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Abstract

We present an analysis of gas chromatographic columns where the stationary phase
is not assumed to be a thin uniform coating along the walls of the cross section. We
also give an asymptotic analysis assuming that the parameter β = KDIIρII

DIρI is small.
Here K is the partition coefficient, and Di and ρi, i = I, II are the diffusivity and
density in the mobile (i = I) and stationary (i = II) regions.
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1 Introduction

Chromatography is an analytical technique for the separation of mixtures. In gas chromatog-
raphy (GC) the sample to be analyzed is transported down a long narrow column by a carrier
gas. The column is coated by a static retentative liquid. As the analyte is advected down
the column, its molecules are continually adsorbed and desorbed by this liquid, providing
resistance to transport. The ease with which any particular component is absorbed by the
liquid determines how much time it spends in the stationary liquid phase, and hence how
long it takes to pass down the whole length of the column. Each component in the sample
has a characteristic separation rate that can be used to identify it, and thus the composition
of the original mixture.

ΩI 

ΩII 

H 

L 

(a) Schematic of a GC column. ΩI denotes the
mobile phase and ΩII the stationary phase.

ΩI 

 
ΩII 

H 

L 

Γlg
 

Γs
I 

Γs
II 

(b) GC column with stationary phase accumu-
lated in corners. The boundary of ΩI consists of
the solid wall ΓI

s and Γlg, the interface between
the liquid and gas phases. The boundary of ΩII

consists of Γlg and the solid wall ΓII
s .

Figure 1(a) gives a schematic of a cross section of a GC device. The interior region ΩI

containing the carrier gas is referred to as the mobile phase, and the exterior region ΩII

containing the retentative liquid is referred to as the stationary phase. We will denote the
cross sectional areas of the mobile and stationary phases as AI and AII , respectively. Let the
gas and liquid densities in these two regions be denoted as ρI and ρII , and the diffusivities
of the analyte in the two regions as DI and DII .

The foundations for capillary gas chromatography were laid by Golay in the classic paper
[7]. He extended the concept of Taylor-Aris dispersion [15, 2] to analyze the evolution of
a gas flowing through a tube coated with a thin layer of a stationary liquid. The primary
result in his paper was the prediction of the rates at which an analyte is transported and
diffused down the tube. Although presented in a different way, Golay’s result was equivalent
to showing that the analyte concentration C obeys the one dimensional advection diffusion
equation

∂C

∂t
+ Ueff

∂C

∂z
= Deff

∂2C

∂z2
. (1.1)

The coordinate z defines the axial position along the tube, the coefficient Ueff tells how fast
the analyte moves down the tube, and Deff tells how quickly it spreads as it moves down
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the tube. Golay showed that the effective velocity could be written as

Ueff = U0λ, λ =
1

1 + kb
, (1.2)

where U0 is the average value of the velocity in the tube, and1

kb =
KρIIδ

ρI
, (1.3)

where

δ =
AII

AI
(1.4)

is the ratio of the cross sectional area of the stationary phase to that of the mobile phase.
Similar to Taylor-Aris diffusion, Golay showed that the effective diffusivity could be written
as

Deff = DIλ
(
c0 + c1Pe2

)
, (1.5)

where Pe is the Péclet number, which we define to be

Pe =
U0

√
AI

DI
. (1.6)

Golay gave analytical expressions for c0 and c1 for GC columns of circular cross section.
The quantity c0 has a simple analytical expression (see §3), and for GC columns is very close
to unity. The modeling challenge is to compute c1.

Golay’s analysis was for GC columns of circular cross section coated with a uniform
thin stationary phase. In recent years columns of rectangular, or nearly rectangular cross
section have been used in micro-fabricated GC columns. Several authors have analyzed GC
columns with rectangular cross sections [8, 14, 5, 6, 1, 10]. However, all of these authors
have assumed that the cross sections are uniformly coated with a thin layer of stationary
phase. As in Golay’s paper, this assumption allows them to find the solution by solving the
governing equations only in the gas phase, and accounting for the presence of the stationary
phase through a reacting side wall boundary condition,

D∇C · n = −kb
2

∂C

∂t
. (1.7)

This boundary condition can be derived by writing down the advection diffusion equations
in regions ΩI and ΩII , and considering the asymptotic limit as the thickness of the stationary
layer goes to zero.

In practice, when columns of nearly rectangular cross section are coated with a stationary
layer, the stationary phase tends to accumulate in the corners. This leads to cross sections as
in Figure 1(b). An examination of the justification behind the reacting side wall boundary

1We put the subscript b on kb to denote that it is related to the reacting side wall boundary condition
(1.7), as well as to distinguish it from the Fourier wavenumber k that will be used later in this paper.
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condition (1.7) shows that, at the very least, it requires that the radius of curvature of the
stationary phase be large compared to its thickness. This is clearly not satisfied for the cross
sections in Figure 1(b).

We present a general formulation of gas chromatography that allows us to model cross
sections that have arbitrary geometries for the stationary phase. That is, we do not as-
sume that the stationary phase is necessarily a thin layer coating the outer wall. In [13],
we apply this theory to the special case of rectangular cross sections with the stationary
phase accumulated in the corners. In particular, we will assume that the thickness of the
stationary phase is zero except in the corners, as in Figure 1(b). Our analysis shows that for
such columns, the scaling laws for the effective diffusivity are quite different than when the
stationary phase is spread out over a thin layer. The difference arises not merely because
the stationary layer is thick, but because its aspect ratio is order unity.

We now point out the similarities and differences between the general case (Figure 1(b))
and that of thin layers (Figure 1(a)). In [5], the authors generalize the results of Golay by
showing that for arbitrary cross sections the constant c1 in (1.5) can be written as

c1 = λ
(
(kbλ)2 g1 + (kbλ) g2 + g3

)
. (1.8)

Here the parameters gk depend only on the geometry of the cross section. In deriving this
formula it is assumed tht the stationary layer thin and of uniform thickness, and hence the
reacting sidewall boundary condition in Eqn. (1.7) is applicable. 2

In this paper, we show that when the assumption of a thin and uniform stationary layer
is dropped we can write

c1 = λ

((
KλρII

ρI

)2

I1(β) +

(
KλρII

ρI

)
I2(β) + I3(β)

)
, (1.9)

where

β =
KDIIρII

DIρI
. (1.10)

The functions Ik are dimensionless functions of both the geometry and the parameter β.
Unlike the parameters gk, which depend only on the geometry of ΩI , the parameters Ik
depend on the geometry of both regions ΩI and ΩII . For typical GC devices β can be
assumed to be very small. The value of β varies according to the analyte of interest, but it
is generally less than 1.0× 10−2. In §4 we show that for β � 1 we have

I1 =
1

β
h0 + h1 +O(β), (1.11a)

I2 = h2 +O(β), (1.11b)

I3 = h3 +O(β). (1.11c)

Here the hk are now functions only of the geometry, and are independent of β. We can
compute h0 by solving an equation in ΩII , and h3 by solving an equation only in ΩI . To

2The constants of [5] differ from ours. For example, they write 1/105g2 whereas we write g2.
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compute h1 and h2 we first solve a Poisson equation in ΩII , and pass the normal derivative
along the liquid/gas interface Γlg to ΩI . Using only this information from ΩII , we then
compute h1 and h2. In this sense, the small β approximation leaves the equations in two
regions weakly coupled.

If the stationary layers are thin and uniform the reacting sidewall boundary condition
(1.7) is applicable. Assuming a uniformly thin stationary layer and including a correction
term to (1.7) described in Golay(1958), we get

h0 = g0δ
3, (1.12a)

h1 = g1δ
2, (1.12b)

h2 = g2δ, (1.12c)

h3 = g3. (1.12d)

Assuming (1.12) hold and that δ/β � 1 (as it is for columns of circular cross section), we
can ignore the term h0/β in (1.11a). In this case, (1.8) and (1.9) are identical. However, for
concentrated stationary layers, the term h0/β becomes more important. When the stationary
phase is neither thin nor uniform, the term h0/β becomes the dominant term in c1.

The small β approximation allows us to compute the terms hk by solving weakly coupled
equations in the regions ΩI and ΩII . However, more physical insights and simpler compu-
tations arise if we can completely decouple these equations. In realistic column geometries,
the parameter δ in (1.4) is small. In [13] we use the results of this paper as a starting point
for an asymptotic analysis for the case where δ is small. In that paper we also present an
analysis for when the aspect ratio of the channel is very large. Both of these analyses simplify
the problem, and reduce the number of effective parameters that need to be adjusted when
doing numerical computations.

In [13] we show that when the stationary layers are concentrated in the corners, and δ is
small, we have

h0 = f0δ
2, (1.13a)

h1 = δ2 (− ln(δ)f1,0 + f1,1) + o(δ2), (1.13b)

h2 = δf2 + o(δ), (1.13c)

h3 = f3 + o(1). (1.13d)

Here the functions fk are independent of δ. The constant f0 can be computed by solving an
equation in the stationary layer alone, and the constants f1,0, f1,1, f2, and f3 can be computed
by solving equations over a rectangular cross section and accounting for the stationary phase
by putting appropriate sources in the corners.

Note that for the case of sufficiently thin uniform stationary layers, the term h1 will
eventually dominate h0/β. This will be the case for concentrated stationary layers, but only
after δ is as small as e−1/β. Since β is less than 1.0 × 10−2, for all practical purposes, this
never occurs. However, in [13] we show that the term h1 grows in importance relative to h0

as the aspect ratio of the channel becomes larger.
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For columns with concentrated stationary layers, the fact that Deff is a strong function
of β may have significant impact upon the design of GC columns. If one assumes that the
form for thin layers in (1.8) holds, we see that one does not need to be concerned with
the value of β, and hence the ratio DII/DI when choosing the materials for a GC device.
However, the results in this and the following paper show that this is in fact an important
factor in the performance of GC columns with rectangular cross section.

The analysis of rectangular GC columns is accomplished in four steps. First, in §2
and §3 we derive a procedure for computing Ueff and Deff for arbitrary cross sections. This
procedure makes no assumptions about the size of any of physical parameters or the thickness
of the stationary layer other than that the tube is sufficiently long for Taylor-Aris dispersion
theory to apply. Next, in §4 we simplify this analysis assuming that the parameter β is small.
We illustrate the validity of the small β approximation in §5 with some numerical examples.
In [13] we apply this theory to the special case where the stationary phase is confined to
small regions in the corners of a rectangular cross section is considered, and then further
simplify the analysis by assuming that the aspect ratio of the rectangle is very large.
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2 The Two-Domain Equations of Gas

Chromatography

Although gas chromatography utilizes both mobile and stationary phases, almost all mod-
eling has been done by approximating the effect of the stationary phase with a reacting
side wall boundary condition on the mobile phase. In this section we formulate the equa-
tions of gas chromatography so that we can account for arbitrarily thick stationary phases.
When numerically solving these equations it is more convenient to formulate the problem in
terms of variables that are continuous at the boundary between the two phases. Physically,
this could be done using the chemical potential or chemical activity as the unknown vari-
ables. However, for our purposes it is simpler to accomplish the same end using a simple
mathematical scaling.

We assume that we have an infinitely long straight tube with a constant cross section.
We assume that an incompressible fluid flows down ΩI with a constant pressure gradient,
and that there is no slip at the boundary ∂ΩI . In this case, the velocity u = U0(0, 0, f(x, y))
is unidirectional where f(x, y) satisfies

∇2
2f = −Ku in ΩI ,

f = 0 on ∂ΩI ,

and Ku is chosen so that

1

AI

∫
ΩI

f(x, y)dA = 1. (2.1)

Here and in the following we use the notation

∇2
2 =

∂2

∂x2
+

∂2

∂y2
, (2.2)

to represent the two-dimensional Laplacian ignoring the axial derivatives.

In terms of the concentration C of the analyte, the equations for gas chromatography
can be written as

ρI
(
∂CI

∂t
+ U0f(x, y)

∂CI

∂z

)
= κI∇2CI in ΩI , (2.3)

ρII
∂CII

∂t
= κII∇2CII in ΩII , (2.4)

along with the boundary conditions

CII = KCI on ∂ΩI , (2.5a)

κII
∂CII

∂n
= κI

∂CI

∂n
on ∂ΩI , (2.5b)

∂CII

∂n
= 0 on ∂(ΩI ∪ ΩII). (2.5c)
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Equation (2.3) is the advection diffusion equation in the gas phase, and (2.4) is the diffusion
equation in the stationary phase. We denote the conductivities in the mobile and stationary
phases as κI = ρIDI and κII = ρIIDII , respectively. The boundary condition (2.5a) involves
the partition coefficient K, and gives the jump in the concentration at the boundary between
the mobile and stationary phases. The boundary conditions (2.5b) and (2.5c) require that
the flux of analyte be continuous at the boundary between the phases and zero at the outer
wall.

To simplify our later asymptotic analysis, we prefer to work with equations where the
dependent variable is continuous at the interface ∂ΩI . We thus rewrite the equations of
chromatography using the rescaled variables AI and AII defined by

CI = BIAI , CII = BIIAII ,

where
BI = 1, BII = K. (2.6)

In terms of these variables (2.3)-(2.5c) can be rewritten as

ρIBI

(
∂AI

∂t
+ U0f(x, y)

∂AI

∂z

)
= αI∇2AI in ΩI , (2.7)

ρIIBII ∂AII

∂t
= αII∇2AII in ΩII , (2.8)

with boundary conditions

αI
∂AI

∂n
= αII

∂AII

∂n
on ∂ΩI , (2.9a)

AI = AII on ∂ΩI , (2.9b)

∂AII

∂n
= 0 on ∂(ΩI ∪ ΩII), (2.9c)

where
αi = κiBi, i = I, II. (2.10)
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3 The Effective Velocity and Diffusion Coefficients

The calculation of the effective velocity Ueff and effective diffusion coefficient Deff is a
straightforward application of the techniques described in [2, 11, 4] and [3, Chapter 12]. For
this reason, we will merely state the final answer, leaving the details of the derivation to
Appendix A.

The effective velocity is given by (1.2). The effective diffusion coefficient can be written
as

Deff = DIλ
(
1 + kbD

II/DI + J
)
, (3.1)

where λ is defined in (1.2), kb is defined in (1.3), and J = c1Pe2 is given by either of the
equivalent expressions

J = − 1

αIAI

∑
i

∫
Ωi

(
αi∇2

2Ai1
)
Ai1dA, (3.2)

or

J =
1

αIAI

∑
i

∫
Ωi

αi
(
∇Ai1 · ∇Ai1

)
dA. (3.3)

The latter expression for J can be derived from the former through integration by parts and
application of appropriate boundary conditions.

The functions AI1 and AII1 satisfy the equations

αI∇2
2AI1 = ρIBIU0 (−λ+ f(x, y)) in ΩI , (3.4a)

αII∇2
2AII1 = −ρIIBIIU0λ in ΩII , (3.4b)

along with the boundary conditions (2.9).

The term kbD
II/DI in (3.1) is very small in GC devices. This arises from the fact that

DII/DI is on the order of 1.0×10−4, and kb is never significantly larger than 10. In terms of
(1.5), this is equivalent to saying that c0 = 1 + kbD

II/DI is very close to unity. As such, the
modeling challenge is to compute c1. Given J , we can compute Deff through (3.1). To more
clearly show the functional dependence of Deff upon the problem parameters, we rewrite J
as follows.

We begin by noting that the equations (3.4) are linear, and that the expression for J is
is a bilinear functional of AI , AII . Linearity implies that we can write3

Ai1 =
U0

DI

(
−ρ

IIKλ

ρI
φi + ψi

)
, i = I, II, (3.5)

3See Appendix B for details.
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where

∇2
2φ

I = −A
II

AI
= −δ in ΩI , (3.6a)

β∇2
2φ

II = 1 in ΩII , (3.6b)

φI = φII on ∂ΩI (3.6c)

∂φI

∂n
= β

∂φII

∂n
on ∂ΩI , (3.6d)

∂φII

∂n
= 0 on ∂(ΩI ∪ ΩII), (3.6e)

and

∇2
2ψ

I = f(x, y)− 1 in ΩI , (3.7a)

β∇2
2ψ

II = 0 in ΩII , (3.7b)

ψI = ψII on ∂ΩI , (3.7c)

∂ψI

∂n
= β

∂ψII

∂n
on ∂ΩI , (3.7d)

∂ψII

∂n
= 0 on ∂(ΩI ∪ ΩII). (3.7e)

When we substitute (3.5) into (3.2) (see Appendix B) we arrive at the expression

J = Pe2

((
KρIIλ

ρI

)2

I1(β) +
KλρII

ρI
I2(β) + I3(β)

)
, (3.8)

where

I1 = δ
1

(AI)2

∫
ΩI

φIdA− 1

(AI)2

∫
ΩII

φIIdA, (3.9)

I2 = 2
1

(AI)2

∫
ΩI

φI(f − 1)dA, (3.10)

I3 = − 1

(AI)2

∫
ΩI

ψI(f − 1)dA. (3.11)

Note that the functions Ik are dimensionless. Equation (3.8) is equal to c1Pe2, where c1 is
given in (1.9).
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4 Small β Approximation

The two-domain equations of gas chromatography described in the previous sections deter-
mine solutions on the domains ΩI and ΩII simultaneously. However, as the parameter β is
always small in GC columns, the solutions are only weakly coupled. We will show that this
allows us to independently solve for the leading order terms of φII and ψII in ΩII , and use
those solutions to provide boundary conditions when determining the leading order terms of
φI and ψI in ΩII .

There are several reasons for considering the limit as β → 0. One of the main benefits
of taking this limit is that the asymptotic solution for small values of β can be obtained by
performing numerical calculations on quantities that depend only on the geometry, not on
the values of any of the physical parameters.

In this section we will derive the asymptotic forms given in (1.11), giving explicit ex-
pressions for computing hk. We begin by considering the asymptotic solution for ψI , ψII

assuming that β � 1. We suppose that

ψi = ψi0 + βψi1 + . . . i = I, II. (4.1)

Collecting terms of order one we find that

∇2
2ψ

I
0 = f − 1 in ΩI , (4.2a)

∂ψI0
∂n

= 0 on ∂ΩI = Γlg ∪ ΓIs, (4.2b)

∇2
2ψ

II
0 = 0 in ΩII , (4.2c)

ψII0 = ψI0 on Γlg, (4.2d)

∂ψII0

∂n
= 0 on ΓIIs . (4.2e)

Note that the solution ψI0 can be determined independently of ψII0 . Once we know this
solution we can solve an elliptic PDE with both Dirichlet and Neumann boundary conditions
to determine ψII0 . However, ψII0 is not needed to determine the functions Ik to leading order.
In particular, substituting our expansion into (3.11) we have I3 = h3 +O(β), where

h3 = − 1

(AI)2

∫
ΩI

(f − 1)ψI0dA. (4.3)

A simple argument shows that we can carry out our perturbation expansion to all orders of
β.

We now consider the determination of φI φII . If we assume an expansion as for ψi, we
find that we cannot get a consistent set of problems. We can get a consistent expansion if
we assume that φII is much larger than φI . Specifically, we assume that

φI = φI0 + βφI1 + . . . ,

φII =
1

β

(
φII−1 + βφII0 + . . .

)
.
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Collecting the terms of order 1/β, we find that

∇2
2φ

II
−1 = 1, in ΩII , (4.4a)

φII−1 = 0 on Γlg, (4.4b)

∂φII−1

∂n
= 0 on ΓIIs . (4.4c)

This allows us to solve for φII−1. Collecting the terms of order one in ΩI we find

∇2
2φ

I
0 = −A

II

AI
= −δ in ΩI , (4.5a)

∂φI0
∂n

=
∂φII−1

∂n
on Γlg, (4.5b)

∂φI0
∂n

= 0 on ΓIs. (4.5c)

We can now substitute our expansion into (3.10) and obtain I2 = h2 +O(β), where

h2 = 2
1

(AI)2

∫
ΩI

(f − 1)φI0dA. (4.6)

As (4.5) is a pure Neumann boundary value problem, we only know φI0 up to an arbitrary
additive constant. Recalling (2.1), we see that we can add an arbitrary constant to φI0
without changing the value of h2 in (4.6).

We now consider the calculation of I1 as in (3.9). If we are only interested in computing
these quantities to O(1/β), we only need to know φII−1. We have

h0 = − 1

(AI)2

∫
ΩII

φII−1dA. (4.7)

Substituting our expansion into (3.9), it might first appear that we need to compute both
φI0 and φII0 in order to compute I1 to zeroeth order in β. However, we can add an arbitrary
constant to φI and φII without changing the value of I1. We now show that without ever
computing φII0 we can determine the constant to add to φI0 so that the integral of φII0 over
region II vanishes. This allows us to determine I1 without knowing φII0 .

Collecting terms to order one in ΩII , we see that φII0 must satisfy

∇2
2φ

II
0 = 0 in ΩII ,

φII0 = φI0 on Γlg,

∂φII0
∂n

= 0 on ΓIIs .

The solution φII0 is determined uniquely only if φI0 is given, and we have demonstrated above
that we only know φI0 up to an additive constant. Thus, we also only know φII0 up to the
same additive constant, but we are free to choose that constant without altering the value
of h2. We will choose this constant so that

∫
ΩII φ

II
0 dA conveniently vanishes.
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We can write∫
ΩII

φII0 dA =

∫
ΩII

(
φII0 ∇2

2φ
II
−1 − φII−1∇2

2φ
II
0

)
dA =

∫
Γlg∪ΓII

s

(
φII0

∂φII−1

∂n
− φII−1

∂φII0
∂n

)
dl.

Clearly, the last integral vanishes on ΓIIs . Furthermore, we have φII−1 = 0 and φI0 = φII0 on
Γlg. It follows that ∫

ΩII

φII0 dA =

∫
Γlg

φI0
∂φII−1

∂n
dl.

Thus, if we choose the arbitrary additive constant to φI0 so that∫
Γlg

φI0
∂φII−1

∂n
dl = 0, (4.8)

we do not need to compute the integral of φII0 over ΩII when determining I1. This gives us
I1 = h0/β + h1 as in (1.11a), where

h1 = δ
1

(AI)2

∫
ΩI

φI0dA. (4.9)

It should be noted that the quantities hk have been defined so they are dimensionless. Thus,
if we compute them for two geometrically similar cross sections with different sizes, we will
get the same values.

It should be noted that the term h0/β is on the order of 1/β, while the other terms in c1

are order unity. However, there are two other small parameters in this problem. In particular,
the parameter δ = AII/AI is small, and the inverse aspect ratio ε = H/L is also frequently
small. (c.f. Figure 1(b).) As we will see in the following sections, as these parameters go
to zero, the term h0/β does not necessarily dominate the other terms. However, for typical
parameters in rectangular GC columns, this term is either dominant, or extremely important.
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Figure 5.1. Blow up of one corner of column cross section.

5 Numerical Examples Illustrating the Small β

Approximation

In this section we present some numerical examples illustrating the validity of the small
β approximation. All numerical examples in this section were obtained using Sundance
[9], a software system for rapid development of parallel PDE simulation and optimization
problems.

Assuming the interface between the gas and stationary phase is in capillary equilibrium,
the boundary between these regions must be circular arcs. In rectangular GC devices the
contact angle is extremely small, and we will assume that it is zero. Consider any one of
the four corners of the column cross section, and let ΩC denote the domain of the stationary
phase in that corner, and let it have area AC .

As in Figure 5.1, we denote Γlg as the interface between the liquid and gas regions.
Denote the portion of Γlg in this corner separating ΩC and ΩI as ΓClg, and denote the portion
of ΓIIs in this corner as ΓCs . Let the arc ΓClg be an arc of a circle of radius r0.

The computation of the portion of φII−1 in this corner requires the solution of

∇2qr0 = 1 in ΩC , (5.1a)

qr0 = 0 on ΓClg, (5.1b)

∂qr0
∂n

= 0 on ΓCs . (5.1c)

We then compute
IC = (AC)2µ,

where

µ =
1

(AC)2

∫
ΩC

qr0(x, y)dA. (5.2)

Simple scaling arguments show that µ is dimensionless, and without loss of generality we
can set r0 = 1 when computing it. Numerical computations show that

µ ≈ 0.105331.
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Method r0 I1 I2 I3

Two Domain 0.20 0.203× 10−2 0.628× 10−3 0.595× 10−2

Small β 0.20 0.201× 10−2 0.623× 10−3 0.590× 10−2

Two Domain 0.10 0.125× 10−3 0.163× 10−3 0.629× 10−2

Small β 0.10 0.124× 10−3 0.162× 10−3 0.620× 10−2

Two Domain 0.05 0.773× 10−5 0.413× 10−4 0.630× 10−2

Small β 0.05 0.778× 10−5 0.415× 10−4 0.630× 10−2

Table 5.1. This shows the comparison between the full two
domain solution computed with (2.7)-(2.9), and the small β
approximation. In this example we are using β = 0.01, which
is a bit bigger than the upper limit of realistic GC columns.
This value of β is obtained by using κII/κI = 0.087, and
K = 0.1138. These calculations were done with a rectangular
column with an aspect ratio of 4 to 1.

We can now compute h0 in (4.7) by summing IC for each of the four corners, and then dividing
by −(AI)2. We emphasize that µ depends only ΓClg being the arc of a circle, independent of
the radius of that circle, and is thus a constant for all geometries we consider.

In a polar coordinate system, let

p0(θ) =
∂qr0
∂n

be the normal derivative as a function of θ. Then we have

pr0(θ) = r0p1(θ),

where p1(θ) is the normal derivative when r0 = 1.

In order to simplify the communication of the normal derivative from ΩII to ΩI for the
boundary condition (4.5b) we have done a curve fit to the function p1(θ). This curve fit is
accurate to about one percent, and is given by

p1(θ) = 0.31268 cos

(
1.0356 | sin(θ)|

1.0− 0.76 | sin(θ)|

)
. (5.3)

Figure 5.2 shows a plot of the function p1(θ) in (5.3), and compares it to the accurate
numerical computation of the normal derivative. This figure shows that little error results
in passing the data between the two regions using our curve fit.

Table 5.1 shows the comparison between the full two domain solution computed with
(2.7)-(2.9), and the small β approximation. In these calculations we have distributed the
stationary phase equally in each of the corners, allowing us to use symmetry boundary
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Figure 5.2. This shows the function p1(θ), giving the nor-
mal derivative of q1 at the boundary. The continuous curve
is the curve fit given by (5.3), and the crosses give the accu-
rate numerical computation of this normal derivative. The
maximum error between the two curves is less than 3.0×10−3.

conditions. When computing the small β approximation, we have used the curve fit in (5.3) to
pass the data from φII−1 to ΩI . For this reason, our answers should not be expected to be better
than about one percent accurate (well beyond experimental errors). We believe Table 5.1
illustrates convincingly that little information is lost by making the small β approximation.

We should remark that making the small β approximation has numerous advantages over
the full two domain equations. First, the influence of the parameter β is taken into account
analytically, giving us one fewer parameter to adjust. Second, we have simplified many of
the tasks involved in solving numerical PDES, such as meshing. Finally, we are in a position
to gain more insight by further simplifying the problem as we do in [13].
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6 Conclusions

Micro-fabricated GC columns have cross sections where the stationary phase does not uni-
formly coat the walls of the column cross section. In such situations the reacting side wall
boundary condition frequently used to analyze the performance of GC columns is not ap-
plicable. We have presented an alternative analysis for such situations. We show that the
behavior of such GC columns is qualitatively different than for uniformly coated GC columns.
In particular, the scaling laws for the two cases are not identical, as seen by comparing the
two equations (1.8) and (1.9) for c1.

We use these results in [13] to make the small δ approximations, where the stationary
phase is concentrated in the corners.
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A The Effective Velocity and Diffusion Coefficients

In this appendix we supply the details of the calculation of Ueff in (1.2) and Deff and J
in (3.1)-(3.3). We will closely follow the approach outlined in [12], which is similar to that
given in [4].

We begin by Fourier transforming the governing equations (2.7) and (2.8) in the axial
direction (z). For each value of the wavenumber k, this gives us an initial value problem that
can be solved using two dimensional eigenmodes that have the temporal behavior eσm(k)t. We
can then solve the initial value problem for our original (not Fourier transformed) equations
by taking the inverse Fourier transform of an infinite eigenfunction expansion. An asymptotic
analysis of this rather messy expression shows that after an initial transient, all but the lowest
order mode in our infinite series has decayed rapidly. Thus in order to compute the behavior
of our solution, we only need to know the first mode and its corresponding eigenvalue.
Furthermore, if we are interested in the long time behavior of our solution, we only need to
know the behavior of this eigenvalue for small values of the wavenumber k. That is, we need
to determine the expansion

σ = iσ1k + σ2k
2 + . . . . (A1)

We then have
σ1 = −Ueff , Deff = −σ2. (A2)

Intuitively, this holds from the fact that using these definitions of Ueff and Deff , (1.1) has
the same dispersion relation as (A1).

In order to determine σ1 and σ2, we carry out Rayleigh-Schrödinger perturbation theory of
eigenvalues, with k as the small perturbation parameter. The spatially Fourier transformed
eigenvalue problem is given by

ρIBI
(
σAI + ikU0f(x, y)AI

)
= αI

(
∇2

2AI − k2AI
)

in ΩI , (A3)

ρIIBIIσAII = αII
(
∇2

2AII − k2AII
)

in ΩII , (A4)

where the functions AI and AII still satisfy the boundary conditions (2.9).

We will expand σ, AI and AII in a Taylor series in k. That is, we will assume that we
can write

Aj = Aj0 + iAj1k +Aj2k2 + . . . , j = I, II, (A5)

as well as also expanding σ as in (A1). In order to carry out this perturbation expansion,
we use the fact that we can solve the equations

αi∇2
2AI = F i(x, y) in Ωi, i = I, II (A6)

with the boundary conditions (2.9) so long as∫
ΩI

F IdA+

∫
ΩII

F IIdA = 0 (A7)

We refer to (A7) as the solvability condition.
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A.1 Zeroeth Order

If we substitute (A5) and (A1) into (A3) and (A4), and collect the terms that are order zero
in k, we get the equations

αi∇2
2Ai0 = 0, i = I, II,

along with the boundary conditions (2.9). The only solutions to this equation have AI0 =
AII0 = constant. Since we are solving an eigenvalue problem, without loss of generality, we
can scale our eigenfunctions so that

AI0 = AII0 = 1.

A.2 First Order - The Effective Velocity Ueff

If we collect all of the terms to first order in k, we get

αI∇2
2AI1 = ρIBI (σ1 + U0f(x, y)) in ΩI , (A8a)

αII∇2
2AII1 = ρIIBIIσ1 in ΩII . (A8b)

These equations have the same form at (A6). All of the terms on the right hand side of
these equations are known, except for σ1. Application of the solvability condition (A7) to
(A8) uniquely determines σ1. In particular, we have that

σ1

(
ρIBIAI + ρIIBIIAII

)
+ ρIBIAIU0 = 0

It follows that σ1 = −Ueff , where
Ueff = λU0,

and λ is defined in (1.2). In the definition of λ we used kb from (1.3) and in the definition
of kb we used δ from (1.4). We also used the relation K = BII/BI from (2.6).

Once we have chosen σ1 so the compatibility condition is satisfied, we can solve (A8).
Using our given value for σ1 we arrive at (3.4) given in §3. We can add an arbitrary constant
to this solution, but it will not effect the next stage of our analysis.

A.3 Second Order - The Effective Diffusion Coefficient

Collecting the terms to order k2, we get

αI∇2
2AI2 = σ2ρ

IBI + αI − ρIBI (σ1 + U0f(x, y))AI1 in ΩI , (A9a)

αII∇2
2AII2 = σ2ρ

IIBII + αII − ρIIBIIσ1AII1 in ΩII . (A9b)

All of the terms in the right hand side of this expression are already known, except for σ2.
As we did with σ1, we can determine σ2 by applying the solvability conditions (A7) to (A9).
After some simple manipulations we get

σ2 = −Deff ,
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where Deff is as given in (3.1), and J is given by

J = − 1

αIAI

(∫
ΩI

ρIBI (σ1 + U0f)AI1dA+

∫
ΩII

ρIIBIIσ1AII1
)
.

Using the fact that AI1, AII1 satisfy (A9), this expression be written as (3.2). If we integrate
(3.2) by parts and apply the boundary conditions, we arrive at (3.3).
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B The Terms I1, I2, I3

In this appendix we supply the details for the derivation of (3.8) and (3.9)-(3.11).

We begin by rewriting (A8a) as

αI∇2
2AI1 = ρIBIU0 (f(x, y)− 1) + ρIBI (σ1 + U0) in ΩI . (B1)

Application of the solvability condition (A7) to this equation and (A8a) gives the relation
ρIBI (σ1 + U0)AI +ρIIBIIσ1A

II = 0. This allows us to rewrite (A8a) so that equations (A8)
become

αI∇2
2AI1 = ρIBIU0 (f(x, y)− 1)− ρIIBIIσ1δ in ΩI , (B2)

αII∇2
2AII1 = ρIIBIIσ1 in ΩII . (B3)

We then split up the solution of this problem into

Ai1 =
ρIIBII

αI
σ1φ

i +
ρIBIU0

αI
ψi =

U0

DI

(
−Kλρ

II

ρI
φi + ψi

)
i = I, II, (B4)

where φi satisfies (3.6), and ψi satisfies (3.7). Here we used β = αII

αI . Note that both of these
sets of equations satisfy the solvability condition (A7).

If we substitute (3.5) into (3.3), we get

J = Pe2tTSt, (B5)

where the Péclet number Pe is defined in (1.6),

S =

[
S11 S12

S21 S22

]
, t =

[
−ρIIKλ

ρI

1

]
,

and

(AI)2S11 =

∫
ΩI

(
∇φI

)
·
(
∇φI

)
dA+ β

∫
ΩII

(
∇φII

)
·
(
∇φII

)
dA

= −
∫

ΩI

φI∇2
2φ

IdA− β
∫

ΩII

φII∇2
2φ

IIdA,

(AI)2S22 =

∫
ΩI

(
∇ψI

)
·
(
∇ψI

)
dA+ β

∫
ΩII

(
∇ψII

)
·
(
∇ψII

)
dA

= −
∫

ΩI

ψI∇2
2ψ

IdA− β
∫

ΩII

ψII∇2
2ψ

IIdA,

(AI)2S12 = (AI)2S21 =

∫
ΩI

(
∇φI

)
·
(
∇ψI

)
dA+ β

∫
ΩII

(
∇φII

)
·
(
∇ψII

)
dA

= −
∫

ΩI

φI∇2
2ψ

IdA− β
∫

ΩII

φII∇2
2ψ

IIdA.
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Using the governing equations (3.6) for φ and (3.7) for ψ, these expressions can be simplified
to

S11 = I1, (B6a)

S12 = S21 = −I2

2
, (B6b)

S22 = I3. (B6c)

where I1, I2 and I3 are given in (3.9), (3.10), and (3.11).
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