
Electronic Structure Calculations and

Adaptation Scheme in Multi-core Computing
Environments

Lakshminarasimhan Seshagiri1, Masha Sosonkina1, and Zhao Zhang2

1 Ames Laboratory
Iowa State University
Ames, IA 50011 USA

{sln,masha}@scl.ameslab.gov
2 Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50011 USA
zzhang@iastate.edu

Abstract. Multi-core processing environments have become the norm
in the generic computing environment and are being considered for
adding an extra dimension to the execution of any application. The T2
Niagara processor is a very unique environment where it consists of eight
cores having a capability of running eight threads simultaneously in each
of the cores. Applications like General Atomic and Molecular Electronic
Structure (GAMESS), used for ab-initio molecular quantum chemistry
calculations, can be good indicators of the performance of such machines
and would be a guideline for both hardware designers and application
programmers. In this paper we try to benchmark the GAMESS perfor-
mance on a T2 Niagara processor for a couple of molecules. We also
show the suitability of using a middleware based adaptation algorithm
on GAMESS on such a multi-core environment.
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1 Introduction

Computational chemistry applications like GAMESS [5] are widely used to per-
form ab-initio molecular quantum chemistry calculations. These calculations in-
clude a wide range of Hartree-Fock (HF) wave function (RHF,ROHF and UHF)
calculations. Such calculations are not only complex but also have high computa-
tional requirements. These calculations are currently run on SMP clusters where
each node consists of single or dual core processors. SMPs can be viewed as a
form of NUMA (Non Uniform Memory Access) architecture [4]. NUMA is the
design used where each processor in a multi processor environment is provided
with a separate memory space and data is being shared between different mem-
ory banks. This needs to be handled using separate hardware and software since
the data can be distributed over different processor memories and coherency
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between this data needs to be maintained. The communication cost plays a sig-
nificant role in this design. Each node in a computing cluster can be considered
equivalent to a processor in the NUMA architecture, but with a coupling that is
not as tight as that in NUMA. The inter-node latency and bandwidth in clus-
ters is much worse than a normal NUMA machine. Hence when we run an IO
intensive application like the conventional GAMESS job, it is very likely to bog
down the channel thereby resulting in slower execution times. The problem of
remote data access on symmetric multiprocessor (SMP) nodes is avoided by the
usage of a native communication layer DDI (Distributed Data Interface) that
utilizes the shared memory effectively [13].

A multi-core processor capable of running multiple threads in each core can be
used as a single execution environment in itself instead of a SMP cluster. The ex-
ecution semantics change in such an environment. Each of the threads act as a
virtual processor (VP) to the outside world. Thus the user application sees itself
running on a multi-processor machine with access to each and every one of them.
Each of these VPs include all the architecturally required components to execute
a task. These components include registers (both general purpose and special),
integer and floating point execution units and can handle interrupts. The execu-
tion units are present inside each core of the processor and the VPs belonging to
each core share these components. Thus each VP contains a separate instance of
the user state. Since the multi-core processor is fabricated on a single chip, the re-
sources such as memory bandwidth, L1 and L2 caches are shared among the VPs.
This has a significant impact on the performance of the task being executed.

There have been studies using benchmarking tools to show the performance of
SMP clusters which use single core or dual core processors such as the Intel Wood-
crest processor [1]. There have also been similar studies on the Niagara processor
[1] that extol the advantages of using a multi-core and a multi-threaded proces-
sor. An understanding on the performance of an application like GAMESS on a
SMP and a multi-core environment like the Niagara processor will be of immense
help not only for application programmers but also from processor designers. We
compare the performance of GAMESS on these two environments in order to un-
derstand the relative advantages and disadvantages of the two. Also, of note is the
fact that resource sharing in a multi-core processor running multiple VPs would
have a great impact on the performance of a computationally intensive applica-
tion like GAMESS. Various studies [10], [9], [7] have been done to arrive at the
best possible combination of GAMESS processes per node (on a SMP) so as to
overcome the resource constraints. It has already been shown in [8] that an adap-
tation algorithm using a generic middleware tool NICAN [2,6] would improve the
performance of GAMESS. We show that this adaptation scheme is of relevance
and importance in a multi-core and multi-threaded environment as well.

The rest of the paper is organized as follows. Section 2 describes the workload
used and the architecture of the execution environment. Section 3 describes the
performance of GAMESS on a SMP cluster and a Niagara processor. Section
4 deals with the adaptation algorithm and the results obtained by using this
algorithm on a Niagara processor.
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2 Methodology

2.1 Application Workload

General Atomic and Molecular Electronic Structure (GAMESS) performs ab-
initio molecular quantum chemistry calculations [5] to perform a wide range of
Hartee-Fock (HF) wave function (RHF, ROHF and UHF) calculations. Using
Self Consistent Field (SCF) method, GAMESS iteratively approximates solu-
tion to the Schrödinger equation that describes the basic structure of atoms
and molecules. Numerous GAMESS calculations have parallel implementations
utilizing distributed resources like memory and disk storage. The scalability of
GAMESS is aided by the use of a native communication layer DDI [13] that
takes advantage of shared memory on symmetric multiprocessors (SMP) and
reduces the remote data access bottleneck. The SCF method is one of the most
computationally intensive parts in the GAMESS execution. It has two implemen-
tations, direct and conventional, which differ from each other in the handling of
the two-electron (2-e) integrals.

In the direct SCF method, the 2-e integrals are recalculated for each iteration
and it avoids any I/O bottleneck. In the conventional SCF method, the 2-e in-
tegrals are calculated once at the beginning of the SCF process and stored in
a file on disk for subsequent iterations. These two implementations are inter-
changeable [8] due to the iterative nature of the process. SCF method also gives
a good indication of the processor computation power as well the I/O capabil-
ities of the system on which GAMESS is being run. Thus a GAMESS run on
a SMP and a Niagara processor can be favorably compared to get some sort of
an opinion on the relative merits of using either of these two architectures. We
chose Luciferin and Ergosterol molecules for testing GAMESS on these two plat-
forms. GAMESS converges in 15 iterations for both Luciferin and Ergosterol. A
conventional execution of Luciferin requires a storage of almost 3.5GB of files
while a direct execution consumes 5.65MB of main memory. On the other hand,
a conventional execution of Ergosterol molecule stores 22GB of files and requires
nearly 16MB of main memory for the direct implementation.

2.2 Architectures Used

We used two different architectures to test GAMESS. One was a SMP cluster of
4 nodes, each node having two dual-core 2.0GHZ Xeon “Woodcrest” CPUs and
8GB of RAM [1]. The nodes were interconnected with both Gigabit Ethernet
and DDR Infiniband. Each processor has a shared 4MB L2 cache. It also contains
a 32KB L1 instruction and data cache per core.

The second architecture used for testing was the Sun T2 Niagara processor
(T2) [11,14]. The T2 processor has a unique architecture which consists of 8
SPARC physical processor cores built in a single chip and each core is capable
of running 8 threads. Each of these threads can be considered to be a processor
in itself and are called as Virtual Processors (VP). Thus a user application sees
itself running on a machine of 64 processors rather than on a processor containing
8 cores. The VPs operate at a frequency of 1167 MHz. Each of these cores
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contain full hardware support for the eight VPs. There are two integer execution
pipelines, one floating point pipeline and one memory pipeline inside a single core
that are shared between all the VPs. The eight VPs are divided into two groups
of four each with the VPs 0-3 occupying one group and 4-7 occupying the other
group. Obviously, the hardware support inside a single core also gets divided
accordingly with each group of VP having access to a single integer pipeline and
sharing the floating point and memory pipelines. Each SPARC physical core
contains a 16 KB, 8-way associative instruction cache (32-byte lines), 8 KB, 4-
way associative data cache (16-byte lines), 64-entry fully-associative instruction
TLB, and 128-entry fully associative data TLB that are shared by the eight VPs.
The eight SPARC physical cores are connected through a crossbar to an on-chip
unified 4 MB, 16-way associative L2 cache (64-byte lines) which is banked eight
ways to provide sufficient bandwidth for the eight SPARC physical cores.

3 Performance Results

3.1 Benchmark Performance for GAMESS on T2 Niagara Processor

We first benchmark Luciferin and Ergosterol molecules on a Niagara proces-
sor by running single jobs on different sets of VP combinations. We create VP
sets such that the processes that are run on these VPs have access to as much
hardware as possible for speedier execution. For example, if we need to create
a set of 8 VPs, we distribute the VPs among all the 8 cores. We then bind the
GAMESS processes to the VP sets that have been created so as to take advan-
tage of the processor affinity property. Processor affinity [15] exploits the fact
that some remnants of the process’s state may remain in the processor’s cache.
The benchmarking results have been shown in Figures 1 and 2.

From the results we can deduce three different trends clearly. In case of the di-
rect execution of Luciferin and Ergosterol, increase in the number of VPs used
for execution results in better performance. The increase in hardware resources
and the thread level parallelism help speed up the computations. This trend is not
followed in case of the conventional execution of Luciferin and Ergosterol. The ex-
ecution time of conventional Luciferin reduces initially untill about 32 VPs and
then steadily increases as we move from 40VPs to 63VPs. Conventional Ergos-
terol degrades in performance as we increase the number of VPs. A conventional
GAMESS job can be characterized into two parts. The first part is writing of the
integral files and the second is RHF SCF calculation using the integral values that
are stored in the disk files. The application fetches the integral values from the files
and then performs the RHF SCF calculations iteratively. In case of Ergosterol, the
integral files (size 22GB) cannot fit in the main memory of the Niagara processor
(16GB). This gives rise to a large number of page faults and cache misses thus
leading to a drop in performance. Another contributor to the slow execution time
for the conventional Ergosterol molecule could be the issue with parallel reads and
writes at higher thread counts that affect GAMESS [16] performance. This ex-
plains the degradation in the performance in a conventional Luciferin molecule
once the number of VPs are increased beyond 32.
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Fig. 1. Luciferin: Single job bench-
mark

Fig. 2. Ergosterol: Single job bench-
mark

Fig. 3. Luciferin: Conventional job
SMP Vs Niagara comparison

Fig. 4. Ergosterol: Conventional job
SMP Vs Niagara comparison

One more thing to note is that the kernel itself is run on one of the 64 VPs.
When we create processor sets, we cannot assign all the 64 threads to different
processor sets since at least a single VP is required for running the kernel. In
such a scenario, if we assign 63 VPs to execute a single GAMESS job, the job
takes more time than when run with 60 VPs. Also, there is a steady increase in
the execution time as we move from 60 VPs to 62 and 63 VPs as seen in the
direct execution of Luciferin and Ergosterol in Figure 1 and 2. As the hardware
resources used by the kernel are shared with the GAMESS threads, we can see
a performance degradation. Hence 60 VPs would be an optimal number to be
used for application usage and 4 VPs for the system usage.

3.2 Performance Comparison between T2 Niagara Processor and a
SMP 8-Core Cluster

We compared the performance of GAMESS on a T2 Niagara processor with
its performance on a SMP cluster. The SMP cluster contains 4 nodes, each
containing two dual core Intel Xeon “Woodcrest” processors. For the sake of
comparison with the Niagara processor, we used only two of the nodes on this
cluster to run GAMESS (since this would be equivalent of running GAMESS
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Fig. 5. Luciferin: Direct job SMP Vs
Niagara comparison

Fig. 6. Ergosterol: Direct job SMP Vs
Niagara comparison

on 8 cores). The performance results for conventional and direct executions of
Luciferin and Ergosterol are given in Figures 3, 4, 5 and 6.

We can see that the SMP out performs the Niagara Processor for the Lu-
ciferin molecule while it is worse than the Niagara performance in case of the
conventional mode execution of Ergosterol molecule. We need to note that each
core in an Intel processor can run only a single thread while each Niagara core
can run up to eight simultaneous threads. The cache available to each core on
an Intel processor chip is more than the cache available in a Niagara processor
as the cache is distributed amongst all the cores. Each core on an Intel processor
runs at a higher clock rate as compared to the clock rate of a VP in the Niagara
processor. These clearly help to understand the reasons for the higher perfor-
mance in case of the Luciferin molecule calculations and the direct calculations
for the Ergosterol molecule.

However, the true advantage of using a Niagara processor can be seen when we
run a conventional Ergosterol calculation. The main reason for this is the usage of
a dedicated floating point pipeline in each of the 8 cores in a Niagara processor.
The GAMESS calculations are inherently floating point in nature and dedicated
floating point pipelines help to improve performance by nearly 50 percent. As
indicated by the performance results, execution of a conventional Ergosterol
calculation on the T2 processor is very time consuming, though it performs
better than the SMP. The performance degrades as we increase the number
of VPs on which GAMESS is run. This scenario can be readily exploited to
improve the performance by utilizing the adaptation algorithm first introduced
in [8]. The next section explains the suitability of this algorithm in a multi-core
and multi-threaded scenario.

4 Adaptations in GAMESS Using NICAN Middleware

The SCF algorithm is one of the most computationally intensive parts in the
GAMESS execution. Selection of the correct electronic structure calculation rou-
tine has a very big effect on the overall calculation and calculation time. The it-
erative nature of the SCF algorithm allows us to switch between the conventional
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and direct implementations in an arbitrary SCF iteration. The switching is carried
out using the middleware tool NICAN in order to decouple the application from
having to make any adaptation decisions during the application execution. The
application is responsible only for the invocation of the adaptation handlers. The
adaptations are handled by a control port that is part of the NICAN tool.

The adaptation scheme used in [8] for SMPs is summarized ahead. The adap-
tation scheme consists of a static and a dynamic part. Every conventional
GAMESS job gets modified to a direct execution mode if there is a “peer”
conventional GAMESS job already running in the system. It was shown in [9]
that while running concurrent scattered GAMESS jobs, a single conventional
job helps to achieve better performance. This constitutes the static adaptation
method. The dynamic adaptation is used during the iterative SCF calculations.
The control port gathers system and application information that allows it to
decide on the adaptation at runtime using the algorithm given below.

tN = Actual time taken for iteration N
tu = Upper bound for the time per iteration (taken as a arbitrary large value)
m = Average iteration time over N iterations
te0 = Estimated ideal run time for running a single iteration (obtained by
NICAN after running a GAMESS check run at startup)
Δt0 = | te0 - t0 |
if (ti > tu OR ti > m + Δt0) then

if (SCF is conventional) then
switch to direct

else if ((no peer conventional jobs) AND (enough memory)) then
switch to conventional

end if
end if

The experimental results obtained for this algorithm on a SMP have been
given in [8]. It has been shown on a two processor system with I/O congestion,
that the performance of dynamically adaptive GAMESS is nearly the same as
a “no-congestion” case. If the I/O bandwidth is fully consumed, then the adap-
tation scheme gives two times improvement in the execution time of GAMESS.
Also, on running two simultaneous parallel GAMESS jobs on two and four pro-
cessors, a gain of 10-15 percent in the cumulative execution time is obtained
through a dynamic adaptation scheme. This dynamic adaptation algorithm holds
true for a multi-core and multi-threaded environment as well. As seen in the
benchmarking results of Section 3, the degradation in the performance of a
conventional Ergosterol molecule calculation at higher values of VPs is a good
starting point to apply the above adaptation algorithm.

4.1 Adaptation Results on T2 Niagara Processor

The adaptation scheme was tested by running simultaneous parallel GAMESS
jobs on the T2 Niagara processor. The physical cores were partitioned equally
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among the jobs thus ensuring that the hardware resources of a core is used
exclusively by the GAMESS job assigned to the VP belonging to that core.
The performance was measured by executing two parallel GAMESS jobs that
consisted of one Luciferin molecule and one Ergosterol molecule. Similar results
were obtained for three parallel GAMESS job execution which have two Luciferin
Molecules and one Ergosterol molecule. If the SCF method is not defined in the
GAMESS input file, then GAMESS selects the SCF mode to be conventional
by default. Hence both the above tests were performed using conventional SCF
mode at the start. The performance graphs have been given in Figures 7 and 8.
We have not distinguished between static and dynamic adaptation in the results.

Fig. 7. Two simultaneous parallel jobs
execution

Fig. 8. Three simultaneous parallel
jobs execution

Wecompare the performance of a non-adaptiveGAMESS job (GAMESSORIG)
and dynamically adaptive GAMESS (GAMESSADP ) obtained using the NICAN
middleware tool. We can see in the graphs that cumulative running time for
GAMESSADP is about 50 percent faster than GAMESSORIG. For two simul-
taneous GAMESS job execution, the adaptation gives a steady gain irrespective
of the number of VPs used for running the simultaneous jobs. It was observed that
at lower VP allocation values, the smaller molecule (Luciferin) is transformed into
a direct method of execution due to the presence of a peer Ergosterol molecule but
then switches back to conventional mode dynamically to ensure a faster run time.
For larger VP allocations, both Luciferin and Ergosterol adapt and complete their
execution in the direct mode. Similarly, in case of three simultaneous GAMESS
jobs, we see that the cumulative run time of GAMESSORIG is reduced by more
than 50 percent by using the adaptation algorithm. All the three jobs complete
their execution in the direct mode.

5 Conclusions and Future Work

The main focus of this work is to compare the performance of Electronic Struc-
ture calculations on a SMP with the performance on a T2 Niagara Processor.
We have seen that SCF calculations for small molecules like Luciferin perform
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much better on a SMP than on the Niagara processor. This trend can be seen for
the direct SCF calculation for an Ergosterol molecule as well. However, the Nia-
gara processor provides much better performance as compared to a SMP when
we consider a conventional execution of the Ergosterol molecule. The T2 Nia-
gara processor looks to be a good processing environment for such an execution
scenario.

We also demonstrated that by using the adaptation algorithm introduced
in [8], we can obtain performance improvement in GAMESS on a multi-core
and multi-threaded environment. We have shown that the execution of adaptive
GAMESS can be several magnitudes faster than the non-adaptive GAMESS
execution. On a multithreaded processor like the Niagara, the I/O becomes a
bottleneck as we start increasing the number of threads for a conventional mode
of execution. In such cases, it was observed that the direct mode is the best way
of execution. The performance difference between the conventional and direct
mode at higher allocations of VPs is essential in getting the adaptation to work
on such processors.

As a future work, it would be interesting to see how the application adapt-
ability behaves when we use a cluster of such multithreaded processors. We
would like to develop multiple adaptation control strategies for usage on such
processors. These could include strategies such as changing the thread alloca-
tion dynamically from a single core to span multiple cores and to take advan-
tage of processor affinity. This requires further research into the performance of
GAMESS at different VP allocation configurations, along with the cache and IO
performance of the Niagara processor for GAMESS. It would also be interesting
to examine how any other cluster application would behave on a Niagara proces-
sor. Since the GAMESS version used for testing uses TCP/IP as an underlying
communication framework, suitability of using MPI applications can be explored
and documented. Ultimately, the aim is to develop generic adaptation control
strategies that can be reused with any parallel application and are scalable for
a multi-core and multi-threaded environment.

References

1. Terboven, C., an Mey, D., Sarholz, S.: OpenMP on Multicore architectures. In:
Chapman, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.)
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