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ABSTRACT 
 
 The susceptibility of a thermally co-evaporated 
CuInGaSe2 (CIGS) thin-film absorber to humidity and its 
consequence on composition, morphology, electrical and 
electronic properties, and device efficiency was 
investigated. CIGS films on Mo-coated soda lime glass 
were degraded either in the ambient at ~21oC and ~21% 
relative humidity (RH) for a period of several months or in 
damp heat (DH) at 85oC and 85% RH briefly for 15-30 min; 
then the films were processed simultaneously into devices 
in a batch that included an unexposed control. In addition 
to severe delamination on some samples of the absorber 
films, prolonged ambient exposure resulted in numerous 
“spot” formations that lost CIGS with scale-like 
disintegration rippling around the spots and showed a 
significant presence of Na. Exposure in DH for 5 h was 
able to reproduce the spot formations on the CIGS films. A 
significant to large decrease of cell efficiency was 
observed from 14%–16% for the unexposed control to 
8%–11% for the CIGS absorber exposed in DH for 15 and 
30 min and 1%–4%% for the ambient-degraded CIGS with 
high series resistance and very low shunt resistance.  
 
 

INTRODUCTION 
 
 Long-term performance reliability of thin-film 
photovoltaics such as CIGS and CdTe is highly important 
to their success in gaining broad market acceptance. 
Packaging capable of blocking or minimizing moisture 
ingress is essential for PV modules to protect an absorber 
such as CIGS, window layer such as ZnO, and contact 
electrode such as Mo from humidity-induced damages and 
therefore to ensure their durability in the field. For example, 
Siemens Solar (which is no longer operating) employed a 
moisture-blocking desiccant-type edge sealant and a 
TPAT (Tedlar/polyester/aluminum foil/Tedlar) on its CIGS 
modules. Edge sealants are also beneficially used on 
glass/glass laminates of CIGS and CdTe modules. The 
Olson group has developed a multilayer moisture-barrier 
coating to successfully protect CIGS from DH at 
85oC/85%RH for more than 1500 h [1-2].  On the side of 
materials stability, several groups have conducted 
accelerated stress tests on either complete cells or mini-
modules in damp heat, light/dark cycles, or both DH/light 
exposures [3-11], to better assess the performance 
stability and understand the degradation mechanisms of 
CIGS absorbers or devices. Longer-term outdoor 
performance reliability of CIS and CIGS modules was 
reported by del Cueto at al. recently [12]. Various factors 
or mechanisms ranging from increased defect density [3-5] 

to increased resistance of ZnO window layer [10,11] have 
been proposed to explain the differences observed in 
CIGS device or module degradation behaviors. However, 
a common issue in such approaches is that using 
complete devices or (mini-) modules make it difficult to 
properly differentiate, and/or separate, the factors that 
contribute to degradation from among the different 
component materials. In recognizing the instability issues 
imparted by the main CIGS components, Wennerberg et 
al. attempted to improve the performance and stability by 
design modifications [13]. Previously we have 
demonstrated the instability of Mo back electrode and 
intrinsic and Al-doped ZnO upon DH exposures [14-16]. 
To eliminate the ambiguity of uncertain contributions from 
various degrading factors encountered in testing complete 
CIGS cells or mini-modules, we chose in this work to only 
investigate only the humidity susceptibility of the absorber 
by subjecting the CIGS samples to ambient environment 
over a prolonged period of several months and to DH 
condition over a very brief period of hours or less. The 
ambient and DH-exposed CIGS absorber samples, along 
with an unexposed control, were then processed 
simultaneously in a batch into devices. This approach 
effectively removed the potential variations and 
uncertainty that would have been found had the devices 
were fabricated separately. Meanwhile, other studies at 
NREL also examined the lifetime and stability of the CIGS 
absorber and partial device structures exposed to the air 
or stored in a N2 dry box by using photoluminescence 
analysis [17-18]. 

 
 

EXPERIMENTAL 
 
 Samples and cell fabrication: CIGS absorbers were 
deposited by NREL’s three-stage thermal co-evaporation 
process on Mo-coated soda lime glass. The standard 
device fabrication process involved CdS by chemical bath 
deposition, intrinsic-/Al-doped bilayer ZnO window by 
sputter deposition, and Ni/Al contact electrode by e-beam 
evaporation.  
 Exposures: Some absorber samples placed in clear 
plastic boxes were allowed to expose to the ambient for 8-
12 months inside the laboratory building, which was 
typically at ~21oC and ~21% RH. Another set of absorber 
samples was cut from a large piece into four portions, one 
of which was stored in a N2 dry box as the control until the 
moment of device fabrication. The other pieces were 
exposed in a Blue M chamber operated at 85oC and 85% 
RH briefly for either 15 or 30 min. Smaller specimens for 
morphological and microscopic studies were DH-exposed 
accumulatively from 0.5 to 1, 2, and 5 hours.  
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 Characterization: Surface morphological features 
and changes were examined by an optical microscope at 
low magnification factors, a WYKO interference optical 
microscope at high resolutions, and an FEI Nova 
NanoSEM 630 scanning electron microscope (SEM). 
Localized small-area composition analysis was performed 
by using a JEOL 8900 Superprobe electron probe 
microanalysis (EPMA) with a typical ~20-µm probe size. 
Distribution of work function was examined using scanning 
Kelvin probe force microscopy (SKPFM) [19,20] with fine 
resolutions of several tens of nanometers. SKPFM is 
based on the non-contact mode of atomic force 
microscopy (AFM), and measures surface potential/work 
function by measuring a coulomb force between the AFM 
tip and sample. Admittance spectroscopy measurements 
were conducted by using an Agilent A4294 impedance 
analyzer, typically with an AC modulation voltage of 45 
mVrms at a frequency of 10 kHz.  
 

RESULTS AND DISCUSSION 
 
 Compositional Changes. The CIGS absorber films 
upon prolonged ambient or 5-h DH exposures exhibited 
numerous visible spots. Some ambient-degraded films 
even became wrinkled and delaminated. Some results of 
localized composition analysis by EPMA at 10KeV are 
given in Table 1 for two samples (A and B) before and 
after prolonged degradation by ambient exposure. Sample 
A was a Ga-rich film, and sample B had a typical CIGS 
film composition. When elemental weight percentages are 
compared, the compositions of the ambient-degraded but 
still smooth regions on sample A are similar to those of the 
initial film; however, the spotty areas are relatively low in 
Cu, Ga and Se. Greater compositional changes are seen 
for the spotty areas on sample B than that for sample A. 
Upon normalization to the atomic ratio percentage, the 
spotty areas are comparatively low in Ga for both samples. 
Significant presence of Na was also found at the spotty 
formations, but its concentration was difficult to quantify.  
 

Morphological and Optical Changes. The optical 
images in Fig. 1 show the visible spots on the CIGS films. 
As revealed from examination under a WYKO interference 
microscope, the spot formations are in fact small regions 
of CIGS that were disintegrated (lost) with finite scale-like 
lines rippling around the spots (figures not shown). The 
SEM micro-images in Fig. 2 compare the surface 
morphology of a still smooth area near the spot formation 

Fig. 1. Optical images with artificial green color of 
some spot formations on ambient-degraded CIGS films 
at a magnification of 10X (a), 16X (b), or 40X (c, d). 

(a) 

(c) 

(b) 

(d) 

2000X 

(a) (b) 

(c) (d) 

2000X 

500X 2000X 

Fig. 2. SEM micrographs for an ambient-degraded 
sample (#A, Table 1) over several months: (a) a still 
“smooth” area, (b) an area with a large number of 
small pits, and (c, d): large pitting spots, which were 
visible and corresponded to the images seen under the 
optical and interference microscopes. The 
magnification factors are indicated in the micrographs. 
 

Table 1. Compositions for CIGS Absorber Films with or without Exposure to Ambient or Damp Heat

Sample Exposure Area Weight Percent (Average of 5 points) Atomic Ratio (Average of 5 points)
ID Cu In Ga Se Total Cu In Ga Se Total
A No (Initial) smooth 17.23 22.76 10.27 51.25 101.50 21.42 15.66 11.64 51.28 100.00

Ambient smooth 17.20 23.44 9.82 51.15 101.60 21.42 16.16 11.15 51.28 100.00
Ambient spotty 15.59 21.07 8.74 47.61 93.01 21.10 15.82 10.79 52.29 100.00

B Ambient smooth 18.97 26.57 7.21 50.30 103.05 23.50 18.21 8.14 50.15 100.00
Ambient spotty 12.19 17.89 4.40 34.39 68.87 22.37 18.43 7.11 52.08 100.00
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and the spot for an ambient-degraded CIGS sample. A 
large degree of morphological (and compositional, above) 
disintegration was present, especially around the spot 
formations. Optically, despite the presence of visible 
spotty formations and some degree of delamination, the 
ambient-degraded CIGS films showed essentially identical 
reflectance spectra in the 250-900-nm range, but a 
consistent peak shift of ~30-40 nm in the interference 
pattern in the 900-1500-nm range, as seen in Fig. 3. 
Currently, it can not be clearly determined if this spectral 
shift is caused by certain changes in film thickness, non-
uniformity, optical density, or compositions.   

 
SKP/AFM Analysis. The scanning Kevin probe/AFM 

(SKPFM) was employed to examine the effect of DH 
exposure on the electronic property (work function or 
surface potential). The SKPFM and AFM images taken 
before a DH exposure, shown in column (a) in Fig. 4, 

exhibit typical CIGS topographic features and a well- 
defined work-function mapping. The grain topography and 
work function distribution appear to show well-defined 
correlations; that is, the work function depends closely on 
the grains’ surface facets and its values on the grain 
boundaries may depend on specific grain boundary 
structures. Small spots appeared on the AFM images after 
1- and 5-h DH exposures (columns [b, c], bottom). The 
SKPFM images show significant changes with the DH 
exposures, suggesting that the work function had 
gradually lost its correlation with the grain geometric 
feature upon DH exposure. After 5 h in DH, the initially 
well defined work-function images became fairly blurred, 
likely a result of electronic property breakdown on the 
CIGS grains.  
 The sensitivity of the CIGS absorber to the 
environment (humidity and oxygen) was evidenced by the 
rapid decline of carrier lifetime after exposing it to the air 
for only one day, as observed by Metzger et al. in their 
studying the stability of CIGS absorber films using 
photoluminescence [17,18]. The degradation was greatly 
reduced if the CIGS was quickly deposited with CdS; the 
CIGS/CdS was found stable in the air for months [17,18]. 
The stabilization mechanism of CdS for CIGS is not clear, 
however. On the other hand, Würz et al. reported the 
formation of a Cu(OH)2 surface phase on the CuGaSe2 
that was stored in the ambient for several months [21]. 
Heske et al. reported the formation of sulfate, which 
resulted from sulfur oxidation induced by DH in the 
Cu(In,Ga)(S,Se)2, CIGSSe-based solar cells [22]. While 
more in-depth studies are required, it is likely that the 
CIGS absorber thin films have undergone similar 
oxidation/hydrolysis when exposed in the ambient as well 
as in the damp heat. 
 

Admittance Spectroscopy Measurements. To gain 
understanding of the interface and bulk electrical 
properties [23,24], we also conducted some capacitance 
(C) measurements dependent on both frequency (f) and 
bias voltage (V), i.e., bias dependent admittance 
spectroscopy on the complete cells. Figure 5(a) shows a 
3-D plot of the admittance spectroscopy of a device made 
of a CIGS sample treated in DH for 15 min as a function of 
both the reverse-bias voltage and measurement 
temperature. The signatures of two trap levels are evident: 
one corresponding to the bulk states with its activation 
energy (~140 meV) essentially independent of bias 
voltage and the other was clearly influenced by the 
increasing bias voltage. Figure 5(b) shows the activation 
energy for the deep level states as a function of bias 
voltage for the devices on four different cell samples. The 
activation energy of those states was obtained from the 
Arrhenius plot of frequency versus temperature at which 
the differential capacitance fdC/d[ln(f)] spectrum peaks. 
The results show that ambient and DH degradation 
introduces a deep level of >400 meV. This level is absent 
in the unexposed reference control sample. Because the 
activation energy of this deep level increases with reverse 
bias, the deep level apparently originates from interface 
states [25,26]. In comparison, Deibel et al. reported an 
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Fig. 3. Reflectance spectra for a CIGS absorber film 
on Mo/SLG substrate before and after 8-month 
ambient exposure. 

Fig. 4. Corresponding scanning Kelvin probe (SKP, 
top row) and AFM (bottom row) images for DH-
degraded CIGS on Mo/SLG: column (a) undegraded 
specimen, (b) 1-h DH exposure, and (c) 5-h DH 
exposure.  
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activation energy of 160–180 meV for the interface states 
in a device made of CIGSSe absorber that was DH-
treated for 24 h prior to device fabrication; and the 
activation energy of the interface states ranged from 85 to 
340 meV for their devices exposed to DH ranging from 2 
to 438 h, as determined from C-V measurements at 90oK 
with a frequency of 100 kHz [4,5]. 
 
 Cell Efficiency Changes. The unexposed and 
ambient- and DH-exposed CIGS absorber samples were 
fabricated into cells simultaneously in a batch having a 
common configuration of SLG/Mo/CIGS/CdS/bi-layer ZnO. 
The cell efficiencies were also measured all in one session. 
Some of the cell I-V parameters are given in Table 2. It is 
obvious that the prolonged ambient exposure (samples A 
and B) resulted in very poor devices due to substantial 
compositional and morphological degradations on the 
absorber films. The devices’ high series resistance (Rs) 

and low shunting resistance (Rsh) suggest that shorting 
and shunting had occurred. Even brief exposures in DH 
for 15 min and 30 min induced significant efficiency losses 
as evidenced by samples #C-1A and 1B, respectively, 
when compared to the unexposed control samples 
(samples C-0A and C-0B). The C-0 and C-1 samples were 
made from specimens cut from the same piece of CIGS 
film on Mo/SLG. 
  
 

CONCLUSIONS 
 
We have shown the detrimental consequences in CIGS 
absorbers that were subjected to low humidity levels over 
prolonged periods at ambient temperature and high 
humidity at a high temperature in a DH environment. The 
humidity susceptibility of the CIGS absorber resulted in 

Table 2. Cell Parameters for CIGS Samples with or without Exposure to Ambient or Damp Heat

Sample Exposure Device Voc Jsc FF Eff Rs Rsh
ID No. (V) (mA/cm2) (%) (%) (ohm-cm) (ohm-cm)
A ambient 1 0.415 10.30 34.3 1.5 16.8 58

3 0.436 6.44 31.6 0.9 33.3 78
B ambient 1 0.411 22.89 40.5 3.8 6.9 44

4 0.385 25.67 44.9 4.4 4.5 55
C-1A DH 15 min 2 0.544 30.84 65.6 11.0 2.5 413

4 0.560 32.04 66.0 11.8 2.4 628
C-1B DH 30 min 1 0.512 30.20 64.4 10.0 2.8 504

3 0.513 30.91 63.7 10.1 2.8 376
C-0A No 1 0.654 30.28 71.1 14.1 1.7 4491

(N2 dry box) 7 0.652 31.39 76.9 15.7 1.4 14126
C-0B No 1 0.668 29.78 71.2 14.1 2.1 4228

(N2 dry box) 5 0.672 31.10 77.2 16.1 1.4 20536

Fig. 5. (a) A 3-D plot of admittance spectroscopy as a function of temperature and bias for a 15-min, DH-treated CIGS 
device (C-1B-1, Table 2), and (b) the activation energy of deep-level states as a function of bias voltage for the 
devices on four samples with device numbers indicated in the legends (see Table 2 for the exposure treatments of the 
CIGS absorber films). 
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compositional, morphological, and electrical deteriorations, 
which in turn caused the loss of cell performance. More 
work is on-going to further evaluate the sensitivity of CIGS 
absorber to various RH levels and temperatures. 
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