SANDIA REPORT

SAND2009-0686
Unlimited Release
Printed May 2009

Blade System Design Study Part II: Final Project Report (GEC)

Dayton Griffin
DNV Global Energy Concepts Inc.
$18097^{\text {th }}$ Ave. Suite 900
Seattle, Washington 98101
Tom Ashwill, Sandia Technical Manager

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831
Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge
Available to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0\#online

Blade System Design Study Part II: Final Project Report (GEC)

Dayton Griffin
DNV Global Energy Concepts Inc. $18097^{\text {th }}$ Ave. Suite 900
Seattle, Washington 98101
Tom Ashwill, Sandia Technical Manager

Abstract

As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC) ${ }^{1}$ has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories.

The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004.

The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance.

Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of 9-m and 30-m length, as well as other non-wind related structures.

[^0]
Acknowledgements

The work in this report was completed by Global Energy Concepts (GEC) for Sandia National Laboratories under Sandia Purchase Order No. 136426. The author wishes to acknowledge the technical contributions to this project of Dr. John Mandell and Mr. Dan Samborsky at Montana State University; Dr. James Locke at Wichita State University; and Sandia Technical Managers Tom Ashwill, Herb Sutherland, and Daniel Laird, as well as other Sandia personnel. All of the resin-infused articles tested under this program were fabricated by TPI Composites in Warren, Rhode Island. GEC thanks TPI for lending their manufacturing expertise and technical support toward the success of this project.

Table of Contents

SECTION 1 - EXECUTIVE SUMMARY 1
1.1 Thin Coupon Static 1
1.1.1 Carbon Fiber 1
1.1.2 Fiberglass 2
1.2 Thin-Coupon Fatigue 2
1.2.1 Carbon Fiber 2
1.2.2 Fiberglass 3
1.3 Thick Coupon 3
1.4 Carbon Ply Drop 3
1.5 Carbon-Fiberglass Ply Transition 4
1.6 SUMMARY 5
SECTION 2 - INTRODUCTION 6
2.1 BAckground 6
2.2 Project Overview 6
2.2.1 Major Trends and Results from BSDS-I 6
2.2.2 Objectives for BSDS-II 8
2.2.3 Technical Issues for Use of Carbon Fiber Materials 8
2.2.4 Test Matrix 9
2.2.5 Organization and Scope of Report 10
SECTION 3 - TEST METHODS 11
3.1 Test Laboratories and Environment 11
3.2 Physical Properties. 11
3.3 Thin-Coupon Static 12
3.4 Thin-Coupon Fatigue 13
3.5 Thick-Coupon Compression 13
3.6 Measurement and Reporting of Elastic Modulus/Strain 13
SECTION 4 - TEST ARTICLE FABRICATION 15
4.1 General 15
4.2 Fabric Evaluation/Infusion Trials 15
4.3 Thin Panel 17
4.4 Thick Panel 17
4.5 Ply Drop Panels 17
4.6 Ply Transition Panel 18
SECTION 5 - TEST RESULTS 19
5.1 Thin Coupon 19
5.1.1 Thin-Coupon Static Testing 19
5.1.2 Thin-Coupon Fatigue Testing 22
5.2 Tнick Coupon 33
5.2.1 Thick-Coupon Compressive Static Testing 33
5.2.2 Thick-Coupon Fatigue Testing 34
5.3 Carbon Ply Drop 35
5.3.1 Prepreg Ply Drops 35
5.3.2 Infused Ply Drops 36
5.4 Carbon-Fiberglass Ply Transition 40
5.4.1 General 40
5.4.2 Infused Ply Transitions 42
5.4.3 Prepreg Ply Transitions 44
SECTION 6 - OBSERVATIONS AND CONCLUSIONS 46
6.1 Thin Coupon Static 46
6.1.1 Carbon Fiber 46
6.1.2 Fiberglass 46
6.2 Thin-Coupon Fatigue 47
6.2.1 Carbon Fiber 47
6.2.2 Fiberglass 47
6.3 Tнiск Coupon 48
6.4 Carbon Ply Drop 48
6.5 Carbon-Fiberglass Ply Transition 48
6.6 SUMMARY 49
SECTION 7 - REFERENCES 50
APPENDIX A - ORIGINAL PLANNED BSDS-II TEST MATRIX
APPENDIX B - SUMMARY OF COUPON GEOMETRY AND TEST FIXTURES
APPENDIX C - EXAMPLE PANEL LAYOUT SPECIFICATIONS
APPENDIX D - TABULAR DATA FOR STATIC TESTS (INTEC) APPENDIX E - TABULAR DATA FOR FATIGUE TESTS (MSU)

List of Figures

Figure 2-1. Architecture of BSDS Baseline Structural Model 7
Figure 3-1. Example of Panel C-Scan (Uniformly Low-Void) 12
Figure 3-2. Example of Panel C-Scan (Higher Void with Non-Uniformity) 12
Figure 3-3. Data Set Illustrating Modulus Variations 14
Figure 4-1. Stitched Fabric with Manufacturing-Induced Waviness 15
Figure 4-2. SAERTEX Triaxial Carbon-Fiberglass Fabric 16
Figure 4-3. Straight Ply Drop (Outer Plies Not Shown for Clarity) 17
Figure 4-4. Pinked Ply Drop (Outer Plies Not Shown for Clarity) 18
Figure 4-5. Conceptual Illustration of Carbon-to-Fiberglass Ply Transitions 18
Figure 5-1. R = 0.1 Fatigue Data for Thin-Coupon Infused Fiberglass (Calculated Strains) 24
Figure 5-2. R = 10 Fatigue Data for Thin-Coupon Infused Fiberglass (Calculated Strains) 24
Figure 5-3. = 0.1 Fatigue Data for Thin-Coupon Infused Fiberglass (Measured Strains) 25
Figure 5-4. R = 0.1 Fatigue Data for Thin-Coupon Prepreg Panels 26
Figure 5-5. R = 10 Fatigue Data for Thin-Coupon Prepreg Panels 27
Figure 5-6. R = -1 Fatigue Data for Thin-Coupon Prepreg Panels 27
Figure 5-7. R = 0.1 Fatigue Data for VARTM Infused Carbon-Fiberglass Triaxial Fabric 29
Figure 5-8. $\mathrm{R}=10 \sigma-\mathrm{N}$ Data for VARTM Infused Carbon-Fiberglass Triaxial Fabric 29
Figure 5-9. R = -1 σ-N Data for VARTM Infused Carbon-Fiberglass Triaxial Fabric 30
Figure 5-10. R = 10 ع-N Data for VARTM Infused Carbon-Fiberglass Triaxial Fabric 30
Figure 5-11. R = 0.1 Fatigue Data for Prepreg and Infused (Epoxy) Panels 32
Figure 5-12. R = 10 Fatigue Data for Prepreg and Infused (Epoxy) Panels 32
Figure 5-13. R = -1 Fatigue Data for Prepreg and Infused (Epoxy) Panels 33
Figure 5-14. D6641 (CLC) Thick-Coupon Test Fixture 34
Figure 5-15. Thick-Coupon Gage Section Failure 34
Figure 5-16. Representative Layup of Ply-Drop Panel 35
Figure 5-17. R = 0.1 Data for Prepreg Ply Drops 36
Figure 5-18. R = 0.1 Data for Infused Epoxy Ply Drops 37
Figure 5-19. R = 0.1 Data for Infused VE Ply Drops 37
Figure 5-20. Face View of Ply Terminations Taken from Matrix Digestion Coupons 38
Figure 5-21. Face View of Prepreg Pinked Ply Termination 39
Figure 5-22. Edge View of Material 422 (Straight-Edge, VE) Coupons Showing Asymmetry 39
Figure 5-23. Material 422 (Straight-Edge, VE) Showing Ply Delaminations 40
Figure 5-24. Representative Layup of Ply-Transition Panel (Initial Design, Exterior Doublers) 41
Figure 5-25. Representative Layup of Ply-Transition Panel (Redesign, Interior Doublers) 42
Figure 5-26. Typical Cross-Sections for Infused Ply Transitions (Top 2 Mostly Glass, Bottom 2 Mostly Carbon) 43
Figure 5-27. Typical Ply Delamination Sequence 43
Figure 5-28. R = 0.1 Data for Prepreg Ply-Transition Panels 45

List of Tables

Table 2-1. Overview of BSDS-II Test Matrix (Revision August 2004) 10
Table 3-1. Test Facilities Sub-Contracted by GEC 11
Table 3-2. Test Standards Used for Thin-Coupon Static Tests 13
Table 5-1. Numbering and Description for Prepreg Thin Panels 19
Table 5-2. Static Test Data for Prepreg Thin Panels 20
Table 5-3. Numbering and Description for VARTM-Infused Carbon Panels 20
Table 5-4. Numbering and Description for VARTM-Infused Fiberglass Panels 21
Table 5-5. Static Test Data for Infused Thin Panels 21
Table 5-6. Curve-Fit Parameters for Infused Fiberglass Thin Coupons (Calculated Strains) 24
Table 5-7. Curve-Fit Parameters for Infused Fiberglass Thin Coupons (Measured Strains) 25
Table 5-8. Curve-Fit Parameters for Prepreg Carbon Thin Coupons 28
Table 5-9. Curve-Fit Parameters for Infused Carbon-Glass Triax Thin Coupons. 31
Table 5-10. Thick-Coupon Static Test Results, WSU D6641 Testing 34
Table 5-11. Curve-Fit Parameters for Prepreg Ply-Drop Panels 36
Table 5-12. Curve-Fit Parameters for Infused Ply-Drop Panels 38
Table 5-13. Static Tensile Data for Infused Carbon-Fiberglass Ply Transition Panels 43
Table 5-14. Curve-Fit Parameters for Infused Ply-Transition Panels 45

Nomenclature

Ex	longitudinal modulus (GPa)
Ey	transverse modulus (GPa)
GPa	giga-Pascals $\left(10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)$
m	meters
MPa	mega-Pacsals $\left(10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)$
N	Newtons force
R	fatigue load ratio (minimum/maximum)
T_{g}	glass transition temperature $\left({ }^{\circ} \mathrm{C}\right)$
ε	material strain $(\%)$
γ_{m}	combined partial safety factor for materials
$\mu \varepsilon$	micro-strain $\left(10^{-6} \mathrm{~m} / \mathrm{m}\right)$
v_{xy}	major Poisson's ratio of laminate
σ	material stress (MPa)
v_{f}	laminate fiber volume fraction

Section 1 - Executive Summary

As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC) has studied alternative composite materials, with an emphasis on carbon, for wind turbine blades in the multi-megawatt size range. This work is one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories.

The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004.

The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance.

Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of $9-\mathrm{m}$ and $30-\mathrm{m}$ length, as well as other non-wind related structures.

Testing of composite articles was performed at three laboratories: Integrated Technologies (Intec) in Everett, Washington; Montana State University (MSU) in Bozeman; and Wichita State University (WSU).

Results and observations from the testing are summarized in the following sections.

1.1 Thin Coupon Static

1.1.1 Carbon Fiber

Thin-coupon testing of prepreg materials showed little variation in static strength with manufacturer or tow size. Average values for compressive static strain were typically in the range of $1.0 \%-1.1 \%$.

The SAERTEX carbon-fiberglass triaxial fabric with epoxy infusion achieved static strain values similar to prepreg materials. However, because of the inclusion of the $\pm 45^{\circ}$ glass, the modulus and stress at failure are both lower than for the unidirectional carbon prepreg. These results show that the carbon fibers in the infused laminate are reaching performance levels comparable to that of a unidirectional prepreg.

With VE infusion, the SAERTEX triaxial materials achieved slightly higher compressive static strength than that of the epoxy-infused articles. However, the compressive modulus measured by Intec for the VE infused panels was 13% higher than measured for the epoxy material. As a result, the calculated static compressive strain was 8% lower for the VE coupons.

Because the fabric was the same in both cases, and the measured panel thickness and fiber volume fractions were nearly identical, the large difference in modulus would not be expected. In general, the stress measurement which is based on applied load is more reliable than the compressive modulus measurement, which is based on a strain gage on a small specimen. Nonetheless, to maintain consistency in the presentation and analysis of data, GEC has used measured compressive modulus to calculate compressive strain.

1.1.2 Fiberglass

Static testing was performed for the E-LT-5500 fiberglass fabric, infused with both epoxy and VE resin. In general, the fiberglass material showed good performance in static strength for both epoxy and VE. Average tensile strain approached 2.3% for both resin systems, with very low scatter in the measurements. Average compressive strains were only slightly lower at approximately 2.2%.

1.2 Thin-Coupon Fatigue

1.2.1 Carbon Fiber

Two types of carbon fiber were tested in a prepreg form: Toray T600 (24k) and Zoltek Panex 35. Each of these fibers was impregnated by SP Systems using their WE90-1 resin and PMP process. Results for a third type of prepreg carbon fiber material were provided by MSU for comparative purposes, fabricated from Grafil 34-600 fibers (48k) and Newport NB307 resin. For all three prepreg materials, thin-coupon fatigue testing was performed at $\mathrm{R}=0.1,10$ and -1 . Overall, the three prepreg carbon materials showed similar fatigue performance. No consistent trend was seen concerning tow size for the fibers evaluated.

Epoxy-infused (SAERTEX triax) fabric preformed fairly well in fatigue relative to the prepreg materials. At $\mathrm{R}=0.1$, the infused material strains were modestly higher than the Toray/SP prepreg. For $\mathrm{R}=-1$, the infused material strains were slightly higher at low cycles, and converged with the prepreg strains at high cycles. A different trend was seen for $\mathrm{R}=10$ fatigue. At the single-cycle end of the ε-N curve, the infused triax panel strains are about 10% higher than the prepreg, but at $1 \mathrm{E}+6$ cycles, the triax strains fall below the prepreg by 20%.

For the infused carbon panels in tension ($\mathrm{R}=0.1$), the fatigue performance of VE was generally lower than epoxy. The single-cycle stress for the infused VE material was slightly higher than for the epoxy, but was about 25% lower at a million cycles.

Significantly different trends are seen in the fatigue stress data for compression and reversed loading, with a much smaller difference between the VE and epoxy results. In R = 10 loading, the VE stress levels were consistently higher than the epoxy, with a differential of about 5% at low cycles, growing to more than 10% at high cycles. Fatigue data for $\mathrm{R}=-1$ are relatively sparse and show only modest difference in measured stress between epoxy and VE. The VE curve is steeper than that for epoxy, partly due to higher values of single-cycle stress. As noted above, applying the measured compressive modulus values to these curves would result in a downward shift of the calculated VE strains relative to the epoxy. Because the static testing at Intec had measured higher modulus values for the infused VE panels than for the epoxy, a strainbased compassion tends to shift all the VE curves downward relative to the epoxy data.

1.2.2 Fiberglass

Fatigue testing was also performed for the E-LT-5500 fiberglass fabric, infused with both epoxy and VE resin. In both tension and compression, the single-cycle strain values showed modest variation between the epoxy and VE resins.

Several trends were noted for the tension $(\mathrm{R}=0.1) \varepsilon$ - N curve. For both the epoxy and VE resins, the intersect of the curves at zero cycles is substantially higher than the measured single-cycle strain. At higher cycles, the VE tension fatigue strength falls consistently below that of the epoxy. For the VE data, the tensile strain at 1E+6 cycles (based on the ε-N curve) was not particularly good, with a value of about 0.6%.

Significantly different trends are seen for the compressive fatigue data ($\mathrm{R}=10$). Most notable is that the VE data are consistently above that of the epoxy. The curves are also flatter, and the predicted strain levels at $1 \mathrm{E}+6$ cycles are meaningfully higher than those seen for the $\mathrm{R}=0.1$ data. However a careful comparison the tension and compression data indicates that this may be an artifact of the sparseness of the $\mathrm{R}=10$ data sets combined with the relatively flat slope for the curve fits.

1.3 Thick Coupon

Obtaining reliable results for thick coupons proved difficult. Using the ASTM D6641 coupon geometry and combined loading in compression (CLC) fixture, seven $12.5-\mathrm{mm}$ wide coupons and four $25-\mathrm{mm}$ wide coupons were successfully tested at the Wichita State University (WSU). Subsequent attempts to conduct fatigue testing with the D6641 coupon caused damage to WSU's CLC fixture and as a result thick-coupon testing was terminated.

1.4 Carbon Ply Drop

In general, asymmetries in the ply drop and ply transition panels created challenges for obtaining reliable results in compression testing. Therefore, the majority of fatigue testing was performed
for $\mathrm{R}=0.1$. Similar trends could be expected for $\mathrm{R}=10$, and $\mathrm{R}=-1$, with an overall reduction in the fatigue performance expected.

For all fabric and resin styles, a ply drop with a straight edge resulted in low fatigue performance. For prepreg laminate, the introduction of a pinked ply-drop edge nearly doubled the strain level for delamination at $1 \mathrm{E}+6$ cycles. With the infused fabrics, the pinked edge showed far less benefit, with a strain improvement at $1 \mathrm{E}+6$ cycles of only about 25%.

The relatively low fatigue performance for the infused ply drops with pinking may be partly due to the geometry of the ply drops and panels. Visual inspection after resin burn-off showed that the shape of the pinked fabric was significantly better for the prepreg than for the infused articles. MSU also noted the contribution of through-the-thickness asymmetry to the failure mode of the infused ply-drop articles.

1.5 Carbon-Fiberglass Ply Transition

It is expected that carbon-to-fiberglass ply transitions will be of high interest as blade designers seek to optimize the use of carbon fiber in wind turbine blades. Panels were fabricated for axial testing in an attempt to quantify the performance of such a feature.

Ply-transition panels were fabricated in two basic configurations. One was designated mostly carbon, in which the article might represent the first carbon ply being transitioned to fiberglass in a carbon spar cap. The other was designated mostly fiberglass, and would represent the last carbon ply being transitioned. These two arrangements were considered as the bounding cases for the carbon-to-glass transition of a structural spar. Both of these configurations were fabricated in prepreg and infused articles. For the prepreg transition panels manufactured at MSU, two layup schedules were used, transitioning either one or two plies.

Initial ply-transition panels were infused by TPI Composites using the SAERTEX carbon-glass triaxial fabric. Testing at MSU showed unexpectedly poor performance in tensile strength, with delaminations initiating at relatively low strain values. The early delamination was attributed primarily to asymmetry in the thickness taper and the placement of fiberglass doublers at the outer-most location in the stack of unidirectional plies.

Based on the lessons learned from the initial infused articles, the transition panels were redesigned and fabricated at MSU using Grafil/Newport prepreg material. In an attempt to delay the onset of delamination, the fiberglass doublers were moved to the interior of the unidirectional fabric stack.
$\mathrm{R}=0.1$ testing of the redesigned prepreg panels has been completed at MSU. The data show a significant reduction in fatigue performance in going from one to two ply transitions (mostly glass data). However, the tensile strain values for delamination at $1 \mathrm{E}+6$ cycles is close to 0.5%, which compares somewhat favorably with results for the ply-drop coupons.

As of this report date, testing at MSU is ongoing for prepreg transition panels in compression, and for second-iteration epoxy-infused ply-transition panels at $\mathrm{R}=0.1,10$, and -1 . Results from
these tests will be reported by MSU as part of the ongoing development of the DOE/MSU Database.

1.6 Summary

A range of carbon fiber styles and tow sizes was tested in prepreg form, and were generally found to have little variation in performance.

Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of $9-\mathrm{m}$ and $30-\mathrm{m}$ length.

Infused articles were tested with both epoxy and VE resin systems. Comparisons between prepreg and infused epoxy, and between infused epoxy and VE, were somewhat complex. In some cases, the performance variations were minimal and in other instances they were quite significant. For complex articles (ply drops and ply transitions), the comparison between prepreg and VARTM articles was complicated by the relative lack of symmetry in the infused articles.

The testing performed in this program has substantially added to the public-domain data for carbon fiber materials suitable for use in wind turbine blades. While numerous challenges were encountered during the course of this project, the results are nonetheless expected to be of value to the wind turbine blade design community.

Section 2 - Introduction

2.1 Background

In recent years both the size of wind turbine blades and the volume of production have been steadily increasing. Rotors over 90 m in diameter are on current commercial machines, and several turbine developers have prototypes in the $100-\mathrm{m}$ to $120-\mathrm{m}$ diameter range. It is estimated that over 160 million kilograms of finished fiberglass laminate were used for the production of wind turbine blades in 2006, and that worldwide production volume will increase for the next several years (calculations based on available weight data for commercial blades and the global wind energy market predictions of BTM Consult's World Market Update 2005 [1]).

These growth trends have been accompanied by extensive research and development efforts in the blade manufacturing industry. In addition, government-funded programs in both Europe [2-6] and the United States [7-9] have been investigating alternative blade design and material technologies. Technical challenges include restraining weight growth, enabling larger rotors by increased stiffness, improving power performance, mitigating loads, facilitating transportation, and designing for fatigue cycles on the order of 10^{7}.

2.2 Project Overview

This project was initiated under the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, which was intended to explore technologies available for improving wind turbine reliability and decreasing the cost of energy. Under the Sandia-sponsored Blade System Design Studies (BSDS), alternative composite materials, manufacturing processes, and structural designs were evaluated for potential benefits for MW-scale blades [7, 8]. The BSDS has two parts. Part I was analytical and included trade-off studies, selection of the most promising technologies, identification of technical issues for alternative materials and manufacturing approaches, and development of recommendations for materials testing. Part II, funded under the DOE’s Low Wind Speed Turbine (LWST) program, involves testing of coupons and blade sub-structures with the objectives of evaluating composite materials and resolving technical issues identified in the Part I study. The content in this paper focuses on composites testing performed under the Part II study.

2.2.1 Major Trends and Results from BSDS-I

This section reviews some of the major conclusions and technical issues identified during the Part I study, which guided the development of the test matrix for the Part II study. These issues are discussed in greater detail in the Blade Systems Design Studies Volume II: Preliminary Blade Designs and Recommended Test Matrix report [8].

No absolute barriers were identified for the cost-effective scaling of the current commercial blade designs and manufacturing methods over the size range of $80-\mathrm{m}$ to $120-\mathrm{m}$ rotor diameters. The most substantial constraint is transportation cost which rises sharply for lengths above 46 m (150 ft) and may become prohibitive for long haul of blades in excess of $61 \mathrm{~m}(200 \mathrm{ft})$. Gravity
loading is a design consideration but not an absolute constraint to scaling-up of current conventional materials and blade designs over the size range considered. Another issue for turbine design is the use of larger rotors at a given turbine system rating. As specific rating is decreased (i.e., blade lengths increase at a given rating), blade stiffness and the associated tip deflections become critical for cost-effective blade design.

Historically, wind turbine blades have been made predominantly from fiberglass materials. In the Part I study, trade-off studies were performed to evaluate the potential for cost-effective use of carbon fiber. Figure 2-1 illustrates the basic structural layout considered in that work, with carbon forming the primary load-bearing spars, and the blade skins and shear-webs being panels of a sandwich-style fiberglass construction. For this configuration, the spar caps are primarily unidirectional carbon fibers, and the skins are typically biaxial or triaxial fiberglass.

Figure 2-1. Architecture of BSDS Baseline Structural Model

During the time of the Part I study, industrial-style carbon fibers were available at historically low prices, and trade-off studies predicted that bulk replacement of fiberglass spar laminate with carbon fibers could result in improved blade structural properties at a reduced cost relative to an all-fiberglass blade. However, in recent years, demand and cost for carbon fiber have both increased sharply. As a result, bulk replacement of a fiberglass spar in an otherwise conventional blade design has become less economically viable. To justify the added material expense, blade designers are motivated to use the properties of carbon fibers to achieve system-level benefits.

For example, carbon fibers can be used to enable a slender blade profile, which will reduce the loading on the blades, towers, and other major structural components. Another concept under development is to skew the carbon fibers in a way that achieves load mitigation through aeroelastic response (e.g., bend-twist coupling). In either of these cases, some added cost in the blades may be offset by savings due to reduced loads on other major components. Partial-span carbon spars are another option for large blade designs. The motivation is that the greatest benefits from carbon fiber (in terms of decreased deflections and gravity-induced bending loads) are realized in the outer portion of the blade span. However, this design approach necessitates a
transition from fiberglass to carbon spar caps (see Section 5.4), which presents added challenges in design, manufacturing, and cost-effectiveness.

2.2.2 Objectives for BSDS-II

The primary objectives for the Part II study are to perform coupon and sub-structure testing to:

- evaluate material and process combinations with promise for application to MW-scale blades,
- develop data required to determine performance/cost, and
- make the results available to U.S. wind industry.

In an attempt to maximize the relevance of this project, GEC has sought to work collaboratively with existing companies in the composite materials and wind turbine industries, including both suppliers and potential end-users. Efforts have also been made to ensure that the program is complementary with the ongoing DOE/MSU Database testing at Montana State University [10].

2.2.3 Technical Issues for Use of Carbon Fiber Materials

2.2.3.1 Tow Size

Carbon fiber is typically characterized by tow size, which indicates the number, in thousands, of fiber filaments per strand of material. Of interest for blade applications are lower cost industrial grades comprising either moderate (24 k) or large ($48 \mathrm{k}+$) tow carbon fibers. These industrial-tow fibers tend to have reduced strength properties and reduced product uniformity (fiber straightness and purity) compared with aerospace-grade materials.

2.2.3.2 Production Processes

Although several manufacturers are still using open-mold, wet layup processes, increasingly stringent environmental restrictions have resulted in a move toward processes with lower emissions. Currently, two methods have emerged as the leading replacements for traditional methods: preimpregnated (prepreg) materials and resin infusion. Vacuum assisted resin transfer molding (VARTM) is the most common resin infusion method. Both VARTM and prepreg materials have particular design challenges for manufacturing the relatively thick laminate typical of large wind turbine blades. For VARTM processes, the permeability of the dry preform determines the rate of resin penetration through the material thickness. For prepreg material, sufficient bleeding is required to avoid resin-rich areas and eliminate voids from trapped gasses.

Although prepreg materials have historically been more expensive and require higher cure temperatures than liquid epoxy resin systems, the majority of commercial wind turbine blades that incorporate carbon fiber do so with prepreg materials. Conversely, most turbine blade manufacturers still produce primarily fiberglass blades using a wet process, either VARTM or an open mold layup and impregnation. Dry layup of preforms and subsequent infusion therefore remains a process of high interest for the wind industry.

2.2.3.3 Fabric Architecture for VARTM Laminate

Obtaining good structural performance with a VARTM process presents fundamental engineering challenges. Features in a dry fabric that promote infusion (e.g., stitching, gaps) also
tend to induce fiber waviness and/or resin-rich areas. This can lead to strength reductions in both static compression and fatigue. Because of the high stiffness of carbon fibers, detrimental effects due to alignment/resin concentration are greater than for fiberglass laminates. GEC has evaluated numerous fabric styles during this project in an attempt to identify architectures that are favorable both for infusibility and structural performance. This will be discussed in greater detail in the following sections.

2.2.3.4 Thick Laminate

Thick laminate tests were expected to be of value to evaluate several technical issues. The first is simply thickness scaling of basic carbon/hybrid spar cap laminate. Typically, thicker laminate will include a greater distribution of naturally occurring material defects than the smaller coupons, and also a greater opportunity for fabrication-related irregularities. Given the relatively large strand size of commercial carbon fibers and the heavy-weight fabrics in use for large blades, some investigation of basic thickness effects is planned.

2.2.3.5 Ply Drops and Transitions

It is expected that ply drops in load-bearing carbon spars will cause a greater decrease in fatigue strength than in an equivalent fiberglass structure. This is due to the carbon fibers being more highly loaded than the fiberglass and as a consequence, shearing a higher load per unit area into the resin-rich region at the ply termination. An additional effect may be due to any waviness or jogs that are introduced in the remaining carbon plies as a result of the ply drop. Ply thickness is another important parameter for ply drops. The technical issue at hand is the trade-off between the increase in processing/handling efficiency of blade construction and the decrease in fatigue performance at ply drops which would be expected for the thicker carbon plies.

In general, carbon-to-fiberglass ply transitions have all of the technical considerations of carbon ply drops (i.e., load transfer though resin-rich areas, sensitivity to carbon layer straightness, and ply thickness). However, ply transitions also add the complication of mismatch between the carbon and fiberglass ply stiffness and strain-to-failure.

2.2.4 Test Matrix

The Part II study test matrix has undergone several modifications over the course of the project. Reference 8 contains the original test matrix, which is also reproduced in Appendix A. Table 2-1 summarizes the August 2004 revision to the planned testing. Changes relative to the original test matrix are an increase in scope of thin-coupon static and fatigue testing, and the elimination of a specialty cylinder, with combined axial and torque loading intended to evaluate fabrics with biased fibers (e.g., for twist-coupled blades). This latter test was eliminated due to greater-thananticipated difficulties in early test efforts and the expected difficulties with the specialty cylinder test.

Table 2-1. Overview of BSDS-II Test Matrix (Revision August 2004)

Technical Issue	Type of Testing Planned
Basic performance of candidate materials	- Thin coupon
	- Thick coupon
- Static and fatigue	

The original intent of this project was to perform the basic test types listed in Table 2-1 for both prepreg and VARTM processes, with carbon fibers in both the moderate and large tow-size categories. However, due to combined considerations of cost, schedule, and greater-thananticipated difficulties with the testing, the following changes were made to the August 2004 test matrix:

- The number of thin-coupon tests (both static and fatigue) was increased relative to the initial test plans.
- A small number of thick-coupon static tests were performed. Fatigue testing of thick coupons was eliminated.
- 4-point beam tests were not conducted.
- While the baseline resin type for this program was epoxy, a limited number of test articles were evaluated using a vinyl ester (VE) resin system.
- Late in the program, a decision was made to also evaluate thin fiberglass coupons in both static and fatigue testing.

2.2.5 Organization and Scope of Report

This report summarizes the testing performed under the Part II study. As noted above, many difficulties were encountered in obtaining reliable results for the planned testing. While it is worthwhile to retain the knowledge of what worked poorly, the reliable data are of primary interest to anyone evaluating carbon for potential application in a wind turbine blade. Therefore, this report is organized to first emphasize the highest confidence results and data sets, with supporting details and discussion of unsatisfactory testing appearing as appendices.

Section 3 - Test Methods

3.1 Test Laboratories and Environment

All tests were conducted at indoor ambient conditions at the test facilities listed in Table 3-1. The following sections list the methods/standards used for each type of test. Additional details on the coupon geometry and loading fixtures is available in Appendix B.

Table 3-1. Test Facilities Sub-Contracted by GEC

Lab	Location	Tests Conducted
Integrated Technologies, Inc. (Intec)	Everett, Washington	Physicals, static and fatigue strength, thin and thick coupon
Montana State University (MSU)	Bozeman, Montana	Fatigue, thin coupon, ply-transition articles
Wichita State University (WSU)	Wichita, Kansas	Static, fatigue, thick coupon

3.2 Physical Properties

Standard testing for physical properties included resin digestion per ASTM D3171-99/D2734-99. Using nominal (specified) values for density of fibers and resins, the results from the resin digestion tests were analyzed to determine the laminate density as well as the volume fractions for fiber, resin, and voids. Glass transition temperature was determined from a temperaturedeflection curve using the method of intersecting tangents.

In some of the earliest test specimens, an unexpected level of porosity and small delaminations were noted between coupon plies. As a result, the use of C-Scans was added as an additional quality-control measure for incoming test panels. Figure 3-1 and Figure 3-2 show examples from the C-Scan inspections. The darker colors (purple and black) indicate relatively lower void content, whereas orange and red are on the higher void side of the spectrum. Qualitatively, Figure 3-1 shows uniformly low void content. Conversely, Figure 3-2 indicates a higher overall level of voids, with more spatial variation over the panel.

Figure 3-1. Example of Panel C-Scan (Uniformly Low-Void)

Figure 3-2. Example of Panel C-Scan (Higher Void with Non-Uniformity)

3.3 Thin-Coupon Static

Table 3-2 lists the standards used for the majority of the thin-coupon static tests. Notable deviations from the typical standards are as follows:

- Initial static compression tests at Intec used ASTM D3410, with varying standard and non-standard gage section lengths. Due to difficulty obtaining consistent test results, GEC requested that Intec use the ASTM D695 methods for compressive tests.
- For selected cases, ASTM D3410 was then used to obtain the single-cycle data points for fatigue curves that involve compression. The single-cycle data are differentiated from static tests in that a higher rate of loading has been used in the single-cycle tests to match the rate use in fatigue testing. Because of load-rate effects, the rapidly loaded single-cycle data will typically indicate higher strength than the static tests.

Table 3-2. Test Standards Used for Thin-Coupon Static Tests

Description	Standard Used	Coupon Configuration
Tension Strength and Modulus	ASTM D3039/D3039M -00	$230 \mathrm{~mm} \times 25 \mathrm{~mm}$, tabbed
Compression Strength	ASTM D695 - 02a (modified)	$84 \mathrm{~mm} \times 12.7 \mathrm{~mm}$, tabbed
Compression Modulus	ASTM D695-02a (modified)	$84 \mathrm{~mm} \times 12.7 \mathrm{~mm}$, untabbed

3.4 Thin-Coupon Fatigue

Composite material fatigue test standards are currently under development in the United States. In the absence of such standards, the testing was primarily conducted using methods developed and/or recommended by MSU. The D3410 coupon geometry was typically used for compression-compression $(R=10)$ and tension-compression $(R=-1)$, whereas the ASTM D3039 was used for tension-tension ($\mathrm{R}=0.1$). Loading rates were determined as appropriate, within the capacity of the load frame and hydraulics and avoiding premature failure due to heat rise. Details on the loading rates (frequencies) are given in Appendix E.

3.5 Thick-Coupon Compression

Thick-coupon testing proved difficult. Two initial tests were performed at Intec using a relatively long dog-bone style geometry, with buckling restraints in the gage section. The first resulted in a grip failure, and in the second test, the buckling restraints proved unstable. The dog-bone specimen geometry was not pursued further in this project.

Subsequent thick-coupon testing was conducted at WSU, with a specimen geometry that utilizes an ASTM D6641 combined loading compression (CLC) test fixture. The coupon geometry and test fixture are shown in Appendix B. As will be discussed below, a limited number of static tests were succesfully completed with this method before thick-coupon testing was terminated.

3.6 Measurement and Reporting of Elastic Modulus/Strain

The measurement of elastic modulus and reporting of both modulus and strain present several alternative and technical considerations. In most of this testing, tensile modulus is measured via extensometers on specimens that have relatively long gage-section lengths. Conversely, compressive modulus is typically measured with strain gages on very short gage sections. This introduces differences between the tensile and compressive modulus tests, both in methodology, as well as the magnitude of the dimension being measured.

Even in the linear-elastic range, it is not uncommon in fiber-reinforced plastic materials to measure a different modulus for tension and compression with the compressive modulus tending to have the lower value. The term chord modulus is used to indicate a value calculated from a specific portion of the stress-strain curve. For test data reported herein, measurements of chord modulus have been made in the range of 1000 to 3000 micro-strain $(\mu \varepsilon)$. In the current test program, deviations between measured tensile and compressive chord modulus have varied from negligible to as high as 17%. Although most finite element analysis (FEA) codes can accommodate non-linearities in modulus values, it is typical for designers to use a single value
(per coordinate axis) for elastic modulus. Therefore care must be taken to maintain consistency in both the reporting and use of modulus and strain data.

To add further complication, the stress-strain curves for test articles do not remain linear. In general, composite materials tend to exhibit a stiffening of the fibers under tensile loading prior to failure, and a softening under compressive loading. The latter effect is illustrated in the measured stress-strain data of Figure 3-3. The compressive stress and strain at failure were measured to be 830 MPa and 1.3%, respectively. The secant modulus, shown in red (triangle), is a linear fit between zero and maximum strain. The secant modulus gives the correct strain at maximum stress, but does not accurately reflect the stress-strain relationship in the midrange of strain values.

Figure 3-3. Data Set Illustrating Modulus Variations

Figure 3-3 also shows calculated stress-strain curves based on the measured compressive and tensile chord modulus. The variation in slopes and calculated maximum strains for these curves reflects the differential in measured tensile and compressive modulus, which for these coupons was about 6.5%.

For work conducted under this project, the methodology used for strain values reported to GEC has varied somewhat from lab to lab and according to the testing conducted. In order to avoid inconsistencies in the final data sets, GEC has attempted to standardize the method for calculating strains in their project reporting. Wherever available, the measured tensile modulus was used to calculate tensile strain, and the measured compressive modulus was used to calculate compressive strains. Thus, if the reported strain values are used to guide design calculations, the different modulus values for tension and compression need to also be considered. However, since the underlying stress and modulus data are reported, designers can use these data sets in whatever way best suits their needs.

Section 4 - Test Article Fabrication

4.1 General

Four basic types of panels were tested in this program: thin, thick, ply-drop and carbon-tofiberglass ply-transition. Each of these basic types can be further differentiated based on fabrication method: prepreg material or VARTM infusion.

For all the specimens, rectangular test panels were fabricated at room temperature under vacuum pressure. Typically, the laminate was vacuum-bagged with a caul plate on the lower side only, though some of the prepreg panels were formed using a glass plate on the top as well. The advantage of a two-sided caul is a smooth top surface that provides superior grip contact with the test coupon. Most panels included a biaxial fiberglass facing material at the outer surfaces. Inclusion of this feature was based on input from some test laboratories, namely that the facings improved the reliability of compression test results.

All of the VARTM panels were infused at TPI Composites, Inc. (Warren, Rhode Island), using their SCRIMP ${ }^{\mathrm{TM}}$ infusion process, using either epoxy or VE resin. A substantial number of prepreg panels were fabricated by SP Systems (Isle of Wight, UK). Later in the program, prepreg panels were formed at the MSU test laboratories.

4.2 Fabric Evaluation/Infusion Trials

As noted above, obtaining good structural performance with a VARTM process presents significant engineering challenges. As an example, Figure 4-1 shows how stitching can adversely affect the straightness of carbon fibers in a unidirectional fabric.

Figure 4-1. Stitched Fabric with Manufacturing-Induced Waviness

Initially, fabric evaluation and infusion trials were performed as part of work under a GEC Phase I Small Business Innovation Research (SBIR-I) Grant, which pre-dated the BSDS-II
contract. GEC worked with numerous vendors in obtaining candidate carbon-fiber fabric styles for VARTM fabrication. In some cases, the fabric was eliminated from consideration by visual inspection of the fiber alignment (e.g., Figure 4-1). For other materials, resin infusion trials were performed by TPI. Fabrics that were disqualified by the infusion trials generally fell into one of two categories. The first is fabrics that had very good alignment, but were not permeable enough to allow resin penetration. The second is fabrics that infused well, but due to their looseness had poor compaction and low fiber-volume fraction (v_{f}).

Figure 4-2 shows the most favorable fabric identified, a multi-layer, multi-axial warp-knit (MMWK) style produced by SAERTEX. GEC worked with the vendor and TPI to develop this architecture, originally under their SBIR-I Grant. The fabric is a triaxial construction $\left[-45^{\circ}{ }_{\text {Glass }} / 0^{\circ}{ }_{\text {Carbon }} /+45^{\circ}{ }_{\text {Glass }}\right]$, with areal weights of $150 / 670 / 150 \mathrm{gsm}$. The net fiber content is 75% carbon and 25% fiberglass by volume. Distinct features of this architecture and SAERTEX stitching style include those listed below:

- the outer layers are fiberglass, providing some protection of carbon fibers;
- the stitching pattern is such that it squeezes the glass strands, but runs parallel with and between strands of carbon fibers;
- the resulting fabric has good infusibility without introducing waviness in the carbon fibers; and
- the triaxial construction provides good stability for material handling.

Because of the relative success with this material, it became the primary fabric for VARTM test articles in this program. GEC continued to work with material vendors throughout the BSDS-II to identify other combinations of fiber style and fabric architecture with promise for good infusibility, compaction, and fiber straightness. However, no alternative carbon fabric was found to show sufficient performance for serious consideration.

Figure 4-2. SAERTEX Triaxial Carbon-Fiberglass Fabric

4.3 Thin Panel

All thin panels were produced as described above. Details on fiber types, laminate schedules, and post-cure are given in Section 5.

4.4 Thick Panel

Due to difficulties encountered, only one thick-panel specimen was tested in this project. The panel was infused with epoxy resin using 12 plies of the SAERTEX carbon-glass triax shown in Figure 4-2. To minimize warpage, two plies of 400 gsm biaxial fiberglass were included on each surface. The finished panel dimensions were 1500 mm x 600 mm , with a nominal $12-\mathrm{mm}$ thickness. There was no difficulty encountered with the infusion of the triaxial carbon-glass fabric at this thickness, and a C-scan did not indicate significant voids. Due to the thickness of the panel, however, the upper surface of the laminate had thickness variations that were noticeably greater than the thin panels, with overall panel variations of 1.3 mm from one edge to the other. Within each coupon, however, a maximum difference of 0.13 mm was measured.

A second thick panel was fabricated by MSU using unidirectional carbon prepreg. Specimens were machined by WSU for testing, but not tested.

4.5 Ply Drop Panels

Ply drop panels were fabricated in two styles: drops with straight edges and drops with pinked edges. Figure 4-3 shows a straight ply drop. Figure 4-4 illustrates the pinked ply drop, which is intended to reduce the stress concentration at the ply drop edge. In both figures the outer plies are not shown for clarity. An example detailed panel specification is given in Appendix C. Both the straight and pinked configurations were fabricated in prepreg and infused articles.

Figure 4-3. Straight Ply Drop (Outer Plies Not Shown for Clarity)

Figure 4-4. Pinked Ply Drop (Outer Plies Not Shown for Clarity)

4.6 Ply Transition Panel

Ply transition panels were designed in an attempt to mimic features that might occur in an actual blade design. Figure 4-5 illustrates the possible arrangement of such a transition. An example detailed panel specification is given in Appendix C. Ply transitions were fabricated in two basic configurations. One was designated mostly carbon, in which the article might represent the first carbon ply being transitioned to fiberglass in a carbon spar cap. The other was designated mostly fiberglass, and would represent the last carbon ply being transitioned. These two configurations were considered as the bounding cases for the carbon-to-glass transition of a structural spar. Both of these configurations were fabricated in prepreg and infused articles.

Figure 4-5. Conceptual Illustration of Carbon-to-Fiberglass Ply Transitions

Section 5 - Test Results

The following sections provide a summary of test results, along with a discussion of observed trends. The detailed tabular data are available in Appendix D (static testing at Intec) and Appendix E (fatigue testing at MSU).

5.1 Thin Coupon

5.1.1 Thin-Coupon Static Testing

Table 5-1 provides the description and test-article numbering for selected thin panels fabricated from prepreg materials. Although the carbon ply areal weights vary from 300 to 600 gsm , the number of unidirectional plies was also varied so that the total weight of carbon unidirectional material for all panels was 2400 to 2500 gsm. With the exception of panel I.D. 013X, all the articles listed include fiberglass facings.

Table 5-1. Numbering and Description for Prepreg Thin Panels

Panel I.D.	Manufacturerl Type	Tow Size	Areal Weight (gsm)	Number of Plies	Glass Facing per Side (gsm)	Total Thickness $(\mathbf{m m})$	Matrix
	Tenax STS-24	24 k	600	4	None	2.3	SP WE90-1
$014 X$	Tenax STS-24	24 k	600	4	400	2.9	SP WE90-1
$016 X$	Toray T600	24 k	500	5	400	2.7	SP WE90-1
$211 X$	Toray T600*	24 k	500	5	400	3.0	SP WE90-1/PMP
$018 X$	Zoltek Panex 35	50 k	500	5	400	3.1	SP WE90-1
$214 X$	Zoltek Panex 35*	50 k	500	5	400	3.4	SP WE90-1 / PMP
$031 X$	Grafil 34-600	48 k	300	8	300	3.0	Newport NB307

*Note: SP Systems "proprietary manufacturing process" uses WE90-1 resin but not in conventional prepreg form.
Late in the program, an additional thin panel was fabricated from unidirectional prepreg fiberglass (Newport). However it was determined that the initial coupons were too thick to obtain satisfactory test results. No further effort was made to test prepreg fiberglass material.

Two of the panel styles using SP WE90-1 resin are shown with a PMP label. This is used to indicate that the panels were formed by SP using proprietary manufacturing process developed for the production of high-quality carbon-fiber preforms of thickness up to 50 mm , and used widely in the wind energy market. The PMP designation is not a formal trade name for this process, but has been used to differentiate between SP panels using conventional prepreg materials and panels with the same fiber and resin types, but formed using the alternative process. An example for the Toray T600 fibers is panel I.D. 016X (conventional prepreg) and I.D. 211X (PMP).

Table 5-2 summarizes the static test data for these articles. The measured fiber volume fractions are generally consistent with the panel thicknesses of Table 5-1. A subtle trend toward thicker panels and lower fiber volume fractions is seen for the large-tow (48 k and 50 k) as compared with the 24 k moderate-tow fibers. For panels with glass facings, the tensile modulus showed high consistency between panels, varying from 103 to 113 GPa . Ultimate tensile strain values varied
between 1.3% and 1.7%. For the majority of prepreg materials, calculated compressive strains were between 1.0% and 1.1%. A notable exception is the (high) value of 1.37% for the Grafil 34-600 tested at Intec. GEC suspects that this result may have been influenced by overtightening of the bolts in the D695 fixture. Testing of this same panel at MSU yielded a substantially lower value of 1.11%, which is more consistent with test results from other materials.

Note that the static strength data in Table 5-2 and Table 5-5 include some data points with questionable failure modes such as tab failures. In such cases, GEC concluded that the results were generally reasonable, and may have given somewhat higher strength if failure modes related to tabs and/or grips could have been avoided. To avoid ambiguity on this issue, the complete data sets, including failure modes, have been included in Appendix D.

Table 5-2. Static Test Data for Prepreg Thin Panels

						Tension						Compression						
			Physical Properties			Mean Stress			Modulus		Strain ε_{x} $(\%)$	Mean Stress			Modulus			Strain ε_{x} $(\%)$
I.D.	Fiber	Lab	$\begin{gathered} \mathrm{v}_{\mathrm{f}} \\ (\%) \\ \hline \end{gathered}$	$\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$\begin{gathered} \mathrm{T}_{\mathrm{g}} \\ (\mathrm{C}) \end{gathered}$	\#	$\begin{gathered} \hline \sigma_{\mathrm{x}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { COV } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E}_{\mathrm{x}} \\ (\mathrm{GPa}) \\ \hline \end{gathered}$	$\begin{gathered} \text { COV } \\ (\%) \end{gathered}$		\#	$\begin{array}{\|c\|} \hline \sigma_{\mathrm{x}} \\ (\mathrm{MPa}) \end{array}$	$\begin{gathered} \text { cov } \\ (\%) \end{gathered}$	\#	$\begin{gathered} \mathrm{E}_{\mathrm{X}} \\ (\mathrm{GPa}) \end{gathered}$	$\begin{gathered} \text { COV } \\ (\%) \\ \hline \end{gathered}$	
013x	Tenax	Intec	56	1.52	104	5	1,956	3.1	132	2.4	1.48	6	1,186	3.9	5	113	4.9	1.05
014x	Tenax	Intec	55	1.59	95	6	1,655	4.9	108	2.9	1.53	6	1,129	8.4	5	101	3.7	1.11
016x	Toray	Intec	59	1.60	105	5	1,952	1.9	113	2.2	1.73	6	1,117	6.6	3	110	5.1	1.01
211x	Toray	Intec	54	1.59	104	-	-	-	-	-	-	5	1,243	1.7	5	110	3.3	1.13
018x	Zoltek	Intec	52	1.57	101	5	1,400	7.4	106	1.9	1.32	6	1,193	4.5	3	96	0.6	1.24
214x	Zoltek	Intec	48	1.54	108	-	-	-	-	-	-	5	1,037	2.5	5	104	0.6	1.00
031x	Grafil	Intec	52	1.58	134	6	1,570	1.6	103	3.7	1.52	6	1,310	6.1	5	96	1.9	1.37
031x	Grafil	MSU	53	-	-	3	1,496	6.5	97	1.5	1.55	2	1,070	11.0	-	96	-	1.11

Note: Intec compressive modulus measurement used for MSU test of panel 031x.

Table 5-3 provides the panel numbering and description of both thin and thick infused carbon articles. All of the infused articles use the SAERTEX carbon-fiberglass triaxial fabric style depicted in Figure 4-2. Table 5-4 gives the panel numbering and description for the thin infused fiberglass panels.

Table 5-3. Numbering and Description for VARTM-Infused Carbon Panels

Panel I.D.	Manufacturerl Type				Tow Size	Areal Weight (gsm)	Number of Plys
	Thickness (mm)	Matrix					
026 X	Toray T600	24 k	$150 / 670 / 150$ glass/carbon/glass	4	300	4.3	Epoxy, Jeffco 1401
1211	Toray T600	24 k	$150 / 670 / 150$ glass/carbon/glass	4	300	4.2	Vinyl ester, Vipel F010

Table 5-4. Numbering and Description for VARTM-Infused Fiberglass Panels

$\begin{aligned} & \text { Panel } \\ & \text { I.D. } \\ & \hline \end{aligned}$	Glass Ply Description			Glass Facing per Side* (gsm)	TotalThickness(mm)	Matrix
	Manufacturerl Type	Uni Glass Areal Weight (gsm)	Number of Plys			
020X	$\begin{gathered} \text { Vector Ply } \\ \text { E-LT-5500-10 } \end{gathered}$	1865	2	580	4.5	Vinyl ester, Ashland Momentum 411-200
029X	$\begin{gathered} \text { Vector Ply } \\ \text { E-LT-5500-10 } \end{gathered}$	1865	2	580	4.2	Epoxy, Huntsman LY 1564

* 3 plys total of DBM 1708, one each per face and one between uni glass plies.

5.1.1.1 Infused Fiberglass Static Results

Table 5-5 summarizes the static test results for the infused thin coupons, for both fiberglass and carbon fibers. The data in the tables indicate that for both fiber types, the compaction and fiber volume fractions show little difference between epoxy and VE resins. Note that the $53 \% v_{f}$ measured for the fiberglass-epoxy panel (020 X) is somewhat suspect, as that measurement had relatively large scatter and implied a void volume of -6.2%. Also notable in these data is a higher-than-expected glass transition temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ for the fiberglass-VE panel. While these two physical property measurements are anomalous, the remainder of the strength and stiffness measurements for the fiberglass panels appear to be reliable.

In general, the E-LT-5500 fiberglass material showed good performance in static strength for both epoxy and VE resins. Average tensile strain approached 2.3\% for both resin systems, with very low coefficients of variation (COV $\leq 2 \%$). Average compressive strains were only slightly lower, and showed greater variability.(COV $\cong 6 \%-7 \%$).

Table 5-5. Static Test Data for Infused Thin Panels

						Tension						Compression						
			Physical Properties			Mean Stress			Modulus		Strain ε_{x} $(\%)$	Mean Stress			Modulus			Strain ε_{x} $(\%)$
I.D.	Fiber	Resin	$\begin{gathered} u_{f} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \rho \\ \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{g}} \\ (\mathrm{C}) \\ \hline \end{gathered}$	\#	$\begin{gathered} \sigma_{x} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { cov } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{x}} \\ (\mathrm{GPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { cov } \\ (\%) \\ \hline \end{gathered}$		\#	$\begin{gathered} \sigma_{x} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { COV } \\ & (\%) \\ & \hline \end{aligned}$	\#	$\begin{array}{\|c\|} \hline \mathrm{E}_{\mathrm{X}} \\ (\mathrm{GPa}) \\ \hline \end{array}$	$\begin{gathered} \hline \text { COV } \\ \text { (\%) } \\ \hline \end{gathered}$	
022x	Toray	Epoxy	56	1.685	64	5	1,253	4.6	77.4	3.5	1.62	6	770	4.8	5	70.3	3.0	1.10
026x	Toray	VE	55	1.593	65	6	1,140	1.5	82.8	3.5	1.38	6	807	7.8	5	79.3	3.0	1.02
020x	E-Glass	Epoxy	53*	1.934	70	10	704	1.3	31.1	3.5	2.26	9	702	7.2	10	31.2	2.9	2.25
029x	E-Glass	VE	56	1.958	104	11	707	1.9	30.9	2.3	2.29	12	757	5.6	10	34.8	3.0	2.18

* 9.6\% COV, 4 samples, -6.2% measured void volume.

5.1.1.2 Infused Carbon Static Results

Because the fabric styles and laminate schedules are identical between the epoxy and VE infused carbon panels, it is reasonable to expect the modulus values to also be in close agreement. However, Table 5-5 shows that the tensile and compressive modulus were 7% and 13% higher, respectively, for the carbon panels infused with VE rather than epoxy resin. The modulus variation results in some inconsistency between comparisons based on stress and strain. This is particularly evident for the compression case, where the mean compressive stress for the VE coupons was nearly 5% higher than the equivalent epoxy materials, but because of the differential in measured modulus the calculated VE compressive strain was 7.3% lower than for the epoxy. For tension, the VE material achieved a tensile stress of 9% lower than the epoxy.

Due to the differential in measured modulus, the calculated tensile strain for the VE was nearly 15% lower than the epoxy.

However, the most significant result is the high performance of the infused SAERTEX carbonfiberglass fabric (ID 022x and 026x) with both epoxy and VE resins. Value for fiber volume fraction and compressive strain were both comparable to those seen for the prepreg materials in Table 5-2.

5.1.2 Thin-Coupon Fatigue Testing

5.1.2.1 General

Some of the following data were developed by MSU under the DOE/MSU Database program [10] and provided to GEC for comparative purposes. In the present report, strain values for most cases have been calculated based on measured compressive chord modulus. This approach is different from the typical methodology at MSU, and so the strain values plotted in the following figures may not agree with data presented by MSU. However, this approach has been used in the present work so that results from different materials can be compared on a self-consistent basis. For a limited number of cases, strain data have also been presented based on measured strain.

For all data, fatigue curves were developed of the forms:

$$
\frac{\varepsilon}{\varepsilon_{o}}=A \cdot N^{-1 / m}
$$

Equation 1

Where:
$\varepsilon_{0} \equiv$ single-cycle strain
$A \equiv$ coefficient of the ε-N curve
$N \equiv$ number of loading cycles
$m \equiv$ inverse slope of the $\varepsilon-\mathrm{N}$ curve.

$$
\frac{\sigma}{\sigma_{o}}=A \cdot N^{-1 / m}
$$

Equation 2

Where:

$$
\sigma_{o} \equiv \text { single-cycle stress }
$$

As long as stress and strain are related by a single constant (the elastic modulus), then the curvefit parameters A and m will be the same for both the $\sigma-\mathrm{N}$ and $\varepsilon-\mathrm{N}$ curves. If strain data are based on measurements, rather than calculations from measured stress, then the curve fits for stress and strain may differ.

Fatigue testing is distinguished by the ratio of minimum divided by maximum stress, or R -value. Testing under the Part II study has so far included $\mathrm{R}=0.1$ (tension-tension), $\mathrm{R}=10$ (compression-compression), and $\mathrm{R}=-1$ (tension-compression). All data herein have been analyzed and presented in terms of the absolute value of maximum stress in the fatigue loading
cycle. In applying Equation 1 to fatigue curve fits, the compressive single-cycle value of ε_{o} was used for $\mathrm{R}=10$ and $\mathrm{R}=-1$, and the tensile single-cycle ε_{o} was used for $\mathrm{R}=0.1$.

Summary results from the fatigue tests are given in graphical and tabular formats in the following sections. A detailed tabulation of the measured data and curve-fit calculations is provided in Appendix E.

5.1.2.2 Infused Fiberglass Fatigue Results

The testing of infused fiberglass in tension presented some challenges concerning analysis and presentation of the data. During the fatigue testing MSU observed that the $\pm 45^{\circ}$ plies tended to crack during the initial cycles, which reduced the stiffness and increased the material strain. This behavior was more significant for the fiberglass than for the carbon coupons for the following reasons: the infused fiberglass articles had a relatively large amount of $\pm 45^{\circ}$ content relative to the zero-degree plies, the stiffness contribution of the $\pm 45^{\circ}$ plies is significantly greater than for an equivalent coupon with carbon fiber zero-degree plies, and the strain levels for the fiberglass coupons are greater than is typical for carbon materials.

Because of these mechanisms, a significantly different ε-N curve would result from using a constant modulus to calculate strain as opposed to fitting the measured strains directly. For completeness, both analytical approaches are shown below. It should be noted that matrix cracking in the $\pm 45^{\circ}$ plies was not observed for compression, and the short gage sections used in the compression tests prevent accurate measurement of the strain. Therefore, the strain data for compression was calculated by MSU based on the measured (constant) value of the tensile modulus.
Figure 5-1 and Figure 5-2 show fatigue data for the E-LT-5500 fiberglass fabric, infused with both epoxy and VE resins. Strain values in these figures were calculated by GEC based on the MSU-measured stress levels combined with the average modulus measured by Intec in static testing. Curve-fit parameters (per Equations 1 and 2) are listed.

In both tension and compression, the single-cycle strain values (Table 5-6) showed only modest variation between the epoxy and VE resins. The single-cycle tensile strain was higher than the static value measured at Intec (Table 5-5), and the compressive single-cycle strains were lower than the corresponding static measurements. In the case of the tensile tests, both labs used ASTM D3039 coupons, but the single-cycle data of MSU had a higher loading rate. For the compressive tests, the Intec static measurements used ASTM D695, whereas the MSU fatigue tests used ASTM D3410, with varying standard and non-standard gage section lengths as needed to obtain satisfactory failure modes.

The ε-N curve of Figure 5-1 shows several trends. For both the epoxy and VE resins, the intersect of the curves at zero cycles is substantially higher than the measured single-cycle strain. This behavior is also indicated by the high values of the "A" curve-fit parameter seen for $\mathrm{R}=0.1$ in Table 5-6. At higher cycles, the VE tension fatigue strength falls consistently below that of the epoxy.

Figure 5-1. R = 0.1 Fatigue Data for Thin-Coupon Infused Fiberglass (Calculated Strains)

Figure 5-2. R = 10 Fatigue Data for Thin-Coupon Infused Fiberglass (Calculated Strains)

Table 5-6. Curve-Fit Parameters for Infused Fiberglass Thin Coupons (Calculated Strains)

	$\mathrm{R}=0.1$				R = 10			
Material	σ_{0} (MPa)	$\varepsilon_{\text {o }}$ (\%)	m	A	σ_{0} (MPa)	ε_{0} (\%)	m	A
ELT-5500 / Epoxy	836.3	2.69	10.4	1.172	551.7	1.77	16.2	1.028
ELT-5500 / VE	808.9	2.62	8.4	1.202	653.8	1.88	20.7	1.041

Significantly different trends are seen for the compressive fatigue data of Figure 5-2. Most notable is that the VE data fall consistently above that of the epoxy. The curves are also flatter than those seen for the $\mathrm{R}=0.1$ data (higher values of slope parameter, " m "). Based on the curve fits, the predicted strain levels at $1 \mathrm{E}+6$ cycles for $\mathrm{R}=10$ are meaningfully higher than those indicated by the $\mathrm{R}=0.1$ curves. However a careful comparison of Figure 5-1 and Figure 5-2 indicates that this may partly be an artifact of the sparseness of the $\mathrm{R}=10$ data sets combined with the relatively flat slope for the curve fits.

Figure 5-3 shows the $\mathrm{R}=0.1 \varepsilon-\mathrm{N}$ curves based on measured rather than calculated strains. The overall trends are as seen in Figure 5-1, but with a general shift toward higher strain values. The corresponding curve-fit parameters are given in Table 5-7.

Figure 5-3. = 0.1 Fatigue Data for Thin-Coupon Infused Fiberglass (Measured Strains)

Table 5-7. Curve-Fit Parameters for Infused Fiberglass Thin Coupons (Measured Strains)

	R=0.1		
Material	ε_{0}	(\%)	\mathbf{m}
ELT-5500 / Epoxy	3.36	9.6	1.210
ELT-5500 / VE	2.50	10.1	1.320

5.1.2.3 Prepreg Carbon Fatigue Results

Figure 5-4 through Figure 5-6 show fatigue data for three styles of carbon prepreg material. Curve-fit parameters are listed in Table 5-8. The data for the Grafil/Newport material were developed by MSU under the DOE/MSU Database program. Data for Toray and Zoltek fibers (SP WE90-1 resin with PMP) were from testing conducted at MSU under the BSDS-II study.

The data of Figure $5-4$ show that for $\mathrm{R}=0.1$ fatigue the Grafil and Toray fiber $\varepsilon-\mathrm{N}$ curves were consistently above the corresponding Zoltek data. At high cycles, the Grafil fibers showed the best performance, with the Toray curve crossing at around 30 cycles due to slightly higher values for single-cycles strain. All three curves for $\mathrm{R}=0.1$ fatigue were very flat, with slope parameter (m values) ranging from about 31 to 48.

The trend for compression fatigue was somewhat different. Figure 5-5 shows that for $\mathrm{R}=10$ the two moderate-tow fibers had very similar ε - N curves for $\mathrm{R}=10$ fatigue, with the Toray data being only slightly favored. The large-tow (Zoltek) data showed higher values for single-cycle compression, and a somewhat steeper slope throughout the curve. Nonetheless, all three curves for $\mathrm{R}=10$ fatigue were again flat. The slope parameter values were $\mathrm{m} \approx 46$ for the Grafil and Toray fibers, and $\mathrm{m} \approx 28$ for the Zoltek fiber.

For fully reversed loading, the Toray and Zoltek curves were quite similar to one another. By comparison, the Grafil curve was flatter, with reduced magnitude of single-cycle strain, and higher strain values at large cycles (Figure 5-6).

Figure 5-4. R = 0.1 Fatigue Data for Thin-Coupon Prepreg Panels

Figure 5-5. R = 10 Fatigue Data for Thin-Coupon Prepreg Panels

Figure 5-6. R = -1 Fatigue Data for Thin-Coupon Prepreg Panels

Table 5-8. Curve-Fit Parameters for Prepreg Carbon Thin Coupons

	$\mathbf{R}=\mathbf{0 . 1}$					$\mathbf{R = 1 0}$				$\mathbf{R}=\mathbf{- 1}$	
Material	$\sigma_{\mathbf{0}}(\mathbf{M P a})$	$\varepsilon_{\mathbf{o}}$	$\mathbf{(\%)}$	\mathbf{m}	\mathbf{A}	$\sigma_{\mathbf{0}}(\mathbf{M P a})$	$\boldsymbol{\varepsilon}_{\mathbf{o}} \mathbf{(\%)}$	\mathbf{m}	\mathbf{A}	\mathbf{m}	\mathbf{A}
Grafil / Newport	1496.4	1.45	47.9	1.030	1047.0	1.08	46.1	0.992	26.0	0.998	
Toray / SP	1980.9	1.52	31.4	1.020	1229.7	1.12	46.5	0.990	17.3	0.995	
Zoltek / SP	1812.3	1.40	37.7	0.979	1257.8	1.21	27.6	0.982	16.2	0.966	

5.1.2.4 Infused Carbon Fatigue Results

Figure 5-7 through Figure 5-10 present fatigue data for the VARTM-infused carbon-fiberglass triaxial fabric. Curve-fit parameters are listed in Table 5-9. The test panels include both epoxy and VE resins. It was noted in the above section on static strength testing that although the laminate schedule is identical for these panels, the differential in measured modulus results in different trends for stress and strain comparisons. Figure 5-7, Figure 5-8, and Figure 5-9 are plotted on the basis of stress, which is a more direct basis for comparing the load-carrying capability of the tested laminate.

In tension ($\mathrm{R}=0.1$), the fatigue performance of VE was clearly lower than epoxy. Figure 5-7 shows that the single-cycles stress for the infused VE material was slightly higher than that for the epoxy, but at a million cycles was about 25% lower.

Significantly different trends are seen in the fatigue stress data for compression and reversed loading, with a much smaller difference between the VE and epoxy results. Figure 5-8 shows that in $\mathrm{R}=10$ loading, the VE stress levels were consistently higher than the epoxy, with a differential of about 5\% at low cycles, growing to more than 10\% at high cycles. Figure 5-10 shows the $\mathrm{R}=10$ data plotted on the basis of stain. As expected, applying the higher compressive modulus in the VE strain calculations resulted in a shift between the curves. Calculated VE strains for $\mathrm{R}=10$ fatigue are about 7\% lower than epoxy at low cycles, and 2\% lower at high cycles.

Fatigue data for $\mathrm{R}=-1$ (Figure 5-9) are relatively sparse, and show only modest difference in measured stress between epoxy and VE. The VE curve is steeper than that for epoxy, partly due to higher values of single-cycle stress. As noted above, applying the measured compressive modulus values to these curves would result in a downward shift of the calculated VE strains relative to the epoxy.

Figure 5-7. R = 0.1 Fatigue Data for VARTM Infused Carbon-Fiberglass Triaxial Fabric

Figure 5-8. R = $10 \sigma-N$ Data for VARTM Infused Carbon-Fiberglass Triaxial Fabric

Figure 5-9. R = -1 σ-N Data for VARTM Infused Carbon-Fiberglass Triaxial Fabric

Figure 5-10. R = 10ε-N Data for VARTM Infused Carbon-Fiberglass Triaxial Fabric

Table 5-9. Curve-Fit Parameters for Infused Carbon-Glass Triax Thin Coupons

	$\mathrm{R}=0.1$				R = 10				R = -1	
Material	σ_{0} (MPa)	ε_{0} (\%)	m	A	$\sigma_{0}(\mathrm{MPa})$	ε_{0} (\%)	m	A	m	A
SAERTEX / Epoxy	1297.0	1.68	30.2	0.995	859.9	1.22	15.8	0.985	25.1	1.003
SAERTEX / VE	1330.8	1.68	16.8	1.000	965.4	1.22	25.1	1.003	13.1	0.952

5.1.2.5 Comparison of Fatigue Data for Prepreg and Infused Materials

Figure 5-11 through Figure 5-13 show comparisons of fatigue data for prepreg and infused (epoxy) panels. The infused panels use the SAERTEX carbon-fiberglass triaxial fabric with a substantial amount of integral $\pm 45^{\circ}$ fiberglass fibers, whereas the prepreg panels are primarily unidirectional carbon tape, with a small amount of $\pm 45^{\circ}$ glass in the facings. Consequently, the modulus of the infused panels is by design lower than the prepreg materials. In terms of evaluating the performance of the carbon fibers in the laminate, a comparison of strain levels provides a more valid basis than does the stress.

Figure 5-11 compares the $\mathrm{R}=0.1$ data from the Toray prepreg and epoxy-infused triax panels. The overall performance for these materials is quite similar, with strain values for the infused article modestly higher than those for the prepreg over the entire range of cycles.

Figure 5-12 shows a somewhat different trend for $\mathrm{R}=10$ fatigue. At the single-cycle end of the ε-N curve, the infused triax panel strains are about 10% higher than the prepreg, but at $1 \mathrm{E}+6$ cycles, the triax strains fall below the prepreg by 20%. The $\mathrm{R}=10$ slope is steeper for the infused material. The prepreg ε - N curve has a slope parameter of $\mathrm{m} \approx 46$, whereas the triax has an $\mathrm{m} \approx 25$.

Comparisons for $\mathrm{R}=-1$ loading (Figure 5-13) show very close agreement between the infused material and the Toray prepreg. At the single-cycle end of the curve, the infused material has strains about 8% higher than the prepreg, and at high cycles, the two curves converge.

Figure 5-11. R = 0.1 Fatigue Data for Prepreg and Infused (Epoxy) Panels

Figure 5-12. R = 10 Fatigue Data for Prepreg and Infused (Epoxy) Panels

Figure 5-13. R = -1 Fatigue Data for Prepreg and Infused (Epoxy) Panels

5.2 Thick Coupon

5.2.1 Thick-Coupon Compressive Static Testing

As discussed above, initial thick-coupon testing has been performed for an epoxy-infused triax panel of $11.2-\mathrm{mm}$ thickness. Initial compression testing was performed at Intec using a long dogbone shaped specimen with custom-designed anti-buckling restraints (details depicted in Appendix B). Two attempts were made with this coupon geometry using two different designs for the anti-bucking fixture. Neither test was successful, with failures occurring near the grips at strain levels far below those achieved for the thin coupons.

Subsequently, the thick-coupon compressive testing was switched to use an ASTM D6641 coupon geometry and combined loading in compression (CLC) fixture. Seven $12.5-\mathrm{mm}$ wide coupons and four $25-\mathrm{mm}$ wide coupons were successfully tested at the WSU test facility using the CLC fixture shown in Figure 5-14. Test results are presented in Table 5-10, and a typical failure is shown in Figure 5-15. As indicated by the tabular data, higher static strength was measured for the $25.4-\mathrm{mm}$ wide coupons than for those with a $12.7-\mathrm{mm}$ width. As a result, the $25.4-\mathrm{mm}$ wide geometry was selected for ongoing testing of the thick coupons.

The compressive strain measured for the $12.7-\mathrm{mm}$ and 25.4 mm wide thick-coupons is 29% and 19% lower, respectively, than that measured for the thin-coupon testing of the same material. Because of difficulties encountered with the thick-coupon testing, it is not known if these decreases in strain are due to scaling effects or testing issues.

Figure 5-14. D6641 (CLC) Thick-Coupon Test Fixture

Table 5-10. Thick-Coupon Static Test Results, WSU D6641 Testing

						(12.7-1	n	coup				(25.4	mm	cou	ns)	
		Physical Properties			Mean Stress			Modulus		$\begin{array}{\|c\|} \hline \text { Strain } \\ \hline \varepsilon_{\mathrm{x}} \\ (\%) \end{array}$	Mean Stress			Modulus		Strain
I.D.	Lab	$\begin{gathered} \mathrm{v}_{\mathrm{f}} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \rho \\ \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{T}_{\mathrm{g}} \\ (\mathrm{C}) \\ \hline \end{array}$	\#	$\begin{gathered} \sigma_{\mathrm{x}} \\ (\mathrm{Mpa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { cov } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{X}} \\ (\mathrm{Gpa}) \end{gathered}$	$\begin{gathered} \hline \text { COV } \\ (\%) \\ \hline \end{gathered}$		\#	$\begin{gathered} \sigma_{\mathrm{x}} \\ (\mathrm{Mpa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { COV } \\ (\%) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{E}_{\mathrm{x}} \\ (\mathrm{Gpa}) \end{array}$	$\begin{gathered} \hline \text { COV } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \varepsilon_{\mathrm{x}} \\ (\%) \\ \hline \end{gathered}$
1211	WSU	56	1.676	72	7	632	11.5	80.6	3.7	0.78	4	709	12.3	80.0	3.5	0.89

Figure 5-15. Thick-Coupon Gage Section Failure

5.2.2 Thick-Coupon Fatigue Testing

Following successful testing of the thick coupons in static compression, $\mathrm{R}=10$ fatigue testing was attempted using the same fixtures and specimen geometry. Initial tests resulted in failures in the tab region at load levels far below those expected for the material. It was determined that the stress concentration at the gage-section end of the tabs could be reduced by modifying the tab angle from 90° to 105°.

A new set of coupons was machined with the 105° tab angle; and fatigue testing was once again attempted. Although the modified coupons did not fail prematurely, the testing overloaded and damaged the CLC fixture. Based on these experiences, WSU opted to terminate both static and fatigue testing of thick coupons. No further effort was made for this type of article under the BSDS-II project.

5.3 Carbon Ply Drop

5.3.1 Prepreg Ply Drops

As noted in Section 4.5, ply drops were tested in both straight and pinked edge geometries. Figure 5-16 depicts a representative layup for a ply-drop panel The pinked ply-drop configuration is illustrated graphically in Figure 4-4, and a detailed panel specification (for infused SAERTEX material) is shown in Appendix C.

In general, asymmetries in the ply drop and ply transition panels created challenges for obtaining reliable results in compression testing. Therefore, the majority of fatigue testing was performed for $R=0.1$. Similar trends could be expected for $R=10$, and $R=-1$, with an overall reduction in the fatigue performance expected.

Figure 5-17 shows results for ply-drop panels manufactured at MSU using the Grafil/Newport prepreg material. The data represent the number of cycles required to develop a delamination of 6.35 mm . As seen in the figure, for the straight ply drop, the strain level for $1 \mathrm{E}+6$ cycle delamination is below 0.3%. The fatigue performance for the pinked coupon is greatly improved, with $1 \mathrm{E}+6$ strain increased to above 0.5%. Curve-fit parameters for all infused ply-drop panels are given in Table 5-11.

Figure 5-16. Representative Layup of Ply-Drop Panel

Figure 5-17. R = 0.1 Data for Prepreg Ply Drops

Table 5-11. Curve-Fit Parameters for Prepreg Ply-Drop Panels

	$\mathbf{R}=\mathbf{0 . 1}$			
Drop Style	σ_{0} (MPa)	ε_{0}	(\%)	$\mathbf{~} \mathbf{~}$

5.3.2 Infused Ply Drops

Figure 5-18 and Figure 5-19 show results for ply-drop panels manufactured at TPI using the SAERTEX carbon-fiberglass triax fabric with both epoxy and VE resins, in both straight and pinked configurations. Curve-fit parameters for all infused ply-drop panels are given in Table 5-12.

The trends for both epoxy and VE resins are quite similar. For the straight-edge configuration, the $1 \mathrm{E}+6$ strain is about 0.3%, and only slightly higher for the epoxy resin than for VE. The improvement due to pinking is less than was seen for the prepreg materials, with $1 \mathrm{E}+6$ strain values increasing to about 0.4% for both epoxy and VE.

The relatively low fatigue performance for the infused ply drops with pinking may be partly due to the geometry of the ply drops and panels. Carbon fiber is difficult to cut, and Figure 5-20 shows that the accuracy of the pinking in the SAERTEX fabric was far from ideal. By contrast,
the tacky nature of prepreg materials makes precise cutting much easier, as evidenced in Figure 5-21.

Figure 5-18. R = 0.1 Data for Infused Epoxy Ply Drops

Figure 5-19. R = 0.1 Data for Infused VE Ply Drops

Table 5-12. Curve-Fit Parameters for Infused Ply-Drop Panels

		$\mathrm{R}=0.1$			
Resin	Drop Style	$\sigma_{0}(\mathrm{MPa})$	ε_{0} (\%)	m	A
Epoxy	Straight	987.0	1.22	11.1	0.906
Epoxy	Pinked	1232.0	1.58	9.6	1.003
VE	Straight	1112.5	1.39	9.1	0.935
VE	Pinked	1141.1	1.45	10.2	1.100

The infusion process also presented challenges for obtaining good symmetry through the coupon thickness. By design, the VARTM process has a hard surface (mold) on the bottom and a soft surface (vacuum bag) on the top. As a result, it is difficult to obtain the same geometry on both surfaces. While several shimming approaches were tried, the best on the infused panels has less-than-ideal symmetry. This is illustrated in Figure 5-22, where a wide variation of asymmetry is seen.

During testing, MSU documented that the coupon asymmetry played a role in the failure progression. Figure 5-23 details the delamination in the panel with straight ply drop and VE resin. The figure shows that the face with the most extreme geometry change (thin section to thick) delaminated first. Under continued fatigue testing, it was observed that out-of-plane movement caused the other face to delaminate.

Figure 5-20. Face View of Ply Terminations Taken from Matrix Digestion Coupons

Figure 5-21. Face View of Prepreg Pinked Ply Termination

Figure 5-22. Edge View of Material 422 (Straight-Edge, VE) Coupons Showing Asymmetry

Figure 5-23. Material 422 (Straight-Edge, VE) Showing Ply Delaminations

5.4 Carbon-Fiberglass Ply Transition

5.4.1 General

As discussed in Section 4.6, the test matrix includes the evaluation of carbon-to-fiberglass ply transitions, as this is considered to be an important structural detail for the integration of carbon fiber materials into wind turbine blades. Figure 4-5 shows a conceptual illustration of such a detail in a blade structure.

Two methods of testing these details have been considered during this project. The first is axial testing of a coupon that includes a ply-transition detail. Challenges with this approach include the need to maintain symmetry of the coupon, and limitations to the overall ply number and consequential limitations on the ratio of continuous versus transitioned plies. The second method considered is a 4-point bending test of a box-beam with spar structure. This approach eliminates the need for axial symmetry of each spar, and the overall structure more closely mimics that of a turbine blade. However, this approach has additional cost and complexity concerning the design of shear webs, load introduction, and other details.

In the end, all ply-transition tests were conducted in axial loading. Figure 5-24 illustrates the general arrangement of the panel layup. The ply transition panels include several details which proved challenging for design and testing. First, the stiffness of unidirectional fiberglass is about $1 / 3$ of that for carbon fibers. Therefore, maintaining continuity of stiffness across the ply transition would require that a dropped carbon ply be replaced by plies of approximately three times the carbon ply thickness. This was accomplished by the addition of "doubler" plies of fiberglass as shown in Figure 5-24.

A related issue is the motivation to avoid the introduction of misalignment in the unidirectional plies. Because carbon fibers are recognized to be more sensitive than fiberglass to misalignment, the initial design philosophy was to keep the glass doublers to the exterior of the carbon plies (see Figure 5-24).

Initial testing with this feature resulted in a failure mode being introduced at the glass doublers. As a result, the panels were re-designed so that glass doublers were located inside the outer-most carbon plies (see Figure 5-25). Although this introduced a slight "jog" in the outer carbon plies, the redesigned transition exhibited improvements in failure mode and corresponding strength. These trends are discussed in greater detail in the following sections.

Note that although the Figure 5-24 caption and subsequent discussion refers to an "exterior" doubler, this does not imply that the doublers were the outer-most lamina in the panel. In all cases, a final ply of double-bias material was used to cover the unidirectional materials. The use of "interior" and "exterior" for doublers describes their placement relative to the carbon unidirectional layers.

Figure 5-24. Representative Layup of Ply-Transition Panel (Initial Design, Exterior Doublers)

Figure 5-25. Representative Layup of Ply-Transition Panel (Redesign, Interior Doublers)

5.4.2 Infused Ply Transitions

The initial ply-transition panels tested under this program were infused at TPI using the SAERTEX carbon-fiberglass triax fabric with epoxy resin. The conceptual design of the ply transition was as shown in Figure 5-24, with an exterior doubler arrangement.

Performance of the initial infused ply-transition panels was unexpectedly poor. The results were mainly attributed to the axial symmetry of the panels and the exterior location of the doublers. Figure 5-26 shows typical cross-section views of the infused ply transition panels. As seen in the figure, the panels tended to be asymmetric, with a pronounced step on one surface and a minimal step on the opposite surface.

MSU noted that the failure sequence was consistently related to this asymmetric geometry. Figure 5-27 shows the typical delamination sequence observed during tensile testing. In all test articles, the ply delamination started between the first dropped zero-degree ply and the second, continuous zero-degree ply on the "smooth" side of the coupon (see Figure 5-27). The opposite side with the more abrupt step did not begin to delaminate until the first side was significantly delaminated.

Figure 5-26. Typical Cross-Sections for Infused Ply Transitions (Top 2 Mostly Glass, Bottom 2 Mostly Carbon)

Figure 5-27. Typical Ply Delamination Sequence
Table 5-13 shows the average static tensile strength data measured for the infused transition panels. In general, the strain levels to delamination were very low for tensile testing. MSU was unable to run compression tests due to the asymmetry of the coupon taper.

Table 5-13. Static Tensile Data for Infused Carbon-Fiberglass Ply Transition Panels

	Modulus (GPa)		Max. Stress (MPa)		Max. Strain (\%)	
Configuration	Thin Side	Thick Side	Thin Side	Thick Side	Thin Side	Thick Side
Mostly Carbon	83.2	71.1	952.4	-	1.06	-
Mostly Glass	42.9	39.5	493.4	-	1.21	-

A second-iteration design was developed for the infused ply-transition panels. These articles were fabricated and delivered to MSU in December 2006. However, in exploratory cuts MSU discovered an error in the as-built laminate schedule that they concluded would lead to an undesirable failure mode. As such, testing of the second-iteration infused panels is not planned to proceed.

5.4.3 Prepreg Ply Transitions

Based on the lessons learned from the initial infused articles, the transition panels were redesigned and fabricated at MSU using prepreg material. The carbon material was the same as used in the MSU ply-drop articles (Grafil fiber with Newport prepreg resin). The fiberglass materials were also impregnated by Newport. As discussed in Section 4.6, ply transition panels were fabricated in both mostly glass and mostly carbon configurations. Additionally, two layup schedules were used, transitioning either one or two plies. In an attempt to delay the onset of delamination, the fiberglass doublers were moved to the interior of the unidirectional fabric stack as indicated in Figure 5-25. Detailed panel specifications for prepreg one- and two-ply transition panels are shown in Appendix C.

Figure 5-28 shows results for ply-transition panels manufactured at MSU. As in the ply-drop tests, the data represent the number of cycles require to develop a delamination of 6.35 mm . Curve-fit parameters for the infused ply-transition panels are given in Table 5-14.

The figure shows a significant reduction in fatigue performance in going from one to two ply transitions (mostly glass data). However, the tensile strain values for delamination at $1 \mathrm{E}+6$ cycles is close to 0.5%, which compares somewhat favorably with results for the ply-drop coupons.

As of this report date, testing at MSU is ongoing for prepreg transition panels at $\mathrm{R}=10$ and $R=-1$. Results from these tests will be reported by MSU as part of the ongoing development of the DOE/MSU Database [10].

Figure 5-28. R = 0.1 Data for Prepreg Ply-Transition Panels

Table 5-14. Curve-Fit Parameters for Infused Ply-Transition Panels

		R = 0.1			
Style	Plies Transitioned	$\sigma_{\mathbf{o}}$ (MPa)	$\varepsilon_{\mathbf{o}}$ (\%)	m	A
Mostly Glass	1	818.5	2.33	13.8	1.002
Mostly Glass	2	701.4	1.78	9.8	1.008
Mostly Carbon	2	917.6	0.95	23.1	1.020

Section 6 - Observations and Conclusions

This report summarizes the results from coupon and subscale testing of carbon-fiber composites for potential use in wind turbine blades. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, process, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thincoupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with VE resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance.

6.1 Thin Coupon Static

6.1.1 Carbon Fiber

Thin-coupon testing of prepreg materials showed little variation in static strength with manufacturer or tow size. Average values for compressive static strain were typically in the range of $1.0 \%-1.1 \%$.

The SAERTEX carbon-fiberglass triaxial fabric with epoxy infusion achieved static strain values similar to prepreg materials. However, because of the inclusion of the $\pm 45^{\circ}$ glass, the modulus and stress at failure are both lower than for the unidirectional carbon prepreg. These results show that the carbon fibers in the infused laminate are reaching performance levels comparable to that of a unidirectional prepreg.

With VE infusion, the SAERTEX triaxial materials achieved slightly higher compressive static strength than that of the epoxy-infused articles. However, the compressive modulus measured by Intec for the VE infused panels was 13% higher than measured for the epoxy material. As a result, the calculated static compressive strain was 8% lower for the VE coupons.

Because the fabric was the same in both cases, and the measured panel thickness and fiber volume fractions were nearly identical, the large difference in modulus would not be expected. In general, the stress measurement which is based on applied load is more reliable than the compressive modulus measurement, which is based on a strain gage on a small specimen. Nonetheless, to maintain consistency in the presentation and analysis of data, GEC has used measured compressive modulus to calculate compressive strain.

6.1.2 Fiberglass

Static testing was performed for the E-LT-5500 fiberglass fabric, infused with both epoxy and VE resin. In general, the fiberglass material showed good performance in static strength for both epoxy and VE. Average tensile strain approached 2.3% for both resin systems, with very low coefficients of variation ($\mathrm{COV} \leq 2 \%$). Average compressive strains were only slightly lower at approximately 2.2%.

6.2 Thin-Coupon Fatigue

6.2.1 Carbon Fiber

Two styles of carbon fiber were tested in a prepreg form: Toray T600 (24k) and Zoltek Panex 35. Each of these fibers was impregnated by SP Systems, using their WE90-1 resin and PMP process. A third data set was provided by MSU for comparative purposes, fabricated from Grafil 34-600 fibers (48k) and Newport NB307 resin. For all three prepreg materials, thin-coupon fatigue testing was performed at $\mathrm{R}=0.1,10$ and -1 . In general, the three prepreg carbon materials showed very similar fatigue performance. No consistent trend was seen concerning tow size.

Epoxy-infused (SAERTEX triax) fabric preformed fairly well in fatigue relative to the prepreg materials. At $\mathrm{R}=0.1$, the infused material strains were modestly higher than the Toray/SP prepreg. For $\mathrm{R}=-1$, the infused material strains were slightly higher at low cycles, and converged with the prepreg strains at high cycles. A different trend was seen for $\mathrm{R}=10$ fatigue At the single-cycle end of the ε - N curve, the infused triax panel strains are about 10% higher than the prepreg, but at $1 \mathrm{E}+6$ cycles, the triax strains fall below the prepreg by 20%.

For the infused carbon panels in tension ($\mathrm{R}=0.1$), the fatigue performance of VE was generally lower than epoxy. The single-cycles stress for the infused VE material was slightly higher than for the epoxy, but was about 25% lower at a million cycles.

Significantly different trends are seen in the fatigue stress data for compression and reversed loading, with a much smaller difference between the VE and epoxy results. In R = 10 loading, the VE stress levels were consistently higher than the epoxy, with a differential of about 5% at low cycles, growing to more than 10% at high cycles. Fatigue data for $\mathrm{R}=-1$ are relatively sparse and show only modest difference in measured stress between epoxy and VE. The VE curve is steeper than that for epoxy, partly due to higher values of single-cycle stress. As noted above, applying the measured compressive modulus values to these curves would result in a downward shift of the calculated VE strains relative to the epoxy. Because the static testing at Intec had measured higher modulus values for the infused VE panels than for the epoxy, a strainbased compression tends to shift all the VE curves downward relative to the epoxy data.

6.2.2 Fiberglass

Fatigue testing was also performed for the E-LT-5500 fiberglass fabric, infused with both epoxy and VE resin. In both tension and compression, the single-cycle strain values showed modest variation between the epoxy and VE resins. The single-cycle tensile strain was higher than the static value measured at Intec, and the compressive single-cycle strains were lower than the corresponding static measurements.

Several trends were noted for the tension $(\mathrm{R}=0.1) \varepsilon$-N curve. For both the epoxy and VE resins, the intersect of the curves at zero cycles is substantially higher than the measured single-cycle strain. This behavior is also indicated by the high values of the "A" curve-fit parameter for the $\mathrm{R}=0.1$ data. At higher cycles, the VE tension fatigue strength falls consistently below that of the epoxy. For the VE data, the tensile strain at $1 \mathrm{E}+6$ cycles was somewhat low at a value of about 0.6%.

Significantly different trends are seen for the compressive fatigue data ($\mathrm{R}=10$). Most notable is that the VE data are consistently above that of the epoxy. The curves are also flatter, and the predicted strain levels at $1 \mathrm{E}+6$ cycles are meaningfully higher than those seen for the $\mathrm{R}=0.1$ data. However, a careful comparison the tension and compression data indicates that this may be an artifact of the sparseness of the $\mathrm{R}=10$ data sets combined with the relatively flat slope for the curve fits.

6.3 Thick Coupon

Obtaining reliable results for thick coupons proved difficult. Using the ASTM D6641 coupon geometry and combined loading in compression (CLC) fixture, seven 12.5 -mm wide coupons and four $25-\mathrm{mm}$ wide coupons were successfully tested at the Wichita State University (WSU). Subsequent attempts to conduct fatigue testing with the D6641 coupon caused damage to WSU's CLC fixture and as a result thick-coupon testing was terminated.

6.4 Carbon Ply Drop

In general, asymmetries in the ply drop and ply transition panels created challenges for obtaining reliable results in compression testing. Therefore, the majority of fatigue testing was performed for $R=0.1$. Similar trends could be expected for $R=10$, and $R=-1$, with an overall reduction in the fatigue performance expected. In performing the ply-drop tests, "failure" was determined by the number of cycles require to develop a delamination of 6.35 mm .

For all fabric and resin styles, a ply drop with a straight edge resulted in low fatigue performance. For prepreg laminate, the introduction of a pinked-ply drop edge nearly doubled the strain level for delamination at $1 \mathrm{E}+6$ cycles. With the infused fabrics, the pinked edge showed far less benefit, with a strain improvement at $1 \mathrm{E}+6$ cycles of only about 25%.

The relatively low fatigue performance for the infused ply drops with pinking may be partly due to the geometry of the ply drops and panels. Visual inspection after resin burn-off showed that the shape of the "pinked" fabric was significantly better for the prepreg than for the infused articles. MSU also noted the contribution of through-the-thickness asymmetry to the failure mode of the infused ply-drop articles.

6.5 Carbon-Fiberglass Ply Transition

It is expected that carbon-to-fiberglass ply transitions will be of high interest as blade designers seek to optimize the use of carbon fiber in wind turbine blades. Panels were fabricated for axial testing in an attempt to quantify the performance of such a feature. As in the ply-drop tests, panels were evaluated based on the cycles required to develop a delamination of 6.35 mm .

Ply-transition panels were fabricated in two basic configurations. One was designated mostly carbon, in which the article might represent the first carbon ply being transitioned to fiberglass in a carbon spar cap. The other was designated mostly fiberglass, and would represent the last carbon ply being transitioned. These two arrangements were considered as the bounding cases for the carbon-to-glass transition of a structural spar. Both of these configurations were
fabricated in prepreg and infused articles. For the prepreg transition panels manufactured at MSU, two layup schedules were used, transitioning either one or two plies.

Initial ply-transition panels were infused by TPI using the SAERTEX carbon-glass triaxial fabric. Testing at MSU showed unexpectedly poor performance in tensile strength, with delaminations initiating at relatively low strain values. The early delamination was attributed primarily to asymmetry in the thickness taper and the placement of fiberglass doublers at the outer-most location in the stack of unidirectional plies. Based on the lessons learned from the initial infused articles, the transition panels were redesigned and fabricated at MSU using Grafil/Newport prepreg material. In an attempt to delay the onset of delamination, the fiberglass doublers were moved to the interior of the unidirectional fabric stack.
$\mathrm{R}=0.1$ testing of the second-iteration prepreg panels has been completed at MSU. The data show a significant reduction in fatigue performance in going from one to two ply transitions (mostly glass data). However, the tensile strain values for delamination at $1 \mathrm{E}+6$ cycles is close to 0.5%, which compares somewhat favorably with results for the ply-drop coupons.

As of this report date, testing at MSU is ongoing for prepreg transition panels in compression, and for second-iteration epoxy-infused ply-transition panels at $\mathrm{R}=0.1,10$, and -1 . Results from these tests will be reported by MSU as part of the ongoing development of the DOE/MSU Database.

6.6 Summary

A range of carbon fiber styles and tow sizes were tested in prepreg form, and were generally found to have little variation in performance.

Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. Most fabric styles considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of 9-m [11,12] and 30-m [13] length.

Infused articles were tested with both epoxy and VE resin systems. Comparisons between prepreg and infused epoxy, and between infused epoxy and VE were somewhat complex. In some cases, the performance variations were minimal and in other instances they were quite significant. For complex articles (ply drops and ply transitions), the comparison between prepreg and VARTM articles was complicated by the relative lack of symmetry in the infused articles.

The testing performed in this program has substantially added to the public-domain data for carbon fiber materials suitable for use in wind turbine blades. While numerous challenges were encountered during the course of this project, the results are nonetheless expected to be of value to the wind turbine blade design community.

Section 7 - References

1. BTM Consult ApS. (March 2006). World Market Update 2005, Forecast 2006-2010. Ringkøbing, Denmark. ISBN 87-987788-6-2.
2. Dutton, A.G., et. al. (March 1-5, 1999). Design Concepts for Sectional Wind Turbine Blades. Proceedings of the 1999 European Wind Energy Conference, Nice, France. p.p. 285-288.
3. Joosse, P.A., et al. (January 10-13, 2000). Economic Use of Carbon Fibres in Large Wind Turbine Blades? Proceedings of AIAA/ASME Wind Energy Symposium. Reno, NV.
4. Joosse, P.A., et al. (July 2-6, 2001). Toward Cost Effective Large Turbine Components with Carbon Fibers. Presented at the 2001 European Wind Energy Conference and Exhibition, Copenhagen.
5. Joosse, P.A., et al. (July 2-6, 2001). Fatigue Properties of Low-Cost Carbon Fiber Material. Presented at the 2001 European Wind Energy Conference and Exhibition, Copenhagen.
6. Joosse, P.A., et al. (January 14-17, 2002). Toward Cost Effective Large Turbine Components with Carbon Fibers. Proceedings of AIAA/ASME Wind Energy Symposium. Reno, NV.
7. Griffin, D.A. (July, 2002). Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades. SAND2002-1879. Albuquerque, NM: Sandia National Laboratories.
8. Griffin, D.A. (June, 2004). Blade System Design Studies Volume II: Preliminary Blade Designs and Recommended Test Matrix. SAND2004-0073. Albuquerque, NM: Sandia National Laboratories.
9. TPI Composites Inc. (May 2004). Innovative Design Approaches for Large Wind Turbine Blades. SAND2004-0074. Albuquerque, NM: Sandia National Laboratories.
10. Mandell, J.F., Samborsky, D.D. (1997). DOE/MSU Composite Material Fatigue Database: Test Methods, Materials and Analysis. SAND97-3002, Update Version 14.0, February 25, 2005, Sandia National Laboratories. Albuquerque, NM.
11. Berry, D. (April 2006). Wind Turbine Blades: Blade Manufacturing and Materials Development. Presented at the 2006 Sandia Blade Workshop. Albuquerque, NM: Sandia National Laboratories.
12. Paquette, J. (April 2006). Lab Testing of Subscale 9m Blades. Presented at the 2006 Sandia Blade Workshop. Albuquerque, NM: Sandia National Laboratories.
13. Griffin, D.A. (April 2006). Demonstration of an Infused Carbon Fiber Spar in a MW-Scale Blade. Presented at the 2006 Sandia Blade Workshop. Albuquerque, NM: Sandia National Laboratories.

Appendix A

Original Planned BSDS-II Test Matrix

Test	Assumptions	\# of Tests Planned
Thin coupon, static	5 tensile, 5 compressive	10
Thin coupon, S-N curve to 10^{6} cycles (single R value)	4 ea. at 3-4 stress levels	4
Add S-N data to 10^{7} cycles (single R value)	4 ea. at 10^{7} stress level	0
Thin P4A coupon, static	5 tensile, 5 compressive	0
Thin P4A S-N curve to 10^{6} cycles (single R value)	5 ea. at 3-4 stress levels	0
Thin coupon with single ply drop / transition, static	5 tensile, 5 compressive	4
Thin coupon with single ply drop / transition, S-N to 10	4 ea. at 3-4 stress levels	4
Thick laminate, static compression	5 specimens	4
Thick laminate with transition or ply drops, static	5 specimens	4
Thick laminate with transition or ply drops, S-N to 10	4 ea. at 3 stress levels	4
4-point beam with uniform cap laminate, static	Single article to failure	1
4-point beam with uniform cap laminate, fatigue	Single article to 10^{6}	0
4-point beam with cap laminate details, static	Single article to failure	1
4-point beam with cap laminate details, fatigue	Single article to 10 ${ }^{6}$	0
Biased material tube in axial / torsion loading, static	5 specimens	2
Biased material tube in axial / torsion loading, fatigue	4 ea. at 3 stress levels	1
Thick laminate + defects in static compression	5 specimens	3
Thick laminate + defects in fatigue	4 ea. at 3 stress levels	0
Determine margins / safety factors	Assigned low priority	0
Lap shear tests of bonding compounds	Assigned low priority	0

Appendix B

Summary of Coupon Geometry and Test Fixtures

ASTM D3039 Static Compression Coupon, Typical

- Thickness varies with laminate
- Tab angle varies from 5 deg. to 90 deg.
- Typical load introduction is through hydraulic grips (shear loading)

ASTM D3039 Mod. Test Setup at Intec

ASTM D3410 Compression Coupon, Typical

- Thickness varies with laminate
- Length varies with test and gage length
- Gage lengths for testing varied from 6 mm to 18 mm
- Typical load introduction is through shear using a fixture that provides side support
- Primary and secondary dimensions in mm and [in]

Instron 8501 Grips with Anti Rotation/Translation Supports at MSU (ASTM D3410 Coupon)

ASTM D695 mod. Static Compression Coupon, Typical

- Thickness varies with laminate
- Modulus coupons not tabbed
- Typical load introduction through ends using a fixture with side support

ASTM D695 Mod. Test Fixture

ASTM D695 Mod. Test Setup at Intec

ASTM D6641 Compression Coupon, Typical (Thick)

- Thickness varies with laminate (thick coupon shown)
- Width either 12.7 mm or 25.4 mm for tests at WSU
- Typical load introduction is through a fixture which provides combined shear and end loading (CLC)
- Primary and secondary dimensions in mm and [in]

ASTM D6641 Test Fixture at WSU

ASTM D6641 Test Setup at WSU

"Dogbone" Style Thick-Coupons for Testing at Intec

"Dogbone" Style Setup for Thick-Coupon Testing at Intec

Failure Mode for Dogbone Style Test of Thick-Coupon at Intec

Appendix C

Example Panel Layout Specifications

C-2

Appendix D

Tabular Data for Static Tests (Intec)

Data from Intec testing were generally received as reports in PDF format. The following pages contain excerpts from these reports that provide details of the measurements. The report excerpts correspond to panels and static test data as summarized in Table 5-2 and Table 5-5. The Intec reports are generally organized in the same order as the above-referenced tables. The exception to this ordering is in cases where more than one panel is included in a single Intec report page. The GEC panel I.D. number should be used to match the detailed Intec report excerpts to the data summaries in the report tables.

For each panel, the typical order of data in these report excerpts is as follows:

1. Tensile strength and modulus
2. Compressive strength
3. Compressive modulus
4. Resin digestion (including fiber volume fraction, density and void content)
5. Glass transition temperature

Density tests for neat resin samples are at the end of the appendix.
Note that the Intec measurements were made and reported in U.S. units. Data were converted to S.I. units for the tabular summaries presented in the body of this report.
Tension Strength and Modulus
@ Room Temperature

Report Number: 2196-R03 Test Specification: ASTM D3039-00 Purchase Order. Sandria5-1		Average Width (in)	Average Thickness (in)	Ulitimate Load (kips)	*UltimateTensile Strength (ksi)	$\begin{aligned} & \ddagger \text { Axial Strain } \\ & \text { a Ult } \\ & \text { (} \mu \varepsilon \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Crosshead Speed: } 0.05 \mathrm{in} / \mathrm{min} \\ & \text { Test Frame: H } \\ & \text { Technician: Nunez } \\ & \\ & \ddagger \text { Axial Strain @ Ult }=\text { ultimate tensile strength / chord modulus } \\ & \text { mate Teasile Strength }=\text { ultimate load / (ave width } \mathrm{x} \text { ave thickness) } \\ & \ddagger \ddagger \text { Chord Modulus = delta stress / delta strain } \\ & \ddagger \ddagger \text { Modulus calculated between } 1000 \text { \& } 3000 \mu \mathrm{~s} \\ & \hline \end{aligned}$				
$\begin{gathered} \text { Intec } \\ \text { ID } \end{gathered}$	Global Energy Panel ID						$\ddagger \ddagger$ Chord Modulus (Msi)	$\begin{gathered} \text { Test } \\ \text { Temp } \end{gathered}$	Relative Humidity	Test Date	Failure Location \& Comments
$\begin{aligned} & 2196-0102 \\ & 2196-0103 \\ & 2196-0104 \\ & 2196-0105 \\ & 2196-0106 \\ & \hline \end{aligned}$	Panel 3	$\begin{aligned} & 0.999 \\ & 0.999 \\ & 0.999 \\ & 1.000 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.088 \\ & 0.087 \\ & 0.087 \\ & 0.089 \\ & 0.090 \end{aligned}$	$\begin{aligned} & 25.69 \\ & 23.68 \\ & 24.87 \\ & 24.54 \\ & 26.15 \end{aligned}$	$\begin{aligned} & 290.8 \\ & 271.7 \\ & 287.4 \\ & 277.1 \\ & 290.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 14,947 \\ & 14,344 \\ & 14,481 \\ & 14,833 \\ & 15,302 \end{aligned}$	$\begin{aligned} & 19.46 \\ & 18.94 \\ & 19.85 \\ & 18.68 \\ & 19.01 \end{aligned}$	$\begin{aligned} & 71^{\circ} \mathrm{F} \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \% \\ & 42 \% \\ & 42 \% \\ & 42 \% \\ & 42 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / 28 / 2004 \\ & 1 / 28 / 2004 \\ & 1 / 28 / 2004 \\ & 1 / 28 / 2004 \\ & 1 / 28 / 2004 \end{aligned}$	Explosive failure in gage section
Average: Standard Deviation: COV:					$\begin{gathered} 283.6 \\ 8.7 \\ 3.1 \% \end{gathered}$	$\begin{gathered} 14,781 \\ 382 \\ 2.6 \% \end{gathered}$	$\begin{gathered} \hline 19.19 \\ 0.46 \\ 2.4 \% \end{gathered}$				

Note: "Panel 3" in this report corresponds to GEC Panel ID 013X.
Compression Strength and Modulus 0.75 Inch Gage Section
Report Nimber: $2196-$ R04
Test Specification: ASTMD D3410-03 Modified
Purchase Order: Santria5-1

[^1]Resin Digestion

> Report Number: $2196-\mathrm{R} 02$ Rev A Purchase Order: Sandia5-1 Specification: ASTM D3171-99/D2734-94 Hotplate: $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}_{2}$
Fiber Valume \& Void Content

Specimen ID	Global Energy Panel ID	Water Density (g/cc)	Specific Gravity	$\begin{gathered} \text { Dry } \\ \text { Weight } \\ \text { (g) } \\ \hline \end{gathered}$	Wet Weight (g)	$\begin{gathered} \hline \text { Specimen } \\ \text { Density } \\ (\mathrm{g} / \mathrm{c}) \\ \hline \end{gathered}$	Fiber Volume (\%)	Resin Volume (\%)	Void Volume* $(\%)$
2196-R1		0.9978	1.527	0.504	0.174	1.523	56	43	1.1
2196-R2	SN5-0134 (Panel 3)	0.9978	1.527	0.505	0.174	1.523	56	42	1.3
2196-R3		0.9978	1.530	0.505	0.175	1.526	56	43	0.8
$\begin{array}{rcccccc}\text { Average: } & \mathbf{0 . 5 0 5} & \mathbf{0 . 1 7 4} & \mathbf{1 . 5 2 4} & \mathbf{5 6} & \mathbf{4 3} & \mathbf{1 . 0} \\ \text { Standard Deviation: } & 0.001 & 0.001 & 0.002 & 0 & 1 & 0.3\end{array}$									
COV				0.2\%	0.4\%	0.1\%	0.6\%	1.3\%	

*Note: A value for "Void Volume" which is les; than zero may be considered equal to zero due to the
precision cf reporting the densities of th: fibers and resin.
Integrated Technologies Inc. certifies the above esting was completed in accordance with the listed specification.
Tg by TMA
Report Number: 2196 -R01
Purchase Order: Sandria5-1
Glass Transition Temperature (TMA by Flexure)

intec IDGlobal Energy Panel ID
Specimen Height $(\boldsymbol{m m})$
$2196-\mathrm{Tg} 1$

Tension Strength and Modulus @ Room Temperature
Panel SN5-0144

Compression Modulus
ASTM D695
Crosshead Speed: $0.05 \mathrm{in} / \mathrm{min}$
Test Frame: I
Technician: Onorati

$\begin{gathered} \hline \text { Intec } \\ \text { ID } \end{gathered}$	Global Energy Panel ID	Average Width (in)	Average Thickness (iin)	$\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { Load } \\ \text { (kips) } \end{array}$	$\begin{gathered} \ddagger \text { Chord } \\ \text { Modulus } \\ (M s i) \end{gathered}$	$\begin{gathered} \hline \text { Test } \\ \text { Temp } \end{gathered}$	Relative Humidity	Test Date	Failure Location \& Comments
2196-0701		0.500	0.118	3.22	15.0	$86^{\circ} \mathrm{F}$	35\%	7/19/2004	No failure, test stopped after 3,500
2196-0702		0.499	0.114	2.92	13.9	$86^{\circ} \mathrm{F}$	35\%	7/19/2004	No failure, test stopped after $3,500 \mu \varepsilon$
2196-0703	Panel 4 SN5-0142	0.499	0.115	2.99	14.6	$86^{\circ} \mathrm{F}$	35\%	7/19/2004	No failure, test stopped after $3,500 \mu \varepsilon$
2196-0704		0.499	0.114	3.16	15.3	$86^{\circ} \mathrm{F}$	35\%	7/19/2004	No failure, test stopped after $3,500 \mu \varepsilon$
2196-0705		0.498	0.117	3.12	14.7	$86^{\circ} \mathrm{F}$	35\%	7/19/2004	No failure, test stopped after $3,500 \mu \varepsilon$
Average: 14.7 Standard Deviation: 0.5 COV: 3.7%									

Resin Digestion

Panel SN5-0142

Specimen ID	Global Energy Panel ID	Water Density (g/cc)	Specific Gravity	Dry Weight (g)	Wet Weight (g)	Specimen Density (g/ce)	Fiber Volume (\%)	Resin Volume (\%)	Void Volume (\%)
2196-R31	SN5-0142 (Panel 4) NonPorous Area	0.9982	1.595	0.701	0.261	1.591	57	42	1.4
2196-R32		0.9982	1.593	0.718	0.267	1.589	52	50	-1.4
2196-R33		0.9982	1.602	0.728	0.273	1.598	57	42	1.1
		Average: Deviation: COV		0.716	0.267	1.593	55	44	0.4
				0.013	0.006	0.004	3	5	1.6
				1.9\%	2.2\%	0.3\%	5.6\%	10.5\%	
2196-R35	SN5-0142 (Panel 4) Porous Area	0.9982	1.574	0.756	0.275	1.570	54	45	1.3
2196-R36		0.9982	1.572	0.759	0.276	1.568	55	43	2.3
2196-R37		0.9982	1.563	0.744	0.268	1.559	53	45	2.0
Average:Deviation:				0.753	0.273	1.566	54	44	1.9
				0.008	0.005	0.006	1	1	0.5
COV:				1.0\%	1.7\%	0.4\%	1.7\%	2.8\%	

*Note: A value for "Void Volume" which is less than zero may be considered equal to zero due to the
precision of reporting the densities of the fibers and resin.
Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
Tg by TMA
Panel SN5-0142
Report Number: $2196-$ R12
Purchase Order: Sandi $5-1$
Glass Transition Temperature (TMA by Flexure)

intec ID	Global Energy Panel ID	Specimen Height $(\boldsymbol{m m})$	Specimen Width $(\boldsymbol{m m})$	Specimen Depth $(\boldsymbol{m m})$	Support Span $(\boldsymbol{m m})$	Static Force $(\boldsymbol{m N})$	Ramp Rate $\left({ }^{\circ} \mathrm{C} / \boldsymbol{m i n}\right)$	Tg $\left({ }^{\circ} \mathrm{C}\right)$
$2196 \cdot \mathrm{~T} 31$	SN5-0142 (Panel 4)	0.44	20.16	2.94	15	1000	5	95

Glass trarsition temperature is determined from the deflection-temperature curve by the method of intersecting targents.
Tension Strength and Modulus @ Room Temperature
 INo measured strain is available @ultimate.
Compression Modulus
ASTM D695

\ddagger Chord Modulus $=\Delta \sigma / \Delta \varepsilon$$\ddagger$ Modulus calculated between $1000 \& 3000 \mu \varepsilon$									
$\begin{gathered} \hline \text { Intec } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { Global Energy } \\ & \text { Panel ID } \end{aligned}$	Average Width (in)	Average Thickness (iii)	$\begin{array}{c\|} \hline \text { Maximum } \\ \text { Load } \\ \text { (hips) } \end{array}$	\ddagger Chord Modulus (Msi)	$\begin{gathered} \hline \text { Test } \\ \text { Temp } \end{gathered}$	$\begin{aligned} & \hline \text { Relative } \\ & \text { Humidity } \end{aligned}$	$\begin{aligned} & \text { Test } \\ & \text { Date } \end{aligned}$	Failure Location $\&$ Comments
$\begin{aligned} & 2340-0321 \\ & 2340-0322 \\ & 2340-0323 \end{aligned}$	SN5-0162 (PID 7194)	$\begin{aligned} & 0.499 \\ & 0.500 \\ & 0.499 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.106 \\ & 0.107 \\ & 0.106 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.03 \\ & 3.16 \\ & 3.26 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 16.0 \\ & 16.9 \end{aligned}$	$\begin{aligned} & 73^{\circ} \mathrm{F} \\ & 73^{\circ} \mathrm{F} \\ & 73^{\circ} \mathrm{F} \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \% \\ & 62 \% \\ & 62 \% \end{aligned}$	$\begin{aligned} & 9 / 28 / 2004 \\ & 9 / 28 / 2004 \\ & 9 / 28 / 2004 \end{aligned}$	No failure, test stopped after $3,500 \mu \varepsilon$ No failure, test stopped after $3,500 \mu \varepsilon$ No failure, test stopped after $3,500 \mu \varepsilon$
Average: 16.0 Standard Deviation: 0.8 COV: 5.1%									
$\begin{aligned} & 2340-0821 \\ & 2340-0822 \\ & 2340-0823 \end{aligned}$	SN5-0182 (7449 Zoltec)	$\begin{aligned} & 0.501 \\ & 0.501 \\ & 0.501 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.127 \\ & 0.127 \\ & 0.128 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.36 \\ & 3.32 \\ & 3.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \\ & 13.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 73^{\circ} \mathrm{F} \\ & 73^{\circ} \mathrm{F} \\ & 73^{\circ} \mathrm{F} \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \% \\ & 62 \% \\ & 62 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 9 / 28 / 2004 \\ & 9 / 28 / 2004 \\ & 9 / 28 / 2004 \end{aligned}$	No failure, test stopped after $3,500 \mu \varepsilon$ No failure, test stopped after $3,500 \mu \varepsilon$ No failure, test stopped after $3,500 \mu \varepsilon$
Average: 13.9 Standard Deviation: 0.1 COV: 0.6%									

Resin Digestion
Panel SN5-0162

Resin Digestion Panel SN5-0182

$$
\begin{aligned}
& \text { Report Number: } 2340 \text {-R06 } \\
& \text { Purchase Order: Sandia5-4 } \\
& \text { Specification: ASTM D3171-99/D2734-94 } \\
& \quad \text { Hotplate: } \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}_{2}
\end{aligned}
$$

"Note: A value for "Void Volume" which is less than zero may be considered equal to tero due to the
precision of reporting the densities of the fibers and resin.
Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.

$$
\begin{aligned}
& \text { Fiber Dersity }(\mathrm{g} / \mathrm{cc}): 1.910 \\
& \text { Resin Dessity }(\mathrm{g} / \mathrm{c}): 1.212 \\
& \text { Test Tcchnician: Denise Galasso } \\
& \text { Test Date: } 9 / 22 / 2 \mathrm{CO} \\
& \text { Temperature }\left({ }^{\circ} \mathrm{C}\right): 20.0
\end{aligned}
$$

Test Technician: Jeanette Francis
Test Date: $9 / 23 / 2004$
Glass Transition Temperature (TMA by Flexure)

intec ID	Global Energy Panel ID	Specimen Height $(\boldsymbol{m m})$	Specimen Width $(\boldsymbol{m m})$	Specimen Depth $(\boldsymbol{m m})$	Support Span $(\boldsymbol{m m})$	Static Force $(\boldsymbol{m N})$	Ramp Rate $\left({ }^{\circ} \mathbf{C} / \boldsymbol{m i n}\right)$	$\mathbf{T g}$ $\boldsymbol{\rho} \boldsymbol{C})$
$2340-\mathrm{T} 31$	SN5-0162	0.41	19.66	2.64	15	900	5	105
$2340-\mathrm{T} 81$	SN5-0182	0.42	20.33	3.28	15	900	5	101

Glass transition temperature is determined from the deflection-temperature curve by the

D-15
Compression Strength @ Room Temperature

${ }^{*}$ Compression Strength $=$ ultimate load / (ave width x ave thickness)									
Intec ID	Global Energy Panel ID	Average Width (in)	Average Thickness (in)	Ultimate Load (kips)	$\begin{gathered} \text { =Compression } \\ \text { Strength } \\ \text { (ksi) } \end{gathered}$	Test Temp	Relative Humidity	Test Date	Failure Location \& Comments
2418-0201		0.501	0.136	10.54	154.4	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
2418-0204		0.501	0.136	10.06	147.9	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
2418-0205	SN5-2141B	0.501	0.135	10.14	149.8	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
2418-0206		0.501	0.133	9.73	145.7	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
2418-0208		0.500	0.129	9.94	154.1	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
				Average:	150.4				
			Standa	Deviation:	3.8				
				COV	2.5\%				
2418-0301		0.501	0.120	10.68	176.8	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
2418-0302		0.502	0.120	11.06	183.2	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
2418-0306	SN5-2111	0.501	0.120	10.66	177.3	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
2418-0310		0.501	0.117	10.69	182.6	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Brooming failure in gage section
2418-0311		0.501	0.116	10.55	181.5	$67^{\circ} \mathrm{F}$	33\%	1/5/2004	Long splitting failure from gage to end
				Average:	180.3				
			Standa	Deviation:	3.0				
				COV:	1.7\%				

Compression Modulus＠Room Temperature

					： 100 ：пореитад prepuers ：ว8ิ．19．4				
	t002／S／L	\％LZ	1．89	SSI	¢ ¢ ¢	92 LO	205°		Sze0－8itz
	t002／S／1	\％Lて	E．89	tist	6τ \％	L2TO	20S0		ちてE0－8itて
	t002／S／［	\％Lて	E．89	8 SI	8 I ＇	Lで\％	2050	Itit－sns	を $20-81 \mathrm{t}$
	t002／S／1	\％Lて	E．89	991	${ }^{6} \mathrm{C}$	L2TO	20S0		でと0－8itz
	t002／S／1	\％Lて	［189	t91	$00^{\circ} \mathrm{\varepsilon}$	L2TO	2050		Ize0－8itz
	t00z／S／［	\％Lて	E．89	TSI	¢ $\varsigma^{\prime} \varepsilon$	LZT0	2050	gitlz－SNS	stzo－8itz
	t002／S／［	\％Lて	L．89	0 SI	$5 ¢ \%$	82 TO	2050		tてz0－8itて
	t002／S／［	\％Lて	E．89	ISI	¢ 5 ¢	82 TO	2050		£ $20-81 \downarrow \tau$
	t002／S／L	\％Lて	L．89	2SI	¢ 5 ¢	82 F	20S0		てzzo－8itz
	t002／S／1	\％Lて	［189	$\tau \mathrm{SI}$	1¢\％	L2TO	2050		1zzo－8itz
şujumio				（150）	（sdyy）	（ili）	（III）		
\＄	${ }^{21} \mathrm{E}$	Áppumin $^{\text {a }}$	durı 1	snapojn	${ }^{\text {pro }}$ T	ssarnjụl	трр：	ai pred	
	${ }_{153}$	эарерху	${ }_{35} 5$	p．roto \ddagger	unumixet	วธิ้．วد¢			ээни

Resin Digestion Panel SN5-02111	
	Fiber Density (g/cc): 1.950
	Resin Density (g/cc): 1.212
	Test Technician: Denise Galasso
	Test Date: 1/11/2005
	Temperature (${ }^{\circ} \mathrm{C}$): 20.0

Specimen ID	Global Energy Panel ID	Water Density (g/cc)	Specific Gravity			Specimen Density (g/cc)	Fiber Volume (\%)	Fesin Volume (\%)	Void Volume ${ }^{*}$ (\%)
2418-R31		0.9982	1.594	0.725	0.270	1.590	54	44	1.8
2418-R32	SN5-02111	0.9982	1.600	0.729	0.273	1.596	54	46	0.9
2418-R33		0.9982	1.597	0.724	0.270	1.593	54	44	1.5
Average Standard Deviation COV				0.726	0.271	1.593	54	45	1.4
				0.003	0.002	0.003	0	1	0.4
				0.4\%	0.6\%	0.2\%	0.7\%	1.9\%	

"Note: A value for "Void Volume" which is less than zero may be considered equal to zero due to the
Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
Resin Digestion
Panel SN5-02141B

Tg by TMA

> Report Number: :2418-R03 Purchase Order: 'Sandia5-9 Test Specification: '299-947-299 Method 509.1 Modified
Glass Transition Temperature (TMA by Flexure)

intec ID	Global Energy Panel ID	Specimen Height $(\boldsymbol{m m})$	Specimen Width $(\boldsymbol{m m})$	Specimen Depth $(\boldsymbol{m m})$	Support Span $(\boldsymbol{m m})$	Static Force $(\boldsymbol{m} \boldsymbol{N})$	Ramp Rate $\left({ }^{\circ} \boldsymbol{C} / \boldsymbol{m i n}\right)$	$\mathbf{T g}$ $\left({ }^{\circ} \mathrm{C}\right)$
$2418-\mathrm{T} 21$	SN5-2141B	0.49	19.78	3.21	15	700	5	108
$2418-\mathrm{T} 31$	SN5-2111	0.50	21.00	2.99	15	800	5	104

Glass transition temperature is determined from the deflection-temperature curve by the
method of intersecting tangents.
Tension Strength and Modulus＠Room Temperature

		9
$\left\lvert\, \begin{aligned} & \text { 目 © } \\ & \text { © } \\ & \hline \end{aligned}\right.$		
$\begin{array}{\|c\|} \hline \text { 물 } \\ \text { ® } \\ \hline \end{array}$		
$\begin{array}{\|l\|l\|} \hline \text { 县 } \\ \text { © } \\ \hline \end{array}$		
$\begin{array}{\|c\|c\|} \hline \text { 등 질 } \\ \hline \end{array}$		
		$\underset{\sim}{m}$
		cis M。
		感会
		Standard D
莶		

Integrated Technologies Inc certifies the above testing was completed in accordance with the listed specification．
t Provideed calculated value due to extensometer slppage．Calculated ullimate Axial Strain－（Ulimate Tensle Strengin／Chond Modulus）＊ 1000 ．Not induded in statistcs calculations
－Specimen loaded once to 20 klp ，unloaded，and retested to fallure．
Compression Strength@Room Temperature

Compression Modulus
ASTM D695

ASTM

Crosshead Speed: $0.05 \mathrm{in} / \mathrm{min}$
Test Frame: H
Technician: McConnell

		These are optional										Chord Modulus $=\Delta \sigma / \Delta \varepsilon$ $\$$ Todulus calculated between $1000 \$ 000 \quad \mu \varepsilon$	
$\begin{gathered} \text { Intec } \\ \text { ID } \end{gathered}$	Global Energy Panel ID	Average Width (in)	Average Thickness (in)	Maximum Load* (kips)	Load (a) 1 (abs)	Strain (a) 1 ($\mu \varepsilon$)	Load (a) 2 (lbs)	Strain (a) 2 $(\mu \varepsilon)$	\ddagger Chord Modulus (Msi)	Test Temp	Relative Humidity	Test Date	Comments*
2462-0013		0.502	0.117	2.98	935	990	2,549	2,994	13.7	$70^{\circ} \mathrm{F}$	40\%	4/18/2005	No failure, test stopped after $3,500 \mu \varepsilon$
2462-0014		0.503	0.118	3.05	975	1,000	2,640	3,010	14.0	$70^{\circ} \mathrm{F}$	40\%	4/18/2005	No failure, test stopped after $3,500 \mu \varepsilon$
2462-0015	SN5-0311	0.503	0.118	3.02	986	995	2,607	2,999	13.6	$70^{\circ} \mathrm{F}$	40\%	4/18/2005	No failure, test stopped after $3,500 \mu \varepsilon$
2462-0016		0.503	0.118	3.06	1,023	1,016	2,654	2,988	13.9	$70^{\circ} \mathrm{F}$	40\%	4/18/2005	No failure, test stopped after $3,500 \mu \varepsilon$
2462-0017		0.503	0.119	3.13	998	999	2,716	3,007	14.3	$70^{\circ} \mathrm{F}$	40\%	4/18/2005	No failure, test stopped after $3,500 \mu \varepsilon$
Average: 13.9													
Standard Deviation: $\quad 0.3$													
COV:									1.9\%				

Resin Digestion
Panel 2262004A Report Number: 2462-R01 \dagger Fiber Density $(\mathrm{g} / \mathrm{cc}): 1.910$
\ddagger Resin Density $(\mathrm{g} / \mathrm{cc}): 1.250$
Test Technician: Denise Galasso Test Date: $4 / 18 / 2005$
Temperature (${ }^{\circ} \mathrm{C}$): 20.0

[^2]Tg by TMA

[^3]Glass Transition Temperature (TMA by Flexure)

intec ID	Global Energy Panel ID	Specimen Height $(\boldsymbol{m m})$	Specimen Width $(\boldsymbol{m m})$	Specimen Depth $(\boldsymbol{m m})$	Support Span $(\boldsymbol{m m})$	Static Force $(\boldsymbol{m N})$	Ramp Rate $\left({ }^{\circ} \mathrm{C} / \boldsymbol{m i n}\right)$	$\mathbf{T g}$ $\left({ }^{\circ} \mathrm{C}\right)$
$2462-0023$	SN5-0311	0.58	20.10	2.85	15	100	5	134

Glass transition temperature is determined from the deflection-temperature curve by the
method of intersecting tangents.
Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
Tension Strength and Modulus
@ Room Temperature

\ddagger Axial strain (a) ultimate is calculated due to the extensometer shifting just prior to failure.
Compression Strength

[^4]| $\begin{gathered} \\ \text { *T Compression Strength = ultimate load / (ave width } \mathrm{x} \text { ave thickness) } \\ \dagger \text { CTalated Axial Strain } \text { a Ultimate }=\text { compression strengti } / \text { (panel SN5-0221 chord modulus) } \end{gathered}$ | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Intec } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { Global Energy } \\ & \text { Panel ID } \end{aligned}$ | Average Width (in) | Average
 Thickness
 (in) | Ultimate
 Load
 (kips) | *Ompression Strength (ksi) | $\begin{gathered} \hline \dagger+\text { Calculated } \\ \text { Axial Strain } \\ \text { a Ult } \\ (\mu \varepsilon) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Test } \\ & \text { Temp } \end{aligned}$ | Relative Humidity | Test
 Date | $\begin{gathered} \text { Failure Location } \\ \& \\ \text { Comments } \\ \hline \end{gathered}$ |
| 2220-0201 | | 0.503 | 0.169 | 8.77 | 103.0 | 10,111 | $78^{\circ} \mathrm{F}$ | 40\% | 5/28/2004 | Brooming failure at tab |
| 2220-0202 | | 0.503 | 0.172 | 10.03 | 115.8 | 11,368 | $78^{\circ} \mathrm{F}$ | 40\% | 5/28/2004 | Brooming failure in gage section |
| 2220-0203 | | 0.503 | 0.174 | 10.20 | 116.9 | 11,473 | $78^{\circ} \mathrm{F}$ | 40\% | 5/28/2004 | Brooming failure in gage section |
| 2220-0204 | SNS-0221 | 0.503 | 0.172 | 9.70 | 112.2 | 11,015 | $78^{\circ} \mathrm{F}$ | 40\% | 5/28/2004 | Lateral compressive failure in tab |
| 2220-0205 | | 0.502 | 0.174 | 9.99 | 114.5 | 11,238 | $78^{\circ} \mathrm{F}$ | 40\% | 5/28/2004 | Brooming failure in gage section |
| 2220-0206 | | 0.504 | 0.168 | 9.15 | 107.8 | 10,583 | $78^{\circ} \mathrm{F}$ | 40\% | 5/28/2004 | Brooming failure at tab |
| Average: $111.7{ }^{\text {a }}$ (10,965 | | | | | | | | | | |
| Standard Deviation: cov: | | | | | 5.3 524 | | | | | |
| | | | | | COV: 4.8\% 4.8\% | | | | | |

Compression Modulus
Modified ASTM D695

*Compression Strength $=$ maximum load $/$ (ave width x ave thickness) \ddagger Chord Modulus = delta stress / delta strain
\ddagger Modulus calculated between $1000 \& 3000 \mu \varepsilon$

th the listed specification
D-29
Resin Digestion

$$
\begin{aligned}
& \text { Report Number: } 2220-\mathrm{R} 03 \text { Rev A } \\
& \text { Purchase Order. Sandias-z } \\
& \text { Specification } \mathrm{ASTM} \mathrm{D} \mathrm{D} 171 \text { 1-99/D2734-94 }^{\text {Hotplate: } \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}_{2}}
\end{aligned}
$$

Fiber Volume \& Void Content

Integrated Technologies Inc.certifies the above testing was completed in accordance w th the listed specifization.
Tg by TMA
Test Technician: Jeanette Francis
Glass Transition Temperature (TMA by Flexure)

intec ID	Global Energy Panel ID	Specimen Height $(\mathbf{m m})$	Specimen Width $(\mathbf{m m})$	Specimen Depth $(\mathbf{m m})$	Support Span $(\mathbf{m m})$	Static Force $(\boldsymbol{m N})$	Ramp Rate $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right)$	Tg $\left({ }^{\circ} \mathrm{C}\right)$
$2220-\mathrm{T1}$	SN5-0221	0.56	20.12	4.35	15	1000	5	64

Glass transition temperature is determined from the deflection-temperature curve by the method of intersecting tangents.
Tension Strength and Modulus @ Room Temperature

Report Num Test Specificat Purchase Or Extensome	$\begin{aligned} & \text { 2490-R01 } \\ & \text { ASTM D3039-0 } \\ & \text { Sandia 5-15 } \\ & 80079 \end{aligned}$													bead Speed: Test Frame: Technician	$05 \mathrm{in} / \mathrm{min}$ ayne
$\begin{gathered} \text { Intec } \\ \text { ID } \end{gathered}$	Global Energy Panel ID	Average Width (in)	Average Thickness (in)	$\begin{gathered} \hline \text { Ultimate } \\ \text { Load } \\ \text { (kips) } \\ \hline \end{gathered}$	*UltimateTensile Strength (ksi)	\#Calculated Axial Strain a Ult ($\mu \mathrm{s}$)	$\begin{array}{\|c} \hline \text { Load } \\ a \\ \text { abs) } \\ \text { (abs) } \\ \hline \end{array}$	Strain a 1 ($\mu \mathrm{s}$)	Load (a) 2 (lbs)	Strain a 2 ($\mu \mathrm{E}$)	$\begin{array}{\|c} \hline \ddagger \text { Chord } \\ \text { Modulus } \\ \text { (Msi) } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { Test } \\ \text { Temp } \end{array}$	Relative Humidity	Test Date	Failure Location Comments
2490-2001		1.002	0.169	27.83 **	163.9	14,060	2,024	1,002	5,985	3,003	11.7	$75^{\circ} \mathrm{F}$	40\%	5/12/2005	Splintering Failure
2490-2002		1.001	0.166	28.24	169.9	14,742	1,981	1,003	5,806	3,000	11.5	$75^{\circ} \mathrm{F}$	40\%	5/12/2005	Splintering Failure
2490-2003		1.002	0.169	27.77	164.5	13,599	2,082	1,002	6,163	3,000	12.1	$75^{\circ} \mathrm{F}$	40\%	5/12/2005	Splintering Failure
2490-2004		1.002	0.168	27.92	165.7	13,604	2,022	999	6,132	3,002	12.2	$75^{\circ} \mathrm{F}$	40\%	5/12/2005	Splintering Failure
2490-2005		1.002	0.165	27.29	165.2	13,571	1,998	1,003	6,014	3,000	12.2	$75^{\circ} \mathrm{F}$	40\%	5/12/2005	Splintering Failure
2490-2006		1.001	0.168	27.33	162.9	13,352	1,991	1,002	6,080	3,000	12.2	$75^{\circ} \mathrm{F}$	40\%	5/12/2005	Splintering Failure
AverageStandard DeviationCOV					165.3	13,821					12.0				
					2.4	507		0.3							
					1.5\%	3.7\%		2.5\%							
Integrated Technologies Inc certifies the above testing was completed in accordance with the listed specifi *Ultimate Tensile Strength = ultimate load/ (ave width x ave thicknes5) ** Specimen loaded once to 20 kip , unloaded, and retested to failure. \ddagger Calculated Axial Strain (a) Ult = Ult Tensile Strength / Chord Modulus * 1000 $\ddagger \ddagger$ Chord Modulus $=\Delta \sigma / \Delta s$ $\ddagger \ddagger$ Modulus calculated between 1000 \& $3000 \mu \mathrm{~s}$															

Note: Intec report references the TPI-assigned panel number "02171B." Corresponding GEC I.D. is 026X.
Compression Strength

$\begin{gathered} \text { Intec } \\ \text { ID } \end{gathered}$	Global Energy Panel ID	Average Width (in)	Average Thickness (in)	Ultimate Load (kips)	Firture Torque (in-lbs)	*Compression Strength (ksi)	$\begin{gathered} \dagger \dagger \text { Azial Strain } \\ a \text { Ult } \\ (\mu z) \end{gathered}$	Test Temp	Relative Humidity	Test Date	Failure Location \& Comments
2490-2025		0.498	0.171	6.60	8	77.7 T	6,754 \dagger	$75^{\circ} \mathrm{F}$	44\%	5/25/2005	End frilure
2490-2026		0.497	0.181	8.33	8	$92.9 \dagger$	$8,072 \dagger$	$75^{\circ} \mathrm{F}$	44\%	5/25/2005	End frilure
2490-2027	02171 B	0.496	0.178	10.2	35	115	10,024	$75^{\circ} \mathrm{F}$	44\%	5/25/2005	Broom failure in the gage section
2490-2028	02171 B	0.497	0.179	10.7	35	120	10,426	$75^{\circ} \mathrm{F}$	44\%	5/25/2005	Horizontal failure in the tabs
2490-2029		0.497	0.177	11.1	35	126	10,981	$75^{\circ} \mathrm{F}$	44\%	5/25/2005	Broom failure in the gage section
2490-2030		0.499	0.176	9.21	35	105	9,107	$75^{\circ} \mathrm{F}$	44\%	5/25/2005	Horizontal failure at the tabs
Average: Standard Deviation: cov:				9.34		117	10,134				
				1.67		9.1	789				
				17.9\%		7.8\%	7.8\%				

[^5]D-33
Compression Modulus
Resin Digestion

$\begin{gathered} \hline \text { Specimen } \\ \text { ID } \end{gathered}$	Global Energy Panel ID	Water Density (g/cc)	Specific Gravity	Dry Weight (g)	Wet Weight (g)	Specimen Density (g/cc)	\% Resin by Weight	Fiber Volume (\%)	Resin Volume (\%)	Void Volume* (\%)
2490-2019		0.9982	1.702	0.7590	0.3127	1.698	29.0	57	42	1.0
2490-2020	02171B	0.9982	1.693	0.7847	0.3208	1.689	31.4	55	45	0.0
2490-2022		0.9982	1.697	0.7549	0.3098	1.693	32.6	54	47	-1.1
$\begin{array}{r} \text { Average: } \\ \text { andard Deviation: } \\ \text { COV: } \end{array}$				0.766	0.314	1.693	30.984	55	45	0.0
				0.016	0.006	0.005	1.851	2	3	1.0
				2.1\%	1.8\%	0.3\%	6.0\%	2.9\%	5.8\%	-3464.8\%

[^6]precision of reporting the densities of the fibers and resin.
\dagger Fiber density is supplied by Global Energy and is assumed to be a weighted average of the glass and carbon fiber densities,
This weighted average assumes a constant glass/carbon fiber ratio.
\ddagger Resin density is the result from the neat resin density testing performed for this project.
Tg by TMA
\[

$$
\begin{aligned}
& \text { Report Number: } 2490-\text { R01 } \\
& \text { Purchase Order: Sandia 5-15 } \\
& \text { Test Specification: } \mathrm{Tg} \text { by TMA }
\end{aligned}
$$
\]

Glass Transition Temperature (TMA by Flexure)

intec ID	Global Energy Panel ID	Specimen Height $(\boldsymbol{m m})$	Specimen Width $(\boldsymbol{m m})$	Specimen Depth $(\boldsymbol{m m})$	Support Span $(\boldsymbol{m m})$	Static Force $(\boldsymbol{m} \boldsymbol{N})$	Ramp Rate $\left({ }^{\circ} \mathbf{C} / \boldsymbol{m i n}\right)$	Tg $\left({ }^{\circ} \mathrm{C}\right)$
$2490-2023$	02171 B	0.49	19.82	4.31	15	50	5	65

Glass transition temperature is determined from the deflection-temperature curve by the
method of intersecting tangents.
Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.

Tension Strength and Modulus@ Room Temperature

$$
\begin{aligned}
& \text { u!u/tut } 50^{\circ} 0 \text { :paeds pertisson } \\
& \text { โivumojon atury } 1
\end{aligned}
$$

Test Relative Humidity: 38\%

$\begin{gathered} \text { Intec } \\ \text { ID } \end{gathered}$	Global Energy Panel ID	Average Width (in)	Average Thickness (iii)	Ultimate Load (kips)	\dagger Ultimate Tensile Strength (ksi)	\ddagger Calculated Axial Strain @ Ult ($\mu \varepsilon$)	$\ddagger+$ Chord Modulus (Msi)	Failure Location \& Comments
2691-2001	SN5-0201	1.000	0.177	18.4	103.7	23,348	4.44	Long splitting failure
2691-2002		1.001	0.180	18.0	99.8	23,558	4.23	Long splitting failure
2691-2003		1.002	0.177	17.9	101.1	22,058	4.59	Long splitting failure
2691-2004		1.001	0.179	18.2	101.4	22,648	4.48	Long splitting failure
2691-2005		1.000	0.177	18.1	102.6	22,747	4.51	Long splitting failure
2691-2006		1.000	0.175	18.8	107.1	23,608	4.54	Long splitting failure
2691-2007		1.000	0.180	18.7	103.6	23,619	4.39	Long splitting failure
2691-2008		1.001	0.179	18.3	102.0	22,142	4.61	Long splitting failure
2691-2009		1.001	0.176	17.9	101.4	22,471	4.51	Long splitting failure
2691-2010		1.001	0.176	18.5	104.6	23,157	4.52	Long splitting failure
2691-2011		1.001	0.178	18.3	102.8	23,036	4.46	Long splitting failure
			Average:		102.7	22,945	4.48	
			Standard Deviation: COV:		2.0	572	0.10	
					1.9\%	2.5\%	2.3\%	

Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.

Compression Strength@Room Temperature
 Set 2

Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
\sim Due to unacceptable failure mode, the strength is reported but not included in the group statistics.

Room Temperature

Set 2

Crosshead Speed: $0.05 \mathrm{in} / \mathrm{min}$
Test Frame: L
Technician: McConnell
Test Date: $11 / 3 / 2006$
Test Temp: $68^{\circ} \mathrm{F}$
Test Relative Humidity: 48%

Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
Resin Digestion
Report Number: 2691-R01 Appendix G

GEC Test Plan: GEC-TS025 Rev B

*Note: A value for "Void Volume" which is less than zero may be considered equal to zero due to the
precision of reporting the densities of the fibers and resin.
Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.

Report Number: 2691 -R01 Appendix F
GEC Test Plan: GEC-TS025 Rev B
Purchase Order: 1081
Glass Transition Temperature (TMA by Flexure)

intec DD $2691-2151$$\quad$Global Energy Panel ID
SN5-0201

Tension Strength and Modulus @ Room Temperature

$$
\begin{aligned}
& \text { Crosshead Speed: } 0.05 \mathrm{in} / \mathrm{min} \\
& \text { Test Frame: } \mathrm{H} \\
& \text { Technnician: Wade } \\
& \text { Test Date: } 12 / 14 / 2006 \\
& \text { Test Temp: } 68^{\mathrm{F}} \\
& \text { Test Relative Humidity: } 33 \%
\end{aligned}
$$

\dagger Ultimate Tensile Strength $=$ ultimate load $/$ (ave width x ave thickness)
 If Modulus calculated between 1000 \& $3000 \mu \varepsilon$

Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification. \ddagger Extensometer was removed just prior to reaching ultimate load. Failure strain reported is calculated.
Compression Strength @ Room Temperature
Set 3

Crosshead Speed: $0.05 \mathrm{in} / \mathrm{min}$

 Test Frame: Test Date $12 / 15$

\sim Due to unacceptable failure mode, the strength is reported but not included in the group statistics.
Compression Modulus @ Room Temperature

Test Frame: I
 $\ddagger \ddagger$ Chord Modulus $=\Delta \sigma / \Delta \varepsilon$
$\ddagger \ddagger$ Modulus calculated between $1000 \& 3000 \mu \varepsilon$

Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
Resin Digestion
Set 3

Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
$\underset{\substack{\text { Tg by tMA } \\ \text { Set } 3}}{ }$
Test Technician: Jeanette Francis
Test Date: $12 / 15 / 2006$

intec ID	Global Energy Panel ID	Specimen Height (mm)	Specimen Width $(\mathbf{m m})$	Specimen Depth (mm)	Support Span (mm)	Static Force (mN)	Ramp Rate $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right)$	Tg $\left({ }^{\circ} \mathrm{C}\right)$	Tg $\left({ }^{\circ} \mathrm{F}\right)$
$2691-3152$	SN5-0290	0.52	20.39	4.39	15	1400	5	70	158

Density

$$
\begin{aligned}
& \text { Test Technician: Denise Galasso } \\
& \text { Test Dale: } 9 / 15 / 2004 \\
& \text { Temperature }\left({ }^{\circ} \mathrm{C}\right): 19.7
\end{aligned}
$$

Specimen ID	Global Energy Panel ID	Water Density (g/cc)	Specific Gravity			Specimen Density (g/ce)
2340-1	SN5-0241	0.9983	1.162	4.937	0.684	1.159
2340-2		0.9983	1.162	4.839	0.670	1.159
		Average: Standard Deviation: cov:		4.888	0.677	1.159
				0.069	0.010	0.000
				1.4\%	1.4\%	0.0\%
2340-3	SN5-0231	0.9983	1.154	3.543	0.470	1.151
2340-4		0.9983	1.155	3.117	0.416	1.152
Average:				3.330	0.443	1.152
Standard Deviation:				0.301	0.038	0.001
COV:				9.0\%	8.6\%	0.1\%

Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
Notes: SN5-0231 is Huntsman Araldite LY 1564 Epoxy.
NEAT RESIN DENSITY
Report Number: 2490-R01
Test Technician: Denise Galasso
Test Date: $5 / 5 / 2005$
Temperature (${ }^{\circ} \mathrm{C}$): $\mathbf{2 0 . 0}$

$\begin{gathered} \text { Specimen } \\ \text { ID } \end{gathered}$	Water Density (g/cc)	Specific Gravity	$\begin{gathered} \text { Dry } \\ \text { Weight } \end{gathered}$ (g)	Wet Weight (g)	Specimen Density (g/cc)
2490-3000	0.9982	1.171	12.5528	1.8255	1.168
2490-3001	0.9982	1.172	12.0722	1.7623	1.169
			Average: 12.3125 1.7939 1.168 Standard Deviation: 0.3398 0.0447 0.001 COV: 2.8% 2.5% 0.0%		
Standard Deviation: COV:					

tegrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
Note: Resin is Vipel VE F010 Vinyl Ester.

Appendix E

Tabular Data for Fatigue Tests (MSU)
\qquad

| ¢ | |
| :---: | :---: | ○気

シ

오웅우오우우우웅
\llbracket

 No安

	$\stackrel{\substack{0}}{0}$

ন - $\neg \neg \neg \neg \neg \circ \circ 0$

[^7]

GEC I.D. SN5-212X (same layup as SN5-021X, but without fiberglass facings)
Toray pregreg carbon
Toray pregreg carbon
 Updated Modulus I
Strain Calculation

$\begin{aligned} & \bar{n} \\ & \stackrel{y}{3} \\ & \frac{\overline{0}}{\square} \end{aligned}$	

z

Ø

 \rightarrow
Lay-up $=(\pm 45 / 08 C / 45)$, Newport carbon NB307-D1 prepreg $0,300 / \mathrm{m} 2$ with glass $0 / 90$ prepreg for $\pm 45,298 \mathrm{~g} / \mathrm{m} 2$


```
N% #
```


updated" calculations.

Updated Modulus /
Strain Calculation

GEC I.D. SN5-211X

GEC I.D. SN5-214X
Zoltek pregreg carbon

		* Intec-m ** Modulus	asured valu used in MS	ues for modu UU calculatio	lus used in ons incorrec	"updated" for panel	alculations. th glass fac	ings.
					0.1-0.3\%			
ZOLTEK		Maximum Stress	Minimum stress	Frequency	$\begin{gathered} \text { Modulus** } \\ (\mathrm{msi}) \end{gathered}$	Maximum Strain	cycles to	thic
Coupon	R -Value	PSI	PSI	Hz		\%	failure	(m
2429-0214	static		-190852	0.5"/sec	17.89	-1.0668	1	
2429-0203	static		-185396	0.5"/sec	17.89	-1.0363	1	
2429-0217	static		-171395	0.5"/sec	17.89	-0.9580	1	
2429-0204	10	-14000	-140000	1	17.89	-0.7826	695	
2429-0221	10	-14000	-140000	1	17.89	-0.7826	169	
2429-0209	10	-12000	-120000	3	17.89	-0.6708	42811	
2429-0216	10	-10000	-100000	4	17.89	-0.5590	1500000	
2429-0215	10	-14000	-140000	1	17.89	-0.7826	553	
2429-0206	10	-11000	-110000	4	17.89	-0.6149	1435681	
2429-0220	10	-12000	-120000	3	17.89	-0.6708	756881	
2429-0211	10	-13000	-130000	2	17.89	-0.73	244826	
2429-0219	10	-13000	-130000	2	17.89	-0.73	363266	

GEC I．D．SN5－211X
Toray pregreg carbon
＊Intec－measured values for modulus used in＂updated＂calculations．
＊＊Modulus used in MSU calculations incorrect for panel with glass facings．〉

| |
| :--- | :--- | :--- | :--- |

$6 \varepsilon て$＇ع	L8LLT9	OカカガO	$68.2 T$	乙	00008－	00008	I－	8さて0－6てヵて
9 9でと	LS8SS	0009 0	$68.2 T$	乙	00006－	00006	I－	0さて0－6でて
S \angle T $¢$	L60Z	00t9 0	$68.2 T$	I	0000tt－	0000tI	I－	80Z0－6でて
ટع8＇乙		00t9＇0	$68.2 T$	I	0000t\％－	0000t	［－	し0こ0－6てヵて
OST＇ε	000002T	Oカカナ＊	$68.2 T$	z	00008－	00008	I－	てして0－6でて
T90 ε	6ヤを\＆と	0009 0	$68^{\prime} \angle T$	乙	00006－	00006	I－	とเて0－6てヵて
$\varepsilon L 0^{\circ} \varepsilon$	TGL	00t9＇0	$68^{\circ} \angle T$	I	0000tt－	0000 T	I－	S0Z0－6てtて
T¢でغ	T	0896．0－	68.2τ	วəs／．．s 0	S6とTLI－		כוִels	LIて0－6てヵて
870 ¢	I	ع980＇T－	$68^{\circ} \angle T$	Јəs／．．S＇0	96をS8T－		O！ple	ع0Z0－6てヵて
£ 20 ¢	τ	$8990{ }^{\circ}$ T－	$68.2 T$	วəs／．．S＇0	乙S806T－		ग！pers	カIZ0－6でって
（mw）	จınıet	\％		zH	ISd	ISd	әпјел－у	uodnos
ssəuหग！	$\begin{gathered} \text { of } \\ \text { sə } \end{gathered}$	urens unu！xew	（！sw） ${ }_{4 *}$ sn！npow	Kıuənbay	ssans unmulu！	ssans unuilxew		ไ \exists ¢ $70 Z$
			\％$\varepsilon^{\circ} 0$－ T 0					

Updated Modulus /
Strain Calculation

Epoxy $/ \mathrm{R}=0.1$ Curve Fits

σ_{0}	$=$	1297.0	$\mathrm{~A}=$
ε_{0}	$=$	1.68	$\mathrm{~m}=$

	 -1 OOOOOOOOOOOO

 Updated Modulus /
Strain Calculation

GEC I.D. SN5-022X
SAERTEX Carbon-Glass Triax / Epoxy

* Intec-measured values for modulus used in "updated" calculations

GEC I.D. SN5-432X
Newport (Grafil) Carb

* MSU-measured values for modulus used in "updated" calculations.

\[

\]

GEC I.D. SN5-431X
Newport (Grafil) Carbon Prepreg, with "pinked" ply drop

* MSU-measured values for modulus used in "updated" calculations.

	$\begin{aligned} & \text { O} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \propto \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	ה
山言気	$\stackrel{\infty}{\text { ¢ }}$	® ¢ －	̃ ざ

GEC I．D．SN5－421X
SAERTEX Carbon－Glass Triax／Epoxy，＂straight＂ply drop

$\begin{aligned} & \bar{訁} \\ & \text { ㅎ } \\ & \text { 흥 } \end{aligned}$	$\propto \frac{\stackrel{0}{\pi}}{\widetilde{\pi}}$	
$\begin{aligned} & \stackrel{\infty}{亡} \\ & \sum_{\dot{\nu}}^{\infty} \\ & \sum_{*}^{n} \end{aligned}$		～～N ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
	$\begin{aligned} & \text { 흘 } \\ & \text { ⿳亠二口犬灬 } \end{aligned}$	

GEC I.D. SN5-422X
SAERTEX Carbon-Glass Triax / VE, "straight" ply drop

GEC I.D. SN5-424X
SAERTEX Carbon-Glass Triax / VE, "pinked" ply drop

Nogybo S $\forall \mathrm{H}$ ヨaIS NIH \perp

\propto

Calculated ε-N Curve	
N	$\varepsilon(\%)$
1	0.967
10	0.875
100	0.792
1000	0.717
10000	0.649
100000	0.587
100000	0.532
10000000	0.481

 U U U U U U U U U

DISTRIBUTION:

Tom Acker
Northern Arizona University
PO Box 15600
Flagstaff, AZ 86011-5600

Ian Baring-Gould
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401

Benjamin Bell
Garrad Hassan America, Inc.
45 Main Street, Suite 302
Peterborough, NH 03458

Karl Bergey
University of Oklahoma
Aerospace Engineering Dept.
Norman, OK 73069

Derek Berry
TPI Composites, Inc.
373 Market Street
Warren, RI 02885-0328

Marshall Buhl
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401

Warren Ault
LM Glasfiber ND Inc.
117 N. Jefferson Street, Suite 400
Chicago, IL 60661

Larry Barr
enXco
17298 West Commerce Way
Tracy, CA 95377

Keith Bennett
U.S. Department of Energy

Golden Field Office
1617 Cole Boulevard
Golden, CO 80401-3393

Mike Bergey
Bergey Wind Power Company
2200 Industrial Blvd.
Norman, OK 73069

Gunjit Bir
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401
C.P. Sandy Butterfield

NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401

Garrett Bywaters
Northern Power Systems
182 Mad River Park
Waitsfield, VT 05673

David Calley
Southwest Windpower
1801 West Route 66
Flagstaff, AZ 86001

Jamie Chapman
Texas Tech University
Wind Science \& Engineering Research Center
Box 41023
Lubbock, TX 79409-1023
R. Nolan Clark

USDA - Agricultural Research Service
PO Drawer 10
Bushland, TX 79012

Joe Cohen
Princeton Economic Research, Inc.
1700 Rockville Pike, Suite 550
Rockville, MD 20852

Ken J. Deering
The Wind Turbine Company
PO Box 40569
Bellevue, WA 98015-4569

Doug Cairns
Montana State University
Department of Mechanical \& Industrial Eng.
College of Engineering
PO Box 173800
Bozeman, MT 59717-3800
Larry Carr
NASA Ames Research Center
24285 Summerhill Ave.
Los Altos, CA 94024

Craig Christensen
Clipper Windpower Technology, Inc.
6305 Carpinteria Ave. Suite 300
Carpinteria, CA 93013
C. Cohee

Foam Matrix, Inc.
1123 E. Redondo Blvd.
Inglewood, CA 90302
C. Jito Coleman

Northern Power Systems
182 Mad River Park
Waitsfield, VT 05673

James Dehlsen
Clipper Windpower Technology, Inc.
6305 Carpinteria Ave. Suite 300
Carpinteria, CA 93013

Edgar DeMeo
Renewable Energy Consulting Services
2791 Emerson St.
Palo Alto, CA 94306

Peter Finnegan
GE Global Research
One Research Circle
Niskayuna, NY 12309

Margaret M. Ganczak
Vestas Americas
1881 SW Naito Parkway, Suite 100
Portland, OR 97201

Dayton Griffin (10)
Global Energy Concepts, LLC
1809 7th Ave., Suite 900
Seattle, WA 98101

Thomas Hermann
Odonata Research LLC
2813 Wild Plum Ct.
Columbia, MO 65201-3520

William E. Holley
GE Wind Energy
GTTC, M/D 100D
300 Garlington Rd
PO Box 648
Greenville, SC 29602-0648
S. Finn

GE Global Research
One Research Circle, Room K1-3C12A
Niskayuna, NY 12309

Trudy Forsyth
NREL/NWTC
1617 Cole Boulevard
Golden, CO 80401

Brian Glenn
Clipper Windpower Technology, Inc.
6305 Carpinteria Ave. Suite 300
Carpinteria, CA 93013

Maureen Hand
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401
D. Hodges

Georgia Institute of Technology
270 Ferst Drive
Atlanta, GA 30332

Adam Holman
USDA - Agricultural Research Service
PO Drawer 10
Bushland, TX 79012-0010
D.M. Hoyt

NSE Composites
1101 N. Northlake Way, Suite 4
Seattle, WA 98103

Kevin Jackson
Dynamic Design Engineering, Inc.
123 C Street
Davis, CA 95616

George James
Structures \& Dynamics Branch Mail Code ES2
NASA Johnson Space Center
2101 NASA Rd 1
Houston, TX 77058

Gary Kanaby
Knight \& Carver Wind Group
2423 Hoover Avenue
National City, CA 91950
M. Kramer

Foam Matrix, Inc.
PO Box 6394
Malibu, CA 90264

Scott Larwood
1120 N. Stockton St.
Stockton, CA 95203

Scott Hughes
NREL/NWTC
1617 Cole Boulevard MS 3911
Golden, CO 80401

Eric Jacobsen
GE Wind Energy - GTTC
300 Garlington Rd
Greenville, SC 29602

Jason Jonkman
NREL/NWTC
1617 Cole Boulevard
Golden, CO 80401

Jason Kiddy
Aither Engineering, Inc.
4865 Walden Lane
Lanham, MD 20706

David Laino
Windward Engineering
8219 Glen Arbor Dr.
Rosedale, MD 21237-3379

Wendy Lin
GE Global Research
One Research Circle
Niskayuna, NY 12309

Steve Lockard
TPI Composites, Inc.
8501 N. Scottsdale Rd.
Gainey Center II, Suite 280
Scottsdale, AZ 85253

James Lyons
Novus Energy Partners
201 North Union St., Suite 350
Alexandria, VA 22314

John F. Mandell
Montana State University
302 Cableigh Hall
Bozeman, MT 59717
L. McKittrick

Montana State University
Department of Mechanical \& Industrial Eng.
220 Roberts Hall
Bozeman, MT 59717

Amir Mikhail
Clipper Windpower Technology, Inc.
6305 Carpinteria Ave. Suite 300
Carpinteria, CA 93013

Walt Musial
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401

James Locke
AIRBUS North America Engineering, Inc.
213 Mead Street
Wichita, KS 67202

David Malcolm
Global Energy Concepts, LLC
1809 7th Ave., Suite 900
Seattle, WA 98101

Tim McCoy
Kamzin Technology, Inc.
425 Pontius Ave. N., Suite 150
Seattle, WA 98109

Steve Mikel
Suzlon Wind Energy Corporation
620 3rd Avenue SE
Pipestone, MN 56164

Patrick Moriarty
NREL/NWTC
1617 Cole Boulevard
Golden, CO 80401

Library (5) NWTC
NREL/NWTC
1617 Cole Boulevard
Golden, CO 80401

Byron Neal
USDA - Agricultural Research Service
PO Drawer 10
Bushland, TX 79012

Energy Research Centre of the Netherlands
T.S. Obdam

PO Box 1
1755 ZG Petten
The Netherlands

Tim Olsen
Tim Olsen Consulting
1428 S. Humboldt St.
Denver, CO 80210

Pep Prats

Ecotecnia
Roc Boronat 78
Barcelona
Spain

Ian Prowell
University of California-San Diego
9500 Gilman Drive \#0085
San Diego, CA 92093-0085

Michael Robinson
NREL/NWTC
1617 Cole Boulevard
Golden, CO 80401

Steve Nolet
TPI Composites, Inc.
373 Market Street
Warren, RI 02885-0367

Richard Osgood
NREL/NWTC
1617 Cole Boulevard
Golden, CO 80401

Robert Z. Poore
Global Energy Concepts, LLC
1809 7th Ave., Suite 900
Seattle, WA 98101

Robert Preus
Abundant Renewable Energy
22700 NE Mountain Top Road
Newberg, OR 97132

Jim Richmond
MDEC
3368 Mountain Trail Ave.
Newberg Park, CA 91320

Dan Samborsky
Montana State University
302 Cableigh Hall
Bozeman, MT 59717

Dan Sanchez
U.S. Department of Energy

NNSA/SSO
PO Box 5400 MS 0184
Albuquerque, NM 87185-0184

David Simms
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401
J. Sommer

Molded Fieber Glass Companies/West
9400 Holly Road
Adelanto, CA 92301

Cecelia M. Sterling (10)
Office of Wind and Hydropower Technologies
EE-2B Forrestal Building
U.S. Department of Energy

1000 Independence Ave. SW
Washington, DC 20585
Herbert J. Sutherland
HJS Consulting
1700 Camino Gusto NW
Albuquerque, NM 87107-2615
J. Thompson

ATK Composite Structures
PO Box 160433 MS YC14
Clearfield, UT 84016-0433

Scott Schreck
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401

Brian Smith
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401

Ken Starcher
Alternative Energy Institute
West Texas A \& M University
PO Box 248
Canyon, TX 79016

Fred Stoll
Webcore Technologies, Inc.
8821 Washington Church Rd.
Miamisburg, OH 45342

Andrew Swift
Texas Tech University
Wind Science \& Eng. Research Center
PO Box 41023
Lubbock, TX 79409-1023

Robert W. Thresher
NREL/NWTC
1617 Cole Boulevard MS 3811
Golden, CO 80401

Steve Tsai
Stanford University
Aeronautics \& Astronautics
Durand Bldg. Room 381
Stanford, CA 94305-4035

Case P. van Dam
Dept. of Mechanical \& Aeronautical Eng
University of California, Davis
One Shields Avenue
Davis, CA 95616-5294

Brian Vick
USDA - Agricultural Research Service
PO Drawer 10
Bushland, TX 79012

Kyle Wetzel
Wetzel Engineering, Inc.
PO Box 4153
Lawrence, KS 66046-1153

William A. Vachon
W. A. Vachon \& Associates

PO Box 149
Manchester, MA 01944

Jeroen van Dam
Windward Engineering
NREL/NWTC
1617 Cole Boulevard
Golden, CO 80401

Carl Weinberg
Weinberg \& Associates
42 Green Oaks Court
Walnut Creek, CA 94596-5808

Mike Zuteck
MDZ Consulting
601 Clear Lake Road
Clear Lake Shores, TX 77565

INTERNAL DISTRIBUTION:

MS 0557 T.W. Simmermacher, 1523
MS 0557 D.T. Grifith, 1523
MS 0346 T.J. Baca, 1523
MS 0372 J.M. Redmond, 1525
MS 1124 T.D. Ashwill, 6333
(10)
MS 1124 M. Barone, 6333
MS 1124 D.E. Berg, 6333
MS 1124 J. Berg, 6333
MS 1124 R.R. Hill, 6333
MS 1124 W. Johonson, 6333
MS 1124 B. Karlson, 6333
MS 1124 D.L. Laird, 6333
MS 1124 B. Lucero, 6333
MS 1124 A. Ogilvie, 6333
MS 1124 J. Paquette, 6333
MS 1188 V. Peters, 6345
MS 1124 B. Resor, 6333
MS 1124 M.A. Rumsey, 6333
MS 1124 P.S. Veers, 6333
MS 1124 J.R. Zayas, 6333
MS 0899 Technical Library, 9536 (Electronic)
MS 1124 Wind Library, 6333 (10)

[^0]: ${ }^{1}$ GEC was acquired by the Norwegian foundation, Det Norske Veritas (DNV) in May 2008, forming a new entity known as DNV Global Energy Concepts Inc. For purposes of this report, the previous company name, GEC, is used.

[^1]: Note: "Panel 3" in this report corresponds to GEC Panel ID 013X

[^2]: *Note: A value for "Void Volume" which is less than zero may be considered equal to zero due to the
 Integrated Technologies Inc. certifies the above testing was completed in accordance with the listed specification.
 \dagger Fiber density is supplied by Global Energy and is assumed to be a weighted average of the glass and carbon fiber densities. This weighted average assumes a constant glass/carbon fiber ratio. \ddagger Resin density supplied by Global Energy.

[^3]: Report Number: 2462-R01
 Purchase Order: Sandia5-13
 Test Specification: Tg by TMA

[^4]: Report Number: $2220-$ R05
 Test Specification: ASTM D695-02 Modified
 Purchase Order: Sandria5-2

[^5]: Integrated Techinologies Inc Certifes the above testing was completed in accordance with the listed specification.
 \dagger Values not included in Average, Stan. Dev, or COV calculations.
 IT Strain calculations were performed using the average chord modulus calculated during the D695 Compression modulus testing.

[^6]: *Note: A value for "Void Volume" which is less than zero may be considered equal to zero due to the

[^7]: VE / R=0.1 Curve Fits

 | $\sigma_{0}(\mathrm{psi})=$ | 117402 | $\mathrm{~A}=$ | 1.3202 |
 | ---: | ---: | ---: | ---: |
 | $\varepsilon_{0}=$ | 2.50 | $\mathrm{~m}=$ | 10.10 |

 | 2 |
 | :--- |
 | 0 |

