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Abstract 

Signal transduction generally involves multivalent protein-protein interactions, which can produce var­

ious protein complexes and post-translational modifications. The reaction networks that characterize 

these interactions tend to be so large as to challenge conventional simulation procedures. To address 

this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of 

a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly 

defines the reactions that can occur as a result of the interactions represented by the rules. With the 

rule-based KMC method, explicit generation of the underlying chemical reaction network implied by 

rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent 

ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider 

the following kinetic models: an equivalent-site model, an extension of this model, which takes into ac­

count steric constraints on the configurations of receptor aggregates, and finally, a model that accounts 

for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an 

equilibrium continuum model. Using these models, we investigate the effects of steric constraints and 

the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation 

and the percolation phase transition that occurs in this system. 
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Introduction 

Attempts to simulate cell signaling systems must address the problem of combinatorial complexity 

(1), the large numbers of chemical species and reactions that arise from molecular interactions in 

these systems. This complexity strains conventional model-specification and simulation approaches, 

which take a reaction network (Le., a list of reactions) as input. An alternative approach to model 

specification is to use rules to represent interactions and their consequences (2). In this approach rules 

represent generalized reactions, or reaction cl=es, which ",ise from molecular interactions Xand 

the rules serve as generators of chemical species and reactions. A rule defines a transformation and 

the molecular properties and context necessary for a molecule or molecular complex to undergo the 

transformation. When the contextual requirements are limited, as when the local environment of a 

site determines its reactivity, a set of rules can provide a compact high-level specification of a model 

for a system characterized by a large underlying chemical reaction network. 

1\ Several software tools have been developed to enable rule-based modeling, including STOCHSIM 


(tLR) JI{, BioNetGen (5, 6), Moleculizer (7), Simmune (8), and DYNSTOC (9). Three approaches have 


Z merged for the simulation of rule-based models. In the "generate-first" approach, rules are iteratively 


~l 
~{V~ ::P::::I::::~~ :~::::::::::e::t:e:::::::;::e::;:: ::~:t;::::I:i:::;~:;:~:~:;:: 

1)"fi'k (2). This approach, which is efficient for small-to-medium sized networks (10' species or less), becomes 

computationally intractable as network size grows. Simulation via this approach can be made more 

tractable by introducing exact or approximate reductions of a model implied by a given set of rules (10). 

The second approach is the "on-the-fly" ~which both speeds simulation and limits network 
V'Uv 

generation from rules, which is expensive 6, 7) On-the-fly simulation tt es advan~1W of a featu e k­
·k. lr\l -eS (J:.CII;., 

of methods for simulating discrete-event reac Ion kinetics, such as the SS ~that a lows lazy {tV CaJ 
processing of reaction rules. Namely, to advance a simulation using such a method, we require only ~ 

knowledge of the species currently populated and their potential reactions, not all potential species -JGe 
and reactions. However, in some cases, even the partial reaction network required for on-the-fly ~~ p 
simulation can be exceedingly large (2, 13). The third simulation approach avoids network generation {f1Jft1'1 
altogether, and we will refer to it as the "network-free" approach. A variation of this approach, ( 

orton-Firth and Bray ~e..L 

fji.l'V 

p(~~ 



3 Steric effects on aggregation 

(14). However, the method of Morton-Firth and Bray tends to be inefficient for systems marked by 

stiffness (i.e., systems with processes occurring on multiple time scales), and STOCHSIM has limited 

rule-processing capabilities. 

Recently, Danos, Krivine, and co-workers have presented a more efficient formulation of the 

network-free approach (15). Instead of individual reactions being fired in the simulation procedure, 

reaction rules are fired, followed by selection of reactants and rule-defined generation of products. 

Although conceptually straightforward, this extension introduces a requirement to track individual 

molecules and their reactive sites, so that the ability of molecules to participate in the different reac­

tion classes defined by rules can be determined along with the cumulative propensities of the different 

reaction types. Overall efficiency of the method depends on careful implementation of the bookkeeping 

procedures needed to accomplish these tasks. 

Here, we present an application and extension of the rule-based kinetic Monte Carlo (KMC) sim­

ulation method of Yang et al. (13), which extends the method of Danos et al. (15). The difference 

between this method and the method of Danos et al. is the introduction of a step in which the non­

local context of potential reactants is examined to determine their reactivity. This step introduces null 

events (i.e., time steps in which no reaction or system updates occur). Introduction of null events has 

been shown to provide for efficient processing of rules for reaction types that depend on the non-local 

context of reactive sites (13), such as ring-closure reactions that produce cyclic molecular complexes. 

Here, we show how the method of Yang et al. (13) can be extended to account for geometric constraints 

on the formation of molecular complexes. 

We develop a model of trivalent ligand and bivalent receptor interactions. In this system, which 

we also study experimentally, a synthetic molecule containing three symmetrically-arrayed hapten 

groups interacts with anti-hapten monoclonal IgE antibody bound to FCERI, the high-affinity IgE 

receptor, on the surface of rat basophilic leukemia (RBL) cells. The system involves the following 

basic interactions: binding of a freely diffusing ligand from a solution phase to cell-surface receptors, 

crosslinking of receptors by surface-bound ligands, and dissociation of ligand-receptor bonds. These 

interactions are considered in a kinetic model studied by Yang et al. (13) that is based on the 

equivalent-site assumption (16) and corresponds to the equilibrium continuum model of Goldstein 

and Perelson (17). In this model, ligand-induced receptor aggregates are acyclic and have tree-like 

topology. 



Steric effects on aggregation 4 

The Goldstein-Perelson model predicts a sol-gel percolation transition (PT) and formation, in the 

gel phase, of a superaggregate containing a significant fraction of the receptors present on a cell (17). 

Using the TLBR model we demonstrate how the dynamics of receptor aggregation depends on ligand 

concentration using values of kinetic parameters estimated in part from fitting equilibrium binding 

data. 

We also develop an extension of the TLBR model to account for steric effects on receptor aggregates. 

Such effects can be expected to arise from the geometrical properties of interacting molecules. As a 

simplification, we assume that ligand and receptor properties are such that receptor aggregates form on 

a hexagonal lattice. In the extended TLBR model, the kinetics of binding is modified by the structures 

of interacting complexes. Overlaps in space, unfolding, and flips in 3D are prohibited in the model. 

Algorithmically, such constraints are taken into account by incorporating null-events in the simulation 

procedure. The overall system evolution rate is estimated based on the assumption that there is no 

dependence of reaction rates on aggregate structures, and then, for any particular binding reaction, 

accurate corrections to the rate are made to determine whether or not the event occurs. To account 

for steric constraints on molecular structures of ligand-receptor aggregates, we track the connectivities 

and rotation angles of molecules in aggregates. Note that, although the spatial configurations of 

molecules are tracked, the extended TLBR model is still based on the assumption of a well-mixed 

reaction compartment. 

Finally, we demonstrate that the influence of steric effects on the overall kinetics of binding and 

aggregate formation can be effectively lumped into binding rate constants by introducing an empirical 

binding probability that depends only on the sizes of interacting aggregates. The parameters in a 

fitting function for this probability are estimated from simulations using the extended TLBR model. 

Models evt~ Q!,It) ~1 
e11 Ah 

We assume a homogeneous distribution of bivalent receptors on a cell membrane. The medium sur-r~ ., 
rounding a cell contains a homogeneous distribution of trivalent ligands. The system is well-mixed. 

Due to the multivalent nature of interacting ligands .and receptors, the number of distinct ligand­

induced receptor aggregates can be very large (2, 13, 17). Among the different possible structures of 

receptor aggregates, there are chains, trees and cyclic aggregates, as illustrated in Fig. 1. Here, we 
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consider three models for the system described above: the equilibrium-continuum model of Goldstein 

and Perelson (17), a kinetic version of this model, which has been called the TLBR model (13), and 

an extension of the TLBR model that incorporates steric constraints on the configurations of receptor 

aggregates. We also consider versions of the extended TLBR model with and without inclusion of 

cyclic aggregates. 

Goldstein-Perelson model 

The Goldstein-Perelson model (17) is based on the equivalent-site approximation (16, 27). Interactions 

between ligands and receptors include only two types of associative binding reactions: binding of a 

single site on a ligand in solution to a single cell-surface receptor site, and crosslinking of two receptors 

by a ligand that is already bound to a receptor site. These interactions are characterized by the 

following dimensionless parameters: 

c (1) 

(2) 

where the equilibrium association constant Kl characterizes the binding of a ligand site in solution to 

a receptor site, the equilibrium crosslinking constant K2 characterizes the binding of a tethered ligand 

site to a receptor site, cf;, is the concentration of free ligand in solution at equilibrium, and CR is 

the total concentration of receptors. Note that a linear chain elongation reaction is assumed to be 

characterized by the same crosslin king constant K2 as a reaction that forms a branch (i.e., a three-way 

junction). Examples of receptor aggregates induded in the model are illustrated in Fig. l(b,c). 

The Goldstein-Perelson model accounts for all possible receptor-containing species except cyclic 

aggregates. A key element of this model is a partition function, q, which is a sum of the concentrations 

of all possible linear and branched aggregates. Derivation of q is presented elsewhere (17). This 

quantity is given by the following expression: 

(3) 


where qo is the partition function for aU linear chains and 'Y = 4f32c/(1 + c)3. The quantity qo is given 



6 Steric effects on aggregation 

by 

qo = w/(l - Jw), (4) 

where J = 4/3c/(1 + c)2 and w is the fraction of unaggregated receptors, which is given by 

(5) 

where x is the fraction of free (unbound) receptors at equilibrium. Variables c~ and x obey the 

following conservation equations: 

(6) 

(7) 

where CL is the total ligand concentration in the system. To find the values of C~ and x, we 

substitute q given by Eq. 3 into Eqs. 6 and 7, and solve the resulting algebraic equations numerically 

using iterative methods, e.g., the Newton-Raphson method or secant method (28). 

According to the Goldstein-Perelson model, the fraction of receptor aggregates containing n recep­

tors and m 2: 2 branches, wn , is given by 

(8) 

where mmax = floor[(m - 2)/2J, the maximum number of branches in an aggregate of size n. The 

function floor [ J takes the integer number of the argument. The model also predicts the fraction of 

receptors in the gel phase, f g , which is given by 

fg = 1 - (1; c) [1 + (1 + 1/c)1/2J. (9) 

In the sol phase, the system contains single cell-surface receptors and small aggregates. When the 

value of the dimensionless parameter /3 is below a critical value, /3c = 4, fg is negative (undefined) for 

any value of c, and this condition corresponds to the sol phase. For /3 > /3c, fg (Eq. 9) crosses the 

zero at two points, where c = c_ and c+, and the sol and gel phases coexist (results not shown). The 
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condition c- < c < c+ corresponds to the gel phase, which is characterized by the formation of an 

infinite-sized aggregate. Thus, Eq. 9 with fg = 0 describes the boundary of a percolation transition 

(PT) in the space of the parameters f3 and c. 

TLBR model 

The TLBR model (13) is a kinetic version of the Goldstein-Perelson model. In the kinetic model, 

individual molecules are tracked explicitly. The data structures used for this purpose are presented 

below. Here, we introduce the assumptions underlying the model. 

All sites of interacting molecules are assumed to be equivalent. As illustrated in panels (a) and 

(b) of Fig. 2, binding of a ligand from solution to cell surface-receptors takes place with single­

site forward rate constant k+l' and crosslinking of receptors occurs with single-site rate constant 

k+2 . All association reactions are reversible, and dissociation occurs with single-site rate constant 

koff. In contrast with the Goldstein-Perelson model, which is a continuum model, the kinetic model 

accounts for a finite-sized system. The size of the simulated system is defined by the total numbers 

of ligands, NL, and receptors, NR. The kinetic rate constants k+l and k+2 are related to Kl and K2 

as follows: Kl = k+lNAV/koff and K2 = k+2NAV/koff, where V and NA denote the volume of the 

simulated system and Avogadro's number, respectively. The relationships between k+l' k+2 and the 

dimensionless parameters c and f3 of the continuum theory (17) are given as follows: 

c 3k+1N L,oo/ koff' (10) 

f3 k+2NR/koff' (11) 

where NL,oo denotes the number of free ligands in solution at equilibrium. 

Extended TLBR model 

In the TLBR model, spatial configurations of receptor aggregates are assumed to be unimportant. This 

assumption is relaxed in the extended TLBR model, in which the rates of ligand-receptor interactions 

are assumed to be dependent on the configurations of receptor aggregates. In the extended TLBR 

model, ligand binding from solution and receptor crosslinking are treated in the same way as in the 

TLBR model, but final acceptance of reactions depends on a check of the spatial context of interacting 
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molecules. If a sampled reaction is not feasible for steric reasons, the reaction is rejected. To keep track 

of the configurations of ligand-receptor aggregates, we use data structures that record the orientation 

angles of molecules and their binding sites, as described below. 

Assumptions made in our consideration of steric constraints include the following . The ligands 

and receptors are rigid. We assume that the ligand binding sites are symmetrically arrayed in a plane 

(18, 29), such that they lie at the vertices of an equilateral triangle. The receptor binding sites lie at 

the ends of a line segment. Thus, ceH- urface reactions are treated as if they occur on a hexagonal 
I 

lattice, as shown in Fig. 2( c) Once a free ligand binds a surface receptor, the resulting 

dimensions. Flips in three dimensions are not allowed. Two 

binding sites of different aggregates are not allowed to react if other parts of these aggregates overlap 

in space. In other words, steric clashes are prohibited. 

In the extended TLBR model, we account for cyclic aggregates as follows. If ligand and receptor 

sites are unbound and positioned next to each other in the same aggregate, the rate constant for a 

binding reaction between these sites is defined as )+6' Note that, because of our assumptions about 

the steric properties of ligands and receptors, the smallest cycle or ring contains six receptors, and 

only a single rate consta t (j+6) is required to characterize all ring-closure reactions. All dissociation 
I 

reactions, including r ' ~p ning reactions, are characterized by koff. 

Simulation outputs 

To characterize receptor aggregation using the equivalent-site and extended TLBR models, we calculate 

the following quantities: the fraction of aggregates containing n receptors, w~; the fraction of receptors 

in the gel phase, f;; and the mean aggregate size, (8). The quantities w~ and f; are analogous to 

Wn and fg defined in the Goldstein-Perelson model (Eqs. 8 and 9). In simulations, the value of w~ is 

calculated as the number of aggregates of size n divided by N R, and f; is calculated as the number of 

receptors in the largest aggregate divided by N R. The equilibrium values of w~ and f; are evaluated 

as averages over time and/or multiple simulation runs. The mean aggregate size is given by 

(12) 
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Scaling of system size in simulations 

The efficiency of simulating the equivalent-site and extended TLBR models depends on the system 

size, and therefore, to make simulations more tractable, we scale parameter values that are related to 

the system volume. We specify reference values for the volume (V*) and the total numbers of receptors 

and ligands (NR and NiJ These values are given in Table 1. We also specify reference values for 

association rate constants (k~l and k~2) that are consistent with the best-fit values of Kl and K2 

and other reference values (Table 1). The TLBR model parameters are scaled such that V = X V* , 

NR = XNR' NL = xNi, k+l = X-lk~l and k+2 = X-lk~2' where X is a volumetric scaling factor. 

Note that the dissociation rate constant, koff' does not depend on the system volume. 

Materials and methods 

Reagents 

The ligand, a model antigen, was synthesized as described elsewhere (18). The ligand (compound 6a) 

is comprised of an Alexa-488 label and three symmetrically-arrayed 2,4-dinitrophenyl (DNP) groups. 

The effective receptor consists of FCERl expressed on RBL-2H3 cells, tightly coupled to DNP-specific 

monoclonal IgE antibody. The average lifetime of an 19E-FcERl complex is greater than 12 hours (31), 

which is much longer than the time scale of a binding experiment. The mouse monoclonal anti-DNP 

IgE coupled to FCERl on RBL cells was isolated from hybridoma HI 26.82 by affinity purification 

(32). Isolation of IgE involved, in the final steps, ion exchange chromatography, to remove bound 

DNP-glycine, and gel filtration, to separate monomeric IgE from IgE aggregates. 

Cells 

RBL-2H3 cells (33) were grown adherent in 75 cm2 flasks . Cell cultures, which were used typically five 

days after passage, were maintained at 37°C. Culture media consisted of MEM IX with Earle's salts 

without glutamine (Gibco BRL), 20% fetal bovine serum (HyClone, Logan, UT), 1% glutamine, 1% 

vIv penicillin, and 1 % v Iv streptomycin (Gibco BRL). To harvest cells, we rinsed and then incubated 

the cells, for five minutes at 37°C, with trypsin-EDTA. Cells harvested for experiments were washed 

and resuspended in buffered salt solution (pH 7.7), which was freshly passed through a 0.22 micron 
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filter. Buffered salt solution (BSS) consisted of 135 mM NaCI, 5 mM KCI, 1 mM MgCl2 1.8 mM CaCI2, 

5.6 mM glucose, 0.1% gelatin, and 20 mM Hepes. Cell suspensions in BSS were supplemented with 

10 mM sodium azide and 10 mM 2-deoxy-glucose (Sigma) to inhibit receptor recycling and cellular 

degranulation during binding experiments. To sensitize cells to DNP, we incubated cells overnight, 

while cells were still in culture, with excess (10 mg) anti-DNP IgE. Cells, which express Fc€R! (at 

roughly 300,000 copies per cell) were exposed to IgE for at least 12 hours prior to harvesting. 

Flow cytometric binding assays 

Binding experiments were performed as described elsewhere (34). Briefly, we incubated a suspension 

of sensitized cells, with varying concentrations of Alexa-488-labeled ligand at room temperature. After 

incubating for at least 90 minutes, we used a Becton Dickinson FACScan flow cytometer, which was 

controlled with Cell Quest software, to collect histograms of fluorescence. Flow cytometric data were 

recorded as the mean fluorescence (520 nm) of the cell suspension. To correct for nonspecific binding 

of ligand to cells, we performed a control experiment using cells lacking surface IgE and subtracted the 

mean fluorescence measured in this experiment from that measured in the corresponding experiment 

with sensitized cells. 

Fitting 

To estimate the equilibrium constants Kl and K2, we fit the Goldstein-Perelson model to flow cyto­

metric binding data. The experimental data characterize the relative amounts of surface-associated 

ligand at equilibrium for a series of n total ligand concentrations: ef, ... , e~. The quantity that 

describes the ratio of cell-bound ligands to receptor sites for a total ligand concentration eF is given 

by 

(13) 


where i is the index of an experimental data point, and eR is the total concentration of receptors, 

which we take to correspond to 300,000 receptors per cell and a cell density of 106 cells/ml, and e::O,i 

is the concentration of free ligand in experiment i. Note that °::; Ai ::; 1. At a fixed value of eR (or 

volume V), the parameters Kl and K2 are substituted into Eqs. 1 and 2, which are used to evaluate 

the partition function q (Eq. 3 combined with Eqs. 4 and 5). The conservation law equations, Eqs. 6 
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and 7, are then solved for c~ i and Xi (the fraction of free receptors in the ith experiment) at a fixed , 

value of Cf. Then, the value of C~,i is substituted into Eq. 13 to calculate Ai. 

Before starting the fitting procedure, a series of flow cytometric measurements is scaled such that 

o ~FL1(CF) ~ 1, where FL1(CF) denotes the mean fluorescence of the cell suspension at ligand 

concentration cf. Each value of FL1(CF) is taken to be related to Ai by a constant factor a, which 

is an adjustable parameter in fitting. The quality of the fit between the model and experimental data 

is determined by the root mean square of a vector of deviates, 

1 n 
RMS= -Lv;, (14) 

n i=1 

where Vi = Ai - a FL1(CF)· 

The fitting procedure is performed as follows. Initial values of Kl and K2 are chosen randomly 

1012 M-1with log-uniform probability in the ranges 107 - 1010 M-1 and 109 - , respectively. Then the 

Levenberg-Marquardt non-linear least squares algorithm (28) is used to find the best-fit values of Kl 

and K 2 . 

To determine confidence intervals for best-fit parameter estimates, we use a bootstrap procedure 

(28). Fitting as described above is performed for a set of synthetic data sets, which are obtained by 

sampling the experimental data set with replacement. For each combination of Kl and K2 values, the 

equilibrium model is evaluated for the full set of ligand concentrations (Cf, ... , C~), and then Ai values 

are calculated (Eq. 13), which are used to obtain RMS values (Eq. 14). We collect 2000 successive sets 

of K 1 , K2 and a values for which RMS< 0.02. For each parameter, the 2000 values are sorted in rank 

order. The 320th and 1680th values are used to define a confidence interval at the 68% confidence 

level. 

Data structures of the kinetic models 

To simulate the TLBR or extended TLBR model, we use the rule-based kinetic Monte Carlo (KMC) 

method (13), which requires that we track individual molecules and sites. Here, we describe the data 

structures that are used to accomplish this task. 

Molecules are represented as structured objects with binding sites. The molecules and sites are 

considered distinguishable for purposes of simulation and the time evolution of each individual reac­
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tant is explicitly tracked. Sites are partitioned into sets, each of which contains sites that are reactive 

in one particular type of reaction (13). Each site can be a member of only one set at a time. Indices of 

molecules and binding sites are stored in fixed-length and variable-length lists. We define fixed-length 

lists as indexed data structures; the length is determined by the number of molecules. Unassigned 

elements in such lists are allowed. Fixed-length lists are used to store the connectivity between par­

ticular molecules and their binding sites. Variable-length lists are defined as unsorted data structures, 

in which every new element is added at the end. If any element within such a list is removed, the las~ ~ \1 
element replaces the one removed. Variable-length lists are used to store reactive sites. eJ'J_.--oI_~___--' 

Suppose we simulate a system including multivalent molecules of types P and Q. Each molecule of 

type P or Q and each reactive site in P or Q are associated with unique indices. The ith molecule of type 

P, which we take to have n reactive sites, is associated with a set of addresses Pi = {P~1,P~2' ""P~n}' 

each of which consists of a pair of pointers P~ = {m~, s~}, where m~ is the index of the molecule 

of type Q bound to the jth binding site on Pi through the site in this molecule of type Q with index 

s~. If site j in the ith molecule of type P is not bound, P~ is set to {-I, -I}, which by convention 

is understood to mean that m~ and s~ are unassigned. 

Thus, taking into account the numbers and Wpes of sites on molecules, we define Li = {Pf1' Pf2' pf3} 

and R j = {P11,P12} for every ith ligand and jth receptor. Li and R j are stored in fixed-length lists, L 

and R, respectively, where i = 1, ... , NL and j = 1, ... , NR. To model cyclic aggregate formation (i.e., 

ring closure), we assume that each molecule can have six different orientations, as shown in Fig. 3(a). 

Sites of all ligands and receptors are enumerated clockwise, and each site is characterized by a rotation 

angle: 0, 7r/3, 27r/3, 7r, 47r/3, 57r/3 or 27r relative to an arbitrarily chosen reference axis. We define 

fixed-length lists of rotation angles for sites of ligands and receptors, ALand A R. Elements of these 

lists are Af = {o:f1' o:f2' o:f3} and Af = {o:f1' o:f2}, where o:f1 and o:f1 are rotation angles of sites 

with index 1 in the ith ligand and jth receptor, respectively, and i = 1, ... , NL and j = 1, ... , N R. Note 

that o:f2 = o:f1 + 27r/3, o:f3 = o:f1 + 47r/3 and o:f2 = o:f1 + 7r. 

The reactants are also classified into variable-length lists of free reactive sites and bonds (i.e., pairs 

of sites that are connected to each other). In the TLBR model, as can be seen in Fig. 2(a,b), we define 

the following lists of free reactive sites available for association reactions: sites on ligand molecules 

in solution, FID; sites on surface-tethered ligands, FlD; and sites on receptors, FR. Each list of free 

reactive sites is defined as {PbP2, ... ,PN}, where Pi = {mi' Si} is an address of a ligand or receptor 
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with index mi and a site with index Si. The value of i denotes a position in a list, and N is the 

number of sites in the list. In the extended TLBR model, we also introduce a list of sites available for 

participation in ring-closure reactions: H = { ... , {pf,pf}, ... }, where pf and pf are addresses of ligand 

and receptor sites that are positioned next to each other but do not have a bond between them. In 

both models, a list of bonds, B, comprises bound sites (pairs of addresses) capable of participating in 

dissociation reactions, { ... , {pf, pf}, ...}, where pf and pf are site addresses of two bound molecules, 

ligand and receptor, respectively. The value of the index i denotes a position in a list, and pf and pf 

correspond to the non-empty addresses in the fixed-length lists of molecules. 

Finally, the full set of sites that can participate in the four reaction classes of the extended TLBR 

model, X, is defined as follows: 

X= (15) 

where X in denotes the nth set of sites that are potentially reactive in reaction class i. Note that 

X 11 = FID, X l 2 = FR, X21 = F1D, X22 = FR, X31 = Band X41 = H. 

In the equivalent-site TLBR model, sets Xl, X2 and X3 (Eq. 15) are constructed based on the 

local context of interacting molecules in accordance with Yang et a1. (13). In the extended TLBR 

model, we add set X 4 , which is constructed by identifying free sites in position to form cycles on a 

hexagonal lattice. Reaction rate constants associated with reaction classes 

k3 = koff and k4 = )+6, respectively. 


Updates of the system state when reactions occur 


The rules are defined in such a way that any reaction causes exchange of site addresses between 

reactant lists. To illustrate how the reactant lists are updated to account for a reaction, we consider 

binding of a free ligand l to a free receptor r. Initially, three site addresses of ligand l are stored in list 

FID, and two site addresses of receptor r are stored in list FR. Suppose site 3 of ligand l is chosen to 

react with site 2 of receptor r. Then, firing the reaction is associated with a shift of ligand site address 

pL = {l,3} from list FID and receptor site address pR = {r,2} from list FR to the list of bonds, B. 

This reaction modifies the reactivity of the other two sites of ligand l, because this molecule is now 
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tethered to the surface. Thus, an additional update for sites of ligand l is required: the addresses of 

the free sites, {l, 1} and {l,2}, are shifted from FID to FlD. For a receptor crosslinking reaction, an 

update involves a shift of randomly selected pL and pR from lists FlD and FR , respectively, to B; no 

other changes are required. The ring-closure rule requires a pair of selected sites to be moved from H 

to B. 

In the extended TLBR model, each aggregate containing a molecule affected by a reaction is 

examined to identify pairs of ligand and receptor sites that are adjacent but not bound to each other. 

If a new pair is found, H is updated. Every binding reaction in the extended model requires alignment 

of two interacting binding sites, i.e., rotation of one of the interacting molecules or aggregates relative 

to the other, as illustrated in Fig. 3(b). Rotation of multi molecular aggregates by angle </> is achieved by 

assigning Af = {afl + </>, af2 + </>, af3 + </>} and A~ = {a~l + </>, a~2 + </>} for each ligand l and receptor r, 

respectively. After the interacting sites are aligned, one of the two interacting molecules (e.g., receptor 

r) is positioned at spatial coordinate (0,0) on a lattice with spacing determined by the relative radii of 

ligands and receptors (or arbitrarily), as shown in Fig. 3(c). Another interacting molecule (e.g., ligand 

l) is positioned next to the binding site of r, preserving the correct orientation. Spatial positions of 

the rest of the molecules in these aggregates are retrieved from the site connectivities and rotation 

angles stored in L, R, ALand A R. Finally, the coordinates of all molecules are checked for spatial 

overlaps; if overlaps are found, then the binding reaction is rejected. If the reaction is accepted, 

updates for the fixed-length lists of rotation angles are made. Note that the rectangular lattice used 

in the above procedure may have arbitrary spacing and need not reproduce the exact geometry of 

receptor aggregates, which form on a hexagonal lattice. Only relative positions, which can be easily 

transformed into real coordinates for visualization in a post-processing step, are important. 

General stochastic algorithm for distinguishable particles 

For completeness, below, we present the rule-based KMC method reported by Yang et al. (13), but 

here we use the data structures introduced above for clarity. We consider four reaction classes with 

reactants X (Eq. 15). The number of reactant lists for the ith reaction class is given by ni, where 

ni = 1 for a unimolecular reaction and ni = 2 for a bimolecular reaction. Thus, X in is the list of 

reactant sites matching the criteria to be nth-type reactants of reaction class i. Note that the set X in 

can be of any type: FID, FlD, FR , H or B. Connectivity between two binding sites is recorded in 
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the fixed-length lists of molecules L, R, ALand A R. 

The main steps of the algorithm are summarized below. 

1. 	 Initialize. 

a. 	Specify an initial set of molecules in Land R. We consider the case where all sites are 

initially free. 

b. 	 Construct the sets of free reactive sites FiD , FiD and FR. 

2. 	 Perform the following steps in a loop until t > tend. 

a. 	 Compute the reaction rate for each reaction class i, Ti = ki Il~::lIXinl, where k i is the rate 

constant for class i and IXinl denotes the number of reactive components in class X in . The 

cumulative reaction rate is given by Ttot = ki I:f:;i Ti, where N x is the number of reaction 

rules. 

b. Choose the time step according to T = -In(PI)/Ttot, where PI is a uniform random number 

on (0,1). 

c. 	 Choose a reaction class by finding the smallest J such that 

d. Choose a 	reactant site for each reactant type M of the nJ types of sites in reaction class 

J by picking a site address pM E X JM uniformly over the IXJMI possible sites. Note that 

pM = {m,s}, where m is an index of a reactant molecule of type M and s is its reacting 

site. its {'tVk 
e. Check r: .fi&f acceptance probability of a reaction (if is modified by global properties). 

Th~~ constant for the ~ reaction, kj, must obey kj S; kJ~ _111m"","" A 
reaction is taken to occur only if P > P3, where P is the final acceptance probability 

defined as P = k~/kJ~and P3 is a uniform random number on (0,1). If no reaction occurs, 

proceed to (g) . r 
f. 	 Update reactant lists and rates. For each reactant site pM of nJ, 

i. 	 Remove pM from X JM . 
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11. 	 Remove other site addresses of m from other reactant lists in which it appears if match­

ing criteria are no longer satisfied after a reaction fires. 

111. 	 Add pM and other site addresses of m to other reactant lists if matching criteria are 

satisfied after a reaction fires. 

IV. 	 For each site in molecules connected to m, update all reactant lists with matching 

criteria that can be affected by transformation of m. 

v. 	Update lists of molecules in which connectivity of sites is changed. 

g. 	 Compute simulation results of interest at specified time intervals, e.g., w;, f; and (8). 

h. 	Update time by setting t t- t + T. 

Note that Step 2.e is required if global properties (e.g., connectivities and spatial configurations of 

molecules in complexes) need to be taken into account. The structure of a complex is determined using 

the breadth-first traversal method (30) . If the acceptance condition for a reaction is not satisfied (Le., 

because of steric constraints), then we set k~ = 0, which leads to rejection of the attempted reaction. 

In the extended TLBR model, formation of cycles is allowed, but only if 1+6 > 0 and a cycle includes 

exactly six receptors, which follows from restriction of receptor aggregates to a hexagonal lattice. 

Results 

The Goldstein-Perelson model fits equilibrium binding data 

We used flow cytometry to monitor the association of Alexa-488-labeled ligand with cell-surface recep­

tors at equilibrium as a function of ligand dose (Fig. 4). We then fit the Goldstein-Perelson model to 

the binding data to determine best-fit parameter values. Figure 4 illustrates the agreement between 

the experimental data and the model fit. Similar agreement can be obtained for any combination 

of Kl and K2 values at points indicated in the parameter space of Fig. 5. The points in this plot 

correspond to fits for which RMS< 0.02. The best-fit values for Kl and K2 (and their 68% confidence 

intervals) are given in Table 2. 
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Large aggregates are predicted 

For best-fit parameter values, both the TLBR model and the Goldstein-Perelson model predict a sol­

gel percolation transition and extensive receptor aggregation, or formation of a gel phase, as ligand 

concentration increases from 0.2 nM to 30 nM. The simulated fraction of receptors in the gel phase, 

f;, agrees well with f9' which is given by Eq. 9. Discrepancy between f; and f9' when both these 

quantities approach zero (results not shown), can be attributed to finite-size effects. These effects 

vanish as X --t 00. 

Correlation between receptor aggregation and secretory response 

Based on fitting of the binding data of Fig. 4, extensive receptor aggregation is predicted by the 

equivalent-site TLBR model at ligand concentrations that yield a strong secretory response (compare 

Fig. 6 of this study and Fig. 3 of (18)). This finding contradicts studies indicating that extensive 

receptor aggregation inhibits secretory responses of RBL cells (19- 21). We consider the following 

possible explanations for this discrepancy: (I) large receptor aggregates are not inhibitory for the ligand 

used here and in (18); (II) predictions of the equivalent-site TLBR model cannot be trusted because 

this model is oversimplified (e.g., it does not account for steric constraints on receptor aggregates); 

(III) large aggregates may be inhibitory, but these aggregates form late in the response to ligand and 

the early dynamics of receptor aggregation plays a dominant role in triggering secretion. 

To investigate hypotheses II and III, we study the equivalent-site TLBR model and the extended 

TLBR model with and without rings. In particular, we determine the effects of geometrical constraints 

on the kinetic and equilibrium behavior of ligand-induced receptor aggregation . 

The percolation transition 

The phase diagram of Fig. 7 characterizes receptor aggregation as predicted by the equivalent-site 

and extended TLBR models over a broad parametric range. In calculating this phase diagram, for 

simplicity, we fix the values of NL and NR, and then vary k+l and k+2; the volume is also fixed. 

In Fig. 7(a), we show the Goldstein-Perelson predicted boundary of the PT in the (c, ,B)-parametric 

plane (solid line). The parameter f3 characterizes crosslinking. Higher values of f3 correspond to 

stronger binding of surface-tethered ligands to receptors. Comparison of the equivalent-site TLBR 



18 Steric effects on aggregation 

model against the Goldstein-Perelson model (Eqs. 8 and 9) reveals that f; is calculated accurately in 

both the sol and gel regions (results not shown, see also Yang et a1. (13)). The Goldstein-Perelson 

boundary where fg = 0 corresponds to simulated values of f; ~ 0.05. Because of the finite-size 

effects in the simulation, the transition of f; near the boundary is smeared out, i.e., the PT is not 

sharp, as shown in Figs. 6 and 8(a). At parameter values corresponding to the region above the PT 

boundary, f; increases dramatically, and agreement between the continuum Goldstein-Perelson model 

and finite-size simulation improves. Near the PT boundary, both the Goldstein-Perelson model and 

simulations predict coexistence of the sol and gel phases. Moving away from the coexistence region to 

higher values of f3, the fraction of receptors in the gel phase increases. 

Typical simulated aggregate size distributions are shown in Fig. 7(b-d) . Below the PT boundary 

(point b in Fig. 7(a)), the distribution is such that aggregates containing five or fewer receptors prevail 

(Fig. 7(b)). In contrast, above the PT boundary (point c in Fig. 7(a)), simulation predicts formation 

of a superaggregate (Fig. 7(c)). The peak of the distribution of Fig. 7(c) is observed at an aggregate 

size close to NR, meaning that the superaggregate contains the majority of receptors of the system. 

The distribution shown in Fig. 7( d) is characterized by an interesting shape, which is determined by 

~ valence~s. Within the sol-gel coexistence region, where the rate of free ligand binding is 

relatively low compared to the rate of crosslinking (point d of the PT diagram), maximum saturation 

of surface ligand sites is reached. The simulated distributions below and near the PT boundary agree 

with the Goldstein-Perelson predicted ones (not shown). Note that the continuum Goldstein-Perelson 

model cannot predict the size of a superaggregate in the gel phase. 

As shown in Fig. 8(a), the equilibrium continuum model predicts a singularity of fg at the PT 

boundary, whereas in the finite-sized TLBR model, the transition of f; is not sharp. Recall that 

f; is defined as the maximum aggregate size divided by NR, which is finite in the simulations. In 

the region of parameters below and near the PT boundary, the system contains small aggregates, as 

shown by the distributions in Fig. 7(b,d). A characteristic of these aggregates is that their sizes are 

not affected by the system volume (results not shown). Therefore, an increase of the system volume 

(or the volumetric scaling factor X, keeping all other parameters the same) improves the agreement 

between f; and fg· 
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Steric constraints on receptor aggregates 

In contrast with the equivalent-site TLBR model, the model with steric constraints, but without cyclic 

aggregates (]+6 = 0), predicts a gradual change of fg as the crosslinking parameter (3 is increased, even 

as the volumetric scaling factor X goes to infinity, as illustrated in Fig. 8(a). Receptor aggregation 

is generally suppressed. When steric constraints are taken into account, the fraction of receptors in 

the gel phase, as well as the mean aggregate size, decreases significantly over the considered range of 

ligand concentrations (0.01 - 100 nM). However, the maximum of both fg and (8) is observed at the 

same ligand concentration as in the equivalent-site TLBR model (results not shown). 

The possibility for ring closure reactions (j+6 > 0) changes the percolation behavior. By including 

these reactions, the effects of steric constraints are reversed. As shown in Fig. 8(b), an increase in the 

value of rate constant ]+6 makes the PT steeper (i .e., more sensitive to the value of (3). AS]+6 ---t 00, 

the PT occurs at a much lower value of {3 compared to that in the equivalent-site model (about 10 

times lower), and the transition becomes steep. The approximate PT boundary simulated using the 

extended TLBR model with ]+6 = 100 s-1 is indicated in Fig. 7(a) by a dashed line; the boundary 

corresponds to f; ~ 0.05. Formation of stable rings increases the size of the gel region in the phase 

diagram of Fig. 7(a) (compare the dashed and solid lines) because each hexagonal cycle in a receptor 

aggregate has up to six ligand sites free for receptor crosslinking. 

Influence of the ring-closure rate constant, j+6, on receptor aggregate structure is illustrated in 

Fig. 9. The fraction of receptors in the gel phase, f;, as a function of j+6 at different system sizes 

(Le., at different values of X) is shown in Fig. 9(a). A critical range of ]+6 values, in which the PT 

occurs, spans 0.1 to 1 S-I. A decrease or increase of j+6 out of this range does not cause significant 
(J \ltl5~-h;J. 0(1 {t~ IN+- Sl~ (~

changes. For j+6 < 0.1, formation of "open cycles" 'it ig. 2(c)) is the rate-Inn ibng step in aggregation 

kinetics; for j+6 > 1, ring closure stabilizes open cycles once such aggregates form. Increase of the 

system size makes the transition of f; more pronounced, but does not influence the range of sensitivity 

to ]+6. The value of f; can also serve as a characteristic of the density of aggregates. Figure 9(b) 

shows a fragment of a highly-branched aggregate predicted to form in one particular simulation of the 

extended TLBR model with]+6 = 0 (no ring closure). At another limit, where j+6 = 104 S-1 and ring 

closure is fast, cycles are stable and simulated aggregates have a v dense structure characterized 

by f; ~ 1, as shown in Fig. 9(c). 
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Dynamics of aggregation 

Here, we illustrate how the dynamics of receptor aggregation are influenced by steric constraints and 

ring formation . Also, we reiterate our earlier results, which characterize dynamical behavior of receptor 

aggregation according to the equivalent-site TLBR model (13). 

In our earlier work (13) , we have shown that in the gel phase, the existence of which is predicted 

for ligand concentrations corresponding to strong secretory responses (18) (Fig. 6), small receptor 

aggregates form transiently before the formation of a superaggregate. As receptor aggregates grow 

in size during the initial time course, small and intermediate-sized aggregates may possibly have a 

stimulating effect and induce a secretory response. At the same time, the number of aggregates that 

contain up to 10 receptors increases. As seen from the simulation results shown in Fig. 4 of Ref. (13) , 

the transient predominance of small aggregates can last for a few minutes with reasonable parameter 

values. 

Similar dynamical behavior is obtained using the extended model without the ring-closure reaction 

(j+6 = 0), as shown in Fig. 10 (a and b). Ligand binding and receptor-crosslin king rate constants are 

equal to those used by Yang et al. (13) and are within the confidence intervals of our best-fit parameter 

values (Table 2). When steric constraints are taken into account, the number of small aggregates that 

contain 3, 5, 7, and 9 receptors increases transiently at both low and high ligand doses. At high ligand 

dose, the transient behavior occurs faster. The number of small aggregates does not tend to zero, but 

remains at the level of 0.15max , where 5max is the fraction of receptors in the largest aggregate. 

Our previous study (13) also indicated that two ligand doses stimulating receptor aggregation to 

the same exte t at equilibrium can generate qualitatively distinct time courses of receptor aggregation. 

We cho se tw7 ligand doses, 0.33 nM and 8.3 nM, that yield about the same fraction of receptors in 
( 

t e gel phase at equilibrium, /g ~ 0.5 (Fig. 6). As shown in Fig. 11, the mean aggregate size, (5), as 

a function of time for the two ligand doses, merges at the same steady-state level of (5) ~ 17 (curves 

a and b). The extended model without the ring-closure reaction (j+6 = 0) demonstrates qualitatively 

similar behavior (curves c and d in Fig. 11). A feature of both models at high ligand concentration, 

8.3 nM, is an overshoot in the fraction of receptors in the gel phase (superaggregate) . The reason for 

this overshoot has been explained by Yang et al. (13). 

When the ring-closure reaction is fast (j+6 --t (0), the transient behavior changes. The two time 
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courses of (5) for low and high ligand doses (curves e and f in Fig. 11) merge at (5) ~ 250, and the 

number of small. aggregates tends to zero at both doses (results not shown). Also, as shown in Fig. 11, 

the overshoot seen in the case of )+6 = 0 at high ligand dose disappears. 

Steric effects can be modeled using effective rate constants 

In this section we discuss how the analysis of interactions with steric constraints can be simplified. 

Explicitly keeping track of the spatial structure of aggregates can be avoided as follows. First, simula­

tion of the extended TLBR model (with )+6 = 0) is modified so that at every attempt to bind ligand 

l and receptor r we evaluate the sizes of aggregates in which the interacting ligand and receptor are 

members, Sl and Sr (both values are the number of receptors in each aggregate). For each combina­

tion of Sl and Sr, an empirical binding probability, P(Sl, sr), is calculated as the number of successful 

binding events divided by the total number of attempts. Estimated P(Sl, sr) is plotted in Fig. 12( a). 

The functional form of P(Sl, sr) is given approximately as follows: 

(16) 


where the coefficients are a = 5.88, b = 5.75 and d = 1.19 for the ligand and receptor geometries 

considered in this study. As can be expected, P(S/, sr) values are close to 1 if both or at least one 

of the interacting aggregates contains only a few molecules. For example, P(S/, sr) = 1 for any 

combination of S/ = 0, I, 2 and Sr = 1,2, because such small aggregates cannot overlap in space. Note 

that ligand and receptor molecules that are members of the same aggregate and positioned next to 

each other, but do not have a bond between them, cannot bind single receptors and ligands from 

solution because their free sites are not accessible. There ore, P(O, S ) and P(s/, 1) can be less than 1. 

In simulation of the equivalent-site TLBR model, we use4abul ted values of P(s/, sr) in step 2.e 

of the simulation algorithm to reject on average the sam of binding attempts as when steric 

clashes are found explicitly in simulation of the extended TLBR model without rings. For every 

association reaction, the sizes of interacting aggregates, S/ and Sr, are determined and then used to 

evaluate P(s/, sr). Figures 12(b,c) show a comparison of the simulation results obtained with explicit 

and implicit enforcement of steric constraints. The aggregate size distributions reveal good agreement 

betweenqyiffiulation appro""hes. Thus, we conclude that the influence of sterie effects on the 

fractio 



22 Steric effects on aggregation 

overall kinetics of binding and aggregate formation can be effectively lumped into a modified binding 

rate constant, kJ' as follows: 

(17) 


where the empirical binding probability P(SI' sr) depends only on the sizes of interacting aggregates 

(Eqs. 16). The modified simualtion method is more efficient than the original with explicit tracking 

of aggregate configurations because it does not require a determination of the geometries of interact­

ing aggregates for every binding reaction once the empirical binding probability function has been 

determined. 

Discussion 

In this work, we present equilibrium binding data characterizing the interaction of a trivalent ligand 
I 

(18) with a bivalent receptor. To fit this data and estimate the model parameters describing ligand 

capture from solution and receptor crosslinking, we tIS he Goldstein-Perelson model (17) (Fig. 4). 
A. 

We found that at the best-fit parameter values, the odel redicts the formation of a gel phase for 

an interval of ligand doses that corresponds to strong secretory responses (18). This model prediction 

contradicts the results of previous studies that indicate that large aggregates are inhibitory (19-21). 

Here, we consider the following explanations of this contradiction. First, the Goldstein-Perelson model, 

although it fits the binding data well, is oversimplified, i.e., it treats sites as equivalent and does not 

account for steric effects, which can be expected to limit the formation of large aggregates. Second, 

dynamics of receptor aggregation may playa dominant role in initiating cellular responses. Small 

receptor aggregates that are forming during the initial transient response to ligand may be sufficient 

to stimulate a secretory response. 

Recently, we have developed a general-purpose KMC simulation method that can be used to study 

multivalent interactions (13). Based on this method, we have built a kinetic model of interactions 

between trivalent ligands and bivalent receptors, the equivalent-site TLBR model. We have now 

extended 1.1"-~ ~~for structural properties of in~r;':,\,~ ~lecules. Because no information 

is available in the literature about how these steric effects dxpected to affect ligand-receptor binding 

to the best of our knowledge, we carried out an extensive analysis of steric effects in this system, 

considerin1\oth equilibrium and kinetic e~ 

e(f€cts d'(1 be-I-vvI"OY" 
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As expected, we found that steric constraints tend to suppress receptor aggregation. To demon­

strate this behavior, we simulated the extended TLBR model, which takes into account steric con­

straints on receptor aggregate configurations that arise from assumed ligand and receptor geometries. 

The extended TLBR model is built on the assumption that ligands and receptors are rigid and that 

receptor aggregates form on a hexagonal lattice. A sharp PT observed in the equivalent-site TLBRI 

model as a function of the receptor crosslinking parameter {3 disappears in the extended TLBR model 

without ring formation. Investigation of finite-size effects in these simulations revealed that an increase 

of system size does not sharpen the transition. 

Behavior of the extended TLBR model changes dramatically if cyclic aggregates are included. In 

this model extension, we assume that steric effects constrain cyclic aggregates on hexagonal cells. If 

the rings considered in our model are stable, they essentially turn individual bivalent receptors into "I
$1 

valent "receptors" for ligand. At high ring-closure rates, the region of the PT is extended (compared 

to the equivalent-site TLBR model predictions) and receptor density of aggregates increases. 

Dynamics in the extended TLBR model without rings are qualitatively similar to the kinetics 

of the original e~ivalent-site TLBR model (Figs. 10 and 11 of this work and Fig. 4 of Yang et a1. 
o. 

, 

(13)). In bot¥(h se models, at high rates of ligand capture from solution, the extent of aggregation 

passes through a maximum during the initial time course and then decreases to the equilibrium level 

(Fig. 11) . Even at conditions that yield extensive aggregation, the fraction of small aggregates does 

not tend to zero. However, when rings are added and the ring-closure reaction constant is high, the 

dynamical behavior of aggregation changes. The ring-closure reaction enhances receptor crosslinking 

and eliminates overshoot in receptor aggregation even at high ligand doses (Fig. 11). Small aggregates 

disappear due to formation of stable hexagonal cells. 

Another important finding in our analysis of steric effects is that these effects can be captured 

us·ng empirical function that characterizes the dependence of binding probability on the sizes 

-"f\ ~ - .~ • . 1n,e. 9~~ . f . ~ftJ t d<"f f 11 d ·1 d · 1· . h, t\!., ~ • CIa g ggregates. 1 unctIOn .l'( estlma e rom our u y- eta! e Slmu atIOns usmg t e 

model without rings (Fig. 12 Thus, steric constraints can be effectively lumped 

into factors that multiply binding rate constan (Eq. 17), and complicated data structures and graph 

traversal methods otherwise used to track mol ular geometry can be avoided. Using the implicit 

description of steric constraints may be advanta~ us for fitting procedures and other computational ~ 

protocols. \C I",~.p~d~1' ~ e'1AA.p .r~JtC ~~ 
~ C~c.~'~ S~x. '1 ~ . ~ 

fu;.. 9(~ .(:}rM tZSrJtLJ /1C"-'~i~ 
,dt7'l~ ~ ~ld>ro-rn ~~ [-) 

(' cV'ttd~rt'Ze~ ~9{f:'JpQ -7t7t. ~cm.lr P{~ 
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The methodology developed here for studying steric constraints on receptor aggregates can be 

applied to an array of other problems where the steric properties of interacting molecules constrain 

or facilitate interactions. The modeling approach may even be extended to account for the structures 

of interacting molecules in three-dimensional space. One example of a potential application area is 

modeling of viral capsid assembly. This process has recently been modeled using mass-action kinetic 

models (22) and molecular dynamics simulations (23). The method presented here could potentially 

be applied to study the kinetics of capsid assembly more efficiently while maintaining a realistic 

representation of geometrical factors. Another potential area of application is simulation of actin 

filament dynamics (24-26). 
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Figure Legends 

Figure 1. 

Schematic representations of (a) a ligand and a receptor, (b) a chain-like receptor aggregate, and (c) a 

tree-like branched aggregate. (d) Examples of cyclic aggregates that are not considered. In all panels, 

circles represent binding sites. 

Figure 2. 

Reaction scheme of the trivalent ligand - bivalent receptor system. Missing or variable parts of 

complexes are indicated by dotted lines. (a) A ligand from solution is captured by a cell-surface 

receptor with single-sie rate constant k+1 . (b) A tethered ligand crosslinks two receptors with single­

site rate constant k+2 ' (c) In the extended TLBR model, a hexagonal receptor aggregate can form 

with rate j+6 when free ligand and receptor sites belonging to the same aggregate are positioned next 

to each other. In all cases, dissociation is a context-independent reaction and occurs with single-site 

rate constant koff. 

Figure 3. 

Configurations of molecules in the extended TLBR model. (a) Ligands and receptors can have six 

orientations. Enumeration of sites is clockwise. (b) A binding reaction requires adjustment of angles 

and positions of the two interacting molecules, 1 and r. (c) Representation of an association reaction 

on a lattice. Coordinate (0,0) is assigned to receptor r with a free binding site rotated by angle 471"/3 . 

Another complex, which can bind through ligand l, is positioned so that its free binding site is rotated 

by 71"/3 . Coordinate (-1,-1) is assigned to ligand l. Spatial positions of the rest of the molecules of 

both complexes are retrieved from stored information about site connectivities and rotation angles. 

Figure 4. 

Fit of the Goldstein-Perelson or the equivalent-site TLBR model to flow cytometric binding data. The 

y-axis indicates the normalized amount of ligand bound to cell-surface receptors, oX, at different ligand 

doses. Dots represent scaled measurements of average cell-associated fluorescence from the Alexa-488­

labeled ligand. Parameter values for the best-fit binding curve (solid line) are Kl = 4.7 x 108 M-1, 
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K2 = 8.7 X 1010 M-l, and 0: = 0.82. Other parameter values used in simulations of the TLBR model 

are koff = 0.01 S-1, N'R = 300 and volume V* = 10-12 L. 

Figure 5. 

Parametric uncertainty plot showing the region of acceptable agreement between the model and ex­

perimental data. The fitting was done by using the Goldstein-Perelson model combined with the 

Levenberg-Marquardt non-linear least squares algorithm. For every combination of K1 and K2 values, 

an optimization routine was run to find a minimum of the root mean square (RMS) deviation between 

the experimental data and the model. Dots denote local minima at which RMS < 0.02. Values of k+1 

and k+2 indicated in this plot are based on koff = 0.01 8-1, N'R = 300, V* = 10-12 L. 

Figure 6. 

Simulation of Alexa-488-labeled trivalent DNP ligand binding to bivalent anti-DNP IgE-FcERI com­

plexes at equilibrium using the equivalent-site TLBR model. Extensive aggregation is observed for 

ligand concentrations from 0.2 nM to 30 nM. The simulation results showing the fraction of receptors 

in the gel phase fg (solid line) agree with fg given by the Goldstein-Perelson model (dashed line) . 

Parameter values used to calculate the equilibrium crosslinking curve (solid line) are K1 = 4.7 X 108 

M-1, K2 = 8.7 X 1010 M-1, and 0: = 0.82. Additional parameter values used in simulations of the 

TLBR model are koff = 0.01 s-1, N'R = 300 and volume V* = 10-12 L. 

Figure 7. 

Percolation transition (PT) in the TLBR and extended TLBR models. (a) PT diagram in the pa­

rameter space of normalized forward rate constants c = 3k+lNL,oo/koff and {3 = k+2NR/koff. The 

PT boundary obtained from the Goldstein-Perelson model (solid line) agrees well with TLBR model 

simulation results (not shown). An approximate PT boundary obtained using the extended TLBR 

model (dashed line) with i+6 = 100 s-1, along which fg = 0.05, shows that the region of the gel phase 

extends significantly, which is due to formation of stable cyclic (hexagonal) structures. (b-d) Typical 

aggregate size distributions obtained with the TLBR and extended TLBR models at combinations 

of parameter values indicated by labeled dots in (a). Fixed parameters: koff = 0.01 s-1, N'R = 300, 

Nt = 4200, X = 10. 
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Figure 8. 

PT modified by finite-size effects and steric constraints. The y-axis in each panel indicates the fraction 

of receptors in the gel phase. The x-axis in each panel indicates the value of the dimensionless 

crosslinking rate constant (3. (a) Finite-size effects in the equivalent-site and extended TLBR models 

without rings (j+6 = 0) depend on the volumetric scaling factor X. Parameter values are scaled by X 

as follows: NR = XNR' NL = xN1, k+1 = X- 1k.+1 , and k+2 = X- 1k.+2. The value of Ig given by the 

Goldstein-Perelson model is indicated by the solid line. For X = 0.1, 1, 10 and 100, calculations based 

on the equivalent-site TLBR model (dotted lines) and the extended TLBR model (dashed lines) are 

shown. The equivalent-site TLBR model approaches the continuum model as X ----t 00. (b) Effect of 

j+6 on the PT according to the extended TLBR model with rings. Increase of j+6 above 100 does 

not have a significant effect on the PT. In all calculations, we used the following parameter values: 

NR = 300, N1 = 4200, c = 0.36 (k.+l = 3 X 10-7 molecules-1s-1 and NL,oo ~ NL), k'+2 = (3koff/NR 

s-1 and koff = 0.01 s-l. 

Figure 9. 

Effect of j+6 on cyclic receptor aggregates. (a) Ig is used as a measure of the aggregate density. 

At larger system volume (e.g., at X = 10 vs. X = 0.1), the difference in values of Ig while j+6 is 

varied is steeper because of finite-size effects. (b,c) Snap-shots of simulations showing two fragments 

of aggregates: (b) a low-density structure (obtained with j+6 = 0), and (c) a high-density structure 

(obtained with )+6 = 100 s-l). In all calculations, we used the following parameter values: N~ = 300, 

N1 = 4200, c = 0.36 (k'+ 1 = 3 X 10-7 molecules-Is-I, NL,oo ~ NL), (3 = 90 (k'+2 = 3 X 10-3 S-I) and 

koff = 0.01 s-l. 

Figure 10. 

Kinetics of receptor aggregation according to the extended TLBR model without ring formation (j+6 = 

0). (a) Fraction of receptors in aggregates containing 1, 3, 5, 7 or 9 receptors or the largest aggregate 

as a function of time at a low ligand concentration of 0.33 nM (c = 0.11). (b) The same curves as 

in panel (a) but for a high ligand concentration of 8.3 nM (c = 2.7). In all calculations, (3 = 16.8, 

koff = 0.01 S-I, NR = 300, and X = 1. 
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Figure 11. 

Transient behavior of the mean aggregate size at the same conditions as shown in Fig. 10. The time 

courses were obtained using the following models: the equivalent-site TLBR model (for curves a and 

b), the extended TLBR model without rings U+6 = 0) (for curves c and d), and the extended TLBR 

model with rings (j+6 = 100 s-1) (for curves e and f). Solid lines correspond to c = 2.7 (8.3 nM), and 

dashed lines correspond to c = 0.11 (0.33 nM). In all calculations, (3 = 16.8, koff = 0.01 s-l, N'R = 300, 

and X = 1. 

Figure 12. 

(a) Empirical probability of successful binding events, P(SI, sr), as a function of aggregate size. (b,c) 

Comparison of the simulation results obtained with the extended TLBR model without rings and the 

equivalent-site TLBR model in which binding rates are modified by the empirical function P(SI, sr). 

Different threshold values of maximum aggregate sizes were used: Smax = 100 (b) and 200 (c). In 

all calculations, N'R = 300, Nt = 4200, c = 0.36 (k+1 = 3 X 10-7 molecules-1s-1 and NL,oo ~ Nd, 

(3 = 90 (k+2 ::= 3 x 10-3 s-l) and koff = 0.01 s-l. 
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Table 1: Reference values of parameters used in simulations. 
Parameter Value Units 
V* 1O-1"l L 
N*R 300 molecules 
N*L 4200 molecu]es 

koff 0.01 S-l 

Table 2: Best-fit values for the equilibrium binding constants and scaling factor O!. 

Parameters Mean Lower limit Upper limit 
K1 (nM-1) 0.467 0.111 0.767 
K2(nM- 1 

) 87.03 31.6 128.1 
O! 0.816 0.758 0.881 
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