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Temperature-based reactive flow model for ANFO LA-UR-01-1783 

Roberta N. Mulford and Damian C. Swift 
Los Alumos National Laboratory, MS E530, Los Alumos, New Mexico 87545 

Reactive flow models for explosives are usually developed by choosing an empirical form for the 
reaction rate and calibrating parameters against initiation experiments. In shock wave initiation, 
experimental data almost always comprise mechanical measurements such as shock speed, 
material speed, compression, and pressure. However, we know from chemistry that reaction rates 
depend on temperature as well I S  on the mechanical state. This is one reason why mechanically- 
based reaction rates do not extrapolate well outwith the range of states used to normalize them. For 
instance, mechanical reaction models which match single-shock initiation generally fail to 
reproduce rnultiple-shock initiation phenomena. 

We have previously developed reactive flow models for military explosives which include 
temperature as well as the mechanical state. These models reproduced multiple-shock initiation 
behavior much more accurately than did reactive flow models with a purely mechanical reaction 
rate, arid they were also capable of being used to simulate cook-off problems. 

We have recently extended the temperature-based model for use with ANFO-type formulations. 
Reactive imaterial is treated as a heterogeneous mixture of components, each of which has its own 
model for response to dynamic loading (equation of state, strength model, reactions.) A finite-rate 
equilibration model is used to determine the overall response of the mixture to dynamic loading. In 
the initial model of ANFO, the ammonium nitrate and the fuel oil are treated as separate 
components in the unreacted mixture. The ammonium nitrate reacts with a rate that depends on its 
thermodynamic state, with an additional contribution for brittle failure caused by shear under non- 
isotropic strain. The reaction products are oxygen-rich. The fuel oil decomposes as a function of 
its thermodynamic state, and the decomposition products are allowed to react with the excess 
oxygen from the ammonium nitrate with a diffusion-limited rate which depends on the 
thermodynamic state. This model is also suitable for other oxidizer-fuel mixtures. 

There is a relative paucity of data on initiation in ANFO formulations, so our calibrations and 
simulations to date are to an extent sensitivity studies of a set of equations. More experiments are 
needed before the model can be regarded as accurate for predictive work. 
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Outfine 

= Motivation 

- Equations of State 

- Reaction Rate 

= Performance 



Developing a predictive capacity motivates 
mesoscale model 

Want to predict initiation and blast given: 

- Variations in composition 

. - Variations in morphology 

- Different loading conditions 

Previous work on military explosives: 
need physically-based model rather than just 
mechanical calibrations 



Modei encompasses various spatial regions 

- Equation 
- Equilibra 

- Chemica 

hvdrocode cell 

of state for each component (spatial region) 
ion process for temperature and stress. 

reactions transfer mass between Components. 
- Regions may comprise separate chemical components. 

- Oxidiser/fueI process: oxidiser decomposes leaving oxygen-rich products; 

4 the oxygen reacts with the fuel. 

3 LosAlamos 



rocode cell 

- Initial porosity modelled as product fraction (at STP). 

- Ammonium nitrate reacts with aemperature-dependent rate. 

- Fuel oil heated by reaction. 

- Fuel oil reacts with AN products with temperature-dependent rate 

- Pore collapse increased heating. $4 
4 LosAlarnos 



Unreacied equations Of state: quasiharmonic 

-- Coid CUsde (T = 0 Isoth rm) d- vibrationaf modes. 

-- Cold curve deduced from mechanical EQS fitted to 

-- Assumed value for p (T=O) not particular1 y sensitive. 

-- Estimated vibrational modes ai from structure of molecule. 

-- Deduced doi / dv to reproduce STP state. 

shock data: with r ( p ) model for off-Hugoniot states. 

Used to calibrate E( p,T ) and p( p,T ). 



Quasiharmonic equation of state 

I dwi I 
p( p ,T ) = p,( p ) - - ~ A - { e x p ( - A w , ( p ) / k , T )  - l]-'+ - 

m dv 2 

Tabulated (Sesame format); used as ( p , E )  EOS. 
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Ammonium nitrate: thermal csntri 

mode 

0-H bending 
8-ii st:et,chIrrg 
NH3 umbrella 
NH3 stretch (as) 
NH3 scissor 
NHZ stretch fs) 
O-MHs torsiorr 
Q-NQ2 torsion 
O-N02 i.p. bend 
0-NH3 bending 
N-0 bending 
N-0 bending 
NO2 scissor 

NO2 stretch (s) 
NO2 stretch (s) 

C-NH3 stretching 
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-- quasiharmonic EOS is reasonably consistent with Gr neisen ; 

4 temperatures are probably accurate. 

4 LosAlamos 
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- Heterogeneous mixture model + treats porosity automatically. 
- Particle size -+ equiiibration rates. 
- More useful for simulations than empirical rules for adjusting Hugoniot. 
- Developed for military explosives: porosity -1 %, works well to > 45%. 
- Example: air in pores, infinitesimal particles (ideal mixture). 4 

4 LosAlarnos 



Porosity model compares err with Hu oniot data 
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45% porous, compared with ANFO Hugoniot data 



Paraffin: mechanicai €OS 

Steinberg-style Gr neiser? EDS, fitted to Hugoniot data: 
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--4 r ( p ) estimated from du,/du,. 

4 LosAlamos 
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mode 

trans fat ion 
T ~ r s i ~ n  
skeletaf bmds 
CH2 rock 
CH3 rock 
C-C stretches 
CH3 deform 
CH2 twist 
CH2 wag 
CH2 scissor 
CH stretches 
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Paraffin: compl re of stat 

Comparison with Huer~n W ist data: 
-- reasonably c ~~~~~~~~ b 
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4 probably need more accurate treatment 
of frequencies at higher pressures. 

4 LosACamos 



(Pure AN sra~ace shown) 
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rrhenins: h -  

y be functions of p, E (net used here). 

Depletion terms for ehe ical species. 

I may include sori-ectioi? for 

nsn-equilibri urn ~ t - i b ra t i~n~  In a shock (not used here). 

Additional hotspot term using T for other components of mixture 

R, estimated from typical atomic vibration frequencies 

for key bonds, - IOq4/s. 

Energy release calculated from heats of formation. 

AN: T* estimated from (sparse) shock initiation data. 

FO: T* chosen by comparison with RX-HD. 

- 

-7 P 
LosAIamos 



continuum mechanics simuCa4ions 

- Lagraaaian e finite difference predictor-corrector scheme 

- Equation of state, strength, spali, mixtures, reactions 

- Object-oriented: state stor d depends on materiai type 

- Internal evolution (equilibration , reactions, plastic flow, 
etc. are operator-split form hydrodynamics 



Heterogeneous reactive fa 

- ~ ~ a ~ e ~ ~ ~ ~  comprises a set sf simple ~~~~~~~~e~~~ pi ,Pi :fi 
- Calculate p for each. 
- Finite equilibration rates for p and T: 

relaxation times zp and ZT. 

- Reaction: rate for each constituent to transform to 
- Equiiibration and reaction are subcyckd. 
- Rates: bulk + surface (homogeneous). 
- Surface area depends on volume fraction fi 

- Chemical reactions in products. 

through general function. 

4 
d LosAIamos 



ean pressure 

f .  i 

effective pressure 

h e ,  = L i A f .  -I 

(Volume and energy are adjusted for exact conservation 

energy change (raw) 

f i p i  

s Alamos 



T ~ i = T(s !) 

T = T(s) 

component %em peratr: re 

material mean temperature 

re E axaii 8 n facio r 

energy change (raw) 

(Energy is adjusted for exact conservation.) 

-4 
4 LosAlarnos 



(Surface contribution ignored if A t c I . 
Burn fractions limited to ensure 0 f c 1 

and x i f i = 1 . )  

3 Alarnos 



hydrocode cel! 

- Any number of materials per cell. 
- For each: volume fraction fi5 

state ( pi3.-.> and EOS. 
No further interfiat structure 
(shape functions eicj. 

State depends on material type: - 
may indude other parameters 
(e.g. plastic strain). 

- Explicit mechanical and thermal equilibration between regions; exponential time 
constant for each; operator-split from hydrodynamics and subcycled. 

€OS functions: p, E, p, T, cv, c2 
-- relatively simple requirement. 

- Reaction rates R, between each pair of regions; 
operator-split from hydrodynamics and subcycled. 4 

4 LosAfamos 



Predicted Pop - -  plots fo AN 
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Parameters: R, = I OI4 /s, T* = 12500 K, 
= 0.1 ps, xT = 1 .O ps, 0.1 mm mesh. -4 

4 LosAlamos zP 



plots are Predicted 
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drive pressure (G Pa) 
100 

AN Parameters: R, = 1014 /s, T* = 12500 K, 
FO Parameters: R, = I O q 4  /s, T* = 15000 K, 

= 0.1 ps, zT = 1.0 ps, 0.1 mm mesh. 4 zP 
4 LosAlamos 



- Physic reactive flow model for 

- Model can predict effect of composition, porosity, particie size. 

- Preliminary trials: comparable with empirical data / models. 



ta for AN etc. 
ond anvil, spectroscopy). 

- Equilibrium chemistry for equation of state of reaction products. 

- Use of / comparison with diameter effect data. 

- Investigation of other fuels. 

- Desensitisers as chemicai species: model short-lived radicals. 


