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Neither Eq. (6.52) of Jackson [Classical Electrodynamics, 3rd ed. (Wiley, 

1999)], nor Hannay's derivation of that equation in the preceding Comment- [J. Opt. Soc. Am. A, ... (2009)], are applicable to a source whose distribution 

pattern moves faster than light vacuo nonzero acceleration. 

is assumed in Hannay's derivation the retarded of 

of any moving source if 

UIHHICtl source a we 

assumption is erroneous. The retarded a rotating 

source with a moderate superluminal speed is, in spread over three 

disjoint volumes (differing in shape from each other from the volume 

occupied by the source in its rest frame) whose boundaries depend on the 

spacetime position of the observer. Hannay overlooks the fact that the 

limits of integration in his expression for the retarded potential (which 

delineate the boundaries of the retarded distribution of the source) are not 

differentiable functions of the coordinates of the observer at those points 

on the source boundary that approach the observer, along the radiation 

direction, with the speed of light at the retarded time. In the superluminal 

regime, derivatives of the integral representing the retarded potential are 

well defined only as generalized functions. © 2008 Optical Society of America 

OCIS codes: 230.6080, 030.1670, 040.3060, 250.5530, 260.2110, 350.1270 

1. Introduction 

representation as a 

opposed to 

speed not exc:;ee:a 

are taken in the preceding Comment [1] to differentiate the retarded 

potential as a classical function are not mathematically permissible when the moving source 

has volume elements that approach the observer with the wave speed and zero acceleration 

at the retarded time. To demonstrate this, here we shall render these steps explicit by taking 

them in the case of a specific source distribution: a source distribution that is bounded and 

smooth but entails motion at speeds exceeding the speed of light in vacuo. 

Being based on an analysis in which neither the motion of the source nor the position 

of the observer are specified, Hannay's argument [1] overlooks the specifically superluminal 

feature of the problem that gives rise to the extra contribution to the value of the field found 

in [2]. Whereas in the subluminal regime, the contributions to the field from the derivatives 

of the limits of integration in the integral representation of the retarded potential are zero 
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when the density of the source vanishes smoothly at its boundary, here the corresponding 

contributions of those volume elements on the boundary of the source that approach the 

observer with the wave speed are divergent. Leibniz's formula for the differentiation of a 

definite integral (as a classical function) is not applicable if there are any points at which 

the limits of integration lack differentiability [3]. 

In the superluminal regime, the retarded potential should be written (with the aid of 

Dirac's delta function) as an integral over the rest-frame distribution (instead of the retarded 

distribution) of the source, so that its domain of integration is independent of the observer 

(23) below]. Differentiation of the resulting generalized function and the regularization 

of its derivatives can then be rigorously handled by Hadamard's method [4,5]. 

2. 	 An explicit example of the retarded potential arising from a bounded and 

smooth superluminal source 

2.A. The source and its retarded distribution 

Let us consider a spherical source with the radius a whose center moves on a circle of radius rc 

the constant angular velocity w, and whose density smoothly reduces from a maximum 

Po at its center to zero at its boundary, e.g.) it has the form 

A) _ { Po cos2['iTRs/{2a)] if Rs ::; a, -'iT < $ ::; 'iT,
P(1', c.p, Z -	 . o 	 otherWIse, 

where 

$ = c.p - wt, (2) 

(r, c.p, z) are the cylindrical polar coordinates based on the axis of rotation, t is and 

R.9 _ (Z2 + 1'2 + l'c 
2 2rr'c cos 	 (3) 

is the distance of a point (1', $, z) that is stationary in the rotating frame from the center 

= re, $ 0, z = 0) of the sphere. Note that the ranges of values of both c.p and t Eq. 

(1) are infinite, as in the case of a rotating point source, but the coordinate $, which labels 

each source element by its azimuthal position at t = 0, lies in an interval of length 2'iT. Note, 

moreover, that the localized source described by Eq. (1) does not have a sharp edge; 

gradient of its density vanishes at boundary. 

The circle in broken lines in Fig. (1) shows the intersection, with the plane z 0, of 

boundary of the above source in the (,,, $, z) space for Te 2c/w and a = ic/w, where c is 

the speed of light in vacuo. The axes in this figure are marked in units of c/w and the larger 

dash-dotted circles designate the light cyliner l' = c/w and the orbit r 2c/w of the center 

of the souce, respectively. 
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Fig. 1. The smallest circle (in broken lines) designates the boundary of the 

source distiribution described by Eq. (1), in its rest frame, for rc 2c/wand 

Rs = ic/w. (The axes are marked in units of c/w.) The two circles (in dots and 

dashes) with the radii 1 and 2 (in units of c/w) represent the light cylinder and 

the orbit of the center of the source, respectively. The closed curves (in solid 

cross section of the retarded distribution of source with 

e., an 

observer who is located at rp = 3c/w, ipp = arccos(1/3) ,Zp = 0, at 

observation O. intersections of these of the retarded 

source distribution with r=const., Z = 0 (the dotted circle) specify the limits 

(ipl(n) , ipu (n)) of the ip integration in the expression the retarded potentiaL 
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The electric current arising from the rotational motion of the above charge distribution 

has the density j = rwp(r, rp, z)e<p, where e<p is the unit vector along the azimuthal direction. 

The quantity that enters the expression used by Hannay [1] for the retarded vector potential, 

~ Jd3x [j(x, t)] , A(xp, (4) 
c Ix-xpl 

xp[j 1 z)e<p' 

is density: 

where (x, t) = (r, rp, z; t) and (xp, tp) = (rp, rpp, Zp; tp) stand 

source points and the observation point, respectively, 

- rp - w(tp - R/c), (6) 

denotes the retarded value of the variable rp defined in Eq. (2), and 

R [(z Zp)2 + r2 + rp2 - 2rrp cos(!.p - rppW/2 (7) 

is the distance Ix - xpl between the observation point and source points. In terms of the 

dimensionless variables 

(1', 1'p,zp) - (rw/c,zw/c;rpw/c,zpw/c), (8) 

rp, rp - rpp, z ­

where 

9 rp + -zpA )2 A2 A2 r + rp ­ 2AA rrp 

and rpp wtp. 

To insert [j(x, t)} in Eq. (4), we need to know not only the expression Eq. (5), but also 

the boundary of this retarded distribution, which specifies the limits of integration in Eq. 

( 4). In the present case, this boundary is described by 

Rsl, A = [z2 + r2 + rc2 - 2rrccos(rpp + g)p/2 a (11) 
<P=<Prct 

[see Eqs. (1) and (3)}. Equation (11) is satisfied by the following two expressions for g: 

9 = ¢b±(r, z, cpp), (12) 

=±2 {[a2 

- %2 4~r: -TO)'] } ( 
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Absolute value of the argument of the arcsin in Eq. (13) is less than or equal to unity because 

the (r, z) coordinates of any point on the boundary of the retarded source distribution would 

automatically lie within the projection, {r - rc)2 + Z2:::; , of the rest-frame source distribu­

tion onto a meridional plane. Equation (12) determines the VJ coordinates of the points on 

the boundary of the retarded source distribution as functions of their (r, z) coordinates. It 

is a transcendental equation and so has to be solved numerically. 

For a fixed observation point (rp, VJP, zp), 9 is an oscillatory function of VJ when the coor­

dinates (r, z) of the boundary point are such that 

~ - 1)(f2 1) - (ip - i)2 	 (14) 

is positive, a condition that for an observer in the far zone only if the source moves 

superluminally. Given ~ > the extrema of g(VJ) occur at 

VJ± VJp + 21f _ arccos (1 ~ ~1/2).
rpr ' 

at VJ± plus integral multiples of 21f), with Fig. 2(a)]. neighboring 

extrema of coalesce if boundary lies on the curve 

~ = 0, VJ = VJp + 21f arccos[l/{Np )] 	 (16) 

Fig. 2(b)]. For < 0, the function g(VJ) is monotonic as in Fig. 2{c). The turning points 

9 occur at the locus of source points for which dR/dt = -c at a fixed value of ({;, i.e., the 

source points that approach the observer, along the radiation direction, with the speed 

light at the retarded time. The inflection point of 9 occurs at the locus of source points that 

approach the observer not only with the wave speed but also with zero acceleration, i.e., for 

both dR/dt = -c and d2 R/dt2 = °at a fixed ({;. 

It can be seen from Fig. that the two equations 9 and 9 = each have 

three solutions when ~ > ° < <PH < : each of the horizontal lines 9 = would 

intersect curve a in Fig. 2 at three this case. other words, the boundary 

retarded source distribution consists of three disjoint images of the original boundary of the 

source distribution in its rest frame (Fig. 1). Let us denote these six solutions of Eq. (12) by 

and VJu (n) with n = 1,2,3. These solutions correspond to the six intersections, shown 

in Fig. 1, of a circle r =const., z 0, with the three images of the source. 

2.B. 	 The retarded potential and the indifferentiability of the of integration in its 

classical representation 

integral in the classical representation of the retarded potential, Eq. (4), has to be 

performed over the three distinct volumes shown in 1 which constitute the retarded 
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(c) 

IP+ IP_ IP 

Fig. 2. The curves representing the function g(c.p), defined in Eq. (10), for 

c.pp = 0, Tp = 3c/w, T = 2c/w, and (a) ~ > 0, (b) ~ = 0, and (c) ~ < O. The 

marked adj acent turning points of curve (a) have the coordinates (c.p±, 1>±). 
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distribution of the source. With the aid of Eqs. (5), (7) and (9), the volume integral in Eq. 

can therefore as 

1'2 2 ( 1fA=wpotja d1' -cos -R )R 2a s
n=1-a 

Note that the variable i.p enters the mtegrand ot ~q. llf) m only the combmatlon i.p - i.pp 

[see also Eqs. (10) and (11)]. this integration variable to (J = i.p , and writing 

out the expressions for Rand Rs , we obtain 

W Po t ja dz lrc+(a2-z2)1/2 d1' 1'2A(1'p, cpp, zp) 

C n=1 -a rc-(a2-z2)1/2 


X 10",,(n) d cos2{1f[Z2 + 1'2 + 1'c2 - 21'1'r; cos(cpp + g)]1/2 / (2a)} A 18 
O"I(n) (J [(z - Zp)2 + 1'2 + 1'p2 - 21'1'p COS (Jp/2 e'P' ( ) 

9 (J+ _ zp)2 + + f~ - 2f1'p cos 

same as defined expressed in terms (J, 

- i.pp and 

To find the components of the generated magnetic field B = 'Vp X A, we need to calculate 

the derivatives of the right-hand side of Eq. (19) with respect to 1'p, and Zp, using Leibniz's 

formula for the differentiation of a definite integral: 

d l{3(X) l{3(X) 8! do: d,8 
-d' !(x,E)dE -8 dE - !(x,O:)-d + !(x,,8)-d (20) 

x a(x) Q(X) X X X 

(see, e.g., [3]). There are two different types of contribution toward the value of each 

derivative of A: one from the derivative of the integrand in (18), and another from 

the derivatives of the limits (J/n) and (J" (n) of integration. The contributions arising from 

need to 


Since, according to (12), (13) and and are solutions 


9 = (J + [(z Zp)2 + 1'2 + 1'~ - 2Tfp cos (Jp / 2 z, cpp), (21) 

the quantities 'Vp(Jz(n) and 'Vp(J~n) may be found by applying 'Vp to both sides of Eq. (21); 

the result is 

1 ( 8g 8g 1 8¢b± AA A )

'Vp(J -8erp + -8e zp - --8e'PP89/8(J 1'p Zp 1'p i.pp 

W [1'p - rcos(i.p - i.pp)]erp + (zp - z)ezp + (R/fp)e'Pp 
(22) 

c R + 21'1'p sin( i.p - i.pp) 
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where we have replaced (J' by rp in the second line. 

The denominator in Eq. (22) vanishes at the turning points rp = rp± of the function 9 

[see Eq. (15) and Fig. 21. These are the points across which the number of images of the 

source change (from three to one or from one to three). An example of a retarded source 

distribution for which the number of images of the source depends on the radial coordinate 

r of the source points is shown in Fig. 3. The intersection of the sphere representing the 

distribution of the source, in its rest frame, with the plane of rotation is shown by broken 

lines, and that of the retarded distribution of the source by the closed solid curve. 

In this case, the locus of points given in Eq. (16) is tangential to the inner boundary 

of the source at f' 1, and so the three images of the source coalesce within the radial 

interval 1 ::; f ::; 1.6. In 1.6 < f' ::; 2, the retarded distribution of the source consists of 

three disjoint parts. As integration variable f in Eq. (18) approaches either the value 

1 or the value 1.6, the limits of rp-integration in this equation approach and so their 

gradients diverge. That is to the gradients \7p(J';n) and \7p(J'~n) are singular at 

on the boundary the retarded source distribution that approach the 

of 

equation, of the behaviour of its integrand [31, the singularities of 

\7p(J'~n) imply indifferentiability of A. 

The counterparts of the second and third terms on the right-hand side of Eq. (20), when 
nthe operator \7p x is applied to the integral in Eq. (18), consist of the products of \7(J'i ) or 

n
\7(J'l(n) with the corresponding values of the integrand at (J' = (J'i ) or (J' (J'~n). At points 

within the (r, z) domain of integration where (J'l(n) or (J'~n) assume one of the values rpp, 
n nthe factors \7(J'i ) and \7 (J'i ) diverge while the values of the integrand at the corresponding 

nboundary points vanish. The products of the divergent factors \7(J'l(n) and \7 (J'i ) with the 

vanishing values of the integrand at the source boundary constitute contributions toward the 

derivatives of the retarded potential that are neither infinite nor zero (the degree of divergence 

of the former factors is dictated by the constructive interference of the emitted waves, while 

the vanishing of the integrand depends on the smoothness of the source at boundary). 

These products are indeterminate quantities, contravening the required conditions for the 

differentiability integral as a classical function, that can only be handled by means 

the theory of functions (see below). Nor does the fact that some of the upper 

lower of in Eq. (18) approach one another, as 

From 

does not if any cease to 
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1.5 

Fig. 3. The smallest circle (in broken lines) designates the boundary of the 

source distiribution described by Eq. (1) in its rest frame for Tc = ~c/wand 

Rs = ~c/w. (The axes are marked in units of c/w.) The two dotted circles with 

1 and 3/2 (in of c/w) represent the light cylinder and the orbit 

of the center of the source, respectively. The closed solid curve shows the cross 

section of the retarded distribution of the the source with the plane of 

for an observer who is located at Tp = ~c/w, c.pp = arccos(2/5)-(21)1/2/2,zp 

0, at the observation time tp = O. 
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3. Differentiation of the retarded potential as a generalized function 

We have seen that, because the retarded time is a multivalued function of the observation 

time in the case of a source that moves faster than its own waves (Fig. 2 and [7]), the 

retarded distribution of the density of a superluminal source (such as that whose contour 

p = 0 is shown in 3) can lack differentiability even when its original distribution is 

smooth. The contribution from the boundary of the retarded distribution of a smooth source 

toward the derivative of the potential it generates is zero, as in Eq. (6.52) of Jackson [6], 

only in the familiar subluminal regime where the gradients of the limits of integration in the 

classical representaion of the retarded potential [Eq. (4)] are singularity-free. In the case of a 

superluminal source, where the limits of integration delineating the boundary of the source 

in Eq. (4) lack differentiability, the integral itself is not differentiable as a classial function 

In lLllHll1Gl regime, Leibniz's rule may be applied to retarded potential if 

representation in Eq. (4) is written as 

(x, tf\Vr I-~r _~,/c)A(xp, 
c 

representation extends over the 

of the retarded) of the source, i. e. J over a volume that is independent 

spacetime coordinates of observer. In this way, an expression is found for field 

so 

1 J 3 • xp - x [1 f;f( I II )VpxA dxdtJx 12 -u tp-t- xp-x c + 
c xp - x cl 

that, in contrast to that given in Eq. (18), is well defined as a generalized function. In 

the case of the above example, where j depends on cp and t in only the combination cp 

wt !.jJ, one of the integrations in Eq. (24) can be performed independently of the source 

density [by adopting (r,!.jJ, z; t) as the variables of integration] to obtain a representation 

of VpxA in terms of the Lienard-Wiechert fields of the constituent volume elements of 

source [7]. The indifferentiability of the limits of integration that is encountered in the 

classical representation is thus found to be reflected in the nonintegrability of the singularities 

of the superposed Lienard-Wiechert fields in this alternative representation [8]. However, such 

singularities can rigorously handled by means of the Hadamard regularization technique 

5]. 
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