  PIR Ceiling 106 500 ft2 360 

Wattstopper CI-205  PIR Ceiling 88 1200 ft2 360 

Wattstopper CI-205-1  PIR Ceiling 88 500 ft2 360 

Wattstopper CI-300   PIR Ceiling 110 1200 ft2 360 

Wattstopper CI-300-1  PIR Ceiling 110 500 ft2 360 

Wattstopper CI-305  PIR Ceiling 94 1200 ft2 360 

Wattstopper CI-305-1  PIR Ceiling 94 500 ft2 360 

Wattstopper CI-12   PIR Ceiling 75 1200 ft2 360 

Wattstopper CI-12-1  PIR Ceiling 75 500 ft2 360 

Wattstopper CI-24  PIR Ceiling 75 1200 ft2 360 

Wattstopper CI-24-1  PIR Ceiling 75 500 ft2 360 

Wattstopper CB-100   PIR Ceiling 170 1200 ft2 360 

Wattstopper W-500A   Ultrasonic Ceiling 96 500 ft2 360 

Wattstopper W-1000A  Ultrasonic Ceiling 116 1000 ft2 360 
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Manufacturer  Catalog No.   Technology Mounting 

 U.S. 
List 

Price 
($) 

 
Coverage 

View  
(°) 

Wattstopper W-2000A  Ultrasonic Ceiling 136 2000 ft2 360 

Wattstopper WT-605   Ultrasonic Ceiling 104 600 ft2 360 

Wattstopper WT-600  Ultrasonic Ceiling 112 600 ft2 360 

Wattstopper WT-1105  Ultrasonic Ceiling 124 1100 ft2 360 

Wattstopper WT-1100  Ultrasonic Ceiling 132 1100 ft2 360 

Wattstopper WT-2205  Ultrasonic Ceiling 144 2200 ft2 360 

Wattstopper WT-2200  Ultrasonic Ceiling 152 2200 ft2 360 

Wattstopper UT-300-1   Ultrasonic Ceiling 112 500 ft2 360 

Wattstopper UT-300-2  Ultrasonic Ceiling 132 1000 ft2 360 

Wattstopper UT-300-3  Ultrasonic Ceiling 152 2000 ft2 360 

Wattstopper UT-305-1  Ultrasonic Ceiling 104 500 ft2 360 

Wattstopper UT-305-2  Ultrasonic Ceiling 124 1000 ft2 360 

Wattstopper UT-305-3  Ultrasonic Ceiling 144 2000 ft2 360 

Wattstopper DT-200   PIR+Ultrasonic Ceiling/Wall 170 2000 ft2 360 

Wattstopper DT-205  PIR+Ultrasonic Ceiling 150 2000 ft2 360 

Wattstopper DT-355   PIR+Ultrasonic Ceiling 150 1000 ft2 360 

Sensor switch WSD PIR Wall switch 56.7 20 ft 180 

Sensor switch WSD-NL PIR Wall switch 60 20 ft 180 

Sensor switch WSD-PDT PIR+Micophonic Wall switch 87.75 50 ft 180 

Sensor switch IPL PIR Wall switch 105 70 ft 180 

Sensor switch IPL-PDT PIR+Micophonic Wall switch 120 70 ft 180 

Sensor switch LWS PIR Wall switch 75 70 ft 180 

Sensor switch LWS-2P PIR Wall switch 93.75 70 ft 180 

Sensor switch LWS-PDT PIR+Micophonic Wall switch 105 70 ft 180 

Sensor switch LWS-PDT-2P PIR+Micophonic Wall switch 114 70 ft 180 

Sensor switch CMR-9 PIR Ceiling 97.5 12 ft 360 

Sensor switch CMR-9-2P PIR Ceiling 127.5 12 ft 360 

Sensor switch CMR-10 PIR Ceiling 97.5 28 ft 360 

Sensor switch CMR-10-2P PIR Ceiling 127.5 28 ft 360 

Sensor switch CMR-PDT PIR+Micophonic Ceiling 112.5 12 ft 360 

Sensor switch CMR-PDT-2P PIR+Micophonic Ceiling 142.5 12 ft 360 

Sensor switch CMR-PDT-10 PIR+Micophonic Ceiling 112.5 28 ft 360 
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Manufacturer  Catalog No.   Technology Mounting 

 U.S. 
List 

Price 
($) 

 
Coverage 

View  
(°) 

Sensor switch 
CMR-PDT-10-
2P PIR+Micophonic Ceiling 142.5 28 ft 360 

Sensor switch CMRB-9 PIR Ceiling 73.5 12 ft 360 

Sensor switch CMRB-9-2P PIR Ceiling 103.5 12 ft 360 

Sensor switch CMRB-10 PIR Ceiling 73.5 28 ft 360 

Sensor switch CMRB-10-2P PIR Ceiling 103.5 28 ft 360 

Sensor switch CMRB-PDT-10 PIR+Micophonic Ceiling 88.5 28 ft 360 

Sensor switch 
CMRB-PDT-10-
2P PIR+Micophonic Ceiling 118.5 28 ft 360 

Lutron LOS-SUS Ultrasonic Wall switch 108.55 1000 ft2 180 

Lutron LOS-S2IR-HD PIR Wall switch 97.45 1000 ft2 180 

Lutron LOS-SIR-HD PIR Wall switch 72.15 1000 ft2 180 

Lutron LOS-SIR PIR Wall switch 57.15 900 ft2 180 

Lutron LOS-WDT-R PIR+Ultrasonic Wall 151.9 1600 ft2 110 

Lutron LOS-WDT PIR+Ultrasonic Wall 145.5 1600 ft2 110 

Lutron LOS-WIR PIR+Ultrasonic Wall 106.45 1600 ft2 110 

Lutron LOS-CDT-1000 PIR+Ultrasonic Ceiling 134.75 1000 ft2 180 

Lutron 
LOS-CDT-
1000R PIR+Ultrasonic Ceiling 143.55 1000 ft2 180 

Lutron LOS-CDT-2000 PIR+Ultrasonic Ceiling 148.75 2000 ft2 360 

Lutron 
LOS-CDT-
2000R PIR+Ultrasonic Ceiling 157.5 2000 ft2 360 

Lutron LOS-CDT-500 PIR+Ultrasonic Ceiling 105.45 500 ft2 180 

Lutron LOS-CDT-500R PIR+Ultrasonic Ceiling 114.15 500 ft2 180 

Lutron LOS-CUS-1000 Ultrasonic Ceiling 116.45 1000 ft2 180 

Lutron LOS-CUS-2000 Ultrasonic Ceiling 134.45 2000 ft2 360 

Lutron LOS-CUS-500 Ultrasonic Ceiling 101.95 500 ft2 180 

Lutron LOS-CIR-1500 PIR Ceiling 81.25 1500 ft2 360 

Lutron LOS-CIR-450 PIR Ceiling 86.15 450 ft2 360 

Leviton ACP10-0L PIR Wall switch 82.03 2100 ft2 180 

Leviton OSSNL-ID PIR Wall switch 82.03 2100 ft2 180 

Leviton OSSMT-MD  PIR+Ultrasonic Wall switch 91.63 1200 ft2 180 

Leviton ODS0D-IDW  PIR Wall switch 114.97 2100 ft2 180 
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Coverage 

View  
(°) 

Leviton ODS10-IDW  PIR Wall switch 77.74 2100 ft2 180 

Leviton ODS15-IDW  PIR Wall switch 81.68 2100 ft2 180 

Leviton OSC05-M0W   PIR+Ultrasonic Ceiling 130.25 500 ft2 180 

Leviton OSC10-M0W  PIR+Ultrasonic Ceiling 152.37 1000 ft2 360 

Leviton OSC20-M0W  PIR+Ultrasonic Ceiling 174.51 2000 ft2 360 

Leviton OSC05-U0W  Ultrasonic Ceiling 108.11 500 ft2 180 

Leviton OSC10-U0W  Ultrasonic Ceiling 130.25 1000 ft2 360 

Leviton OSC20-U0W  Ultrasonic Ceiling 152.37 2000 ft2 360 

Leviton OSC04-I0W  PIR Ceiling 88.38 450 ft2 360 

Leviton OSC15-I0W  PIR Ceiling 88.38 1500 ft2 360 

Leviton ODC0S-I1W  PIR Ceiling 120.64 530 ft2 360 

Leviton ODC0S-I2W  PIR Ceiling 120.64 530 ft2 360 

Leviton ODC0S-I7W  PIR Ceiling 120.64 530 ft2 360 

Leviton ODC10-M0W  PIR+Ultrasonic Ceiling 152.37 1000 ft2 180 

Leviton ODC10-MRW  PIR+Ultrasonic Ceiling 185.68 1000 ft2 180 

Leviton ODC20-MRW  PIR+Ultrasonic Ceiling 207.63 2000 ft2 360 

Leviton OSW12-M0W   PIR+Ultrasonic Wall 174.43 1200 ft2 110 

Leviton OSWLR-I0W  PIR Wall 143.46 100 ft 8 

Leviton OSWHB-I0W  PIR Wall 143.46 120 ft 8 

Leviton OSWWV-I0W  PIR Wall 121.4 2500 ft2 110 

Leviton ODW12-MRW  PIR+Ultrasonic Wall 207.63 1200 ft2 110 
 

Table D-2 shows the determination of average price of PIR wall switches in the economic 
analysis (section 9.4).  PIR wall switches usually have smaller coverage than the dual-
technology sensors and they are recommended to use in small private offices.  The four 
lighting control scenarios assumed in the economic analysis were: manual switch, a 
simple functioning PIR wall switch, an extended coverage, dual-technology ceiling or 
wall mounted sensor and the sensor network.  Thus, only the simplest (or least expensive) 
sensor with coverage less than 300 ft2 are considered in the calculation.  The average 
price of $62.70 was rounded to $60.00 in the economic analysis. 
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Table D-2.  Price of PIR wall switches 

Manufacturer  Catalog No.  Technology Mounting
 U.S. List 

Price ($)

View 

(° )

Wattstopper CW-100 PIR Wall switch 33 300 ft
2

180

Wattstopper CN-100 PIR Wall switch 37 300 ft
2

180

Wattstopper WA-300  PIR Wall switch 84 300 ft2
180

Wattstopper WN-100-120  PIR Wall switch 58 300 ft
2

180

Wattstopper WD-180  PIR Wall switch 80 300 ft2 180

Wattstopper WD-270 PIR Wall switch 84 300 ft
2

180

Average 62.7

 

Coverage

 

 

Table D-3 shows the determination of average price of ceiling or wall mounted dual-
technology sensors in the economic analysis (section 9.4).  The economic analysis aimed 
to contrast the simple PIR wall switch with an extended-coverage sensor, so only dual-
technology sensors with greater than 1000 ft2 or 10 ft of coverage are considered in the 
calculation.  The average price of $149.10 was rounded to $150.00 in the economic 
analysis.  
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Table D-3.  Price of dual-technology ceiling or wall mounted sensors 

Manufacturer  Catalog No.  Technology Mounting
 U.S. List 

Price ($)

View 

(° )

Wattstopper DT-200  PIR+Ultrasonic Ceiling/Wall 170 2000 ft
2

360

Wattstopper DT-205 PIR+Ultrasonic Ceiling 150 2000 ft
2

360

Wattstopper DT-355  PIR+Ultrasonic Ceiling 150 1000 ft2
360

Lutron LOS-WDT-R PIR+Ultrasonic Wall 151.9 1600 ft
2

110

Lutron LOS-WDT PIR+Ultrasonic Wall 145.5 1600 ft2 110

Lutron LOS-WIR PIR+Ultrasonic Wall 106.45 1600 ft
2

110

Lutron !LOS-CDT-1000 PIR+Ultrasonic Ceiling 134.75 1000 ft
2

180

Lutron !LOS-CDT-1000R PIR+Ultrasonic Ceiling 143.55 1000 ft2
180

Lutron !LOS-CDT-2000 PIR+Ultrasonic Ceiling 148.75 2000 ft
2

360

Lutron !LOS-CDT-2000R PIR+Ultrasonic Ceiling 157.5 2000 ft2
360

Leviton OSC10-M0W PIR+Ultrasonic Ceiling 152.37 1000 ft
2

360

Leviton OSC20-M0W PIR+Ultrasonic Ceiling 174.51 2000 ft
2

360

Leviton ODC10-M0W PIR+Ultrasonic Ceiling 152.37 1000 ft
2

180

Leviton ODC10-MRW PIR+Ultrasonic Ceiling 185.68 1000 ft
2

180

Leviton ODC20-MRW PIR+Ultrasonic Ceiling 207.63 2000 ft2
360

Leviton OSW12-M0W  PIR+Ultrasonic Wall 174.43 1200 ft
2

110

Leviton ODW12-MRW PIR+Ultrasonic Wall 207.63 1200 ft2 110

Sensor switch CMR-PDT PIR+Micophonic Ceiling 112.5 12 ft 360

Sensor switch CMR-PDT-2P PIR+Micophonic Ceiling 142.5 12 ft 360

Sensor switch CMR-PDT-10 PIR+Micophonic Ceiling 112.5 28 ft 360

Sensor switch CMR-PDT-10-2P PIR+Micophonic Ceiling 142.5 28 ft 360

Sensor switch CMRB-PDT-10 PIR+Micophonic Ceiling 88.5 28 ft 360

Sensor switch CMRB-PDT-10-2P PIR+Micophonic Ceiling 118.5 28 ft 360

Average 149.1

 

Coverage

 

 


