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1 Introdoction

Solute transport through heterogensous porows media has
generally bemn tepresented by Fickianadvection dispetgion
models, Several analytical and ourtverical tedels have besn
propozad and applied in the past. Soch waditional models
catnot predict the anomalogs behaviors like sudden
breakthrough and long 1ailing that are expected in porous
medin raversed by condats,

The Continuous Time Bandom Walk {CTRE W) model
can be uzed to simulate solute transport under complex
conditions, This method is based upon a provabilicy
distribution function {pdf) that defines the transition
titne of polute particles and ultimately depends upon the
hydrological and geological parameteras, CTRW has been
found zwecessful in modelling non-Fickian transport in
teterogensous porons media (Cortis and Berkowitz, 2004).

Solute transport through porous medis has bien widely
shudied at various scales and the ADE is generally nsed as
the towl For quantifying and pradicting solute transport.
The basic assumption of the ADE iz that dispergion follows
Fickian behaviour and hence breakthrough curves of pulse
inpuis follow a Gaussian distibution (Berkowitz <t al.,
2006}

Numerous expeniments have shown (Rat sclute
spteading does not follow g Gauszian distribution. The
main reason for thos non-Fickian behavior of solute
transpoIl in porous media is the preseoce of heterogeneity
in medivm properties ke porosity, petmeability, ste., al
vanous scales. The vanations 1o medivm properties affect
the veloecity of and path traveled by solute particles and
conaequently the Gme of travel varies with heteromeneity
of the mediom.

LI AADE

The traditicnal governing cqualicn for mass ransport of
a solute subjected to advection and anisotropic digpersion
in porous media 1w a partial differential equation called
the Anisotropic Advection-Dispersion Equation (A ADE}),
which in 2 2D Cartesian formulation reads
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wherz € iz solute concentralion (MI-F), I i the
mean  velosity it the X-dirsction {IT'), Ih; s
the diffusion/dispersion coefficient (L3T-1) in the &f
direction, x and i are spatial coordinetes (L) and ¢ is
time {T). Equaticn {1} is the governing equation for mass
trangport in iwo dimensions uader the assumplion of
Fickian dispersion, when macroscopic Aow iz in the -
direction, The ssoond term on the LHS of Equation (1)
represents the rate of mass ransport duc lo advection
alone and terms on the right hand side represcol mass
transport due to dispersion, which depends upon the
dispersion ¢oefficients (dispersion tensor) D, and 1, in
meapective directioms. Longtodingal (D) ahd transverss
{f0,) dispersion coefficienty account for anisptropic
dispersion io porous media,

Advection, mechanical dispersion, aod diffusion ans the
dominant mechanisms for transport of solute in porous
media, When advection is sgpificant, dispersion ia unsyual
between the longitudinal and transverse directions, but
when the adveetion rate i9 small and diFusion is dominant,
the longitudinal (£,.) and transverse {0, dispersicn
cocfficisoia ars nearly equal { Freeze and Cherry, 1979). The
process of mechanical dispersion is anisotropic even if the
pererig medinm jaisatropic with respect to pore orientation
and bydraulic cond uetivicy becanse flow in the lTongiudinal
direction alipned with the mean velocity is duminant and
ibal stretches the solute plume inte an eliptical shape
{Freeze and Cherry, 1979), Henee anisvtropic dispersion
must be congidered if simulation is performed at Darcy
seale whers detailed within-pore Aows are not regolved.

Porous media, in peneral, can exhibit muoltipk scale
heterogeneity and transport perameters must be linksd
properly at varicus scales for accurate solute bransport
maodelling. In the past, several models have been proposed
for porous media traverssd by conduits in which the
domain iz divided into zones and different analylical
models like the Darcy-Weishach equation, Foiseuille
{cubic) law, and Drarcy's law are used for flux caleulation
a8 apptopeiate in different zones (Field, 1993; White and
White, 2005}, These models may e applicable for Slokes
flow in geameirically simple domains, but in transition and
wrbulent regmes and compler dornging such models may
ot be appropriate.

1 LEM

2§ Flow model

The standard Bhatnagar-Gross-Kreook (BGK) collision-
based D209 [2-dimensional, @ velocity) model (Qian et al,
1992 15 nsed o simulate fluid Aow in open channels io this
witk, The macroscopic Auid densicy {g) for the model is

B
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The macroscopic velocity w is an average of the
microscopic velocitiss 2; weighted by the direcuional
densities f;:
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and ¢ is the unit specd on the lattics, 1 lattice unit per ime
step.

Equations (2] and {3} link the mesoscopic particls
distribution with the macroscopic density and velocity of
e Awid.



key staps are streaming and collision of the particles
via the distnbution function. The simplest approach 1625
the BG k. approzinoation for collision as described below,

Equation {4} repressnis the ume svolution of the
Particle Distributicn Function {PDF) (Qdan et al., 19923}
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where fi(x + eyt £ + 8t) = Fi{x, t) is the streaming part

and Jt{w} i (he collision term teprasenting
the rate of change of the particls discribution function dus
t collision. The collision operator 18 simplified in the BGE
model by use of a single relakation bme + for all directions.
T i§ @ relaxation time that indiates the rate at which
1he= systemn approaches equiibnium through collision, The
equilibeinm distribution Function £29 is (Quan et al, 1992}

where ¢, 6 the speed of sound, a free parameter in
Equation (5). c5 = % in (he present stody. The weights (i3}
ire % for y=1,2. 3,4 (mun Cartesian axea), and % [or
j =5,6,7.8{diagonals). The weight for § = Qrest particles
isty=1—¢l 3 t; =1— 35 = 3 (Ginzburg, 2005} Note
thatifu = 0, the equalibriven distribution function elements
;" mre simply the weights times the fluid density.

For the simulations we present below, we apply githat
pericdic or pressure boundary conditions for the fluid fiow,
For the pressure boundaries, we adopt the methods of Zou
and He {19973} in which incoming f5 are computed based
on the desired pressure and the known fz. In contrast 1o
the bounce-back boundaties discussed below, the pressure
boundarics arc applicd at the astnal locations of the nades.

2.2 Solure transport moda!

Flekkgy (1993} introduced an LB model to simulabe
diffusion of miseitls flvid Aow io 2D and 3D A geparats
equilibrium distribution functon with itz own relaxation
parameber s denved to simulate the advection-diffusion
equatien. Equilibrium distribution functions for fow and
transport ar¢ coupled with & common macrescapic Aow
velocity; hence the solute component behaves as a pasgive
aealar.

[n this approach twa compotients A and B are assuned
and ene is 2 very small fraction of the other, thereforc
collizions betwsen A-B or B-A arc assumed meglhigible and
rot included in the computation {Inamure et al., 2002).
Component & will have the same equilibrium fonection
as the mepgular BGK LB model (e, 1t will behave as
a regular fuid) bur component B will evolve towards
& oow chuiibivm az expresssd by ils own equilibriam
distribution function, which unlike Eguation (4) for
compotient A, contains only the lerms ap to Arst order in
flow velotity, as shown in Equation (6) { Fiekkay, 19937

fE X = ppix[e + 5 - us). (6

The densily (coneentration] for componant B i computed
following Equation {X) and its velocity a4 i3 assigned from
component &; B is advected as a passive scalar. The mass
diffusivity D Detween two species is sxpressed o tenms
of relaxetion time rg for commponent B {Fleklogy, 1993):

Do = 72 - %] o

LEM is not free from numerical diffugion. We estimated
numerical diffusion ai & moving soluts frool. Al a
velocity of 001 lufis and an expected diffusion of
3238 » 10 e fts, we found that the observed diffusion
coefficient was on the order of I0™%w®ftz preaier
(approximately 1% preater). The diffusion coefficient was
spproximalely 3% higher al a velocity of (.05 lu/ta, whish
18 the same 73 the highest velocity in our results zection. See
Ginzburg {1005) for an impraved equilibrium funchion that
teduces numerical diffugion for certain LEM transport
models.

Twa types of boundary conditions are applied 1o the
solute; the Arst is constant concentration and the second
15 zero concentrabion gradient, which allows advective Aux
but prohibits diffusive and dispetgive fluxes. Much like
(he Fou and He (1897) houndanes applied (o the flow,
the constant concentration boundary is based on ensurning
that the sum of the unkiswn incoming £5 plus the kKoown
f= equal the desired ¢omesmtration (Inamuro et al., 2002},
The 2ero concentration gradient boundary requires that
the solute f5 on cach side Of the boundary node are
balanced, Sukop and Thorne (2006) contains more detailed
descriptiong of these boundaries.

231 Macroscopic porous media approach

Fluids ivwing threugh porous media expenicnee resistance
that depends in pare on the volume density of solids
(the porogity) because no-slip conditions at Auid-galid
interfaces resist the Aow and generally become dominant
as the porosily decreasss. When this resistance is large
encugh relative to droving forces, flow is non-inertial
and governed by Darcy's law, AL higher poronty. in
larger conduts, or under high driving force, resistance
& lower and Aows trensition towards free fluid Aowe
governed by che Navicr-Stokes equation as the Reynolds
numbier inersasss and inertal ¢omponents of the Aow
become more important. Partial damping of inerhal
compenenls that allows simulation of a continuom of
Aow= from strictly not-ingrtial, Darcy's law behaviour,
throwgh transitional and incrtially-dondnated flows al
higher Beynolds numbsers ¢an bs conaidercd an advaniage.
It may reflzct the behavior of real porous media better
than 2 vigt Darey's law/Siokesian solution when the
permeabality 18 especially high andfor when gradisnis
are high enough that inerial effecls can be importanc
Scveral medels have been propossd b mode! Faw in
heteropenecus porous media (Balazubramaniyam et al,
1987 Gao and Sharma, 1994 Spaid and Phelan, 1097,
Pardiz and MWeCloskey, 1798, EKang 1 al., 2002, Freed,
1998} and usually uge either a dam ping factot or force that



allows this Darcy-Lo-inertial iransition, When appea priate,
it i3 alaas possible to exclude the potcodal For inertial
eomponents in porows tedium Aow by truncating the
inertial terms that appear in the equilibrium distribatian
fimetion, Equation (i)

Balaswbramaniyam et al. (1987} introduced a velogity-
dependent damping term in the Mavier-Stokes cquations
to approximate Darcy's law in porous media at
macroscopic scale in 2 hexagonal lattice, lattice gas maodel
context, The approach we implement here is based on
Ealasubramaniyam et al. {1987) extcnded to hexagonal
latticz Boltzmana meodels by Dardis and McCloskey
{1998}, but tiwmerous other approaches are available, The
modified N-3 equation with damping term Hu is

e 14dp
Y Au sy’ @

where, J 18 linked with & scatteret densily ny, which can
be viewed as loosaly related to the porosity of a medivm
{Balagubramaniyam et al, 1287} The relationship is =
2n, {Balasubramaniyam et al, 1987}, Gao gnd Sharma
(19%4) has defined 7, =ither a3 a fraction of solid nodes
i The porons medinm or probability of each node being
a sohd, bul interpreting it as smply a damping factor
inversely proportional to permeabilivy cver certain ran g
may be most appropaate, In this case, there ave oo distinct
pores and solidd and the kincmalic viscosily v oo longer
tetalns its normal meaning but instead, along with w2,
detcrmines & i latbcs units according to & = ,‘H‘;— We
always nze a singlz kinematic viscosity throughout the
domain and use n, alons to vary k.

This mode] can simuolate ai largs {Darcy) scale withoul
ipcumming  the excessive computationsl rTequitements
charactenistic of pore seale medelling. To implement (he
LBM for mactoseome porous media, thete is an additional
collision atep after streaming and BGK colhsion, Dencis
the PDFs after standard BGK collision by

f;q[x1 ﬂT_ ..f; I:7‘:! t:' |:9:|

where f* dencites the PDFg after gireaming. Then the
poTous media Step iz implemented a5 an additiong] term
invelving the f**

i+ d) = fx.0+

i, b4 8} = F2o(x, 2 + 5t}
g} | Fipalx + 6t t + 82} — F(x, e+ Jf]]. {10}

Thia reduees to siandard BGE collision when n, = 0. For
values of #; between 0and |, wehave apartial bounee-back
like condition that mekes the medium effectively porous;
ig., the Aow cae be described by Ddarcy’s Taw, Wi can
have a different n, value at each node in the domain.
Depending upen the scale, tach nede could repregent 2
large homogeneous domain.

The effective permeabdlity s given approximately
by =3 for w, < 0.5 In Sukop and Thorne {2006),
simulaticns with the same sode as that applied in this
siudy shew reagonable agreement with & = 5. but oo

formal ertor analysis is available at this time. Woreover,
a number of ather methods {e.p., Spaid and Phelan, 1997
Kang et al., 2002; Freed, 1908, Capuand et al., 20073) have
been proposed and may be superdor o whal we apply
in this work. The emphass here 15 on demonairating the
abiliry to account for relative permeability differences via
the damping factor and supenmpose anisetrapic solule
transport; additionel work iz needed to quantify the
aocwracy of the method.

Drrawbacks of the lattice BGE. equation with the
bounce-back boundary conditions have become svidenl
duting permeability calewlations in pore-scale porous
media simulations {Pan el al,, 2006} It has been shown
(Ginzbwrg and d'Hwmigres, 2003; Pan et al., 2006) that
the inaccuracy observed in the BGE modsl can be
effectively removed by using the Multiple-Relazation-
Titne (MR T) models, or in the caze of ihe standard BGK
madsl, by setling the rslasation perameater (r) aqugl 1o
1 and assuming the effactive wall position 1o be located
about halfway berween the Auid and solid nodes. Of the
simulations presenied m this paper, all bul twohave T =1,
o the firs high Fe (low =, Fig. &) case, our simulanon
guffers fronn a relatively stnall ervor in wall location. In the
second case (Fig 9} - where we uie the damping factor w
simulate the permeable walls of a chapnel «~ sinict bounce-
back is nel being applicd atd no analysis of potsttial
tnaccuractes is available to the best of our knowledge,

2.4 Anisarropic LBM

The BGK model is the simpkat form of collision
mechanisn in the LB squation and has 2 singls hongped
relaxation time for each direction that gives isotropic
diffugion when the paseive scalar approach i applied. This
is appropriate for the smoulation of diffusion in free lowing
Auids. However as explained above, in the solute transport
Process in poTons medis when the flow ia oot negligible,
dizpersion is inherently anisolropic; thus, an anisotropic
dispersion solver it needed to develop an LB mode] with
capabihities comparable to those of $tandard porous media
golute wranspert aclvers. The dispersion coefficients in
Eguation{l)are found wsing the following equation (Bear,
1979):

Dy = ar g + wiby + 2L 2Tty [

where, 455 is Kronecker delta, oy and ar are dispersivity
coefficients in the longitudinal and transverse directions
tespectively. £ and j represent the Cartesian directions (z or
o). For heterogemeous domains, velocity (uz, uy ) changes
al every node, so the dispersion coefficient does too.
Zhang ct al. {2002a) and Gipzburg (2005) inroduced
LE models with tore than one relaxation parameter in
the collision mechaniam to simulate anisotropic dispersion.,
Zhang's approach (Zhang et al., 2002z, 20020} appeared
first in the lilerature and we implemented i1 before
Ginzgburg (200%) was puoblished, Cinzhurg's method
(Ginzburg, 2005} i moere rgorows. Zhang't method



(Zhang et al, 2002a) has four relaxation paramecers
in pine directions to amuolate aniscitopic disparsion.
Comservation of mass is ensured by taking a weighted
swmmation of ihe particls distnbution funclien, so thal Lthe
ol ision atep remains mass invanant { Zhang ct al_, 2002a),
The mags is caleulated as (Zhang et al,, 3002a)

f'ﬂg -1
LEPIESMEL) az
T ] I
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and the dispersion tensor in terms of celaxalion paramcters
r is expraseed ag

Ga?
b= l?m[*iﬂ +15+ 7 — 3,

Eyz

Dy = gggldn+ms +7 =3 (1%
T

D:Hu = ﬁ[‘]ﬁ - 'TE].-

Wewedz =dy=1and =1,

Eour rclaxation parameters arc back caleulated from
dispersion coefficients. It is obvious from Equation (13}
that thers 15 no one-to-one relation between relaxation
parameters and dispersion coefficients. Hence one of the
relaxs ion parameter ischoesen sod rest arccaloulated waing
Equation (13). The relaxation parameters are so chogen
(fat they are close 1o cach ather Bul not (oo tlose o 0.5 ko
avoid numerical instability (Zhang &t al., 20025).

This will provide an LBM-based anisotropic diapersion
solver comparable to those found in standard porous
media solute transport models while the repular LB mode]
willi rmy =0 retaing the potentizl 1o solve e Navier-
Etokes equation and the advection diffusion equation in
concdaits. This model is verified against one- god two-
dimensional analylicel solutions for vanows boundary
cendivions (Zhang et al., 2002a, 20026).

3 CTRW

Unlike the ADE, the CTREW dpes not separate & prios
between advective and dispersive companents (o kesp
track of the solute movement. For a datailed account of the
CTREW method, we refer the reader to the recent review by
Berkowitz et al, (2004}, The initial conservation egquation
ig the se-called Master equation,

i
3 Cilt) = i O (2, (1)

where w;; 15 the transition rate [L/T] of C from point x;
1o xy, which describes the Ane details of the microscopic
heterogensity. As a fully detailed deterministic description
of the heterogencily is impossible to achitve in practics,
Equation (l4) is enzemble averaged over all possible
renlisations of the heterogeneity to obtain

uCi{t) — Clf = 0) = W fudCiu), (15)

where (he Glde ™ indicates e Laplace transfom E‘(uJ =
£lCity ] = [ Cit)exp(—ut)di, and u is the Laplace

variable. The quantity Wis{u) is intimately related 1o the

waibing-lims probability distibution function, ¥{x, £} of
a jump of length 2 m the time interval ¢ (Berkowitz
et Ak, 2008). Introducing the decomposition ¥(r, &) =
(2] plx], and 2ssurning that p{r)] has finite first and second
mement, it is possible to write the FDE thar poverns the
solute transpert in heterogenecsus formations, The one
dimensional form of this PDE reads

wl{z, u) — ColT)
=-M {u}ﬂ’% [E(:I:,u} - &%E{m,h}] . {16}

Equation{ 15) mtrod uees o titnes convolution of the classical
advecticn-dizpersion spalial operator with a memory
furetion, 34 (u), defined in terms of waiting time par ()

M) = ) 17
1 —lu)

and a characteristic tme £, The identifcation of the 10[#)
rasts at the heart of the CTRW method, Note that when
wit) = exp{—1), we have Llexp(—t)iu} = 1/(1 +u), and
thus Af () = 1; that is, the classical ADE is a special rass
of Ihe CTRW transport equation. For any other shape
of the probabhilistic distribution, A [u) # L, and memory
effects are manifest in the behavior of the solute. A host
of parametric forms for 3] bas been successfully used in
the likerature 1 fit experimental breakthrough curves and
a1t described in detail in Brrkowitz ot al. (2004,

In thiz approach, the parameters of the o1} pdf
atgrnent the clasgical number of transpart paramelen in
the {-D) advection dispersion squation (i.e., Uz, and o and
a best Gt io the data is scught on this parameter space.

This approach, however, fails w0 desoribe e mors
complex situations described in thit work, Inn cur d=amch
ot B CTEW model, we therafore adopt a different point
of view that consis in a numetical deconvolution of the
full time evolution of (i) {Cortis, 2007). We want Lo
anelyse some breakthrough curve {BTC) o ft) sampled
at the section 2y for discrete number of point t; in the
interval At = L foa ) We evaluaie an approximation
of the Laplace transform (troncated over 4Ad) of e
‘experimental’ BTC o {t] by means of a2 Cleoshaw-
Curtis quadrature algomithm for N Laplace variobles
w £ 0, (i =1... N} The values of w; are dictated by
the particular choice of the numerical algorithm for the
Laplace transform inversion {Berkowitz et al., Z006).

_ Wecan now search For the real and imaginary values of

3b[u; ) that minimise the norm berween 214y ), the soluton
of Equation {18) ai the given section m, (for o suitable
set of boundary conditions), and &.{u;}. the mumerical
Eaplzce trangform of e 1), Thic non-linear minimization
precedurt is repeated for all valucs of w; 1o obtain a
numerical approximation of 3 ).

MNumerical invergion of woit,) Anally yelds the time
evolution of 4{¢]. In order to perform the inversion
procedure on the memory function we peed, however,
to fix the walue of o The dispersivity « is in genezral



bt a datwm of the problem and can enly be given an
4 prioti estimated value in some interval |agan, @mosd-
where o, ~~ Dgg the diffusion coefficient for the solute
in the water, and @ma, ~ & the characterstic lkngth for
the pore throal size. The non-parametric inversion of
(€} yiehs rhus a farsily of pdfs o{¢a) depending oo
the paramecter o, and each member of the parsmetnc
family yields a best it oo the data, ¢.{t;). The reazon for
this behavior is easily understood by congidering that the
CTEW PGE in Equation (16} decouples the effects of the
spatial and temporal parts of the probability disiribution
of waiting times Tz, £) into twvo statistically independsnt
distributions, ¥(z 1} = plx}{t), defining thus a non-
dimensional dispersivity {inverze of the Peclet number,
ffi=Pe~ 1] -

o  1[plsitdr
I 2 [ plzhedz %

wherz 1. 13 a charactenistic macrossopic length scals, As the
plx) disttibution needs only to be charootetiged by its first
\wo moments, the decompodgition of T{z, £} = plzlt), s
nat unique, hence the expression for the«(} is not unigue,
Wenote, however, thal we can ususlly have very goed it of
the BTC by imposing small values of o, i.e_, by distutbuting
the effect of the spreading mote i the emporal part
{the waiting time pdf (1)) rather than the on the spalial
compenent (the dispersivicy), The consistency of the choice
of the small seale Fe will ultimalely be assessed only by
looking at BTC predictions aver different sections 2, which
we resarve for futore work.

4 Results apd discussion

The value of combining the CTRW and LBM sppreaches
ia that eomplete knowledpe of the velocity field ia available
from the LBM simulations and domain heterogeneity
tan be vanied al will, In the compansons of CTREW und
ADE models that follow, the CTR'W is applied in & 1-D
macroseopie fashion to the 2. LBM simulakions. That
15, while the LBM solves the AADE described above, the
macrostopic ADE and CTRYW used to fit the results treats
the flow and transport a5 macroscopically 1-Dx

4.1 Poiseuille fow

One of the simplest types of breakthrough curves is that
which corresponds to Poizeuills Aow and solute transport
withsut diffusion. This weoblem has an easily-derived
analytical solution and can be clossly approximated
by LBM simulation. However, thiz breakihrongh corve
cannot be fitled with the ADE, We use 8 domain 10007 =
B2 fu 1 simulate solute rransport with near-zere diffusion
For peiodic Row i 3 alit. The Aaw i3 gravily driven 2l
g = & » 107Hu/is*. Relaxation parameters r For Auwid and
solute are 1.0 ta and 0.30) #s especiively. The average
velocity of Aow is 0.02 fu/ts

Figurz 1 shows the 4 t] Function and Figure 3 shows the
LEM simulation together with (he bast-Atting ADE and

CTRW solutions. The CTREW is clearly capable of Aning
this simple breakthrough corve.

Figure 1 % Munction ageinst pore volume for 2¢re diffusion
ranaport between parallel plates
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Figoee T Zero diffusion breakihrough curve from LBM fitted

with CTRW aid ADE
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The breakthrough and +(2) are plotied against the number
of pore volurnes: ¢hited. Pore volume refers o the volome
of Apid ccoupying the pote space of 2 porous medivm,
for saturated conditions, it is the total volurne of a porous
meadium minus the total volume of solids that comprize the
mediur.

For a domain with cross-zectional area 4 and
yvolomeiric Avid content & {fequal to 1 {for Aow in a sh.
the number of pero volumes is calculated by dividing the
vialume of fluid leached through the column {1© = A4841)
by the fluid capacity (V) = A?L) of the medinm

Vo oAbnE wt

"RTMLTL )
The pore yolume is noutinely wsed to non-dimensicnalize
time in studies of solute breakthrough by dividing the
volume of Awid eluted ftom the mediom by one pore
volume. This is convenient because it epables rapid
comparison ¢ pision flow, where solutes entenng the
medivm at 0 pore volumes would elute when 1 pare volume
of solute-laden Andd has passed through the medinm.
In the macroscopie poree: medium LBM applicaton



here, 1 pore volame ¢quals the toral volumes becauss the
‘zolids’ that damp the fow cccupy O velume. Both relative
concetittalisn and pore volotme are dimensionless, and are
used to nom-dimensionalize breakihrough curves,

4.2 Porous prediun: with conduit gt low Re

A4 3 model of a heéterogencous porous medilm traversed
by a condujr, we use a randomly penerated 81{u = 8liy
denain with a fracta)l permeabibity disiribution as shown
in grey scale in Fipure 3. White indicates open pores,
black represents solid particles or zero permesbikity and
grey represents micrmediate permeability. Io Lhis case r,;
i 5ieckly Tess than 1. The fractal domain in grey scale
rescmbles the heterogencous background of a porous
mediom.

Figure 3 Heteropmeons fractal damain with eurved chanmet in
ke middl

aim

We was the probabilistic bovoes-back madel to simulate
fow through the porous domain, and the Navier-Stokes
equation i solved in the open conduit/channe] {(white
zone). We studied we different caset depending upon
the Backeround heterogensity. The backarownd could ba
heterogencous or homegeneows, For the homogensous
background, ng is voformly equal to 01

A comztant concentration houndary 15 enforced at (he
inlet and a zerc concentration gradient boundary is applied
at the exil. The domein 8 perodic (ransverse W the
direction of flow. Flow i3 pressure driven with a deosity
diference of 107 mu/lu? betwesn the inlet and exit
boundaries, Transport 15 adveclion dominated; diffusion
is kept at 2 minitwm with the relaxation parameter for the
salute componend B30 equal oo 0.501 t= and the dispersivity
ratic {exr,feer) (3 3. The relaxation parameter + for the
Awid iz p2i to 1.0 2o, [n this case, Re = 5.4 in the curved
thannel and no eddy mixing iz expected. We use CTRW
tc fit the LBM simulations. The o(¢) function ohtained is
présented in Figure 4, Unlike the monolanically decreasing
[t} obtained [or the Poisewlle Row, this curve shows a
peak at approximately 1.5 pors volums that comrespands o
the omset of polute discharps from the potous background.

While the ADE is grossly incapable of fitting the results,
breakthrough curved measured at the downstream end of
the domain ave well-Aited with the CTEW model a8 shown
in Figure 5.

Figre 4 4 fignetion vs. pere vol wmss for simwlations in

domain of Figura (3}
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Figre 5 Hrzakrhrough curve at the downstreem end of the
domain with homegensous and helcTogeneous
poreus background with a corved conduit in the
tiddle as shown in Figure 3
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4.3 Eddy mixing

Perhaps the simplest fow system that includes the
possibility for eddy mixing i3 fow over 2 squars obstacle,
The domain is 400 i long and 100 e wide. Flow is praviny
driven, with 7 = 107 fufts?. The relaxation parameter for
(he Auid is set to 951 t5 10 indoce ao &ddy behind the
ohatacle. The relaxation parameter for solute is equal to
0.51 £a. Figure ¢ ahows 8 recirculating eddy flow at Be =
1M after a square obhstruction (256w « 25[u) in a straight
channe],

Figure 7 gives the computed (¢} functon. It is more
akin 1o the zero-diffusion Poiscutlle Aow vt (Fig. 1) than
to the (¢} for the domain comprized of the porous inedium
and conduit al low Re (Fig, 4, yet importanl differeoces
account for transient diffusion into and out of the eddy.



Figre 6 Velooily ficl showing eddy arculation behmd a
square olbatacle at Re = 1400

Figure T 1 function vs. time for circulabog eddy
By
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We measumed the breakthrouph curve at the end of the

domain and fitted the ADE and CTREW models as shown
in Figure §,

Flgure & Breakthrough curve at the end of the donwain, for
Aow a5 shown 1n Figure &
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The ADE faila 1o capture the character of the corve, which
sahibits & very sudden rise o approximately 08 of fofl
breakthrough follewed by a lengthy tailing pedod duc to
diffusion into and out of the recircularing eddy. Similar
results ar axpected in mote comnphicated Aow sysiems that
invohre conduits and eddies.

&5 a inal example, »& measured breakthrough curve
at the cod of the domain for turbwleat Aow at Be = 900
it o fractal domain {81 fu »« B1 {u) with a curved channel

(Fiz. 9 'The flow is gravily deiven, g = 10—%u/ts®
Relaxation parameters for the fluid and sclute are 0,301 €5
and 0.51 ta regpectively. In the porous medivm oy far
iz agam equal to 3. The maximum velocity zttained in
channel iz 00535 Iefte and the cheracreristic length for
Re caleulation s the width of the channoe] at the inet that

525

Flgure ® Fracal domenn with cerved channed i the middle
madiied to enhance turbulence

The (L) derived from the LBM zimulation (Fig, 100 results
is particularly compled, CTRW iy sgain capable of fitling
the LB simulation of the complex soluts ransport process
far better than the ADE a8 shown in Figurce 11,

Fignoe 1 o Functen against pore volume on semi-log scals for
saimulabon it Figure 2
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5 Conclusion

These resulls indicale that CTRW has excellent potential
for modelling complex solute transport problems. Using
LEM v simmulzte such solute transport processes may
allow linkapes between CTRW parameters and porows
medium, conduit, and Auid dymame characterstics 1o be
gstablished. Further analysis of the velocity disteibuiions
in (he domeing and ther relationships with thederived ¢ t)
functions iz necessary. Thiz ultimately may allow CTEW



parameters ko be estimated feam readily ohservable porous
medium and Aud dynasmcal propernes and apphed (o
challengng field problems

Figure 11 Breakthrough curve at the end of the domam with
heteropenenus porous backpround and a curved
condwit in the mudidle as shown i Figure ¥ Flow i
turbulent at Re = 80
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