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Abstract

Given a video image source, a statistical pressure snakes is able to track a color
target in real time. This report presents an algorithm that exploits the one-dimensional
nature of the visual snake target outline. If the target resembles a four-sided polygon,
then the four polygon sides are identified by mapping all image snake point coordinates
into Hough space where lines become points. After establishing that four dominant
lines are present in snake contour, the polygon corner points are estimated. The com-
putation burden of this algorithm is of theN logN type. The advantage of this method
is that it can provide real-time target corner estimates, even if the corners themselves
might be occluded.
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Matching a Statistical Pressure
Snake to a Four-Sided Polygon and

Estimating the Polygon Corners

Introduction

Statistical pressure snakes1 are a means to have a closed curve (snake) track an object.
Recent modifications made to Chris Smith’s snake routines have made it possible to track
targets in a variety of lighting conditions.3 The potential applications for these snakes are
many. The snake algorithm is envisioned to be used in closed-loop servoing tasks, as well as
an off-line aid to the operator to select certain targets in the image. Reference 4 investigates
methods to extract primary target shape features in a fast and reliable manner with the
goal to use this information in a closed-loop visual servoing system. Fast computational
speeds are possible because the algorithm only needs to work on a relatively small number
of discrete points. If the target is a rectangular box with right corners, then routines are
presented in Reference 4 that estimate the box center, orientation, and length and height
dimensions.

This technical report describes the algorithm that processes the discrete snake points
and attempts to find the four dominant corner points. The statistical pressure snakes attempt
to track a given set of image colors while keeping the snake points evenly and smoothly
distributed. Thus, if the target is a square rectangle, then the corners of the rectangle will
not be tracked well and are rounded off. To track the center of mass or orientation of the
target box, this small rounding off has a minimal effect. However, if the user desires to
locate the precise corner points, the standard snake by itself does not provide a very good
solution.

Figure 1 illustrates the end result of the new algorithm. Points corresponding to the
four dominant straight line segments along the parametric snake curve are determined first.
After finding a least squares fit to each of the four lines, the four intersection points are
computed (highlighted as yellow circles in Figure 1. With this routine, note that the actual
corners need not be visible. Also, the straight line segments of the target polygon can be
interrupted to some degree, as long as the box edges still are the four largest straight line
segments of the snake.

The 4 corners of a box-shaped target could be visually tracked in many ways. For
example, a corner finding routine could be applied to the entire image (by searching the
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Figure 1. Illustration of the 4-Sided Polygon Corner Tracking
Routine

image eigenvalues). However, such algorithms need to process alln×m pixels of the
image and are much slower than this algorithm that only needs to operate on a relatively
small number of snake points. Further, corner finding routines can easily be confused by
other corners in the image. For example, note the clear corners of the red frame surrounding
the blue target box in Figure 1. Since the snake robustly tracks the target shape, this snake-
based corner detection method is a lot more robust than a standard corner detection scheme.
Lastly, note that in the image shown in Figure 1 the upper right corner is obscured and
not visible. A corner detection routine would not be able to estimate the invisible corner
location, where the snake-based corner detection routine is still able to estimate the corner
location rather accurately. An alternate method to track straight lines is to process the
image using a Hough Transform and detect all linear line segments in the image. Again,
this is a rather expensive computation process when applied to the entiren×m image, and
which also requires a very sophisticated post-processing logic to determine which straight
lines found belong to the target. For example, in the image shown in Figure 1 a black pen
is held across the image. A standard straight-line detection routine could easily become
confused by this additional straight line in the image. As is shown in the Figure 1, the
snake-based corner detection scheme is not sensitive to such minor errors in the snake
tracking capability.

However, if sub-pixel accuracy of the box corners is required, then the eigenvalue cor-
ner finding routines could be used along with this routine, if the box corners are visible.
The snake-based corner finding routine would provide a very good estimate of where the
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box corner is. This estimated would then be refined by the image eigenvalue based corner
finding routine which would use the previous corner estimate to seed the search region.

Typically this routine requires more snake points to be available than the standard snake
routine used for performing real-time tracking of the target center and orientation. Being a
fastN log2(N) routine, the corner identification will only be roughly as fast as theN2 snake
routine, whereN is the number of segments in the snake. A fast computer must be used to
do this in real-time for control application. However, the main application of this routine
is for the off-line use by the remote manipulator operator. A common task for the operator
is to select corner points on an object to define a coordinate system for the robotic path
planning algorithm. With the presented corner detection algorithm, it should be possible
for the operator to click on a square object (for example a suitcase) and the routine would
provide the user with the various corner points. Combined with a stereo-vision system,
the same box could be detected in the second view to compute polygon plane position and
orientation.

This report explains each step of the snake-based corner detection algorithm in detail.
The first step is to map the(x,y) snake points into a Hough space where lines are repre-
sented by points. After identifying tight clusters of line points in Hough space, the four
largest clusters are identified. The corresponding(x,y) coordinates of the snake points
which form a common line are curve fit optimally using a least squares routine. The final
step is to determine the proper intersection points.

Transformation to Hough Space

Lines in traditional Cartesian coordinate space are typically represented through

y = c+mx (1)

wherec is the zero crossing offset andm is the slope. Any point(x,y) that lies on this line
will share the same(c,m) values. Thus, the parameters(c,m) can be considered to be the
invariant properties of the line define by Eq. (1). If a set of points of the snake truly form
a straight line, then the line segments between each set of two adjacent snake point would
yield identical(c,m) values. This is the general idea behind the Hough transform that is
used in the robotic vision literature to detect straight lines in images. Applying this princi-
ple to the entiren×m image is computationally very expensive. However, with the snake
this process is greatly simplified. Here we look at the points preceding and super-ceding
the current snake point to estimate a local line, and then compute the corresponding line
invariant parameters. If a series of snake points form a common line, then their equivalent
(c,m)parameters would cluster closely together.
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û

θ

θ

x

y

c

m
1

Figure 2. Illustration of the(r,θ) line parameters

In this report we are referring to the line invariant parameter space as the Hough space.
However, we do not use the(c,m) parameters as shown in Eq. (1) due to the singularities
in m as lines become vertical. Instead we use the parameters(r,θ), with r being the miss
distance of the line to the origin andπ/2 < θ≤ π/2 being the line slope. These parameters
are illustrated in Figure 2. The unit vector ˆe is the direction of the line. Note that−ê would
model the same line. To avoid singularities through non-uniqueness of the line description,
the line direction vector is defined such that it never points in the negativex axis direction.
This corresponds to the slope being being limited toπ/2 < θ ≤ π/2. The line direction
vector is defined in terms ofθ as

ê =
(

cosθ
sinθ

)
(2)

The unit direction vector ˆu is defined to be orthogonal to ˆe and rotated from ˆe 90 degrees
counter clockwise.

û =
(
−sinθ
cosθ

)
(3)

The parameterr is the smallest distance between points on the line and the coordinate
origin. Note thatr is treated here as a signed parameter. The vectorrû provides the miss
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ûi

êi
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vector of the line to the origin. If the line lies on the positive side of ˆe, (where positive is
defined through the direction of ˆu), thenr is positive. This idea is illustrated in Figure 2
through lines 1 and 2 which only differ in the sign of theirr value.

Given the image coordinatespi = (xi ,yi) of a snake pointPi , the corresponding Hough
space parameters(r i ,θi) are computed as illustrated in Figure 3. Letd be the distance
between the two neighboring points

d =
√

(xi+1−xi−1)2 +(yi+1−yi−1)2 (4)

Theêi unit vector coefficients are then determined through

eix =
xi+1−xi−1

d
(5)

eiy =
yi+1−yi−1

d
(6)

Sinceêi must not point in the negativex axis direction, the sign ofeix must be non-negative.
If it is, then reverse the sign of botheix andeiy. Note that the ˆe could also be computed
using onlypi andpi+1. However, using both neighboring points provides for a smoother
local slope computation. The miss distancer i is now computed as

r i = pi · ûi =−eiyxi +eixyi (7)
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Figure 4. Hough Space Plot of Sample Box-Shaped Snake

while the line heading angleθi is given by

θi = tan−1
(

eiy

eix

)
(8)

When numerically computingθi , be sure to use theatan2() function to avoid singularities
nearθi →±π/2.

Determining Line Point Clusters

Using Eqs. (7) and (8), we are able to quickly map all(xi ,yi) snake points into correspond-
ing Hough space(r i ,θi) points. The next task is to identify which groups of Hough space
points belong to a common line. Figure 4 shows an example where a box shaped snake
image has been transformed into the Hough space. Note that the miss distancer has been
normalized here using the image widthw to yield

ρ =
r
w

(9)

For the results shown in Figure 4, two sides of the box are near vertical, while the other
two sides are near horizontal. This results in two clusters of points that are near theθ = 0
line, while the other two line point clusters are at eitherθ = +π/2 or θ =−π/2. Note that
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as the angleθ rolls over fromπ/2→−π/2, or vice versa, then the sign of the miss distance
r must also be reversed. When computing the nearness between two points, this roll-over
behavior must be taken into account.

Note the interesting behavior of the line point clusters. They do not form tight groups of
points, as might have been expected, but rather form drawn out chains of points. The reason
for this has to do with how the snake line will chatter about the target edge. Figure 5 shows
a close-up view of how the snake points behave near the target edge. As implemented, they
will never perfectly settle down on the target edge line. They will always either try to push
the snake point out if it is currently over the target, or pull it back it is no longer over the
target. When computing the snake line segments about a current snake pointpi , this minor
chatter will cause some slight perturbation about the local straight line approximations
about pointpi . These perturbations are what is causing the Hough space clusters to be
elongated into small chains of points.

image target

snake points

Figure 5. Close-Up View of Snake Point Edge Behavior

Because of this behavior, we cannot simply look at the RMS value of the distance
between two Hough space points to determine if they might belong to a common line. For
example, it is possible for two points at the opposite ends of the chain cluster to be relatively
far apart, but they clearly belong to the same line point grouping. Figure 6 illustrates the
logic that is applied to search through all the Hough space points to determine which points
might belong to a common line.

The snake points are first sorted by their non-dimensionalρ values using a fastN log2(N)
HeapSort() algorithm.5 The sortedρ values are stored in the arrayr abs[], while keeping
track of which snake point these values correspond to. If a slope angle magnitude is larger
than 1.3 radians andρ > 0, then the snake pointρ value is duplicated in the arrayr abs[]
as−ρ. The reason for this is to account for the roll-over behavior of the Hough space
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Figure 6. Flowchart Diagram of Common Line Point Cluster
Identification
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points nearθ = ±90 degrees. Ifθ >1.3 radians, then it is possible that the current snake
point could be close to points near−ρ. This process will slightly increase the number of
loopsN that are performed later on to determine near snake points. However, the major
advantage is that by keeping a signedρ value (as opposed to simply taking|ρ| to account
for roll-over behavior), theρ value will be more unique for each line cluster and make the
cluster-finding algorithm quickly reject points that are far away.

After sorting the snake points by theirρ value, we loop over theN snake points to
determine chain-clusters of near points. The counter variableNC keeps track of how many
chain clusters have been found and is initialized to zero. First we compute the distance
dr > 0 between the two pointsp(i) andp( j) in terms of the sortedρ values. Ifdr is smaller
than some threshold valueδ, then it is possible thatp( j) could be a common chain cluster
point. If not, we skip forward and increment thei counter. After initializing the inner loop
counter j, we check if the pointp( j) has been assigned a chain tag ID number. If yes,
then this point is already part of a chain and we skip forward to increment thej counter.
If p( j) has not been assigned an ID tag, then we compute the distanced betweenp(i) and
p( j) in the Hough space. Note that the roll-over behavior of the Hough space points about
θ = ±90 degrees must be taken into account here. Ifd < δ, then these two points belong
to a common chain. If the current point has not been assigned an ID tag yet, then a new
chain is formed. If yes, then the chain ID tag of pointp( j) is set equal to that of pointp(i).
Next we increment thej counter and compute the valuedr between the newr abs[j] and
r abs[i]. If dr remains less thanδ, then thej-loop is continued until this condition fails.
At this point we know that all remaining snake points cannot be part of the current set of
chain cluster points and we skip forward to the nextp(i) value.

Note that since the snake points have been sorted by their signedρ values, we are
performing the above cluster search not by looping through successive snake points, but
rather by considering snake points in ascending order of theirρ value. If a difference in
ρ values is large, we can immediately conclude that the current, and all later points, will
not belong to this chain cluster. Also, note that it is very unlikely for this chain naming
scheme to generate sub-chains that belong to a common larger chain. This avoids the need
to introduce a more complicated scheme which would join chain ID tags which belong to
a common chain.

As shown, this ends up being roughly aN log2(N) operation. No assumptions have
been made here as to the ordering of the snake points. If a line is partially obscured, this
method will still identify points left and right of this intrusion that belong to a common
line. Compared to an earlier generationN2 method of identifying snake point clusters in
Hough space, the presented algorithm is 3-4 times faster and more robust.2

Figure 7 illustrates the Hough space line grouping identification process as the algo-
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Figure 7. Groupings of Common Chain Clusters after theρ-
Sorting and Chain Identification Algorithm

rithm passes through the sorting and identification loops. A threshold ofδ = 0.05 is used
here. The target box was partially obscured in this test, causing various erroneous line seg-
ments to appear in the data. Points belonging to a common chain are identified through a
common color. Note that the roll-over effect is handled properly when comparing Hough
space points. A near-vertical line is identified with slopes near bothθ → 90 degrees and
nearθ →−90 degrees.

The smaller theδ value is, the less likely the algorithm will identify wrong points belong
to a common line. However, at the same time we are also more likely to reject points that
should belong to a common line.

After identifying chains of points in the Hough space, the number of points in each
chain cluster is evaluated. The largest 4 chains are then identified for further processing.
If the object is partially obscured, it is possible to have other small line segments in the
image. By using only the 4 largest sets of snake points that form common lines, we are
able to keep the algorithm robust to such small erroneous line segments.
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Determining the Optimal Line Fits

Now that the snake points have been identified that belong to the 4 box sides, we need to
evaluate the best line fits to these sets of points. A simple method would be to average the
(r i ,θi) parameters belonging to a common line to obtain the mean parameter(r̄ i , θ̄i). Note
that care must be taken when computing the average values due to the roll-over behavior
of the Hough space points aboutθ = ±90 degrees. These mean parameters would define
the line that is later intersected with the other lines to determine the four polygon corner
points. Implementing this averaging scheme, the resulting corner point predictions worked
reasonably well. However, optimizing the(r,θ) values did not result in corner predictions
which were as accurate as those obtained by computing the least-squares best line fits to
the (x,y) snake points. The least-squared line fit provides a bestlocal line fit to the(x,y)
data points. The averaging of the(r,θ) parameters provides the best fit of the miss-distance
r and slope angleθ. These states are defined in the proximity of the coordinate system
origin. Thus, having a small error inθ could result in noticeable corner prediction errors
if these corners are far removed from the origin. The local least-squares solution does not
suffer from such sensitivities. Further, performing a full least-squares solution to the line
segments is not computationally expensive.

To use the standard least-squares algorithm to determine a best line fit to the snake
points(xi ,yi), the line parameters must appear linearly. This means that we cannot use the
non-singular(r,θ) parameters, sinceθ appears in trigonometric functions describing the
(x,y)-space line. Instead, the standard(c,m)parameters are used shown in Figure 2. Here
a line is defined as

y(x) = c+mx (10)

However, note that this line description goes singular if the line is vertical. For near vertical
lines, we can use the alternate line description

x(y) = c′+m′y (11)

The optimal parameters(c,m) (in a least squares residual error sense) are found using the
classical formula: (

c
m

)
=

1
∆

(
∑x2

i ∑yi −∑xi ∑xiyi

N∑xiyi −∑xi ∑yi

)
(12)

where

∆ = N∑x2
i −

(
∑xi

)2
(13)
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The non-singular line parameters(r,θ) are then found through

θ = tan−1m (14)

r = c∗cosθ (15)

To avoid singular solutions in our algorithm, we use either of the above line descriptions
in Eq. (10) and (11) when computing the least squares solutions. Let∆′ be given by

∆′ = N∑y2
i −

(
∑yi

)2
(16)

If ∆′ > ∆, then we compute(c′,m′) instead of(c,m)using(
c′

m′

)
=

1
∆′

(
∑y2

i ∑xi −∑yi ∑yixi

N∑yixi −∑yi ∑xi

)
(17)

If m′ > 0, then the non-singular line parameters(r,θ) are computed using

θ =
π
2
− tan−1m′ (18)

r =−c′ ∗cosθ (19)

If m′ < 0, then the non-singular line parameter(r,θ) are computed using

θ =−π
2
− tan−1m′ (20)

r = c′ ∗cosθ (21)

By switching between the two line descriptions in Eqs. (10) and (11), we are able to
obtain the optimal least-squares line fits toany line without singularities. The additional
algebra required to achieve a non-singular solution is minimal.

Computing the Four Corner Intersection Points

At this point we have identified four linesl i using the(r,θ) parameters. Before computing
the 4 corners, these lines are ordered such that two near-colinear lines are never directly in
sequence. This is done by checking the difference in slopes between the first line and the
second and third lines. If the first and third line have a larger slope difference, then lines
2 and 3 are switched. This process is then repeated by comparing the slope differences
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between the second line and and lines three and four. If the second and fourth line have a
larger slope difference, then lines 3 and 4 are switched.

The final step is to intersect two linesl i andl i+1 to compute the desired polygon corners.
Two lines l i and l j are illustrated in Figure 8. Given the corresponding line parameters
(r i ,θi) and(r j ,θ j), the line vectors ˆei , ê j , ûi andû j are given by

eix = cosθi eiy = sinθi (22)

uix =−eiy uiy = eix (23)

ejx = cosθ j ejy = sinθ j (24)

u jx =−ejy u jy = ejx (25)

Note that the ˆu vectors are always orthogonal to the ˆe vectors and rotated 90 degrees
counter clock-wise. Letti andt j be arbitrary scaling factors. The linesl i(ti) andl j(t j) are
then given by

l i(ti) = ûir i + êiti (26)

l j(t j) = û j r j + ê jt j (27)

At the corner pointci we must havel1(t1) = l2(t2). This leads to the system of equations[
eix −ejx
eiy −ejy

](
ti
t j

)
=

(
u jxr j −uixr i

u jyr j −uiyr i

)
(28)
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This matrix equation can be solved for bothti andt j . However, to find the corner pointci ,
only finding ti is sufficient. Solving this system of equations leads to the required scaling
factort∗i .

t∗i =
1

ejxeiy−eixejy

(
(ejyr j −eiyr i)ejy +(ejxr j −eixr i)ejx

)
(29)

The intersection pointci between the linesl i andl j is then given by

ci =
(
−eiy
eix

)
r i +

(
eix
eiy

)
t∗i (30)

This process is repeated to find the remaining three corner points.

Conclusion

A fast N log2(N) algorithm is presented that takes the snake curve and finds the four dom-
inant line segments. After intersecting the four lines, the polygon corners points are com-
puted. Care was taken to obtain an algorithm which is free of singularities, yet is also fast
to compute. The end result is a convenient method to detect 4-sided polygon corner points
in a robust manner. Having the sides partially obscured does not affect the algorithm, as
long as the target polygon sides are the four largest straight line segments of the snake. Fur-
ther, the algorithm does not require the polygon corner point to actually be visible. Since
its location is computed by intersecting two lines, the corner point itself can be hidden by
another object. The algorithm could be extended to detect more than 4 line segments.
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