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1 Introduction 

Solute transport through heterogeneous porous media has 
generally been represented by Fickian advection dispersion 
models. Several analytical and numerical models have been 
proposed and applied in the past. Such traditional models 
cannot predict the anomalous behaviors like sudden 
breakthrough and long tailing that are expected in porous 
media traversed by conduits. 

The Continuous Time Random Walk (CTRW) model 
can be used to simulate solute transport under complex 
conditions. This method is based upon a probability 
distribution function (pdf) that defines the transition 
time of solute particles and ultimately depends upon the 
hydrological and geological parameters. CTRW has been 
found successful in modelling non-Fickian transport in 
heterogeneous porous media (Cortis and Berkowitz, 2004). 

Solute transport through porous media has been widely 
studied at various scales and the ADE is generally used as 
the tool for quantifying and predicting solute transport. 
The basic assumption of the ADE is that dispersion follows 
Fickian behaviour and hence breakthrough curves of pulse 
inputs follow a Gaussian distribution (Berkowitz et al , 
2006). 

Numerous experiments have shown that solute 
spreading does not follow a Gaussian distribution. The 
main reason for this non-Fickian behavior of solute 
transport in porous media is the presence of heterogeneity 
in medium properties like porosity, permeability, etc., at 
various scales. The variations in medium properties affect 
the velocity of and path traveled by solute particles and 
consequently the time of travel varies with heterogeneity 
of the medium. 

Advection, mechanical dispersion, and diffusion are the 
dominant mechanisms for transport of solute in porous 
media. When advection is significant, dispersion is unequal 
between the longitudinal and transverse directions, but 
when the advection rate is small and diffusion is dominant, 
the longitudinal (Dxx) and transverse {Dyy) dispersion 
coefficients are nearly equal (Freeze and Cherry, 1979). The 
process of mechanical dispersion is anisotropic even if the 
porous medium is isotropic with respect to pore orientation 
and hydraulic conductivity because flow in the longitudinal 
direction aligned with the mean velocity is dominant and 
that stretches the solute plume into an elliptical shape 
(Freeze and Cherry, 1979). Hence anisotropic dispersion 
must be considered if simulation is performed at Darcy 
scale where detailed within-pore flows are not resolved. 

Porous media, in general, can exhibit multiple scale 
heterogeneity and transport parameters must be linked 
properly at various scales for accurate solute transport 
modelling. In the past, several models have been proposed 
for porous media traversed by conduits in which the 
domain is divided into zones and different analytical 
models like the Darcy-Weisbach equation, Poiseuille 
(cubic) law, and Darcy's law are used for flux calculation 
as appropriate in different zones (Field, 1993; White and 
White, 2005). These models may be applicable for Stokes 
flow in geometrically simple domains, but in transition and 
turbulent regimes and complex domains, such models may 
not be appropriate. 

2 L B M 

2.1 Flow model 

1.1 A ADE 

The traditional governing equation for mass transport of 
a solute subjected to advection and anisotropic dispersion 
in porous media is a partial differential equation called 
the Anisotropic Advection-Dispersion Equation (AADE), 
which in a 2D Cartesian formulation reads 

dC TJ dC__ d_ 
dt x dx dx xx dx 

±(l _ 8C\ 
+ dy{Vyydy)> (1) 

where C is solute concentration (ML~3), Ux is the 
mean velocity in the X-direction (LT_ 1) , Dy is 
the diffusion/dispersion coefficient (tfT-1) in the ij 
direction, x and y are spatial coordinates (L) and t is 
time (T). Equation (1) is the governing equation for mass 
transport in two dimensions under the assumption of 
Fickian dispersion, when macroscopic flow is in the x-
direction. The second term on the LHS of Equation (1) 
represents the rate of mass transport due to advection 
alone and terms on the right hand side represent mass 
transport due to dispersion, which depends upon the 
dispersion coefficients (dispersion tensor) Dxx and Dyy in 
respective directions. Longitudinal (Dxx) and transverse 
(Dyy) dispersion coefficients account for anisotropic 
dispersion in porous media. 

The standard Bhatnagar-Gross-Krook (BGK) collision-
based D2Q9 (2-dimensional, 9 velocity) model (Qian et al , 
1992) is used to simulate fluid flow in open channels in this 
work. The macroscopic fluid density (p) for the model is 

.7=0 

(2) 

The macroscopic velocity u is an average of the 
microscopic velocities e,- weighted by the directional 
densities ff 

^ = \JZfr^ (3) 

where [eo ei e2 e3 e4 es e6 e7 eg] = 

"0 1 0 - 1 0 1 - 1 - 1 1 " 

0 0 1 0 - 1 1 1 —1 —Ij 

and c is the unit speed on the lattice, 1 lattice unit per time 
step. 

Equations (2) and (3) link the mesoscopic particle 
distribution with the macroscopic density and velocity of 
the fluid. 



Key steps are streaming and collision of the particles 
via the distribution function. The simplest approach uses 
the BGK approximation for collision as described below. 

Equation (4) represents the time evolution of the 
Particle Distribution Function (PDF) (Qian et al., 1992): 

fjix + ejSt^ + St) 

= fj(x,t)-St 
/ } (x , i ) - / f (x , i ) 

(4) 

where fj (x + ej5t, t + St) fj (x, t) is the streaming part 
and 5t(- is the collision term representing 
the rate of change of the particle distribution function due 
to collision. The collision operator is simplified in the BGK 
model by use of a single relaxation time r for all directions. 
T is a relaxation time that indicates the rate at which 
the system approaches equilibrium through collision. The 
equilibrium distribution function feg is (Qian et al , 1992) 

/ f (x) = t*p(x) (c2 + e, • u + | ( S j - • u ) 2 - l u 2 ) , (5) 

where cs is the speed of sound, a free parameter in 
Equation (5). c2 = -| in the present study. The weights (£•) 
are | for j = 1,2,3,4 (main Cartesian axes), and -^ for 
j = 5,6,7,8 (diagonals). The weight for j = 0 rest particles 
is t0 = 1 - c2 Y^tj = 1 - f c2 = | (Ginzburg, 2005). Note 
thatif u = 0, the equilibrium distribution function elements 
fjQ are simply the weights times the fluid density. 

For the simulations we present below, we apply either 
periodic or pressure boundary conditions for the fluid flow. 
For the pressure boundaries, we adopt the methods of Zou 
and He (1997) in which incoming / s are computed based 
on the desired pressure and the known fs. In contrast to 
the bounce-back boundaries discussed below, the pressure 
boundaries are applied at the actual locations of the nodes. 

2.2 Solute transport model 

Flekk0y (1993) introduced an LB model to simulate 
diffusion of miscible fluid flow in 2D and 3D. A separate 
equilibrium distribution fimction with its own relaxation 
parameter is derived to simulate the advection-diffusion 
equation. Equilibrium distribution functions for flow and 
transport are coupled with a common macroscopic flow 
velocity; hence the solute component behaves as a passive 
scalar. 

In this approach two components A and B are assumed 
and one is a very small fraction of the other, therefore 
collisions between A-B or B-A are assumed negligible and 
not included in the computation (Inamuro et al , 2002). 
Component A will have the same equilibrium function 
as the regular BGK LB model (i.e., it will behave as 
a regular fluid) but component B will evolve towards 
a new equilibrium as expressed by its own equilibrium 
distribution function, which unlike Equation (4) for 
component A, contains only the terms up to first order in 
flow velocity, as shown in Equation (6) (Flekk0y, 1993): 

The density (concentration) for component B is computed 
following Equation (2) and its velocity u^ is assigned from 
component A; B is advected as a passive scalar. The mass 
diffusivity Dm between two species is expressed in terms 
of relaxation time TB for component B (Flekk0y, 1993): 

D„ TB (7) 

fB)(x)=t*pB(x)[c2+eJ-uA}. (6) 

LBM is not free from numerical diffusion. We estimated 
numerical diffusion at a moving solute front. At a 
velocity of 0.01 lu/ts and an expected diffusion of 
3.333 x 10~3lu2/ts, we found that the observed diffusion 
coefficient was on the order of 10~slu2/ts greater 
(approximately 1% greater). The diffusion coefficient was 
approximately 3% higher at a velocity of 0.05 lu/ts, which 
is the same as the highest velocity in our results section. See 
Ginzburg (2005) for an improved equilibrium function that 
reduces numerical diffusion for certain LBM transport 
models. 

Two types of boundary conditions are applied to the 
solute; the first is constant concentration and the second 
is zero concentration gradient, which allows advective flux 
but prohibits diffusive and dispersive fluxes. Much like 
the Zou and He (1997) boundaries applied to the flow, 
the constant concentration boundary is based on ensuring 
that the sum of the unknown incoming / s plus the known 
/ s equal the desired concentration (Inamuro et a l , 2002). 
The zero concentration gradient boundary requires that 
the solute / s on each side of the boundary node are 
balanced; Sukop and Thorne (2006) contains more detailed 
descriptions of these boundaries. 

2.3 Macroscopic porous media approach 

Fluids flowing through porous media experience resistance 
that depends in part on the volume density of solids 
(the porosity) because no-slip conditions at fluid-solid 
interfaces resist the flow and generally become dominant 
as the porosity decreases. When this resistance is large 
enough relative to driving forces, flow is non-inertial 
and governed by Darcy's law. At higher porosity, in 
larger conduits, or under high driving force, resistance 
is lower and flows transition towards free fluid flows 
governed by the Navier-Stokes equation as the Reynolds 
number increases and inertial components of the flow 
become more important. Partial damping of inertial 
components that allows simulation of a continuum of 
flows from strictly non-inertial, Darcy's law behaviour, 
through transitional and inertially-dominated flows at 
higher Reynolds numbers can be considered an advantage. 
It may reflect the behavior of real porous media better 
than a strict Darcy's law/Stokesian solution when the 
permeability is especially high and/or when gradients 
are high enough that inertial effects can be important. 
Several models have been proposed to model flow in 
heterogeneous porous media (Balasubramaniyam et al , 
1987; Gao and Sharma, 1994; Spaid and Phelan, 1997; 
Dardis and McCloskey, 1998; Kang et al., 2002; Freed, 
1998) and usually use either a damping factor or force that 



allows this Darcy-to-inertial transition. When appropriate, 
it is also possible to exclude the potential for inertial 
components in porous medium flow by truncating the 
inertial terms that appear in the equilibrium distribution 
function, Equation (5). 

Balasubramaniyam et al. (1987) introduced a velocity-
dependent damping term in the Navier-Stokes equations 
to approximate Darcy's law in porous media at 
macroscopic scale in a hexagonal lattice, lattice gas model 
context. The approach we implement here is based on 
Balasubramaniyam et al. (1987) extended to hexagonal 
lattice Boltzmann models by Dardis and McCloskey 
(1998), but numerous other approaches are available. The 
modified N-S equation with damping term f3u is 

where, j3 is linked with a scatterer density ns, which can 
be viewed as loosely related to the porosity of a medium 
(Balasubramaniyam et al , 1987). The relationship is /3 = 
2ns (Balasubramaniyam et al , 1987). Gao and Sharma 
(1994) has defined ns either as a fraction of solid nodes 
in the porous medium or probability of each node being 
a solid, but interpreting it as simply a damping factor 
inversely proportional to permeability over certain ranges 
may be most appropriate. In this case, there are no distinct 
pores and solids and the kinematic viscosity v no longer 
retains its normal meaning but instead, along with ns, 
determines k in lattice units according to k = ^-. We 
always use a single kinematic viscosity throughout the 
domain and use ns alone to vary k. 

This model can simulate at large (Darcy) scale without 
incurring the excessive computational requirements 
characteristic of pore scale modelling. To implement the 
LBM for macroscopic porous media, there is an additional 
collision step after streaming and BGK collision. Denote 
the PDFs after standard BGK collision by 

/ , e 9 ( x , i ) - / * ( x , i ) 
/ ;* (x, t + 5t) = f* (x, t) + h (9) 

where /* denotes the PDFs after streaming. Then the 
porous media step is implemented as an additional term 
involving the /** 

fj(x,t + 5t) = f**(x,t + 5t) 

+n s (x ) [ / ; ;2(x + ejSt, t + St)- / ;*(x, t + St)]. (10) 

This reduces to standard BGK collision when ns = 0. For 
values of ns between 0 and 1, we have a partial bounce-back 
like condition that makes the medium effectively porous; 
i.e., the flow can be described by Darcy's law. We can 
have a different n s value at each node in the domain. 
Depending upon the scale, each node could represent a 
large homogeneous domain. 

The effective permeability is given approximately 
by k = % for ns < 0.5. In Sukop and Thorne (2006), 
simulations with the same code as that applied in this 
study show reasonable agreement with k = -^-, but no 

formal error analysis is available at this time. Moreover, 
a number of other methods (e.g., Spaid and Phelan, 1997; 
Kang et al., 2002; Freed, 1998; Capuani et al , 2003) have 
been proposed and may be superior to what we apply 
in this work. The emphasis here is on demonstrating the 
ability to account for relative permeability differences via 
the damping factor and superimpose anisotropic solute 
transport; additional work is needed to quantify the 
accuracy of the method. 

Drawbacks of the lattice BGK equation with the 
bounce-back boundary conditions have become evident 
during permeability calculations in pore-scale porous 
media simulations (Pan et al , 2006). It has been shown 
(Ginzburg and d'Humieres, 2003; Pan et al., 2006) that 
the inaccuracy observed in the BGK model can be 
effectively removed by using the Multiple-Relaxation-
Time (MRT) models, or in the case of the standard BGK 
model, by setting the relaxation parameter (r) equal to 
1 and assuming the effective wall position to be located 
about halfway between the fluid and solid nodes. Of the 
simulations presented in this paper, all but two have r = 1. 
In the first high Re (low r, Fig. 6) case, our simulation 
suffers from a relatively small error in wall location. In the 
second case (Fig. 9) - where we use the damping factor to 
simulate the permeable walls of a channel - strict bounce-
back is not being applied and no analysis of potential 
inaccuracies is available to the best of our knowledge. 

2.4 Anisotropic LBM 

The BGK model is the simplest form of collision 
mechanism in the LB equation and has a single lumped 
relaxation time for each direction that gives isotropic 
diffusion when the passive scalar approach is applied. This 
is appropriate for the simulation of diffusion in free flowing 
fluids. However as explained above, in the solute transport 
process in porous media when the flow is not negligible, 
dispersion is inherently anisotropic; thus, an anisotropic 
dispersion solver is needed to develop an LB model with 
capabilities comparable to those of standard porous media 
solute transport solvers. The dispersion coefficients in 
Equation (1) are found using the following equation (Bear, 
1979): 

n / T ~ ! o'x i {<*L ~ OLT)lkUj , , n 

Dij = uTJux + u\Sij H (11) 

where, 5y is Kronecker delta, QL and a^ are dispersivity 
coefficients in the longitudinal and transverse directions 
respectively, i and j represent the Cartesian directions (x or 
y). For heterogeneous domains, velocity (u,,, uy) changes 
at every node, so the dispersion coefficient does too. 

Zhang et al. (2002a) and Ginzburg (2005) introduced 
LB models with more than one relaxation parameter in 
the collision mechanism to simulate anisotropic dispersion. 
Zhang's approach (Zhang et al., 2002a, 2002b) appeared 
first in the literature and we implemented it before 
Ginzburg (2005) was published. Ginzburg's method 
(Ginzburg, 2005) is more rigorous. Zhang's method 



(Zhang et al , 2002a) has four relaxation parameters 
in nine directions to simulate anisotropic dispersion. 
Conservation of mass is ensured by taking a weighted 
summation of the particle distribution function, so that the 
collision step remains mass invariant (Zhang et al., 2002a). 
The mass is calculated as (Zhang et al , 2002a) 

fi 
<=£?£ 

t*r~ 
(12) 

and the dispersion tensor in terms of relaxation parameters 
r is expressed as: 

5a;2 

Dxx = —[4n+T5+T6-3}, 

Dvv = Y8^t4 T 4 + r s + r6 - 3], 
OXulI 

D^ = WT 5~T 6 ]-

(13) 

We use 5x = Sy = 1 and St = 1. 
Four relaxation parameters are back calculated from 

dispersion coefficients. It is obvious from Equation (13) 
that there is no one-to-one relation between relaxation 
parameters and dispersion coefficients. Hence one of the 
relaxation parameter is chosen and rest are calculated using 
Equation (13). The relaxation parameters are so chosen 
that they are close to each other but not too close to 0.5 to 
avoid numerical instability (Zhang et al., 2002b). 

This will provide an LBM-based anisotropic dispersion 
solver comparable to those found in standard porous 
media solute transport models while the regular LB model 
with ns = 0 retains the potential to solve the Navier-

Stokes equation and the advection diffusion equation in 
conduits. This model is verified against one- and two-

dimensional analytical solutions for various boundary 
conditions (Zhang et al., 2002a, 2002b). 

3 CTRW 

Unlike the ADE, the CTRW does not separate a priori 
between advective and dispersive components to keep 
track of the solute movement. For a detailed account of the 
CTRW method, we refer the reader to the recent review by 
Berkowitz et al. (2006). The initial conservation equation 
is the so-called Master equation, 

d_ 
dt 

Ci{t)=wijCj{t), (14) 

where u>y is the transition rate [1/T] of C from point Xj 
to x;, which describes the fine details of the microscopic 
heterogeneity. As a fully detailed deterministic description 
of the heterogeneity is impossible to achieve in practice, 
Equation (14) is ensemble averaged over all possible 
realisations of the heterogeneity to obtain 

ud{t) - C(t = 0) = Wij{u)Cj(u), (15) 

where the tilde " indicates the Laplace transform C(u) = 
£[C(t);u] = /0°° C(t) exp(—«t)di, and u is the Laplace 

variable. The quantity Wij(u) is intimately related to the 
waiting-time probability distribution function, \&(a;,t) of 
a jump of length x in the time interval t (Berkowitz 
et al., 2006). Introducing the decomposition *&(x,t) = 
■tp(t)p(x), and assuming thatp(x) has finite first and second 
moment, it is possible to write the PDE that governs the 
solute transport in heterogeneous formations. The one 
dimensional form of this PDE reads 

uC(x, u) — CQ(X) 

= -M(u)ul c(x, u) — a—c(x, u) 
dx 

(16) 

Equation (16) introduces a time convolution of the classical 
advection-dispersion spatial operator with a memory 
function, M{u), defined in terms of waiting time pdf ■0(4) 

M(u) = tu- (17) 

and a characteristic time t. The identification of the ip(t) 
rests at the heart of the CTRW method. Note that when 
ifj(t) = exp(—t), we have C[exp(—t);u] = 1/(1 +u), and 
thus M(u) = 1; that is, the classical ADE is a special case 
of the CTRW transport equation. For any other shape 
of the probabilistic distribution, M(u) =fc 1, and memory 
effects are manifest in the behavior of the solute. A host 
of parametric forms for ip(t) has been successfully used in 
the literature to fit experimental breakthrough curves and 
are described in detail in Berkowitz et al. (2006). 

In this approach, the parameters of the ijj(t) pdf 
augment the classical number of transport parameters in 
the 1-D advection dispersion equation (i.e., Ux, and a) and 
a best fit to the data is sought on this parameter space. 

This approach, however, fails to describe the more 
complex situations described in this work. In our search 
for a CTRW model, we therefore adopt a different point 
of view that consists in a numerical deconvolution of the 
full time evolution of ip(t) (Cortis, 2007). We want to 
analyse some breakthrough curve (BTC) ce(t) sampled 
at the section XQ for discrete number of points tj in the 
interval At = [tmjn, tmaxJ. We evaluate an approximation 
of the Laplace transform (truncated over At) of the 
'experimental' BTC ce(t) by means of a Clenshaw-

Curtis quadrature algorithm for N Laplace variables 
Ui € C, (i = 1 . . . N). The values of m are dictated by 
the particular choice of the numerical algorithm for the 
Laplace transform inversion (Berkowitz et al., 2006). 

We can now search for the real and imaginary values of 
Tp{ui) that minimise the norm between C(UJ), the solution 
of Equation (16) at the given section x0 (for a suitable 
set of boundary conditions), and ce(uj), the numerical 
Laplace transform of ce(t). This non-linear minimisation 
procedure is repeated for all values of m to obtain a 
numerical approximation of 4>(ui). 

Numerical inversion of rji(ui) finally yields the time 
evolution of tp{t). In order to perform the inversion 
procedure on the memory function we need, however, 
to fix the value of a. The dispersivity a is in general 



not a datum of the problem and can only be given an 
a priori estimated value in some interval [ammjamax]> 
where am;n ~ D^is the diffusion coefficient for the solute 
in the water, and am a x ~ d, the characteristic length for 
the pore throat size. The non-parametric inversion of 
i>(t) yields thus a family of pdf's ip(t\a) depending on 
the parameter a, and each member of the parametric 
family yields a best fit on the data, ce(t3). The reason for 
this behavior is easily understood by considering that the 
CTRW PDE in Equation (16) decouples the effects of the 
spatial and temporal parts of the probability distribution 
of waiting times 9(x, t) into two statistically independent 
distributions, 9(x,t) = p(x)i/j{t), defining thus a non-

dimensional dispersivity (inverse of the Peclet number, 
a/L = Pe-1) 

a 
L 

1 f p(x)x~ dx 
2 Jp(x)xdx 

(18) 

where L is a characteristic macroscopic length scale. As the 
p(x) distribution needs only to be characterised by its first 
two moments, the decomposition of W(x, t) = p(x)ip(t), is 
not unique, hence the expression for the tp(t) is not unique. 
We note, however, that we can usually have very good fit of 
the BTC by imposing small values of a, i.e., by distributing 
the effect of the spreading more into the temporal part 
(the waiting time pdf ip(t)) rather than the on the spatial 
component (the dispersivity). The consistency of the choice 
of the small scale Pe will ultimately be assessed only by 
looking at BTC predictions over different sections x, which 
we reserve for future work. 

4 Results and discussion 

The value of combining the CTRW and LBM approaches 
is that complete knowledge of the velocity field is available 
from the LBM simulations and domain heterogeneity 
can be varied at will. In the comparisons of CTRW and 
ADE models that follow, the CTRW is applied in a 1-D 
macroscopic fashion to the 2-D LBM simulations. That 
is, while the LBM solves the AADE described above, the 
macroscopic ADE and CTRW used to fit the results treats 
the flow and transport as macroscopically 1-D. 

4.1 Poiseuille flow 

One of the simplest types of breakthrough curves is that 
which corresponds to Poiseuille flow and solute transport 
without diffusion. This problem has an easily-derived 
analytical solution and can be closely approximated 
by LBM simulation. However, this breakthrough curve 
cannot be fitted with the ADE. We use a domain 1000 lu x 
82 lu to simulate solute transport with near-zero diffusion 
for periodic flow in a slit. The flow is gravity driven at 
j = 6 x W~6lu/ts2. Relaxation parameters r for fluid and 
solute are 1.0 ts and 0.501 ts respectively. The average 
velocity of flow is 0.02 lu/ts. 

Figure 1 shows the ip (t) function and Figure 2 shows the 
LBM simulation together with the best-fitting ADE and 

CTRW solutions. The CTRW is clearly capable of fitting 
this simple breakthrough curve. 

Figure 1 ip function against pore volume for zero diffusion 
transport between parallel plates 
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Figure 2 Zero diffusion breakthrough curve from LBM fitted 
with CTRW and ADE 
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The breakthrough and 4>{t) are plotted against the number 
of pore volumes eluted. Pore volume refers to the volume 
of fluid occupying the pore space of a porous medium; 
for saturated conditions, it is the total volume of a porous 
medium minus the total volume of solids that comprise the 
medium. 

For a domain with cross-sectional area A and 
volumetric fluid content 8 (equal to 1 for flow in a slit), 
the number of pore volumes is calculated by dividing the 
volume of fluid leached through the column (V = AQut) 
by the fluid capacity (VQ = AOL) of the medium 

T = 
V AQut 
V0 A9L 

ut 
1' (19) 

The pore volume is routinely used to non-dimensionalize 
time in studies of solute breakthrough by dividing the 
volume of fluid eluted from the medium by one pore 
volume. This is convenient because it enables rapid 
comparison to piston flow, where solutes entering the 
medium at 0 pore volumes would elute when 1 pore volume 
of solute-laden fluid has passed through the medium. 
In the macroscopic porous medium LBM application 



here, 1 pore volume equals the total volume because the 
'solids' that damp the flow occupy 0 volume. Both relative 
concentration and pore volume are dimensionless, and are 
used to non-dirnensionalize breakthrough curves. 

4.2 Porous medium with conduit at low Re 

As a model of a heterogeneous porous medium traversed 
by a conduit, we use a randomly generated 81 lu x 81 lu 
domain with a fractal permeability distribution as shown 
in grey scale in Figure 3. White indicates open pores, 
black represents solid particles or zero permeability and 
grey represents intermediate permeability. In this case ns 
is strictly less than 1. The fractal domain in grey scale 
resembles the heterogeneous background of a porous 
medium. 

Figure 3 Heterogeneous fractal domain with curved channel in 
the middle 

We use the probabilistic bounce-back model to simulate 
flow through the porous domain, and the Navier-Stokes 
equation is solved in the open conduit/channel (white 
zone). We studied two different cases depending upon 
the background heterogeneity. The background could be 
heterogeneous or homogeneous. For the homogeneous 
background, ns is uniformly equal to 0.1. 

A constant concentration boundary is enforced at the 
inlet and a zero concentration gradient boundary is applied 
at the exit. The domain is periodic transverse to the 
direction of flow. Flow is pressure driven with a density 
difference of 10~3 mu/lu2 between the inlet and exit 
boundaries. Transport is advection dominated; diffusion 
is kept at a minimum with the relaxation parameter for the 
solute component set equal to 0.501 ts and the dispersivity 
ratio (aL/ar) is 3. The relaxation parameter T for the 
fluid is set to 1.0 ts. In this case, Re = 5.4 in the curved 
channel and no eddy mixing is expected. We use CTRW 
to fit the LBM simulations. The ip(t) function obtained is 
presented in Figure 4. Unlike the monotonically decreasing 
ip(t) obtained for the Poiseuille flow, this curve shows a 
peak at approximately 1.5 pore volume that corresponds to 
the onset of solute discharge from the porous background. 

While the ADE is grossly incapable of fitting the results, 
breakthrough curves measured at the downstream end of 
the domain are well-fitted with the CTRW model as shown 
in Figure 5. 

Figure 4 tp function vs. pore volumes for simulations in 
domain of Figure (3) 
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Figure 5 Breakthrough curve at the downstream end of the 
domain with homogeneous and heterogeneous 
porous background with a curved conduit in the 
middle as shown in Figure 3 
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4.3 Eddy mixing 

Perhaps the simplest flow system that includes the 
possibility for eddy mixing is flow over a square obstacle. 
The domain is 400 lu long and 100 lu wide. Flow is gravity 
driven, with g = IQ^1 lu/ts2. The relaxation parameter for 
the fluid is set to 0.51 ts to induce an eddy behind the 
obstacle. The relaxation parameter for solute is equal to 
0.51 ts. Figure 6 shows a recirculating eddy flow at Re = 
100 after a square obstruction (25lu x 2blu) in a straight 
channel. 

Figure 7 gives the computed ip(t) function. It is more 
akin to the zero-diffusion Poiseuille flow ip(t) (Fig. 1) than 
to the tp(t) for the domain comprised of the porous medium 
and conduit at low Re (Fig. 4), yet important differences 
account for transient diffusion into and out of the eddy. 



Figure 6 Velocity field showing eddy circulation behind a 
square obstacle at Re = 100 
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We measured the breakthrough curve at the end of the 
domain and fitted the ADE and CTRW models as shown 
in Figure 8. 

Figure 8 Breakthrough curve at the end of the domain, for 
flow as shown m Figure 6 
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The ADE fails to capture the character of the curve, which 
exhibits a very sudden rise to approximately 0 8 of full 
breakthrough followed by a lengthy tailing period due to 
diffusion into and out of the recirculating eddy. Similar 
results are expected m more complicated flow systems that 
involve conduits and eddies. 

As a final example, we measured breakthrough curve 
at the end of the domain for turbulent flow at Re = 900 
in a fractal domain (81 lu x 81 lu) with a curved channel 

(Fig. 9) The flow is gravity driven, g = 10~5Zu/is2. 
Relaxation parameters for the fluid and solute are 0.501 ts 
and 0.51 ts respectively. In the porous medium Q L / Q T 
is again equal to 3. The maximum velocity attained in 
channel is 0.0535 lu/ts and the characteristic length for 
Re calculation is the width of the channel at the inlet that 
is 25 lu 

Figure 9 Fractal domain with curved channel in the middle 
modified to enhance turbulence 

The ip(t) derived from the LBM simulation (Fig. 10) results 
is particularly complex. CTRW is again capable of fitting 
the LB simulation of the complex solute transport process 
far better than the ADE as shown in Figure 11. 

Figure 10 ip function against pore volume on semi-log scale for 
simulation m Figure 9 
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5 Conclusion 

These results indicate that CTRW has excellent potential 
for modelling complex solute transport problems. Using 
LBM to simulate such solute transport processes may 
allow linkages between CTRW parameters and porous 
medium, conduit, and fluid dynamic characteristics to be 
established. Further analysis of the velocity distributions 
in the domains and their relationships with the derived ip (t) 
functions is necessary. This ultimately may allow CTRW 



parameters to be estimated from readily observable porous 
medium and fluid dynamical properties and applied to 
challenging field problems 

Figure 11 Breakthrough curve at the end of the domain with 
heterogeneous porous background and a curved 
conduit m the middle as shown m Figure 9 Flow is 
turbulent at Re = 900 

0 75-

8 050' 

0 25-

0 00-

' ' 

1 -

1 ^ a s s " * * * 8 ' 5 ' ^ 

1 

1 

I 

V 

V 

o LBM 
- ADE 

CTRW 

15 20 25 
Pore Volume 

35 

Acknowledgemen t s 

T h e a u t h o r s a re grateful t o a n a n o n y m o u s reviewer for 
e x p e r t a n d insightful sugges t ions t h a t have improved t h e 
q u a l i t y of t h i s m a n u s c r i p t T h e a u t h o r s a r e thankfu l t o 
D r T h o r n e for t echnica l a s s i s t ance T h i s w o r k was sup­
p o r t e d by t h e N a t i o n a l Science F o u n d a t i o n u n d e r G r a n t 
N o E A R 0440253, a n d by t h e U S D e p a r t m e n t of E n ­
e rgy u n d e r C o n t r a c t N o D E - A C 0 2 - 0 5 C H 1 1 2 3 1 

References 

Balasubramamum,K,Hayot,F andSaam,WF (1987)'Darcy's 
law from lattice-gas hydrodynamics', Phys Rev £ , V o l 36, 
No 5, pp 2248-2253 

Bear, J (1979) Hydraulics of Gioimdwatei, McGraw Hill, 
New York 

Berkowitz, B , Cortis, A , Dentz, A and Scher, H 
(2006) 'Modeling non-fickian transport m geological 
formations', Rev Geophys, Vol 44, No 2, June, 
doi 10 1029/2005RG000178 

Capuam, F , Frenkel, D and Lowe, C P (2003) 'Velocity 
fluctuations and dispersion m a simple porous medium', 
Phys Rev E, Vol 67, No 5, pp 056306 1-056306-8 

Cortis, A (2007) 'Peclet-dependent memory kernels for transport 
in heterogenous media', Physical Review E, Vol 76, No 3, 
pp 030102-1-030102 4 

Cortis, A and Berkowitz, B (2004) 'Anomalous transport m 
'Classical' soil and sand columns', Sod Set Soc Am J, 
Vol 68, No 5, pp 1539-1548 

Dardis, O and McCloskey, J (1998) 'Lattice Boltzmann scheme 
with real numbered solid density for the simulation of flow in 
porous media', Phys Rev E, Vol 57, No 4, pp 4834-4837 

Field, M S (1993) 'Karst hydrology and chemical 
contamination', J Environ Syst,~Vo] 22, No 1, pp 1-26 

Flekk0y, E G (1993) 'Lattice Bhatnagar Gross Krook models 
for miscible fluids', Phys Rev E, Vol 47, No 6, 
pp 4247^1257 

Freed, D M (1998)'Lattice Boltzmann methods for macroscopic 
porous media modeling', ta / Mod Phys C,Vol 9, No 8, 
pp 1491-1503 

Freeze, R A and Cherry, J A (1979) Gioimdwatei, Prentice-
Hall, Englewood Cliffs, NJ, USA 

Gao, Y and Sharma, M M (1994) 'A LGA model for fluid flow 
in heterogeneous porous media', Transport Porous Med, 
Vol 17, No l ,pp 1-17 

Ginzburg, I (2005) 'Equilibrium-type and link-type lattice 
Boltzmann models for generic advection and amsotropic-
dispersion equation', Adv Watei Resoin , Vol 28, No 11, 
pp 1171-1195 

Ginzburg, I and d'Humieres, D (2003) 'Multi-reflection 
boundary conditions for lattice Boltzmann models', Phys 
Rev E , Vol 68, pp 066614-1-066614 30 

Inamuro, T , Yoshmo, M , Inoue, H , Mizuno, R and Ogmo, F 
(2002) 'A lattice Boltzmann method for a binary miscible 
fluid mixture and its application to a heat-transfer problem', 
J Comp Phys, Vol 179, No 1, pp 201-215 

Kang, Q , Zhang, D and Chen, S (2002) 'Unified lattice 
Boltzmann method for flow in multiscale porous media', 
Phys Rev E, Vol 66, No 5, pp 056307-1-056307-11 

Pan, C , Luo, L S and Miller, C T (2006) 'An evaluation of lattice 
Boltzmann schemes for porous medium flow simulation', 
Computets and Fluids, Vol 35, Nos 8-9, pp 898-909 

Qian Y , d'Humieres, D and Lallemand, P (1992) 'Lattice 
BGK models for Navier-Stokes equation', Eutophys Lett, 
Vol 17, No 6, pp 479-484 

Spaid, M A A and Phelan Jr , F R (1997) 'Lattice Boltzmann 
methods for modeling microscale flow m fibrous porous 
media', Phys Fluids, Vol 9, No 9, pp 2468-2474 

Sukop, M C and Thorne Jr , D T (2006) Lattice Boltzmann 
Modeling An Inti oduction foi Geoscientists and Engineers, 
Springer, Heidelberg, Berlin, New York 

White, W B and White, E L (2005) 'Ground water flux 
distribution between matrix, fractures, and conduits 
constraints on modeling', Speleogenesis and Evolution of 
Kaist Aquifeis, Vol 3, No 2, pp2-8 

Zhang, X , Bengough, A G , Crawford, J W and Young, I M 
(2002a) 'A lattice BGK model for advection and anisotropic 
dispersion equation', Adv Water Resour, Vol 25, No 1, 
p p l - 8 

Zhang, X , Crawford, J W , Bengough, A G and Young, I M 
(2002b) 'On boundary conditions in the lattice Boltzmann 
model for advection and anisotropic dispersion equation', 
Adv Water Resow , Vol 25, No 6, pp 601-609 

Zou, Q and He, X (1997) 'On pressure and velocity boundary 
conditions for the lattice Boltzmann BGK model', Phys 
Fluids, Vol 9, No 6, pp 1591-1598 


