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Abstract 

The Richtmyer-Meshkov (RM) instability is initiated by a shock 
accelerating an interface between two materials. Small 
perturbations of the interface grow into bubble and spike 
structures causing mixing of the materials that lie on either side of 
the interface. Recent Los Alamos National Laboratory 
experiments have focused on RM initiated mix in a compressible, 
miscible, convergent geometry. Motivated by the lack of a 
generally accepted model for this physical regime, cylindrical 
implosion experiments of single-mode, nonlinear RM growth and 
saturation are undeway at the OMEGA laser facility. Initial 
targets consist of an m=28 perturbation with an initial amplitude of 
2.5 microns machined onto an aluminum marker layer embedded 
55 urn from the target surface. Initial perturbations of varying 
amplitudes and wavelengths are being studied using the RAGE 
code. 
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The Richtmyer-Meshkov Instability 

PI 

If p2 > p1 then the perturbations will 
experience an inversion after shock 
passage. 
If p1 > p2 then there will be no inversion. 

For this experiment, p1 > p2 

Linear theory* for planar geometry 
predicts growth to follow: 

linear 
a'( f )  RM = a;( I + kuA't) 

where a' = post-shock amplitude 

Instability exists for any density 
difference at an interface 

-.R JR above the planar case 

k = wave number of perturbation 

u = interface velocity 
A'= ost-shock Atwood number 

IP  ceg 

*R. D. Richtmyer, Commun. Pure Appl. Math, 13,297 (1960) 
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L Target Geometry 
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The work focuses around a validation effort of RAGE to 
predict hydro instabilities in a convergent geometry. 

We will be exploring a range of mode numbers (8-28) and 
amplitudes 
- Diagnostic resolution and target metrology restricts us from going to 

- Initial amplitudes > 3 um are difficult because of manufacture and 

very high mode numbers. 

target metrology issues. 

This is a challenginq problem for RAGE. 
- We use a Cartesian grid to simulate a cylindrically symmetric system. 

- Therefore, the shock is propagating at every angle to the mesh. 

- There will be grid imprint at the unstable interface. 
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Methodology of RAGE simulations for these RM 
instability calculations 

RAGE is an Eulerian, radiation-hydrodynamics code with continuous 
adaptive mesh refinement. 

RAGE does not currently have a laser ray trace package for general- use. 
Laser energy is deposited some depth into cylinder surface as an internal 
energy source. 

Simulations with another code that does laser energy deposition supplies 
RAGE with the deposition depth and energy 

This technique has been used previously in the LANL-DDCYLMIX campaign 
and does an adequate job of reproducing the zero order hydrodynamics seen 
in experiment. 

Radiation transport has been turned off in order to produce a calculation 
that runs in a reasonable amount of time. 
- A 2-D simulation with radiation transport on produces similar results as with 

radiation transport off. Fine scale structure is different. 
- Thermal conduction is an important effect. 

A 
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RAGE has been used previously to look at the 
interaction of a multimode surface perturbation. 

300 

-----I 
. -1  E 

(P 

3-5ns'T 350 - 

300 - 

- - 1  5 tn 
250 < 

c 
- -2  o_ 

- - 3  2 
- 4  3 

3 
- - 5  2 
- 4  

250 4 200 n 

E 
C 
0 
P 
cn 
0 
P 

.- =h 
150 - 

150 

100 - 77 r l  4 

100 
c 
-.I 

50 - 
50 

k r 0 50 100 150 200 250 300 350 
x (urn) 0 * 

150 
I 

300 

De discused 
- 

I nese rnuxnode e IS 

at Nick Lanier's talk on Thursday m ning, 
November 14 in the Junior Ballroom. 

J7 
LosAlamos 

1114102-7 -jmr APSDPW2-LAUR42-XXXX N A ' I D Y L  L I I B F R P T C R V  



1 Simulation time snaps from a mode 28,2.5 um initial 

I- 
amplitude target (1) 

log density 
500 - 500 - 

400 400 1 - 1.0 

0.5 ? Q  - 0.0 2 

-1 .o 2 
0 

U 

-1.5 

n 

E 
3 
W 

n 

€ 
3 
W I 300 300 4 c 
0 

0 
.- 
w 1 200 - 200 - L 

L' c 100 - 100 - 

0 100 200 300 400 5vJ 
x-direction (urn) 

0 I00 200 300 400 500 
x-direction ( -n) 

are 

RVA 11141021 -jms APSDPPO2-LAUR-02-XXXX N A T I O N A L  L A B O R A T O R Y  



Simulation time snaps from a mode 28,.2.5 urn initial 
amplitude target (2) 
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Simuli lion time snaps from a mode 28, 2.5 um initial 

amplitude (3) - I  

log density 
300 

250 - 

200 - 

150 - 

- 

100 -= 
50 - 

300 - 

ll 

100 200 300 
O - r - l - I  4 

0 
x-direction (urn) 

- 1.0 

- 0.5 
P 

- 0.0 5 

@ - -1.0 2 
E. 

- -0.5 e 

250 - 

200 - 
I 150 - 

100 - 

0- 

AI volume fraction 

2 
- -1.5 

50 - 

I 

0 
I I 

100 200 
x-direction (urn) 

I 

300 

As the inner core foam begins to decelerate the AI shell, , 

-47 Cos Alarms 
1114102-10 -jms APSDPPOZ-LAUR42-XXXX N I T I O N A .  L A B C  R h r O R Y  

A €.V 
fVA 



What does linear theory say about the expected growth? 
- I 

For the case of a shock traveling from a light to heavy fluid 
and an initially small amplitude sinusoidal perturbation 

- 
linear 

Richtmyer* gives: a'(f) RM = a;(l+ kuA'f) 

Accounting for convergence one can multiply this growth 
rate by a factor of R,/R yielding: 

~ ,( linear ko 
R 

= - ab( I + kuA't) 
RM 

-1- A more detailed derivation 

1 can show this. 

The above assumes accelerationless movement of the 
i n t e rfa ce . 
- Simulations show a weak deceleration at later times that will lend a 

Rayleigh-Taylor component to the growth. 
A *R. D. Richtmyer. Commun. Pure Appl. Math, 13,297 (1960) 

A I.1 
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Some calculational results that demonstrate marker 
layer behavior. 
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Initial perturbations are reduced by 60% with passage of r 
the shock through the marker. L -  
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I The marrter layer has a nearly constant velocity during 
the implosion. 
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The simulated radiograph of a perturbed 
from two geometries. 
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Simulated images are analyzed to yield perturbation 
rrrowth information. 
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Both simulated and experimental images should be 
analyzed - using the same methodology for a valid 

Lasnex 

RAGE 

comparison. - 

TDG Filters 

Experiment Actual b Raw Data Filters 

To properly compare experimental images to 
calculation, radiographs need to b 
he simulation data. 

Similarly processed experimental and simulated 
/ 

radiographs are compared. 
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A series of mode 28 simulations demonstrates growth 
rate vs. initial amplitude. 
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The effect of varying mode numbers is being 
investigated as well. 
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Simulations show greater growth than linear theory. 
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Is the effect due to the rarefaction generated at the inner 
interface of the marker layer? 

does shock proximi+\ lhn laye. affect growth3 
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Conclusions 

Experiments will be performed in Jan 2003 at University of 
Rochester. 

The experiments will vary both mode number and initial 
amplitude. 

Investigation of simulations continues to ascertain why 
growth is seen to be large compared to simple theory. 

See poster #KPI .I 37 for experimental setup description. 
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