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Sequential Dynamical Systems With Threshold Functions * 
Chris L. Barrett Harry B. Hunt I11 Madhav V. Marathe 

S. S. Ravi Daniel J. Rosenkrantz ' Richard E. Stearns 

1 Introduction 
A sequential dynamical system (SDSJ (see 
[BH+Ol] ancl the references therein) consists of an 
undirected graph G(V,E) where each node w E V is 
associated with a Boolean state ( s u )  and a symmet- 
ric Boolean function f u  (called the local transition 
function a t  w). The inputs to fu are sv and the states 
of all the nodes adjacent to w. In each step of the SDS, 
the nodes update their state values using their local 
transition functions in the order specified by a given 
permutation 7r of the nodes.3 A configuration of the 
SDS is an n-tuple ( b l ,  b z ,  . . . , bn) where n = IVI and 
b, E (0 , l )  is the state value of node v,. The system 
starts in a specified initial configuration and each step 
of the SDS produces a (possibly new) configuration. 

The original motivation for studying SDSs and their 
generalization was to develop a computational the- 
ory of discrete socio-technical simulations, e.g. trans- 
portation and communication systems. However, the 
above SDS model is closely related to discrete Hop- 
field networks [F099], finite Cellular Automata (CA) 
[Su95] and Communicating Finite State Machines 
(CFSMs) [BP'r91, HKV971. As a result, many of our 
lower and upper bounds apply to such models i ts  well 
(see Section 4 ) .  
Summary of results: Analysis problems for SDSs 
deal with the question of determining whether a given 
SDS has a specified property. Reachability prob- 
lems are an important class of such analysis prob- 
lems where the goal is to determine whether a given 
SDS starting from a specified initial configuration Z 
ever reaches a specified configuration C. Complexity 
aspects of reachability problems for SDSs were first 
studied in [BH+Ol] where the following dichotomy re- 
sult was established. Reachability problems for SDSs 
are, in general, PSPACE-complete. However, they 
can be solved in polynomial time for SDSs where each 
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31t is easy to extend the definition to more general func- 
tions, update orders, edge/vertex weights and succinct repre- 
sentations; see [HH+O1]. 

local transition function is symmetric and monotone, 
that is, when each node function is a positive threshold 
function. (For any b 2 0, the positive k-threshold 
function has the value 1 iff the number of 1's in the 
input is at  least IC . )  

This paper extends the results in [BH+Ol, F099, 
BP'I'91, HKV97, Su95] on SDSs, Hopfield networks 
and succinctly specified CFSMs in several directions. 
We discuss the main results here; for applications of 
these results, see Section 4. 

We show that reachability problems for SDSs re- 
main PSPACE-complete even when the set of local 
transition functions contains only positive and neg- 
ative threshold functions, thus strengthening the di- 
chotomy in [BH+Ol]. (For any k p 0, the negative k- 
threshold function has the value 0 iff the number of 
1's in the input is at least b.) This result enables us to  
prove that when asymmetric edge weights are permit- 
ted, positive threshold functions alone suffice to  make 
reachability problems for SDSs PSPACE-complete. 
Moreover, this hardness result holds even when the 
edge weights are from (0, l ) .  A consequence of this 
result is that if the local transition functions are mono- 
tone (but not necessarily symmetric), the reachability 
problems for SDSs remain PSPACE-complete. 

When each local transition function is a positive 
threshold function, it was shown in [BH+Ol] that an 
SDS reaches a fixed point after at most [3m/2] steps, 
where m is the number of edges in the underlying 
graph. Here, using a more refined analysis, we im- 
prove the upper bound to  [(m + n + 1)/2]. 

2 Hardness Results 
Our main hardness result is obtained by simulating a 
special kind of SDS developed in [BH+Ol]. A precise 
stat,ernent of this result is given below. 

Theorem 2.1 There is a polynomial time reduction 
from an SDS S with underlying graph G, set of local 
transition functions F and configurations Z and B for 
S to  an SDS SI with underlying graph GI)  set of local 
transition functions .TI and configuration,s ZI and B1 
for  SI such that 

1. Each local transition function in FI is either 
a positive threshold function or a negative threshold 
function. 
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2. S starting in configuration Z reaches B iff SI that; each state change reduces the potential of the 
starting in con,figuration 11 reaches B1. Moreover, for SDS by at least 2 ,  we show that the number of SDS 
each t ,  S reaches f? in t steps iflS, reaches B1 i n  t+l steps in which the potential can change is at most 
steps. [ (m -t. n + 1) /2] .  
3. S starting in configuration, Z reaches a fixed 

point iffSl starting in 21 reaches a fixed point. More- 
over the maximum node degree of & is bounded b y  a The above results have the following additional impli- 
quadratic function of the maximum node degree of S.  cations. 
Finally, the number Of nodes Of SI is bOunded by a A. Floredn and Orponen [F099] leave open the 
linear function of the number of edges of S .  questi.on of proving lower bounds on reachability prob- 

lems for sequential symmetric and asymmetric dis- 
The construction used to prove the above theorern is crete Hopfield networks. Our results show ,.hat se- 

somewhat intricate. jFroin the above theorem and the quential systems are as hard as parallel systems, thus 
PSPACE-completeness of the reachability problems answering their conjecture in the afimative. More- 
for SDSs, it follows that the reachability problems for ovel’, in contrast to earlier work, the results hold for 
SDSs with positive and negative threshold fun.ctions edge weights that are either 
are also PSPACE-complete. Moreover, this hard- Using ,.he concept of c610cal simulation7, ) our re- 
ness result holds even for SDSs in which the maximum sults imply that when SDSs, discrete Hopfield net- 

works or CFSMs are specified succinctly (using a hier- node degree is a constant. 

for SDSs with asymmetric edge weights and positive tems discussed in [HKVgT]) , the corresponding reach- 
threshold local transition functions is established by ability problems become EXPSPACE-hard. These 
a reduction from the hardness result for SDSs with the first such results for Hopfield networks 
positive and negative threshold functions. This re- and highly restricted classes of CFSMs. For instance, 
sult also implies the PSPACE-hardness of reachabil- it is easy to see how a simple counter-like CFSM ity problems for SDSs with monotone local transition reprec;ent a threshold function. Our results can thus 

be viewed as identifying “hard instances” by a judi- functions. 
3 Improved Upper Bound cious combination of the power of individual FSMs, 

the structure of the interaction graph between the 
When each local transition function is a positive F S M ~  and the semantics of l;he mechanism for passing 
threshold function, it was shown in [BH+01] using messages between the FSM~.  
a potential function argument that the number Of C. The convergence bound obtained for SDSs with 
steps needed for an SDS to reach a fixed point is positive threshold functions implies an analogous 
at most L3m/21, where m is the number Of edges bound for the convergence time of symmetric sequen- 
in the underlying graph. We improve this bound to tial discrete Hopfield networks with no edge weights. 
f(m + n 11/21. This irnProvement relies on the fol- For this problem, the results summarized in [F099] 
lowing two main ideas. imply a bound of approximately 3m/2. Our results 
1. Reference [BH+Ol] defines a potential function improve the bound to [ (m + 

on the nodes and edges of the underlying graph and 
~~f~~~~~~~ shows that the upper bound on the total potential of 

the SDS for any configuration is 31n+n. For the same [BH+Ol] C. Barrett, H. B. Hunt, M. V. Marathe, 
potential function, we show that for any SDS and any S. S. Ravi, D. J. Rosenkrantz & R. E. Steams, 
configuration that has a predecessor, the upper bound “Analysis Problems for Sequential Dynamical Sys- 
on the total potential i s  2m + n. (This bound is tight; terns and Communicating State Machines,” To ap- 
that is, there is an SDS and a configuration with a pear in Proc. MFCS 2001, Aug. 2001. 
predecessor such that the total potential is eq,ual to [BPTS1] S. BUSS, C. Papadimitriou & J. Tsitsiklis. On 
2rn + n.) the predictability of coupled automata: An allegory 

about Chaos. Complex Systems, 1(5), 525-539, 1991. 2. Call a transition of an SDS from a configuration 

:Discrete Hopfield networks, in Comp. and Learning transition needed to obtain C1 from C is either 0 to Complexity of Neural Networks: Advanced Topics 
[HKV97] D. Harel, 0. Kupferman & M. Vardi. “On the 

1 or 1 to 0. We observe that for any SDS in which 
complexity of Verifying Concurrent Transition Sys- each local transition function is a positive threshold 
terns,” in Proc. CONCUR’97. function, if some step produces a unidirectional tran- 

sition, then all subsequent steps (Until a fixed Point is on the computational complexity of 
reached) also produce unidirectional transitions. :finite cellular automata. JCSS, 50(1), 87-97, 95. 

4 Applications 

or 

The PSPACE-hardness Of reachability problc?ms arcllical specification of the concurrent transition sys- 

+ 1)/21. 

c to a configuration c1 unidirectional if every state [Fog91 P. Florebn & P. Orponen, complex it^ issues in 

[sUgq K,  Sutner. 

Using the above ideas and the result in [13H-t.01] 


