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ABSTRACT 


In many applications, the experimenter has limited options about what factor 
combinations can be chosen for a designed study. Consider a screening study for a 
production process involving five input factors that are extremely difficult to control. The 
goal of the study is to understand the effect of each factor on the response that is 
expensive to measure and destroys the part. From an inventory of available parts with 
known fac~or values, we wish to identify a best collection of factor combinations with 
which to estimate the factor effects. While the observational nature of the study cannot 
establish a causal relationship involving the response and the factors, the study can 
increase understanding of the underlying process. The study can also help determine 
where investment should be made to control input factors during production that will 
maximally influence the response. Since the factor combinations are observational, the 
chosen X-matrix will be non-orthogonal and will not allow independent estimation of 
factor effects. In this manuscript we borrow principles from design of experiments to 
suggest an • optimal , selection of factor combinations. Specifically, we consider precision 
of model parameter estimates, the issue of replication, and ability to detect lack-of-fit. We 
present strategies for selecting a subset of factor combinations which simultaneously 
balance multiple objectives. The methodology is presented through a case study. 

Keywords: Observational study, mUltiple objectives, D-optimality, screenmg, 

multicollinearity 
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INTRODUCTION 


The ideal approach for exploring, understanding and establishing the causal 

connection between multiple factors and a response is through a designed experiment. 

However in many applications, factor levels cannot be manipulated by the experimenter 

and are thus observational in nature. Specifically, we consider a screening study for a 

production process involving five factors. An inventory of four hundred parts exists 

where each part is uniquely described by known level combinations of the five factors. 

The engineer would like to study the association of the response to the five factors but the 

response can only be measured after an expensive test requiring the destruction of the 

part. Given the cost involved with experimentation, only a small number of tests can be 

evaluated. Due to the sensitive proprietary nature of the application, values of the five 

factors have been altered but the original correlation structure has been preserved and is 

shown in Figure 1. Table 1 lists the correlation between the different factors. Clearly, 

moderate to large correlations exists among the factors and these correlations will have 

an adverse effect on the precision of estimation. 

The available budget for the study allows for 20 parts to be selected and tested 

with the goal of estimating a first order linear model in the five factors. The measurement 

system had been previously evaluated and is known to not add much variability to the 

process. Since there is flexibility to select any subset of 20 parts from the available 

inventory of 400, the engineer desires to select an ideal set. The goodness of the 

selection is based on precise model estimation, ability to estimate pure error, and 

protection against model misspecification. The researcher wishes to rank the magnitude 

of the effects of the factors on the response. Since controlling the levels of the inputs is 

difficult, this information can be used to focus adjustments to the process to efficiently 

reduce in the variability of the response. 

Sexton et al (2006) discuss a study which is part observational and part designed 

experiment where some factor levels are preset, but there are still options available for 

how different combinations should be created from the available data. While the set-up 

for our observational case study may appear to be somewhat specialized, there are other 

applications where optimal sampling from an existing popUlation is desirable. For 

example, consider a financial application where there is interest in modeling the 
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relationship between credit risk (the response) and various credit indices (the factors). 

Each potential customer is described by combinations of the credit indices but the 

response can only be measured via a detailed assessment of credit risk that is time­

consuming and expensive. As with the production application, we would expect that that 

some of the financial measures (Le. credit indices) are strongly correlated. In this case, 

the goal of a small study might be to select a small number of customers (i.e. distinct 

combinations of the credit indices) on which to do the detailed assessment in order to 

estimate the association between various financial measures and the desired credit risk 

response. 

Similarly, consider an ecological application with interest in understanding the 

effect of different habitat markers on flora or fauna populations. Different locations with 

known environmental measures exist in a database and the ecologist can select a 

collection of locations to evaluate. Because of the labor- and cost-intensive nature of 

quantifying natural populations, only a small number of different locations can be 

considered. Some environmental measure combinations do not exist as actual habitat and 

many of the measures are highly correlated. 

The general characteristics for problem under consideration are 1. difficulty in 

controlling input factor levels, 2. an existing collection of items with known input values 

from which to sample, and 3. an expensive, time-consuming and/or destructive 

measurement process which limits the number of samples which can be evaluated. In the 

next section we clarify the differences between the traditional design of experiments 

setting and the observational setting considered here. 

DESIGNED TREATMENT SELECTION VS. SAMPLING OBSERVED 

TREATMENT COMBINATIONS 

The optimal approach for collecting data for purposes of modeling is a designed 

experiment. For instance, a designed experiment to estimate a first order model for five 

factors of interest with 20 observations would perhaps suggest a 25
-
1 fractional factorial 

with 4 center runs, as shown in Figure 2. This design allows for estimation of pure error, 

testing of lack of fit from both two-way interactions and quadratic terms, and has good D­

efficiency. In what follows, we note some of the key features that distinguish this case 
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study application from a standard screening designed experiment for 5 factors with 20 

runs: 

1. 	 Sampling involves an observational study versus experimenter control for 

setting factors in the designed experiment. In our observational study with 20 

data points selected from 400 candidate combinations of already specified 

input values, establishing causation is not possible. We can hope to 

understand the empirical relationship between the response and changes in the 

factor values but causation would need to be established with the active 

manipulation of the input values by the experimenter. This weaker association 

relationship is not ideal, but can still help provide guidance about what aspects 

of the inputs to focus on for future adjustments to the production process to 

reduce response variability. 

2. 	 Correlation of factors cannot be eliminated when sampling observed 

treatment combinations. As shown in Figure 1, many of the input factors are 

correlated, with some locations in a standard cuboidal design region not being 

possible. The correlations will mean that least squares estimates of the 

regression model parameters will not be independently estimated, as the 

columns of the X-matrix are not orthogonal. The geometry of many standard 

designs, such as the 25
-
1 fractional factorial design, allow for independent 

estimation of factor effects. Given the correlation in the candidate set of 

design points shown in Figure 1, complete or even near orthogonality between 

the factors cannot be achieved. As a result, model parameter estimates will be 

dependent and less precise than from a designed experiment. 

3. 	 Replicates not possible to estimate pure error when sampling. Since the levels 

of the factors were not selected a priori and each part is characterized by a 

unique combination of the factors X1-X5, replication is not possible. In a 

designed experiment, the experimenter controls the settings of the factors and 

pure error variance is estimated from replicate experimental runs at one or 

more design points. An estimate of pure error variance is helpful to obtain a 

model free estimate of the natural variability of the underlying relationship 

between response and factors. For instance, if there are m locations with some 
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replication then 

a-2 =MS SSpE/ :t:t(Y'J-Y.)~
PE 1dJ; = I:] j:] 

PE N -m' 

where N denotes the total number of design points, and nj represents the 

number of replicates at the lh design point denotes the sum of squares 

for pure error, dlPE denotes the degrees of freedom for pure error, 

MSPE denotes mean square pure error. In this application, there are no 

combinations of inputs with more than one observation. Since there are no 

pure replicates there is no direct way to estimate pure error. 

4. Lack-of-fit assessment in observational studies is problematic. Related to 

the notion of replication is lack-of-fit. An important consideration when 

choosing a designed experiment is the ability to assess lack-of-fit. This 

provides information about whether additional terms in the model are 

suggested by the data. For example, suppose we assume a first order, but the 

true underlying relationship has one or more two-factor interactions or 

quadratic terms. Then the first order model will be inadequately describe the 

relationship and bias in estimation and prediction are likely. See Section 7.2.1 

of Myers, Montgomery, Anderson-Cook (2009) for more details. To assess 

lack-of-fit, replicated combinations of factors are required that allow 

deviations from the predicted model form to be detected. Then the error sum 

of squares from the regression can be separated into estimates of lack-of-fit 

and pure error. The lack-of-fit can be quantified by comparing the model 

estimated response value with the average observed value at that location, 

m 

= In j (Yi - Yi)2 
i:] 

where Yi denotes predicted response at the lh design point from the fitted 

regression model. A popular approach for assessing lack-of-fit is then to use 

the F -statistic given by 
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SSW;{m_ p) 
,F- PEl 

- SS;(N -m) 

where N denotes the total number of experimental runs. For example, the 4 

center runs in the design shown in Figure 2 allow for curvature from quadratic 

effects to be detected. However if no replication is possible, theny, =Yi for 

each location and the error sum of squares cannot be divided into separate 

estimates of lack-of-fit and pure error. 

5. Location ofthe center ofthe candidate space is dependent on scaling choice in 

observational studies. Replication of points at the design center are common 

and are referred to as center runs. When an experimenter defines the region of 

interest and the combinations of factors on which to collect data, there is an 

implicit assumption that by selecting the factor ranges, the experimenter 

believes that the scaled [-1,1] range roughly equates the different units of the 

factors in an equitable way. See Section 5.3 in Myers, Montgomery, 

Anderson-Cook, 2009 for more details. In observational studies where 

inherently there is no conscious selection of the ranges, this is not necessarily 

the case. In addition, when we have the choice of factor combinations to 

examine, the center runs are natural to locate at the scaled values of o. With 

the lack of guaranteed symmetry of the factor values within the observed 

range, several logical options for the "center" of the candidate space might be 

considered. For example, we might select the mid-points of each factor range, 

((Xi,min - Xi,max) / 2), to represent the center of the candidate space. 

Alternately, the set of factor means or medians may also be reasonable 

candidates for the "center". For experimental studies with uniform interest in 

all locations in the design space, these three potential choices would all be 

equivalent. 

In this paper we discuss how to adapt various strategies employed in design of 

experiments to the sampling problem of selecting an ideal set of 20 factor combinations 

from the available 400. Specifically, we employ strategies which consider 1. precise 
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estimation of model parameters; 2. estimation of pure error through pseudo-replicates and 

3. assessing lack-of-fit for both two-way interaction and quadratic terms. It is important 

to note that in this case study, we are in a screening stages early in the process of 

understanding the relationship between response and factors, where the relative impact of 

the factors is important. Consequently, a first order model given by 

Y= 130 + L
5 

13i Xi + & , (1) 
i~l 

is appropriate, but it is possible that some curvature may exist. Hence, it is desirable to 

estimate the model parameters as precisely as possible, but the engineer would also like 

an estimate of pure error that is minimally model dependent. This will be helpful for 

testing the significance of the factor effects. Also of interest is to have a sample of points 

which allows for the ability to assess lack-of-fit. 

SAMPLING STRATEGIES 

For the experimental design setting, many software packages (SAS, Design 

Expert, MINI TAB , SAS JMP, and others) can provide an optimal design based upon 

user-specified criteria and inputs. Typical inputs required from the user include 1. the 

design size (generally depends on the experimenter's budget); 2. the assumed underlying 

model form; 3. an objective function (such as D- or I-optimality) which relates to the 

user's goal for the data analysis; and 4. a candidate set of design points or a candidate 

design region from which the actual design points will be selected. For example, when 

screening of variables is of interest, popular objective functions are those which relate to 

the precision of the model parameter estimates. For more advanced stages of 

experimentation, the user is likely more interested in prediction and an objective function 

related to prediction variance will be specified. After the user has specified the four 

inputs described above, the software will provide the 'optimal' design for the 

specifications. 

While the software may indicate that the design is 'optimal', it is important to 

remember that the good designs for any situation balance a wide array of attractive 

properties. Box and Draper (1975), and Myers, Montgomery, and Anderson-Cook 

(Section 7.1, 2009) suggest that several important qualities of a good design, including: 
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a. Results in precise estimates of model parameters. 

b. Provides an estimate of "pure" error 

c. Allows for assessment of lack-of-fit. 

d. Allows models of increasing orders to be constructed sequentially. 

e. Provides a check on the homogeneous variance assumption. 

f. The design is cost effective. 

We seek to identify a sample of 20 observations that perform well for the qualities above. 

Next, we describe several sampling strategies with varying emphases on the 

characteristics above. 

Strategy 1: D-optimality for the first-order model 

At the screening stage of experimentation, a popular strategy of determining an 

optimal experimental design is to choose a D-optimal design. The linear regression 

model can be written in matrix notation as y = X~ + E, where y is the Nxl vector of 

responses, X is the Nxp model matrix, ~ is the corresponding pxl vector of model 

parameters, and E is the Nx 1 vector of model errors, which are assumed to be i.i.d. 

N ( 0,0-2 
). For our example, N=20 and p=6 upon considering the first order model in (1). 

The vector of least squares parameter estimates is then given by ~ =(X' Xt X' Y and the 

variance-covariance matrix of the vector of parameter estimates is 

Var(~) =(X'X)-l 0-2
• (2) 

The inverse of the variance-covariance matrix in (2), when scaled by the observation 

error variance, 0-
2 

, and sample size, N, is known as the scaled moment matrix, 

M = X'X 
s - (3)

N' 

D-optimality seeks to maximize the determinant of the scaled moment matrix. The 

resulting set of points will give the best precision of parameter estimates for the model 

specified. 

When commercial software is used for optimal design selection, replicate factor 

combinations may be included for the optimal design. For the sampling problem of 

interest here, a single part corresponds to a unique candidate factor combination and thus 
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replicates are not possible. Consequently, we have programmed a restricted exchange 

algorithm using the D-criterion for sample selection (outlined in the Appendix). 

Assuming the main effects model is correct, the D-optimal sample satisfies characteristic 

'a' of a good design and can be as cost effective (characteristic 4f) as the sample size 

specified by the user. However, since the D-optimal approach does not consider the other 

characteristics, there are no guarantees on the performance of the sample for the other 

characteristics Cb' -'e'). Also, the results of this strategy may do poorly in terms of bias 

if the model is misspecified. Figure 3 shows the resulting D-optimal sample assuming a 

first order model. 

Strategy 2: D-optimal sample for first order + two-factor interaction model 

Similar to Strategy 1, we again utilize the D-criterion for treatment combination 

selection. Instead of assuming a first order model, we now assume the first order plus 

two-factor interaction model given by 

5 4 5 

Y Po + 'LPiXi +'L'LPyXiXj +e. 
i cc 1 i 1 ij 

In this case, the model matrix X is a N x 16 matrix (1 intercept, 5 main effects, and 10 

two-way interactions). Although the sample identified by this strategy will not produce 

the most precise model parameter estimates for the first order model, this strategy has a 

substantial advantage over Strategy 1. By considering the larger model, we are 

guaranteed that the sample will allow the user to estimate all main effects as well as two­

factor interactions. Since Strategy 2 allows for estimation of the larger model, one can 

can assess lack-of-fit due to the presence of two-factor interactions. For Strategy 1, it is 

possible that the set of points produced by the selection algorithm will result in non­

estimability of one or more of the two-factor interactions. Since we are in the screening 

stage of model selection, the existence of one or more two-factor interaction effects is 

possible. Figure 4 shows a pairs plot for the D-optimal sample for the first order + two­

way interaction model. 

While Strategy 2 offers an advantage over Strategy 1, neither strategy addresses 

the notions of replication and pure error. The ability to estimate pure error variance 

enables one to get a sense of the uncertainty in the experimental result when repeated 
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tests are conducted on units exhibiting the same factor combination. Recall that true 

replication in this application is impossible since each part is uniquely associated with a 

specific factor combination. However, one can obtain a pseudo estimate of pure error 

variance if one is willing to assume that the underlying process model changes negligibly 

for small changes in the factor combinations. Specifically, one can consider the observed 

responses at distinct factor combinations Xi and Xi' denoted by y (Xi) and y (Xj ) , 

respectively, as pseudo replicates if one is willing to assume 

Ef v(x t l\ E (X j l) ~°for -Xill~O, (4) 

where' II II' denotes the Euclidean distance. 

Assuming (4) holds, we formulate two general strategies (Strategy 3 and 4) for 

sample selection. The first of these strategies considers pseudo replication at the center 

of the candidate factor combination space. In classical design of experiments, when 

factors are centered and scaled to have levels -1 to +1, the factor combination space is a 

multi-dimensional cube. Figure 2 provides a way of visualizing the space for five factors. 

With the 25
-
1 design space, the locations of interest are assumed to be uniformly 

distributed throughout the cube. Uniformity implies that the center of the candidate 

region is the same whether one takes the midrange, the mean or the median of the factor 

levels. When the candidate space is observational, there is a non-uniform distribution of 

points throughout the candidate space. We consider three different methods for 

determining the center of the space: the midrange of the factor levels, the mean of the 

factor levels or the median of the factor levels. In each case the width of the scaled range 

is chosen to be 2 units, with the "center" being at a location of zero in each dimension. 

There is little to suggest a priori which method of centering will perform best based on 

the various criteria given the available 400 observations from which to select, so all three 

center measures were considered. 

Strategy 3a: Five Center Runs using the Midrange + 15 Run D-optimal 

Here, the minimum and maximum values of each Xi are set to -1 and + I, 

respectively. Therefore, the mid-point (X\,X2,X3,X4,X5)=(0,0,0,0,0) is a natural choice 

for the center candidate space. Once the scaling is complete, we compute 
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(5) 

for each of the i = 1,2, ... ,400 candidate points and choose the five factor combinations 

resulting in the shortest distance to O. After selecting these pseudo center runs, the 

exchange algorithm (described in the Appendix) is used to augment the center run set 

with fifteen additional factor combinations based upon the D-criterion assuming a first 

order model. 

Strategy 3b and 3c: Five CR using the Mean and Median + 15 Run D-optimal 

Here, the center of the candidate space (0,0,0,0,0) is taken to be either the means 

(Strategy 3b) or the medians (Strategy 3c) of each of the factors. Once the center has 

been determined, then the ranges of the scaled factors are adjusted to have width 2 units. 

This will likely produce a non-symmetric range around O. As with Strategy 3a, we choose 

the five factor combinations resulting in the shortest distance to the center, and then used 

the exchange algorithm to augment the center runs with fifteen additional parts based 

upon the D-criterion and a first order model. Figure 5 shows the resulting sample from 

Strategy 3b. 

The advantage of the different samples suggested by Strategies 3a, b and c is the 

ability to obtain a pseudo estimate of pure error, by considering several observations with 

similar locations near the center of the region of interest. If these points are sufficiently 

close in terms of Euclidean distance, then we can compute the sample variance among 

the five observed responses as a pseudo estimate of the natural process variability. In 

addition, these pseudo center runs can be used to quantify lack of fit due to second order 

model terms. Specifically, lack-of-fit can be quantified by comparing the average model 

estimated responses at these five points to the average observed values of the responses at 

these locations. The sum of squares lack-of-fit is then given by 

SSWF = n,,cv,. - Yc f (6) 

where nc denotes the number of center points and Yc and Yc, denote the average of the 

response values and model predicted values, respectively, corresponding to the sample 

center. 

Strategy 4: Four Center runs + Four Pairs + 8 D-optimal runs 
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This strategy selects four observations closest to the center where the center is 

defined by any of the three measures described in Strategy 3. Next, four pairs of 

observations with minimal distance between points are selected. Note that the addition of 

four minimal distance pairs not only allows for improved estimation of the pure error but 

these pairs also allow some exploration of the assumption of homogeneous variance 

throughout the region of interest (characteristic 'e' of a good design). To select the four 

minimal distance pairs, we first identified the ten closest pairs and then randomly selected 

4 pairs from these. The set of four center points and four minimal distance pairs were 

then supplemented with an additional 8 observations based on the D-criterion assuming a 

first order model using the exchange algorithm described in the Appendix. MUltiple sets 

of 4 pairs of observations were selected as the starting point, and the sample with the best 

overall D-value was selected. Figure 6 shows the fmal selected sample using the midpoint 

of the factor ranges as the center. 

SAMPLE COMPARISONS 

We now present a comparison of the four described sampling strategies based on 

principles 'a' -'f described earlier. Table 2 summarizes each strategy as it relates to the 

six characteristics of a good design. In the first two columns, the precision of model 

parameter estimates is addressed assuming a first order model. Specifically, relative D­

efficiencies are provided for each strategy as well as the ranges on the standard errors, 

apart from (J', for the model terms. Note that the sample with the largest D-criterion of 

the four strategies is labeled as having a relative D-efficiency of 1 and all other relative 

efficiencies are computed relative to the D-value of the best sample. It is important to 

keep in mind that relative efficiencies are not calculated in terms of the ideal design in 

which factors are orthogonal to each other. The last row of the table labeled as "Ideal 

design" is for the set of factor combinations comprising the 25
-
1 fractional factorial design 

with 4 center runs which might have been selected if controlling the input factor levels 

was possible. 

While the first column can be helpful for a single number summary of each 

sample, the ranges for the standard errors for the model terms in the second column of 

Table 2 can be a more informative and more practical measure of performance. Figure 7a 
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shows the values of standard errors for the models terms. The numerical values from the 

plot and the second column of Table 2 are multiplied by (j, the natural variability of the 

response. The first bar for each sample is for the estimated intercept while the remaining 

five bars are for the estimated coefficients for X1-Xs. Note that for all samples, the 

precision of estimates is best for the intercept, and then for X 2 and X4 terms (the third and 

fifth bars, respectively). These differences are dictated by the level of correlation between 

the factors for the selected samples. If we had been able to perform a designed 

experiment, then the standard error for each of the main effects would have been 0.25 (j , 

where (j is the natural variability of the responses if input values are held fixed. Since we 

are not able to estimate (j until after the data are collected, we just focus on the relative 

size of the standard errors and ignore the constant multiplier (j from the comparison. 

Comparing 0.25 to what is possible with our samples, we see that all the sampling 

strategies have considerably larger standard errors for the factor main effects. 

The sample from Strategy 1 (all 20 observations selected with the goal of 

optimizing D-efficiency for the first order model) is best in terms of D-efficiency. In 

terms of coefficient standard errors, the maximum standard error, 1.106 (j, is only 

slightly better than Strategies 2 and 3. Strategy 4 has a substantially larger maximum 

standard error than the any of the other strategies. Note that there are some differences 

between the three samples obtained by considering different centers for Strategy 3, with 

the midrange design (3a) having the best relative D-efficiency (0.331) and the smallest 

maximum standard error, 1.2 (j , for the individual factor effects. 

In summary, if one is confident that the underlying model is a main effects model, 

Strategy 1 is best in terms of precision, but Strategies 2 and 3 perform comparably 

(characteristic 'a'). Of the first three strategies, Strategy 3 is preferable since it is 

competitive based on precision of estimates while also offering the ability to estimate 

pure error (characteristic 'b'), and an assessment oflack-of-fit (characteristic 'c'). Of the 

three measures of center, the midrange is best in terms of maximum standard error of 

model coefficients. 

Columns 3 - 5 of Table 2 compare the performance of the different samples 

assuming a larger underlying model with 16 terms (1 (intercept) + 5 (main effect) + 10 

(two-way interactions». Column 3 presents the relative D-efficiencies of each strategy, 
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column 4 provides the ranges of the standard errors for the main effects and column 5 

provides the ranges of the standard errors for the interaction terms. The results for the 

ideal design (25
-
1 fractional factorial design with 4 center runs) are shown at the bottom 

of the table. The difference between the standard deviations for model term estimates for 

the ideal design and what is possible with our observational samples is even more 

dramatic with the larger model. Clearly the strong correlations between some factors are 

severely damaging our ability to estimate interactions. This makes intuitive sense, as to 

estimate an interaction term well, we must be able to see how the response changes when 

one factor is held constant and the other is changed. With high correlations between 

factors, this exploration is substantially hindered. Strategy 2 is the best in terms of D­

efficiency and is used as the baseline for computing the relative D-efficiencies of the 

other strategies. Note that Strategy 2 dominates the other strategies in terms of precision 

The sample obtained using strategy 1 sample has only 3.7% relative D-efficiency and the 

other strategies have much smaller relative D-efficiencies. 

Despite the vast differences in some of the relative D-efficiencies, it is helpful to 

compare based on standard errors of the main and two-way interaction terms. We 

consider the two groups of terms separately in columns 4 and 5 of Table 2. As with the 

D-efficiency summary, Strategy 2 performs best for the range of standard errors for the 

main effect terms with values between 0.87 a and 1.363 a. The standard errors 

associated with Strategy 1 are close in magnitude to those associated with Strategy 2 but 

Strategies 3 and 4 exhibit somewhat larger standard errors for the main effect terms. 

Comparing columns 4 and 2 in Table 2, we note that the inclusion of the 

interaction terms in the model has increased the standard errors of the first order model 

terms. This is again the result of the correlations between factors from the non-orthogonal 

nature of the sample X-matrix. Note that for the ideal design, the orthogonal structure 

allows for the same standard error of 0.25 a to be preserved for all terms in both the first 

order model and the first order with interaction model. 

When we consider estimating the two-way interactions, all strategies have large 

standard errors. This shows that the nature of the 400 observations from which we can 

choose severely limits our ability to estimate two-way interactions well. One advantage 

of this exploration of different samples is that it allows us to appropriately calibrate what 
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is possible in the analysis phase before data are collected. In this case it should be clear 

that the lack of precision available to estimate the two-way interactions will preclude any 

formal testing of these terms unless the effects are extremely large or liberal p-values are 

considered for significance. Another option for exploring significance of these effects 

would be less formal graphical tools. 

Although Strategies 1 and 2 produce samples that result in greater precision of the 

model parameter estimates (characteristic 'a'), its important to weigh this advantage 

against some of the more qualitative aspects of the samples. Strategies 3 and 4 place an 

emphasis on the ability to obtain an estimate of pure error (characteristic 'b'). The 5 

pseudo center run samples of Strategy 3 have 4 degrees of freedom available for pure 

error estimation, while the 4 pairs and 4 pseudo center runs of Strategy 4 result in 7 (4 

from pairs and 3 from pseudo center runs) degrees of freedom for this purpose. Strategy 4 

with the 4 pairs distributed in different locations of the factor space also has some ability 

to check the assumption of homogeneity of variance throughout the region (characteristic 

'e'). 

With the information summarized in Table 2, we are now in a position to evaluate 

which of the samples is best for our case study. The primary emphasis is on estimating 

the main effects for the 5 input factors, as this will help determine a strategy for where 

future resources should be spent to reduce the spread of one or more factors, which in 

tum might result in smaller variability in the response. The additional objectives of 

assessing two-way interactions or curvature from quadratic terms are precautionary in 

case the first order model is inadequate. The ability to do hypothesis testing is largely 

dependent upon on having a good estimate of the natural variability of the response, a. 

Hence having an estimate that is less dependent on the assumed model and uses the 

pseudo-replicates is quite beneficial. Although Strategies 1 and 2 offer an advantage in 

the precision of parameter estimation, neither of these strategies allow estimation of pure 

error or an assessment of model lack-of-fit. While Strategy 4 offers the ability of 

estimating pure error, an assessment of lack-of-fit and the ability to check for 

homogeneity of variance, it does so at a severe cost for precise parameter estimation. 

Strategy 3 offers a nice balance of all properties (except for the ability to assess the 

homogeneity of variance assumption). The three measures of center are relatively similar 
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for the first order modeL Observing Figure 7b, the standard errors for the main effects in 

Strategy 3b appear to be somewhat smaller for the terms in the first order plus interaction 

model. 

As a result of this comparison and discussion of the trade-offs, the engineer felt 

comfortable with the selection of the sample based on Strategy 3b, and was aware of 

what was realistically possible in the analysis phase. 

CONCLUSIONS 

In this paper, we have presented a case study of how to balance multiple 

objectives for a screening observational study where input factor values could not be 

controlled. The correlated structure of the data, and the inability to select and set input 

values reduces the precision of estimation of model terms, and leads to conclusions of 

associations between inputs and response, rather than the ideal conclusion of causality. 

The difference between the quality of estimation between the available samples and the 

ideal 25
-
1 fractional factorial design with 4 center runs provides an important reminder of 

the benefits of planning and running a designed experiment whenever possible. In 

particular, the correlation structure makes a substantial difference if two-way interactions 

terms need to be included in the final model. As with this case study, there are times 

when a designed experiment is not possible and in these situations an observational study 

can still be helpful. 

Planning a study should included selecting relevant characteristics from the lists 

provided by Box and Draper (1975) or Myers, Montgomery and Anderson-Cook (Section 

7.1, 2009). Once these have been identified, it is possible to design selection strategies 

based on them, which will allow for careful comparison of the trade-offs between 

potential samples before a final sample is selected. In this particular study, focusing 

primarily on the first order model was thought to be sensible. However, the ability to 

check for inadequacies in this assumed model, both from two-way interactions or from 

quadratic terms, was also considered. In addition, the ability to estimate the natural 

variability of the response is informative as well as helpful for correctly calibrating any 

hypothesis tests for the terms in the model. 

16 




While planning the described strategies and writing the restricted exchange 

algorithms in the Appendix was a time-consuming process, the time and cost of 

developing these was still small in comparison to the total cost of collecting the data. By 

considering the relative performance of the different samples before a final one is 

selected, the engineer can gain an improved understanding of how well the characteristics 

of interest for the sample are satisfied and what estimation precision can be expected 

once the data are available. For the interested reader, the restricted exchange algorithms 

were in written in R (Venables et aI, 2008) and are available from the authors upon 

request. 

For observational studies, many of the well-known principles of good 

experimental designs can be adapted to help define the focus of different strategies for the 

sampling from available observations. Some elements, such as how to define the center 

of the "design space" need to be re-assessed. Some aspects of the analysis, such as 

estimating pure error and quantifying lack of fit, need to be redefined in this different 

setting where active manipulating factor levels is not possible. 

Finally, although the engineer was restricted to only testing 20 observations from 

the available 400 parts, it can be helpful to explore samples that are slightly larger than 

the original plan. Table 3 shows the results of considering samples of size 25 for each of 

the four strategies. Although these samples are only 25% larger than the original size, the 

improvement in the precision of the parameter estimates, particularly when considering 

the two-way interaction terms, is substantial. This dramatic improvement may be in part 

due to the large number of terms in the first order with interaction model relative to the 

sample size of twenty. In a designed experiment setting, we would call this "nearly­

saturated". Interestingly, the difference in relative efficiency and precision of parameter 

estimates between Strategies 1, 2 and 3 is less pronounced for the samples of size 25 

compared to those of sample 20. This is due to additional observations being selected 

based on the D-criterion for each strategy. Based on the disproportionate improvement in 

the standard deviation of the model parameter estimates, the engineer was able to make a 

compelling quantitatively-based argument to request additional resources to expand the 

size of the study to size 25. Although in this case, expanding to the additional sample 

size was not possible because of funding restrictions, the exploration of a slightly larger 
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sample size can still be a valuable exercise to understand the potential improvements and 

justify the value of the observations. 
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APPENDIX 
This appendix outlines the restricted exchange algorithms used for selecting the optimal 
sets of points for each of the sampling strategies discussed in the paper. Each algorithm 
assumes a candidate set of 400 factor combinations, C . 

Sampling strategy 1: For the linear main effects model and a specified sample size, N , 
the algorithm proceeds as follows: 

1. 	 Randomly sample without replacement a sample ofN treatment combinations, 
§ , from the candidate set. 

2. 	 Re-construct the candidate set to be {CR= C §}. 
3. 	 Compute D = IMsl where Ms (of equation (3)) is moment matrix based on a 

first order model for the sample §. 

4. 	 Each candidate in CR is considered as a replacement for each point in § in 
turn. By computing D = IMs I for each potential candidate, the best 

replacement, if it exists, is found and inserted into § giving §. , the updated 
sample. 

5. 	 Re-construct the candidate set as {CR C - §"} and repeat Step 4 with § 

§ • until there is no improvement possible in D. 
6. 	 Repeat Steps 1-5 for a large pre-defined number of random starts. The D­

optimal sample has the largest value of D. 

Sampling strategy 2: Same steps as outlined for Strategy I except in Step 3, Ms (of 

equation (3)) is moment matrix based on a first order plus two-factor interaction model 
provided. 

Sampling strategy 3: For the first order model and a specified sample size, N , the 
algorithm proceeds as follows: 
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L 	 Scale the 400 observations based on an assumed center of the mid-point (or 
mean or median) of each factor. 

2. 	 Compute Ilx; - 011 for each of the candidate factor combinations and choose 

the five factor combinations resulting in the smallest distance to O. Denote this 
set of points by § cr. 

3. 	 Re-construct the candidate set to be {C R C - § cr} . 
4. 	 Randomly sample without replacement a sample of N - Ncr treatment 

combinations, § D, from the candidate set. The total sample of treatment 
combinations is now given by § + § D. 

5. 	 Re-construct the candidate set to be {CR = C - §}. 

6. 	 Compute D = IM,I where M, (ofequation (3)) for the total sample §. 

7. 	 Each point in §D is exchanged with each point in CR in turn. For each 
exchange, the performance of the new sample is assessed by computing D = 

IMsl where Msis the moment matrix corresponding to the total sample §. 

§D is then updated with the best exchange. Let §D* be the updated sample. 
8. 	 Re-construct the candidate set as {CR C §cr -§D*} and repeat Step 7 with 

§ D = § D* until there is no improvement in D. 
9. 	 Steps 3-8 are repeated for a large pre-defined number of random starts. The 

best sample from this strategy has the largest value of D. 

Sampling strategy 4: For the linear main effects model and a specified sample size, N , 
the algorithm proceeds as follows: 

1. 	 Scale the 400 observations based on an assumed center for each factor. 
2. 	 Compute Ilx, - 011 for each of the candidate factor combinations and choose 

the four factor combinations resulting in the smallest distance to O. Denote 
this set of points by § cr. 

3. 	 Re-construct the candidate set to be {CR C - §cr}. 

4. 	 Calculate the distance between all pairs of points in C R, and identify the 
pairs of points with the smallest distances, CPairs. 

5. 	 Randomly sample without replacement a sample of 4 pairs from CPairs to 
obtain § Pairs 

6. 	 Re-construct the candidate set to be {C R: CR = C - § Pairs - § cr }. 
7. 	 Randomly sample without replacement a sample of 8 factor combinations 

from CR to obtain §D from the candidate set. The total sample of treatment 
combinations is now given by § = § cr + § Pairs + § D. 

8. 	 Re-construct the candidate set to be {C R: CR = C - § }. 

9. 	 Compute D IM,I where Ms (ofequation (3) for the total sample. 

10. Each point in § D is exchanged with each point in CR in turn. For each 
exchange, the performance of the new sample is assessed by computing D = 

1M" I where Ms is the moment matrix corresponding to the total sample §. 

§D is then updated with the best exchange. Let §D* be the updated sample. 
11. Re-construct the candidate set as {CR: CR C - §cr -§Pairs -§D*} and repeat 

Step 10 with § D = § D* until there is no improvement in D. 
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12. Steps 5-11 are repeated for a large pre-defined number of random starts. The 
best sample from this strategy has the largest value of D. 
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Figure 1 Matrix of scatterplots showing pairwise candidate design points 
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Figure 2: A standard 20 observation 25
-
1fractional factorial design 
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Figure 3: D-optimal sample assuming a first order model 
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Figure 4: D-optimal sample assuming a first order plus two-way interaction model 
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Figure 5: Best sample using Strategy 3b with the center based on the factor means with 5 
pseudo center runs (black) and 15 observations based on D-optimality for a first order 
model (gray) 
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Figure 6: Best sample using Strategy 4 with 4 pseudo center runs (black), 4 pairs of 
points (white) and 12 observations based on D-optimality for a first order model (gray) 
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Figure 7: Barplot of standard deviations for 6 possible samples for different assumed 
models (a) Standard deviations for main effects based on assumed first order model, (b) 
Standard deviations for main effects based on assumed first order with interaction model 
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