BNL 18803

SECOND ANNUAL
AEC SCIENTIFIC COMPUTER INFORMATION
EXCHANGE MEETING

PROCEEDINGS OF THE TECHNICAL PROGRAM
THEME: COMPUTER GRAPHICS

May 2-3, 1974
New York City

Hosted by

BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC.
UPTON, NEW YORK 11973

NOTICE

This report was prepared as an account of work sponsored by the United States
Government. Neither the United States nor the United States Atomic Energy Com-
mission, nor any of their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes any legal Liability
or responsibility for the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that its use would not infringe
privately owned rights.

BNL 18803

SECOND ANNUAL
AEC SCIENTIFIC COMPUTER INFORMATION
EXCHANGE MEETING

PROCEEDINGS OF THE TECHNICAL PROGRAM
THEME: COMPUTER GRAPHICS

General Chairman: Y. SHIMAMOTO
Program Chairman: A.M. PESKIN

May 2-3, 1974
New York City

BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973

CONTENTS

May 2, 1974
Thursday Morning

OVERVIEW OF SESSIONS
A, M. Peskin, Brookhaven National Laboratory

SESSION I
Advanced Systems

Chairman: R, M. Lee
Lawrence Livermore Laboratory

PRIM-9: AN INTERACTIVE MULTIDIMENSIONAL DATA DISPLAY
SYSTEM. M, A, Fisherkeller, J. H. Friedman, SLAC;
J. W. Tukey, Princeton

DISPLAYING COMPLEX THREE DIMENSIONAL OBJECTS. M. J.
Archuleta, Lawrence Livermore Laboratory

COMPUTER GENERATED MOVIES--ANOTHER DIMENSION IN MAN-
MACHINE COMMUNICATION. R, Elliott, R. Orr, E. Pequette,
Los Alamos Scientific Laboratory

AN INTERACTIVE DIGITAL IMAGE PROCESSING AND DISPLAY
SYSTEM. L. Hayes, C. Journeay, M. Wirth, Lawrence
Livermore Laboratory; L. Hatfield, University of
California, Davis

A COLOR MOVIE FACILITY. S. Levine, Lawrence Livermore
Laboratory

- iii -

Page

iv

34

44

47

48

May 2, 1974
Thursday Afternoon

SESSION II
Physical, Engineering, and Biomedical Applications

Chairman: G. H. Campbell
Brookhaven National Laboratory

6. ADVANCED GRAPHICAL DISPLAYS USED IN THE ANALYSIS OF
HIGH ENERGY PHYSICS DATA, M. F. Hodous and I. A..
Pless, Massachusetts Institute of Technology

7. A PATTERN RECOGNITION CODE FOR CURVED TRACKS IN CYLIN-
DRICAL SPARK CHAMBERS. W. N. Schreiner, D. R, Gilbert,
W. P. Trower, Virginia Polytech Institute and State
University of Virginia; P. Schubelin, Brookhaven
National Laboratory

8. COMPUTER GENERATED VISUAL DOCUMENTATION OF THEORETICAL
STORE SEPARATION ANALYSIS., H. R. Spahr, Sandia,
Albuquerqgque

9., TWO APPLICATIONS OF DATA ANALYSIS BY INTERACTIVE
GRAPHICS. C. H. Turnbull, Sandia, Livermore

io. STABAN-~AN INTERACTIVE GRAPHIC COMPUTERIZED STABILITY
ANALYSIS PROGRAM, B. J. Wimber, Sandia, Albuquergque

11. APPLICATION OF PEPR IN MEDICAL RESEARCH. 1. A, Pless,
B. Wadsworth, D. Zahniser, Massachusetts Institute of

Technology

12. CRYSNET. H. Bernstein, Brookhaven National Laboratory

- iv -

Page

59

60

79

105

118

148

149

13. A SET OF DEVICE-INDEPENDENT FIRST LEVEIL GRAPHIC
ROUTINES. N, A, Storch, Lawrence Livermore Laboratory

14. GRAIL--A GRAPHICAL DEVICE-INDEPENDENT PICTURE DESCRIP-
TION SYSTEM. J. A. Brooking, Knolls Atomic Power
Laboratory

15. SYSTEMS PROGRAMMING LANGUAGES AND GRAPHICS TERMINALS,
T, Stuart, New York University

16. A BARELY INTELLIGENT TERMINAL, H., H. Holmes, Lawrence
Berkeley Laboratory

17. SANDIA INTERACTIVE GRAPHIC SYSTEM--SIGS. R. Young,
Sandia, Albuquerque

18. CONFERENCE PROGRAMS WITH INTERACTIVE GRAPHICS. D. M,
Austin, Lawrence Berkeley Laboratory

19. GRAPHICS APPLICATIONS FOR FINITE ELEMENT CODE PROCESSING,
V. K. Gabrielson, Sandia, Livermore

20. NON-RECTANGULAR WINDOWING., B, Bussell, University of
California, Los Angeles

21, APPLICATIONS OF COMPUTER-GENERATED PERSPECTIVE PLOTS.
M. L. Prueitt, Los Alamos Scientific Laboratory

ABSTRACTS

May 3, 1974
Friday Morning

SESSION III
General Graphic Facilities

Chairman: A. M. Peskin
Brookhaven National Laboratory

PICTURE PROCESSING TECHNIQUES APPLIED TO ELECTRON
MICROPROBE DATA. H. D. Jones, W. B, Estill, Sandia
Laboratories, Livermore

EFFICIENT CURVE FITTING USING INTERACTIVE GRAPHICS.
J. F, Lathrop, Sandia Laboratories, Livermore

Page

161

169

183

192

211

236

255

276

295

323

324

OVERVIEW OF SESSIONS

A, M. Peskin, BNL
Program Committee

The topic of computer graphics serves well to illustrate that
AEC affilliated scientific computing installations are well repre-
sented in the forefront of computing science activities. The par-
ticipant response to the technical program was overwhelming--both
in number of contributions and quality of the work described.

Session I, entitled Advanced Systems, contains presentations
describing systems that contain features not generally found in
graphics facilities., These features can be roughly classified as
extensions of standard two-dimensional monochromatic imaging to
higher dimensions including color and time as well as multidimen-
sional metrics., Session I1 presents seven diverse applications
ranging from high energy physics to medicine. Session III describes
a number of important developments in establishing facilities, tech-
niques and enhancements in the computer graphics area.

Although an attempt was made to schedule as many of these
worthwhile presentations as possible, it appeared impossible to
do so given the scheduling constraints of the meeting. A number
of prospective presenters "came to the rescue" by graciously with-
drawing from the sessions. Some of their abstracts have been in-
cluded in the Proceedings.

I wish to acknowledge the contribution of Robert M. Lee (LLL)
for his assistance in the planning of this program.

- vi -~

SESSION I

Advanced Systems

Chairman: R. M. Lee
Lawrence Livermore Laboratory

PRIM-9

An Interactive Multidimensional Data Display and

Analysis System

Mary Anne Fisherkeller, Jerome H. Friedman

Stanford Linear Accelerator Center*
Stanford, California 94305

and

John W. Tukey

Princeton University**
Princeton, New Jersey 08540

ABSTRACT

(Submitted to A.E.C. Scientific Computer Information Exchange Meeting,
May 2-3, 1974)

PRIM-9 is an interactive data display and analysis system for the
examination and dissection of multidimensional data. It allows the user
to manipulate and view point sets in up to nine dimensions. Tﬁis is
accomplished by providing all 36 two-dimensional projections along the
original axes at the push of a button, élong with the atility to rotate
the data to any desired orientation. These rotations are performed in
real time and in a continuous manner under operator control. From the
parallax effect, arising from the dynamic aspect of this continuous
rotation, one perceives a third dimension (depth into the screen).

PRIM-9 gives the operator the ability to perform manual projection
pursuit. That is, by rotation and view change he can look at his data

from all possible angles in the multidimensional space and try to find

thoge that provide intercoting structure. The system also allows inter-
active masking and isolation. The user can conveniently mask on any or
all of the current variatles, thus isolating interesting structures

found along the way. These interesting struc%ures can then be further
analyzed alone, or may be subtracted from the total sample to simplify the
search for still other structures. In addition to this strategy, the
user may invoke an automatic projection pursuit algorithm. Starting st
any projection (view), this numerical algorithm will search (in much the
same manner as a human operator) for those projections that provide
interesting structure. The system also incorporates the ability to

‘save either temporarily or permanently; any interesting view that is found.
The operator can return to these views a8t any later time or reproduce

them on a hard copy device.

*Supported by the U.S. Atomic Energy Commission under Contract AT(O043)515

*¥Prepared in part in connection with research at Princeton University
supported ty the U.S. Atomic Energy Commission.

INTRODUCTION

PRIM-9 is an interactive computer graphics program for Picturing,
Rotation, Isolation, and Masking ~ in up to 9 aimensions. It is im-
plemented on the Graphics Interpretation Facility of the Stanford
Linear Accelerator Center, Stanford University. This facility consists
of an Information Display's IDILIOM refresh CRf and a Varian 620/1 mini-
computer, linked to an IBM{360/91.

PRIM-Q is a result of a continuing program of research into tech-
niques for applying computer graphics to exploratory data analysis. A
general introduction to its properties and uses is documented in a 25
minute sound motion picture entitled "PRIM-9"% produced by the Computation
Research Group of the Stanford Linear Accelerator Center, Stanford
University. This note details its properties with emphasis on the human
engineering aspects of its implementation and on the various data analysis
problems to which it can be applied.

PRIM-9 has been developed toward ends of very different breadth and
distance: first, to gain insight into what can be learned by looking at
the numerical aspects of data in more than two aspects at a time and,
second, to implement a tool for pictorial exemination and dissection of
rultidimensional data. The development of PRIM-9 has grown through many
stages, and many of the early techniques that were implemented and then
later discarded may turn out to be central to other data display systems.
The resulting system as 1t is currently implemented is especially straight-
forward in concept. Its emphasis is on picturing and rotation on the one
hand and masking snd isolation on the other. Picturing means an ability
to look at the data from several different directions in the multidimen-
sional space. Rotation means, gs a minimum, the ability to turn the data

so that it can be viewed from any direction that is chosen. Picturing

and Rotation sare essential abillities, valuable alone, but their usefulness
is greatly enhanced when cowmbined with Masking and Isolation. Masking is
the sbility to select suitable zubregions of the multidimensionsl space for
consideration. Thsat is, only those data poinfs that lie in the subregion
are displayed. Isolation is the ability to select any subsample of the
data points for consideration. That is, only those points in the selected
subsample are displayed. It is important to note that masking is tied to
coordinates. If we rotate'the data points, different points will enter
and leave the masked region. Isolation, on the other hand, is tied to
the data points. Under all operations of the system (except further
isolation), the isolated sample remains the séme. In the absence of ro-
tation, masking and isolation are equivalent; however, in the presence of

rotation the distinction is essential.

By interactively spplying picturing, rotation, isolation and masking
to his data, the user can, in particular, perform projection pursuit.
That is, he can look for those views that display to him interesting
structure. He can isolate any structures so found and study them sepa-
raiely and/or remove them from the remaining sample, simplifying the
search for still further structures. In this way, he may gasin consider-
able insight into the multidimensional properties of his data. As an
aid to this process, the present version of PRIM-9 alsc provides an auto-
matic projection pursuit algorithm.2 This algorithm assigns to each view
a numerical index that has been found to closely correspond to the degree
of data structuring in the projection. When invoked, the algorithm will
search for those views of the multidimensional data that maximize this
projection index. At any point in the interactive session the user may
invoke the automatic projection pursuit algorithm. Starting at the

current view, the algorithm will find the view corresponding to the first

maximum of the projection index, uphill from the starting view. Manual
projection pursuit can then continue from this new (hopefully more
structured) view. The algorithm can also be invoked at the beginning of
the session starting with the various original or principal axes of the
data. The resulting views can then provide useful starting points for
further investigation.

The next section gives a brief description of the hardware and soft-
ware configuration of the Graphic Interpretation Facility of the Stanford
Linear Accelerator Center, on which PRIM-9 was developed. This is followed
by several sections describing the implementation of the various features
of the PRIM-9 system. The note then concludes with a section discussing
various techniques for applying these features to some multidimensional
data analysis problems.

THE GRAPHIC INTERPRETATION FACILITY

The Graphic Interpretation Facility of the Stanford Linear Accelerator
Center (SLAC) is pictured in Figure 1 and is described in detail elsewhere.3’u
A brief description emphasizing those properties relevant to the imple-
mentation of PRIM-9 is included here.

The primary computing resource at SLAC during the development of PRIM-9
was an IBM SYSTEM/360 Model 91, with 2048k bytes of storsge, operating under
OS/MVT with HASP.* The two basic components of the Graphic Interpretation

> with 8k 16-bit words of

Facility are @ Varian Data Machines 620/i computer
6

storage, and an IDIIOM Display Console with a 21-inch CRT made by Infor-

mation Displays, Inc. When the display is operating, the 620/i memory con-

tains a program for the 620/i to execute and a program (display file) for

-
the current resource includes, in addition to the S/360—9l, twin IBM
SYSTEM 370/168's, operating under VS/2RL.€ with ASP.

the IDIIOM to execute. These two programs run concurrently with the IDIICM
stealing cycles from the 620/i. The instructions (orders) in the display
file may display characters, points, or straight line segments, perform un-
conditional or subtroutine jumps, count and index, or interrupt the 620/i.
Characters, points, and lines are positioned on a 1024 by 1024 raster unit
grid on the face of the CRT'. The 620/i instruction set includes, in
addition to the usual set for a standard mini-computer, instructions to
start and stop the IDIIOM in its execution of the display file, and in-
structions to read and reéet registers associated with the display operation.
Interaction at the console is by means of a solid state alphameric
keyboard, a light pen, and a function keyboard with 32 buttons. Under
program control, portions of the display file may be designhated as light
pen sensitive or insensitive. When the light pen is pointed at a sensitive
item on the CRT, the 620/i will be interrupted. The function buttons
generate interrupts on both the closing and the openlng of the switch.
This means that software can produce either (1) single impulse for cach
depression of the button (cycling) or (2) a repeated impulse controlled by
software timing, occurring so long as the button remains down. This last
facility, especially when combined with automatic reversal (see below), is
of great importance in allowing effective control. Plastic éverlays may
be placed on the function keyboard to identify the purpose of each button.
The 620/i and SYSTEM/360 are connected through sn IBM 2701 Parallel
Data Adapter Unit. Data may be transmitted in either direction through
this link. The 620/i can interrupt the SYSTEM/360 and determine whether
the SYSTEM/36O is trying to read or write; howevgr, the SYSTEM/36O is

not able to interrupt the 620/i.

Although the Facilily can operate in a stand-alone fashion, most of
our work (including the implementation of PRIM-9)} has been done using it
in conjunction with the SYSTEM/360. The SYSTEM/360 provides fast compu-
tation and mass storage, while the 620/i maintains the display.

A package of PL/l procedures, the IDIIOM Scope Package,LL has been
provided for writing highly interactive programs on the IEM 360/91 without

burdening the writer with all of the details of programming the 620/i and

IDITIOM. The user of this package can, by means of procedure calls, control

the display console in addition to having all of the facilities of PL/l
available to him. Procedures are supplied to construct graphic display
elements which will display information on the IDIIOM CRT, and transmit
elements as well as interrupts between the SYSTEM/BGO and 620/i.

IMPLEMENTAT ION

A. Scaling and Coordinates

The data is stored (in the 360/91) in initial coordinates either
as scaled before entry or as rescaled to fit into the display region.
It remains in this form. Rotations to current ccordinates are per-
formed by a trénsformation matrix. An ongoing step of rotation in-

volves (A) updating this transformation matrix (multiplication ty

a simple rotation matrix) and (B) passing the data through the mcdified

transformation matrix and transferring the relevant coordinates to the

620/1. Thus in the PRIM-9 system, it is important to distinguish be-

tween the initial coordinates and the current coordinates. The initial

coordinates are defined to be an orthogonal set of fixed axes in the

multivariate space. The input data to PRIM-9 consists of a number of

ordered sets of numbers. Each of these numbers is assigned to the

initial axis correcponding to its position in the ordered set. These

numbcers then become the values of the initial coordinates and cach

ordered ol of pumbers Liceomes sopoint, in the Buelendisn space
spranned by Lhe inilial azes. The current coordinate azco arc
another orthoponal set spanning the same space that is connected

to the originsl set by a similarity transformation. That is, each
of the current coordinates is a particular linear combination of
the initial coordinates. So long as only rotations are used (see F
Tor exceptions), these linear combinations are restricted to those
that do nol change the interpoint distances in the multidimensionsl
space.

Rotation has the effect of continuously changing the linear
transformation between the current end initial coordinates. At the
beginning of the session, the initial and current coordinates coincide,
but as scon as a rotation 1 performed the current coordinates be-

come distinct from the initial ones.

Picturing

For picturing, PRIM-9 provides the choice of any two of the
currcnt coordinates as horizontal and vertical axes. Two buttons
cycle through the choices. One button changes the coordinate dis-
played in the vertical direction, while the other button changes
the coordinate shown along the horizontal direction. In this way,
it is easy to go throush the (NBIM) (NDIM is the total number of
coordinates) possible displays, as well as getting from one
particular display to another. Choosing a display involves selecting
two integers i and ;, where i is the y (vertical) coordinate and j is
the x (horizontal) one. Pushing the first button increments i by one

and the second, similarly, increments j, both modulo NDIM. In order

to speed up the selection process, all unnecessary combinations have

- 10 -

been eliminated by requiring that i be greater than j. That is, i
*%
cycles from 2 to NDIM while j cycles from 1 to i-l.
c. Rotation

Being able to see projections on all coordinate pairs can be

very useful. But it is not enough. To be able to get reasonably
to any two-dimensional projection means either a way to call for
the projection that we want, or a way to move about in the multi-
dimensional space. Since we usually do not know just what we want,
and when we do we will find it difficult to learn to call for it in
a general way, we need a way to move abtout. Continuous controlled

rotation is a natural way to move about (change projection) in a

multidimensional space.

In the implementation of controlled rotstion, one naturally
thinks of turning a knob. However, the configuration of the Qraphic
Interpretation Facility does not support a knob. Thus, we are forced
to implement rotation through pushing buttons. The naive approach
to the control of a single rotation by buttons involves two buttons,
with these responses:

- to one button: rotation "to the right" at a constant

angular rate so long as the button is depressed.

- to the other button: rotation "to the left" at the

same constant angular rate so long as the button is

depressed.

*%
If we were programming this action again, we would use a constant-step

version of the increasing-step-and-reversal control described under
rotation.

- 11 -

This type of'control has two serious flaws:

- if the rotationArate is slow enough for fine adjustment,
the delay time for large rotations: is undesirable -- s0
undesirable as to be nearly impractical.

- if useé naively -- two buttons per rotation -- it is too

easy to use up too many buttons. - (PRIM-9, in its present

9

2) = 36 different rotations

version, makes as many as (

available.)

Both of thesze disadvantages can be overcome, the first by an
"increasing-step-and-reversal” control, the second by "time-

sharing" the rotation drive.

The type of rotation control used in PRIM-9 has two features:

(1) rotation reversal -- rotation in one sense so long as

the single button is held down -- when the same button
is released and then again depressed, rotation in the
opposite sense so long as the button is held down.

(2) rotation bty increasing (accelerating) steps. These

steps are presently taken as 1, 1, 2, 4, 8, 16, 32,...
times a2 small (unit) angle. (Note the repetition of 1.)
The largest possible step is limited by a speed limit
settable at 1, 2, 4, 8, 16, 32, 64, or 128.

This combination of rotation reversal and acceleration gives
the operator fast and easy approach to a desired data orientation.
The rotation starts out slowly but quickly accelerates to the speed
limit so long as fhe button remains depressed. When the operator
sees‘an interesting data orientation on the CRT screen, he relesses

!

the button. Due to humsn reaction time, both in perception and in

- 12 -

releasing the button, the rotation usually overshoots the desired
data orientation. Ireprecsing the same button again causes the
rotation to proceed in the opposite direction, starting out at the
slowest speed, and again accelerating. When the desired orientation
again comes into view on the screen the button is released. Now,
due to the slower speed (the acceleration usually has not reached
the speed limit), the overshoot is much less (in the opposite
direction). Again, depressing the button causes rotation reversal
at the slowest speed allowing the operator to home in on the desired
data orientation. In the usual case, at most two reversals are
necessary. This strategy allows rotatioﬁ in both directions, mini-
mizes the delay time for large rotations, allows a slow rotation for

fine adjustment, and requires only one button to drive the rotastion.

In order to specify a rotation, one needs not only to specify
the sign and magnitude of the rotation angle but also the rotation
axis. A general rotation axis in a multidimensional space (for ex-
ample, in terms of its direction cosines) is complicated to under-
stand and time consuming to specify. In PRIM-9, directly available
rotations are confined to those associated with pairs of the current
coordinates. This makes both control and understanding‘relatively
easy. A rotation axis is specified by two integers 1 and j. These
integers specify the current coordinate axes that particlpaste in the
rotation. That is, coordinates 1 and J rotete while the other NUIM-2
coordinate axes, orthogonal to i and j, remain fixed. It is possible
to get from any one two-dimensional projection to any other, with
relative ease, by combining these selected rotations in the correct
amount and sequence (this is the multidimensional analog of the Euler

angle specification of a rotation in three dimensions.) The two in-

- 13 ~

tegers (i and j) that specify the coordinates that participate in the
rotation are selected in exactly the same manner, as discussed in the

previous section for choosing the current projection sxes. The

NDIM)
2

possibilities. One button cycles through 2 < i < NDIM in increments

selection is controlled by two buttons that cycle through the (

of one while the other, similarly, cycles through 1 < j = i-1.

If the axes that define the rotation coincide with the current
projection axes, then the data points will simply move in circular
orbits about their relative mean in the projection. If neither axis
corresponds to a current projection axis, then the display will re-
main unchanged because the rotation is ofthogonal to the current
projection axes. Both rotation axes are "invisible"” to the screen.

Useful rotations occur when one of the axes that participates in the

rotation corresponds to a current projection axis, while the other is
one of the NDIM-2 axes orthogonal to the current display plane. 1In
this case, the operator sees the projected points change their
positions on the screen as the invisible coordinate is rotated against
the visitle one. When an interesting pattern emerges, as a result of
the rotation, the operator can home in on it as descrited sbove. The
invisible coordinate can then either be rotated against the other
visible one or the operator can change to another invisible co-
ordinate. He can then rotate these new coordinates to try to
sharpen the structure even further. Continuing in this manner,

the operator may manually iterate to a data orientation thet pro-

vides an informative view of his multidimensional point cloud.

- 14 -

Essily recognizable continuous rotation provides an additional
advantage. Its dynamic effects let one see an additional dimension,
not instantaneously, but yet at the same time -~ in the best sense
of those words. This 1s due to the relative motions of the points
associated with parallax. The points that are closer in the in-
visible rotation coordinate move across the screen more rapidly than
thoée that are farther away. This parallax effect gives the illusion
of a third dimension {depth into the screen) and this aspect seems to
be a very useful complement to the two aspects (horizontal and vertical)
provided directly by the screen.

To help in the interpretation of a ?articular projection, a
display of the initial coordinate axes, as projected onto the current
projection plane, is easily switched (with a pushbutton) in and out
of view. This display allows the user to see graphically the linear
combinations of the original coordinates that comprise the two axes
of the éurrent projection plane. Another button (neutral) returns
the display to its initial state. That is, the current coordinates

are reset to the initisl ones.

- 15 -

Masking

Masking is the ability to select any subregion of the multi-
dimensional spasce, and have only those dgta points that lie in the
subregion displayed or the screen. Masking is used in connection
with isolation and also has some interesting uses of its own (these
are discussed in the last section). It_is important to note that
masking is tied to the coordinates. Under rotation, the data points
will enter and lesve the masked region.

The flexibility of PRIM-9's masking, like the flexibility of
its rotation, is limited so that it is easy to control and understand.
PRIM-9 allows simple masking on any or all of the current coordinates.
That iz, thoee points for which Xi < Fi or those for which Bi < Xi’ or
both -- for a single i or several i's -- are caused not to appear on
the screen. Here X, (1 <i < NDIM) are the current coordinates and
Fi’ Bi are forward and backward bounds on each of these current
coordinates.

Masking is controlled by five buttons. One button toggles the
masking on and off. A second button cycles (one step per press)
through the integer, i, (1 < i < NDIM) which identifies that current
coordinate to which the mask is to be applied or altered. The third
identifies which edge F (front), B (back) or J (joint) is to be
driven. These three options are cycled.through by successive pushes
of the button. The fourth button drives the selected mask in a
continuous motion using the same "increasing-step-and-reversal"
control technique described above for rotation. The fifth button
allows the rapid selective removal of the mask for a particular coor-
dinate (identified using the second button) by resetting both the

front and back mask edges to their outside positions.

- 16 -

This is in contrast to the effect of the first
button which, when toggled off, removes the masks on all coordinates
simultaneously. The J (joint) drive moves the front and back mesks
together in the same direction'and speed, maintaining a fixed
separation between them. This allows driving an unmasked zone of
chosen width back-and-forth on a particular coordinate.

If the masking coordinaste 1s one of the current projection axes,
then driving the.mask away from its outside position and toward the
center of the screen will cause the points to disappear along an
advancing line, accelerating to the speed limit so long as the drive
button is held down. When the button 1s relezsed snd again depressed,
the maskingrline will reverse, starting at the slow speed. The masked
points will reappear as the mask toundary retreats. As fdr the case
of rotation, this control allows the operator to arrive at and home
in on s desired mask position easily and quickly.

A masked coordinate need not be a current projection axis. For
example, one can mask on a current coordinate orthogonal to the pro-
Jection plane.v As the mask moves from its outside position on this
"invisible" coordinate, points will disappear from various regions
of the screen giving insight into the relatlionship contained in the
data between the invisible coordinate and the two visible ones. 1In
particular, the Joint drive allows driving an unmasked zone of chosen
width back-and-forth on the invisible coordinate. This will cause
points to appear and disappear as the mask passes through the various
values along the invisible coordinate. More sophisticated techniques

using moving masks are discussed in the last section.

- 17 -

Icolation

Isolation is the ability to select an arbitrary subset of the
data sample at any point in the analysis, and perform upon this
subset or its complement (the full ssmple with the subset removed),
all operations that Qne can perform on the full sample. Experience
with PRIM-Q has shown that isolastion is . 8 most essentisl adjunct
to plcturing and rotation. It extends the system from being a purely
linear device to a plecewise linear device, greatly increasing its
effectiveness and power. Some of 1ts more stsndard applications are
discussed in the last section.

As implemented in PRIM-9, isolation begins with masking. The
data points to be isclated are defined by constructing a mask (in
terms of the current coordinates) that Jjust contains the points to
be isolated. As the maskris applied, the points that are masked
out disappear from the screen, making it relatively easy to inter-
ac;ively construct a mask that just includes the desired subtset of
points to be isoclated. It might seem, at first thought, that because
of the limited flexibility of PRIM-9's masking, it would te difficult
to construct mask boundaries that include arbitrary point subsets.
This turns out not to be the case. This is due mainly to thé fact
that the current coordinates, on which the mask is defined, can be
interacti&ely rotated to an arbitrary orientation with respect to
the initial coordinates, and that the isolation can be applied
repeatedly in defining the subset. 1In this way, the user can con-
struct a piecewise linear approximation to any boundary surface in
the multidimensioﬁal space to sufficient accuracy to just include

the points to be isolated.

- 18 -

When all of tﬁe undesired points have bteen masked out, so that
only the subsample to be isolated appears on the screen, the user
presses a button to invoke the isolation. This causes a menu of
options to appear. Figure 2 is a photograph of this menu. The user
selects the appropriate option by touching a light pen to those places
on the screen that define the option.

The numbers at the right reference the sixteen isolates that
can be simultaneously defined. Isolate "O=ALL" always references
the total sample and "15=RESIDUAL" is reserved for special use with
the "residual after” option. This leaves fourteen isolates that can
be arbitrarily defined and stored by the user.

Touching the light pen to one of the seven options to the left
causes a guestion mark to appear either to the right of the option
or at & blank space within it. Touching the pen to one of the six~
teen numbers causes the selected number to replace the question mark.
When all of the question marks have been replaced by numbers and Lhe
command is correct, then touching "APPROVEL" initistes the action.
The commands are:

FILL n: Save currently masked subset at n.

RECALL n: Recall isolate saved st n and re-

place current subset with it.

SUBSELECT ON nl FILL n2: Save at n2 the intersection of the
current subset with the isolate

stored at nl.

INTERSECT nl AND n2 FILL n3: Save the intersection of isolates
nl and n2, at n3.

UNION nl AND n2 PFILL n3: Save the union of isolates nl and

ne, at n3'
NOT nl BUT n2 FILL n3: Save the intersection of the com~

plement of isolate nl with isolate
n2, at n3.

- 19 -

RESIDUAL AIMIER n ALSO: Replace isolate 1% by the inter-
section of the complement of
isolate n with the current isolate
15.

If only & number is light-penned, "RECALL" is the default command. As
each subset is isolated, the remainder may be saved with the last com-
mand. An asterisk appears to the left of those numbers that represent
isolates that are currently in use. When an isolate has been saved or
recalled, it becomes the current subset. If instead of a light pen

hit the button invoking the isclation is simply pushed a second time,
the displey will alternate between the current subset and the entire

data sample. The current isolate number always appears at the bottom

of the screen.

Scale gnd Location Transformations

The location may be displaced in either the positive or negative
direction and/or the scale can be expanded or contrascted on any
current coordinate axis. This is accomplished by specifying a "key"
integer, i, (1 £ i < NDIM) representing the coordinate to be trans-
formed. A single button cycles through the possible values of i.
Another button displaces the origin of the selected coordinate while
a third button scales the coordinate. These latter two buttons drive
the displacement or scale change in a continuous motion, using the
"increasing-step-and-reversal"” control technique described earlier.

Saving Views (Projections)

Quite often during a session, the user finds a projected view
of his data that is sufficiently interesting to warrant saving it so
that he may return to it later in the session, at another session, or

perhaps record it permenently on a hard copy device.

- 20 -

PRIM-9 provides for both temporary (within a session) and perma-
nent (between sessions) view saves. The permanent saves can also be
transferred to a hard copy device at the .user's discretion. This
facility allows the user to continue with an analysis after he has
found an interesting view. If further analysis should not improve
the structuring, or perhaps even worsens it, the user can simply re-~
call the saved view and begin again on a different track.

Saving a view (projection) consists of storing the transformation
matrix connecting the initial coordinates to the current coordinastes
along with the mask bounds at the time of the save. Up to six
different views may bte saved on a temporary tasis and another eighteen
may be saved in a permanent disk data set. The temporarily saved views
are simply identifiéd by their number, i (1 < i < 6), while the perma-
nently saved views on the disk are given identifying names typed by
the user on the keyboard. If no such name is typed, then the system
assigns a default identifier which is the date and time of the save.
To retrieve one of these views, the user depresses a button which
presents a menu on the screen listing the names of all of his saved
views. He selects a view by touching the light pen to the appropriate
name .

Automatic Projection Pursuit

The PRIM-Q system provides the user with a sort of "automatic
pilot" for rotation. That is, at the user's request, the system
will invoke a numerical algorithm that automatically searches for
data orientations (projection directions) that display interesting
structure. This algorithm is detailed elsewhere2 and only its
general properties, as they relate to the implementation on the

-PRIM-9 system, are discussed here.

- 21 -

The sutomatic projection pursuit algorithm assigns to esch pro-
jection a numerical index, I(ﬁ,@), that corresponds to the degree of
data structuring present in the projection. Here & and E’are the two
orthogonal unit vectors representing the'particular two~dimensional
projection of the NDIM-dimensional data. The more structure present.
in the projection, the larger I(K,E) becomes. The essence of the
algorithm is to find those projection directions (& and ?L) that maxi-
mize I(ﬁ,%), subject to the constraint I @ = 0. This projection
index, I(E,E), is constructed to be a smooth function of its arguments
so that sophisticated numerical maximization algorithms can be
employed, minimizing the CPU cycles required.

The automatic projection pursuit algorithm’can be invoked in
two ways from the PRIM-9 system. At the simplest level the user
simply depresses a button. Starting with the current projection
(appearing on the screen), the algorithm finds (224 displays on the
screen), the projection corresponding to the first local maximum of
the projection index, I(E,EJ, uphill from it. In this search the

horizontal coordinate, K, is held fixed while the vertical ccordinate

is varied in the (NDIM-1)-dimensional subspace orthogonal to K.
Depressing the button 2 second time causes the search to continue,
but this time the veritical coordinate is held fixed at the previous
solution value, E-= 2., while the horizontal coordinate, K, is varied
in the (NDIM—l)-dimeneional subspace orthogonal to %f, seeking a
further maximum of I(E,E?). Pressing the button a third time causes
a further maximization, this time holding the horizontal coordinate
R fixed at its solution value, K = k¥, and again varying the verticsl

one, but this time in the subspace orthogonal to the new horizcntal

coordinate £%. This procedure of alternately holding one coordinate

- 22 -

gearches produce

The sacond mode of invoking sutomatice projection pursuit ellows

‘ i) 3 p Ty \ R s Ee 1 N 7
button. This causes a menu ¢ appear on the goreen 1

options svallsble. These optlons sllow the chelce of sny twoe of
the initial coordingtes or principel sxes of the current dsts set
{isclate) ss starting sxes for the sutomatic projection pursuit.
This menu a3so allows the intersctive modification of some of the
parameters of the sutomatic algorithm as well zs simply displaying
the data slong the various principsl axes without the corresponding
search. The user selects from among these options by touching the
light pen to the appropriste places on the screen where the options
sppear. After starting the search at two of these alternate axes,
the user continues it by repeatedly pressing the first button ss

degseribed sbove.

DISCUSSION

PRIM~G nasg been svailable for production date snalysis for & relstivel

2 o\ P E f Ty o, . r i =
veen ewployved in the explorsiory snelysis of

unsuperviced multlvariste dicerimlnation anelysls in patitern recopniilion
provlens.

esgentislly

o
P
o
=]

+ » - gy b . I S 1
In the exploratory dats snslysis espplication, the ays

functions a8 & cluster detection and sepsretion device. By repested spplili-

o 0 g © i‘ .
eation of view change snd rotation (both manual snd sutomatic); T
tries to Ffind those date oriesntstions thol revesl to him interesiing
structure or clustering. Using the sutomatic projection pursuit algorithnm

{started st the larger principsl sxes of the data) to find interestin

starting projections, the user then msnuslly iterstes the rotstion to try

to find structure or to sharpen any structure found. This iterstiion

P

process usually proceeds as follows. A visitle coordinate is rotaied

against one of the invisible ones until the clustering is a

923

sharp as
possible. This invieible coordinaste 1s then rotated asgasinst the other
visible one toward the sazme end. Another invisible coordinste is then
chogsen to be rotated ageinst the two visible cnes, hopefully increasing
the cluster formstion and sepsration. After sll of the NDIM-Z invisible
coordinastes have been rotated asgsinst the current visible ones, the whole

process can ke repeated {since in the process of these rotations the

current coordinates have besn considerably changed) so long as progress
is belng wmade. At any point, the sutometic projection pursuil sligorithm

can be invoked {this ususlly happens when progress being made by wenusl

rotetions is slow).

- 34 -

TE e ey
If & view

sional gpsce cen st

rarallaz sffect of the continuous resl

s
ot

providing the third-dimenciocnsl effeet of

{as mentioned above) is

baek and forth on the various coordinates invisible to the screen, one

st a time. Anocther more sophisticeted approaech might be called the

"concealed generalized episcotister”. Its operation would be roughly

as follows. Let esch coordinste run kbetween -1 znd 41, let s, b, o

d be sma ll fractions, and let the dats for this example be six-dimencionsl.
bl

picture = coordinates 1 and 2
BaskKs = FS a8t =g, Bh at +b, F5 at =-c, 86 gt +d
rotation = play with (4,3}, {5"3}; (6,3), (5,t), (6,4),

(6,5)

The unmasked hypeyvelume is e hexadecant in the four coordinates 3, 4,

3

and 6. Rotsting these coordinstes among themselves essentially rotate

1y

this nyper-conicsl {iineerly, not sphericslly hyper-conicsl) region
sround smong the {four-dimensional projections of the) points, thus

generalizing the rotation of a conventional {mector-disk

This epproach seems

unmasked zone of chosen width

and

=]
€8

WO or more olusiers,

then be snsiyzed in-

=
A

[

T

If, ag snother exanple, vwe guspect that the {in one or mcre
of the invi peinte is
curved, ihe

(1) mossible

(2)

blotted out from each side,
{3} operate mssk-countermssk rapidly,
(LY rotate smong the invisitle ccordinates at whim, repesting
nunmter)5 all the while.
Appearance of displecement oscillating with the mask-countermask fregu
is an Iindicetion of existence, direction, and smount of curvature.

H "
"vore

In the pattern recognition spplications, the system functlons ag toth
& linesr and plecewise linear device in supervised snd unsupervised dis-
criminstion snalysis.

As an example of its use &3 & linear device In & supervised applicetio
couslder the problem of finding the best linesr discriminent direction in
the multivariate space for gseparating two known dete classes. Here, the
noints corresponding fo esch class are correctly identified from some ex-
ternsl source and the problem is to find the best direction separasting the
two classes when the data are prcjected conto that direction. The snalyois
proceeds as folliows. A coordinste iz sdded which containg the informetion
identifying the clsss of esch dats polint. This exira coordinate is pic-
tured {vertic each of the data coordinates {horizontally) in
turn, sterting with the gecond coordinste.

- 26 -

2%

fteratively until

fodo
e
’“.‘
1
2
o
X
o
oy
[
bl
<
]
i
it
oy
e
Jrodo
g
]
47
&)
15
by
<
o
o
2y

NDIM~1 projections {2 tarcugn NDIM}P. AL that point the directio

current first

picturing the

directly diapi

It s the presence of

.strated by con twcndimun‘isnal data set,

consisting of two classes whose boundaries are outiined in Figure 3

Clearly, there iz no single one-dimensionsl discriminent direction that

can completely separate the two classes (A and B = Bl + B2 * B%)-

Applying rotation (Fﬁth manual snd automatic), the user might find a

rojection that achieves a good partial separation (such ss P, in Pigure 3).
£2° I

1

Using this projection, n mack 1o eonsirmweted at M] and the }%} sample 1o

isolated from ite complement A 4 5+ I, These lwo isolates nre then
L8

rotated separately, cearching for further siructure. In the case of zub-

gample 31’ thic

1653

will yield & null result. For the subsample complement to
Bl’ however, the user may iterate to projection ?2 which does exhibit fur-

ther structure. Using this projection to apply a8 mask at the B, szaanple

M,

is isoclated frow its complement A 4+ B,. Continuing with this procedure; the

user can further iterate to projection P Applying & mask st M., in this

3’ 3
|

projection completely isolates Class A from the remaind of Class B {B

m
o

Thus, the spplication of the plecewise linesr wask Ml’ MB, M, completely

ol

@

separstes the two dasts classes. For the supervised case, where 1t is known

in advance that there sre only two classes, this completes the solution.

For the unsupervised csse, one can sepgrately snalyze the B

. & PURTE WO 3
o determing wheth

are connac

vy

L Ll

s

dunlly studled seeking

isolzted and so o

isolates, then they sre anzlyzed sepsrately and together to try to under-

CONGLUSIONS
PRIM-G has been in use for & short time exsmining and dissecting
multivariate data. Its direct value Tor this purpose will have to be
learned by experience. We have leasrned from its development that pie-

torisl systems to be elfective must,

£
it

did PRIM-G, go through many stasoes

of trial and errvor lesryning. We now understand that the dotsa

3

can make or break such a system. We now recognlize that theoe

control must be adapted to what is svellable and to the people w are Lo
use the system. If we had ten knobs and six switches instead of 32 buttons
and a light pen, we would have resllized the same four essentisls In a guite
different way. We now recognize the grest value of the dyn sgpects of
the displey, especisily essily izgble rotation. Two aspeets, hori-

28

that the third sspect which supporis
of rotetion, more useful than stereosc
characters. We have le

useful in two quite diffferent ways:

approaches for the development of co

snalysis. The sutomatie projeciion

doeveloped Ly oboerving Lhe

Lien of the intersction botween bl

users and the PRIM-9 cyoiem. Theoe cyslematics wore encoded Inlo o

wtar Iporithm whnlen hes heen veory succeassiul in soed o oot imien DY Oe
computer aLgorlitiun wnlceh [gg Daen vIry SUCCesSiul In SQeXang Opuiman pro
Sections.

'

Finslly, end sbove 2811, we have learned that the four essentials of

eV

Picturing, Rotation, Isolation and Mssking need to work together snd that

from them much can be learned.

=

A4

2 1 ~ 1E) . - .
Film: PRIM-9", produced by Stanford Linesr Accele

Stenford Ce

R.C. Beach, M.A. Figherkeller, snd G.A. Systen

for Interscllive Programming
Stanford Linear Accelerator Center, Stanford, Ceslifornis,
Report, SLAC PUB-939, August 197L.

R.C. Beach, "The SIAC Scope Package for the IDIIOM--4 Collection of

PL/1 Procedures which may be used to control the IDDIOM Display

133

Console, BStanford Ldnear Accclerator Center, Computstion Re-
senrch Group, Revort Ho.o O No. 830, Decembor 1969,

Varian Dots n;O/; Computer Msnusl. Bulletin No. €O0%-A, Varinn lmin
Machines, 2722 Michelson Drive, Irvine, California.

IDIIOM Technical Description. Information Displays, Ine., 333 North

o)

Bedford Rosd, Mount Xisco, New York 10549,

30

L 34N914

¢ 34N

e

Displaying Complex Three Dimensional Objects

Michasl J. Archulets

March 20, 1974

This paper was prapared for preseantation at the
Second Spring AEC Scientific Computer Information Exchange Meeting
Work performed under the ausplces of the U,8. Atomic Energy Commission

- 3 -

DISPLAYING COMPLEX THREE DIMENSIONAL OBJECTS

by Michael J. Archuletla
Leswrence Livermore Laberatory, L-73
Livermore, California 94550
(4151 947-1100 »3361

ABSTRACTY
This paper describes a powerful machine
transportabie visible surface algorithm, Inpul to

the algorithm can be concave or convex polygens,
The output czn be & combination of line drawings,
shaded raster lines, or 30 contour plots. Several
new technigues for displaying muiti-valued
functions are described.

- 35 -

AN OVERVIEW

White otheor researchers have Dbeen pursuling the develiopment of new
vistble surfacs alfgoerithmsl®i, 1 have been falthfuily anhancing ithae
technique thei wes developed by Dary 5. Wathking in 1870 aft ihe
Universtiy of Utehi{Bl. | had the grest plessure in being sble Lo work
with Cary Wetking 8% his programmer snd thus became guite familiar with
the slgerithm, There are severa! ressons for using this slgorithm: 1)
it cen produce & variety of different types of grey level! pletures: 2}

B

ilne drawing cuiput Is availeblie [11; and 3} 1t cen handle a very zread
range of polyhedra as fnapul. I working we'th this sigeritham, | have
been able to develop 2 machine itransportable cede theat incorporates al!

¢f the above festures plius seme new special lechnigues.

The Watking' visible surfaze &aigerithm accepls as inpul convex or
concave polygons. The <coordinates for these polygons are in a left
handed cosrdinate system. Polygon clipping is performed fo & frustrum
ef vislon which opens oul along the posiiive z axis. It assumes that
Ehe eyepoint is located &t the origin of Lhe system. (See Figure 1}
The algerithm produces as oukput either wvectors for line drawing
dispiays or shaded raster line segmenits for grey level dlisplays.

Approximately 85X of the code 's wrilten in ANSI Fortran. The
remaining B% of Lhe code is highly machine dependent since it cen taks
advantage of packing dsta tagether according to the word size of your
machine. Since you must creste & subroutineg which packs the data, you
must also develop & subroutine which will unpack the dete. The reasen
I have you make wup your own packing and unpacking routines is thal
these routines handle up to 13 different variables which collectively
reguire 130 bits, In additlion ts the packing routines, therg arg
sgveral other machine dependent routines which perform leletypewritar
{703, and hence are machine dependent.

There are three "new” fealures which | have incorporated inbls this
algerithm: 1) Superimpesing coentour Dands on 8 30 surface; 21 creaticn
of cap pelygons In slicing: end 3) extensiens to the concept of edge
sharing.

€0 contour plots sre nothing new In computer graphics: neither sare
30 contour plotsel3l. Hewever, the Waihking' slgeriihe wes designad in
such & way that implementing 30 conitour plots wase a simple tash.

The Watkins' aigorithm projects al! 3 dimenslionat poliygons snte &
20 plaene. The prejfsciien plene Is divided into hertzonbtal raster lires
and the sligeriihm compultes the vigibility ef the polygens & rasier lineg

at & time. A segment {(ithe portisa of the raster !ine which intersects
the pelygon) 1s seried and compared with oither segmenis teo see which

- 36 -

gare visible. {See Figure 2) Each ssgment has =, y, 2, delts x, deltls
y. and deifis z informabllion for boith the lefl and right eand poinis. The
deits Informaticn s added to the current dats to gsee whai ithe new
value wil! be on the rexit scan !ine. fa 1871 st the Unriversity of
Utah, Henr! Gourazud added & shade and & dells shade Lo each end point
of & segment. Thils rescited In the aew popuiszr CGoursud smoclh shading
technlgueldl.

To do the cenmlour olobls, [added 2z current contour value and &
defita contour value to the segment informalbioen. Assume we thave &
visiblie segment whose left contour vatue 1s 10 and right contour value
is 18. 1f we are interesied In seeing conktour bends st 12 and 19, we
perform & simple ctalcualiion to detarmine the x locabtion of ihese
contour bands on the segment. Ihen we update teo the next scan iine, we
might get 2 different location for the x values. MWhen thess polalsg sre
connected together, there will appear & curved contsur hand. (See
Figure 3} This is rather unique since most centour plolting lechnigues
myst draw straight lines across the face of & polygon. The only way
they can approximale curves s by increasing the number of pofygons or
do curve fitting techniques. (See Figure 4]

Now for s few words about <cap poiygons. The polygen clipper that
is used In this slgorithm !5 simiter to the one developed by Suther!and
and HModgmaniB] in that & polygon s clipped te the six planes of &
frustrum of vision. There developed at iLL a need to be sbie to ciip
the front portien of an object awsy 350 the innards of 2 30D fintte
element or finite difference mode! <could be studied. Since these
models represent solid eblects, 't was necessary to put a cap polygon
over the holliow sheli created by polygons. (See Figure 5) This was a
natural for the polygen clipper since it would save the edges that it
had to create while clipping to the frent plane of the frusirum. Once
the clipper had processed al! the poiygons of & selid object, Lhen it
would be left with a2 set of edges on the front plane which defined 2
closed cap polygon. Since contouring and shading information is passed
through the clipper, the cap polygon will giso have this infermatlion
and contour bands can thus be plotited on the laside of an ohiect.

The last item worth discussing s edge sharing. One drewback of
the Wathkins® asigorithm 1s that sdlscent polygons had to siore ithe
shared edge twice. | have done nothing more then provide simple coding
te eliminete tLthis redundant sterage. However, there 1s an interesting
applicaticen of edge shering in doing line drawings. Teke, for
instance, & cylinder which is composed of wany poivgens. If veu ge
through the process of eliminating poiygons which face eway from yeou,
and you say den't drew edges which are shared, you wlil end up wilh a
picture of a tube. Since the back facing polygons were never slered,
ihe edges on the perimeter of the cylinder were never shared thus
making them piottabie. (See Flgure B} The utility of this is tn doing

contour plots where 1% 1s ofien difficuit Lo determing which are

contour baads or polygon boundaries. This technique resolves ihe
ambiguity.

The greatest feaiure of 21! is thal this pregram is avallable for
use &t inslaliatlions other than Livermors. There 1s s cowmpletle

document available oan hew to use ithis sigoerithem gnd 14 ¢an be shilalned
by calling or writing to me. A lot of work hes goene into the algoriihe
in meking 1t easy io lmplement on different compuler systems. The
anymerous options which are svaliisable allow you Lo explore masny new ways
in displaying vyour dats. Thus, in 3 few weeks time, vou Yoo tan be
producing sephisticated pictures with 8 powerful wisible surface
sigorithm,

REFERENCES

(13 Archuleta, M.J., Hidden surface line dravwing
algoeithm, Compuler Sclence Depariment, University
of Utah, UTECH=-CSe~T2-121, June 1872.

el Goursaud, M., Computer display of curved
syrfaces, Computer Sclence Depariment, University
of Utah, UTECH-CSe-Ti-113, June 1971.

{31 Rashide, Y.R.., Coempuler graphics In stress
anglysis, ACME MWinter Annual Meesting, Neovember
1970,

{4} Suihertand, 1.£., and Hodgman, G.W., Regntrant
polygen clipper, Comm. ACM 17, 1 (Janusry 1874},

pp32-4e.

I9] Sutheriand, iLE., Sprouvltl, BR.F.. and
Sehumacher, R.A., Soriing snd tLthe hidden surface
probiem, Naticnal Computer Confersace {1873,
ppEB5~BG3.

(681 Wathins, G.S5., A resi iime visible surface
sigorithm, Computer Geience Department, Universtly
of Utah, UTECH-C8e-70-101, June 1870

- 38 -

Al

input polygons

Eyepoint
Frustrum of Vigion

Figure 1

- 3G -

LSegments

Figure 2

- Left contour

- Right contour
value ~—Raster lines

M

\22 r

ﬁfﬁg;;;ar band at 13~

\
\‘k%“&§umﬁsmtﬂur hand at 16

Figure 3

- L} -

Cube with Superimposed Contour Bands

Figure 4

Shell of a Cube after Cipping
to Front 7 Plane

Without cap polydon With cap polygon

Figure 8

- 41 -

Cylinder with Cylinder without Cylinder without
all polygons backfacing shared edges
polygeons

Figure &

- 4 -

DISTRIBUTION

LLL internal Distribution

Michasel J. Archuleta L-73

TID File LG

External Distribulion

Arnpld Peskin

Brookhaven National Laboratory
Associated Universities, Inc.
Upton, L.I., NY 131973

Technical Information Center
Qak Ridge, TH 37830

- 43 -

&F

o
AJT

"What results do we
night's production runs?” is a question
asked daily by weapons designers at Los
Alamos Scientific Laboratory.

COMPUTER GLNERATED MOVIES -
ANCTHER DIMENSION IN MAN-MACHIRNE COMMUNICAYIONS®

A typical hydrodynamic physics program may
run uwp te 20 hours on a UDC Y800 computer and
generate up to a billion numbers, The biggest
problem facing the users of these programs is
simply comprehending what has been calculated.
Stacks of computer listings are typical out-
puts but serve as a poor communication medium,
Static pictures are much better than listings
but are limited to two dimenmsions. Through
the use of movies, one adds 2z third dimension
to the communication process. This paper will
describe the evolution of computer generated
movies at Los Alamos Scientific Laboratory and
describe the techmigues now in use.

have from last are not necessarily rectangular and are, at
times, quite distorted.

cal variables

A number
associated with

of physi-

are each node

It is not a and each zons. Each problem will run sev-

guestion that can be answered by z single

number or a small set of pumbers. A typi-
cal production rvun will take from 20
7600 time and

may generate billions of numbers.

minutes to 20 hours of CDC
Through
the use of computer generated movies we are
able to present z very good description of

what has been calculated., The wmovies are

not oniy an excellent source of information,
but valuable as a teaching mediunm,

The production codes are used to model
physical events and usually caliculate
vhysical variables as a2 fuanction of time.
de-
1,008 to

These two dimensional meshes

The geometry of a problem is usually

scribed by z mesh containing from

15,000 nodes,

*This work performed under the auspices of
the U, S. Atomic EBnergy Commissicn.

eral thousand cycles; thus generating

billions of numbers.

The presentation and

interpretation of these numbers is a very

complex problem.

The production codes exhibit their re-

sults in a number of wavs.

One method is

to generate hundreds of pages of printed

This
stration to the

outpui. is

individual is doing

the huge piles of iistings occupying

ffice.
ctherwise with only
pzzes giving useful
be pointed out that

strained 1o produce

w by -

the most

casual observer that

They are of very limited use

visual demon-

the
some work as shown hy
his

a limited number of

information, It

would

the designer is con-
such long listings

sipce he

ver knows precisely which param-
cters wiil he essential for his analysis.
In a given case, however, he may use only

small percentage of the information

form of nutput is a set of

pictures On DALY

.

use of a mechanical plotter.

ved, taking up to an hour each

the plistrer is available, the
tapes are readable, and the plotter does
not malfunction, the designer wiil have oasg
or two excellent pliots late in the day--
provided he chose the rvight set of param-

eters to plot. These plots are excellent

to work from (very detailed, larvge scale,

gnd may be written on) but are too time-
consuming and awkwavrd to convey enough
information about a production Tun.

The main socurce of information has
been and will continue to be computer out-
put microfilm {COM). This is generally
35 mm roll film with an ever-increasing
percentage being in color. The Laboratory
will alsc have a microfiche capability in
the near future. The results are displayed
at regular intervals during the course of a
This
film provides a1l the information that the

problem and in many different ways.

designer was able to rcauest hefore the
problem was run. In most cases, hindsight
indicates that 2z picture of the problems at
a given time and 2 particular view was not
requested and would have been invaluable in
analyzing the results of the production run,
The standard COM output gives lititle feel
for the relationship between physical vari-
ables znd time. However, the data record

of the run is in a compact form on (OM and

is saved for later reference.

Movies give the viewer another di-
mension in viewing the results of the calcu-
iations. It gives a qualitative indication
of the relationship hetwsen physical vari-
ables and time. We generated our first
movie from computer-geaneragted
1960,

computer and the geometry was plotted on a

output in

The problem was run on an i1BM 704

mechanical plotter at intervals during the
problem. These drawings were then photo-

graphed on 16 mm film with each plot being
exposed 14 times. The result was g poor
movie, rather jumpy, but g¢ill vaiuasble
and indicated that movies would indesd

seTve @ us

2ful purpose in problew analysis.

e
During the early development of 16 mm
fiim by the Laboratory's Central Computing

-

the turn-zround time for 16 nmm

S ¥
22
(e
heto
ot
pobe
[d
]
-

film was from twoe to six weeks., When this

was raduced to & one day furn-arvcund time

:,
the use ¢f movies became 3 practical tool
for the designers.

Several problems become immediately
evident when attempting to make movies
simultanecusly during the runaning of a
production code:

1. The standard film vate for 16 mm pro-
This
would require 1440 frames for a one-

jectors is 24 frames/second.

minute movie which is very expensive
if dome on a production basis.

™o
°

The designer must decide prior to his

run what kind of movie he wants, the

portion of the problem he wishes to

view, and the time interval for gener-

ating movie frames. [t is easy to make
an error,

3. It is difficult to make more than one
movie on a piven production run.

4, Production codes typically run at a
variable time step, and it is difficult
and expensive to provide eqgusl time
intervals for the movie.

5, It is difficult to make 2 movie and
generate standard COM output on a given
Tun.

In item one (1} we have been able to
reduce the number of frames needed by the
use of variable speed projectors, These
projectors have viewing rates of from one
to 24 frames/second, both forward and ro-
verse., This enables cone to stop the film
at variocus times, reverse it and view a
portion of the film repeatedly. This has
proved invaluable, not only in computer-

generated movies but for other movies also.

- 45 -

i
& separate movie code, M7 [MAGHY

Movie Codel, was developed fo solve some af

these problems.

These variables g

words about

\;’2
e
e
s
s
i3
21

and a

problem times

wiil problem, {Often
data ime inteorvals
during cevtain pha“ a problem and at
small time intervaels at other phases. This
intermediate file structure is well defined

and is pow being genevated by & majority of
production codes.

MZC has the ability to generate a
specified set of problem times from those
given through interpolation. This enables
one to make a movie with constant time
increments with data that is sparsc at some
times and dense at others or even when
given at unequal time intervals. The code
will also generate new variables from those
given; for example, one may convert from
rectangular to polar ceordinates. The
modified data is then available for making
movies,

At present, MZC contains eight differ-
ent plotting modules., Bach module is inde-
pendent of the other modules znd is easily
modified for special plots. New modules
Each plot

module contains a number of essily speci-

will be added as reguired.

fied opti@ns; giving the user cemplete con-

trel of the penerated vie. Some of the
options available are 60501, viot orien-
tation, background grid control, selection

of varisbles, dynamic tracking of a speci-
figd node, partiazl mesh sele

step contyol. The plot modules include

£

mesh plots, interface plots, contour plot:

¢
"

several isometric plots, ryotationsl plots,

and several experimental plots.

&

ction, and time-

2 . . s .
M™C has, in addition, 2z number of

1

tiles, A movice can he

options for ti

5 hm s e
pictely gencrated by M7C with titie

number of individual movies, and leader at
bhoth ends.

publiic showing

The generateé

The movie code

movie generation by a numbe

codes at LA gnd is being

cthers to provide all COM

We intend to use the code

terminal graphics. It wili be

extended to wrovide more ty
to give multiple plots per frame.
This is not the only code in use at
LASL for movie genmeration, 1t is a special
code designed teo display the results of
calculations invelving two dimensional
meshes. It has proved itself as a valua-
ble toel in a preduction envircnment and
is unegualed in presenting the rosults
of two dimensional time-denendent mesh

calculations,

- 46 -

AN INTERACTIVE DIGITAL IMAGE

PROCESSING AND DISPLAY SYSTEM

L. Hayes, €. Journcay, M. Wirth, Lawrence
Livermore Laboratory:; L. Hatfield, University
f Califcrnia, Davis

{Paper not received in time for inclusion in
the Proceedings)

- 47 -

A COLOR MOVIE FACILITY

by Stephen R, Levine

March 26, 1974

This paper was prepared for submitial to
Second Spring AEC Scientific Computer Information
Exchange Meeting

- L8 -

by Stephen
Lawrence | re Laboratory, L-
Livermore, California 94550

e

INTROBUCTINN

At the Lawrence Livermore Laboratery, the present scheme for
generation of computer-generated color films is to record each of
the desired color segments separvately on black and white film.
These black and white films are then combined in an optical
printer using color filters to produce the final film,

A major obstacle te wide usape of this method is the long
turn-arcund fime required for compiction of the Fildm.
Conscquentliy, color [ilms have been used only in the final staves
of a project rather then during the debug phase. With the intent
to make color film a routine output medium, a DDB8UA Microfilm
Recorder was modified by adding a white phosphor CRT and a color
filter changer permitting £ast, one-pass generation of c¢olor
computer-generated film.

With the advent of software to produce shaded coler pictures,
a new problem appeared. A single coler frame at full resoclution
contains over 3 million ©points. Using the point plot command
{(36-bits), the storage costs on disk or tape of even a film of
moderate length become prohibitive.

A special interface was designed that allowed compact
representations of these shaded pictures. The 36-bit shaded
raster command will plot up to 4095 points, varying the intensity
according to a user-specified slope. Typical shaded pictures can
be described using 0.1% to 1.0% of the storage previously
required, In addition, the interface allows compact
representation of dipitized pictures and automatic expansion of
low-resolution pictures on a high-reselution grid.

The direct connection of the device to a CPC 7600 will make
feasible for the first time at Lawrence Livermore Laboratory the
routine generation of complex computer-generated color film.

mmmmmm e e e w we w w G W W a e e

* This work was performed under the auspices of the United States
Atomic Energy Commission.

- 45 -

The function of the DBEOA nicrofilm recorvder is to provide a
facility for direct generation of color computer-pensrated films.,
The requirments for this faciliiy are

I. Birvect recording on coloy film for rapid turnaround.

&. Capability of 32 grey levels,

2, Efficient handlin ter mictures,

¥

ot ra

23e]
0]

4, Software compatibility with existing DDEGC microfilm
recorder,

DD8GA HARDWARE

The DDE&JA {1] is an old {vintage 1862} electrostatic
deflection microfilm recovder. It has the capability for drawing
vectors, plotting characters and pleotting points on an addressible
raster of 1024 x 1024 points. It is guite fast in that it can
plot a character or point approximently every 5 micreoseconds. Its
instruction set contains only five 32-bit instructions.

1. Piot a point at (x,v).

2. Position beam at {(x,v).

3. Draw vector from current beam position to (X,v).
4, Enter character mode at {x,v).

5. Advance film.

The DD&CGA has been modified to plot at 32 intensity (grev)
levels, The intensity is selected from the interface via z new
command. A color filter changer with 8 filters has been added
along with a new cathode ray tube. This CRT has a special "white®
rhospher to allow recording of "color™ images, The filters are
selected by setting the appropriate bits in the new comuund,

Color computcr-upenerated {ilm is created by using color {1
in the camera and exposing it through the color filters. The us
sets the color filter te the desired color and then outputs th
data to be plotted in that color,

im
er
hie

The DDROA interfaces to a portion of the LLL computer network
as shown in figure 1. The DD80A 1looks like an on-line tape unit
to the host system., The user interacts with the computer via the
TTY subnetwork. A preview of graphic output can be viewed on a TV
display alse connected to the computers via another subnetwork.

- 50 -

When the user is satisfiesd wi
the graphics to the DNROA for
is on~line, no intermediate d

th the ogutput, she/he can then direct
recording on film, Since the device
isk storage for pictures is required.

INTERTACE

The DD8CA is connected to two CDC 7600 PPU's by means of an
LLL designed interface [3]. 1In addition to handling the transfer
of commands from the 7600 to the DDECA, the interface contains
logic that allows the DDN8OA to appear to the user as if it had an
entirely differcent command structure, including some complex new
commands. In particular, the 32-bit, 4-character-per-word DDEUA
is programmed using the 36-bit, 6-character-per-word nngoc
instructions., The interface translates these commands into DDADA
instructions. DD3GC tapes can be plotted on the DDSOA with an
software transiation whatsgever, in addition, a new command
dirccts the interface to set intensity and to change color
filters.

NEW COMMANDS

Four new commands have been added to the DD80A via the
interface. Their purposes are to provide access to the new color
and grey level features and to azllow a compact description for
certain types of raster data,

The raster commands are designsed to¢ plot pictures which are
made up of vpoints 1lying on a wuniform grid. Since the points
appear in a fixed order (left to right, top to bhottom), the raster
commands are designed to previde a savings in user picture storage
by requiring the user to supply only the picture information, with
the interface caiculating the appropliate x,y positions, In
addition, the auto-increment feature allows pictures defined on a
512 x 512 or 256 x 256 grid to be plotted on the full 1024 x 1024
raster. The interface can automatically plot the picture
information on every other raster position, skipping every other
line, or plot on every fourth point and every fourth line. This
feature is operable on 21l of the raster commands.

i. COLOR-INTENSITY

This command sets the intensity and/or celor filters,
appear hefore or after any other command.

fmung
o
(8]
w
e}

- 51 -

2. SHADEDL RASTER LINE [(SHL

The hidden surface software [2] at LLL generates a picture as
a seriecs of raster 1S i line is brokenm up into a number of
segments. A sepgment over 2s few as 1 or as many as
1024 points. A seg specified by the number of points to be
plotted, the starting nsity of the segment, and the intensity
change per point. Th interface <takes this gingle command and
generates a sequence of soint-plot commands along with the
iinearly internmiﬁiei intensity for each point. To plot =
ﬁic?ufey 2 Set Raster Origin command (SROY is issued which sets
the upper left cerner of picture. This is iVﬁiCREEV =0, vai(23,
The 5SRO command is followed by all of After raster
position 1024 of any line 1 he iﬁ%erfﬁﬂﬁ skips the
correct number of lines (0,1,3) register to
zevo, Thus only segment data n USET,

3. BUCKET OF INTENSITIES (BOI)

This command is designed to plot digitized pictures, and alsno
facilitates the displav of data digitized on a larger grid than
the hardware's 1024 x 1024, The data is organized as a collection
of lines {1024 maximum). fiach line is a collection of picture
elements, A opicture element is 2,3,4, or & bits. (Picture
elements of 2,3, or 4 bits are used for data that is digitized at
4,8, and 16 levels of intensity respectiviy. The 5 high-order
bits of the 6-bit picture element are used for 32 levels.) These
4 picture element sizes are provided to minimize storage when 32
levels are not required. The picture elements are plotted on
raster positions according to the auto-increment setting.

For each picture, the user specifies 4 items.

1. The number of picture clements to be skipped at th
beginning of each line. The hardware pexfarwa this @kzw
very rapidly.

2. The number of picture elements o be plotted.

3. The number of picture elements to be skipped at the
end of each line.

4, The number of bits defining a picture element

This informatien, along with the number of lines of data to
be plotted, 1is issued prior to the actual data. This command can
be used fﬁr scanning data. For example, consider data that has
been digitized on a 2048 x 1024 grid., Without moving the data in
core, different vportions of the data may be presented and/or
expanded {auto-incremented) by changing only the control words of
the BOI command.

- 87

4, BUHCKET OF BITS [BOB)

This command is identical to the BNI command except for two
distinctic ons. First, the picture elements ave 1 bit, allowing for
either a peoint or a blank. Second, where a O appears the
interface d@es not issue a pointenlot command but rather khzﬂs to
the next wpicture element in 50 nanﬁseaanésé Thus, the time
regquired to plot a BOB pilcture is a function of the number of i
bits present, rather than of the total number of picture clements
in the picture. Datz that is formatted for the TV displays can be
rlotted very quickly using this command,

ey y

u

CONCLUSION

This facility has been designed to efficiently vroduce color
computer-generated films with several new features that minimize
storage requirements for picture data, thus reducing the overhead
for handling large and complex files,

REFERENCES

{11 Cecil, A, and Michael, G. DD80 Programmer's
}anuai Lawrence Livermore Laboratory, Report N
2.8~ 002 (1964).

{2} Archuleta, M. H{idden Surface Processing,
Lawrence Livermore Laboratory, UCID-30057 (1973).

{3] Pryor, K. and Long, K .awrcnce Livermore
Laboratory, Internal Document LEA-73-3005-96
{1973}, Readers cutside the Laboratory who desire
further information on LLL internal documents
should address their inquiries to the Technical
Information Department, LLL, Livermore,California
94550,

\ DDEOA
T \
Y ﬁgiw oy f————] PoP-11 /45 COMMANDS |
| DDBOA, COLOR,
R em = |INTERFACE |4 —sf DDBOA
COMMANDS
PDP-10 7600

i0'% it
STORAGE

A PORTION OF THE LLL COMPUTER NETWORK

?iﬁaf

DISTRIPUTION

Stephen R, Levine 1~73 1L

TID File 1m0 16

External Distribuiion

(a3

Technical Informeiion Center 2
& Ridpe. TN 37830

7]
()

- 55

Fls ol 5

SESSION II

Physical, Engineering, and

Biomedical Applications

Chairman: G. H. Campbell
Brockhaven National Laboratory

ADVANCED CGRAPHICAL DISPLAYS
USED IN THE ANALYSIS OF

HEGIT BNERGY PHIvEICS DATA

M. P. Hodous and I. A. Pless,

Magsachusetis
Institute of Technology

{Paper not received in time for inclusion in
the Proceedings)

- 5§ -

A Yatters Recognition Code for Curved Tracks

in Cylindrical Spark Chambers™

< . o . % .
We No Schreimey’, B.R. Gilbert™, W, 7. Trower

& ¥

¥irginia Polytechnic Tnstitute snd State University, Blacksburg, Vivginis 24061

?. Schubelin

Brookbhaven Hational Laboratory, Upton, Wew York L1973

ABSTRACT

We describe and evaluste a computer code, PLTRACK,
which associates sparks into tracks from digitizings
produced by a system of nine cylindricgl wire spark
cheambers operating in a 10 kG magnetic £ield, PITRACK

‘was written in FORTRAN IV and reguives 72K occtal words
of CIC-65600 core storage for execution. Packing and
unpacking routines required by the dzza tspe fovmat
account for ~ 207 of this core. Track recogaition time
principally depends on the initial nuwmber.of tracks to
be recognized, N, as

gt Oub +—ﬁ@0&§2(seasnds ner event),
éﬁ?ﬁﬁﬁg identifies ~ 94% of all tracks found by a human

scanner while ~ 17 of the tracks it found were spuriocus,

*Hork performed under the auspices of the U,8. Atomic Energy Commission

*Present Address: Brookhaven FKatiomal Laboratory, Upton, N.¥., 11873

¥Present Address: University of Toronto, Toronto, Canada

- &0 -

A Pattern Recognition Code for Curved Tracks in Cvlindriecal

Spark Chambers

Introduction

The Multiparticlie Argo Spectromerer System, MASS, seen in Figurs 1,
was capable of recording ~ EGQ inelastic events per hour and recorded 4 x i@ﬁ
events during its first experiment: proton-proton intevactions gt 28.3 @@Vfcz#
The analysis of any significent portiom of thesé data regquired a highly
efficient avtomatic procedure for asscciating sparks inte tracks to form
events. Human intervention, by visually scanning events, had to be limited
to & relatively small control sample to keep the data processing tractable,

.The Vertex Spectrameterz, VS, of MASS was a system of nine cylindricel
wire spark chambers operating in & 10 kG magnetic field. Charged particles
produced in an event emerged from a centrally located target, followed helical
trajectories, and where they intersected g chamber & spark occurred. The data
from each chamber appeared as two independent sets of digitizings., The firse
set was equivalent to a projection of the helicsl ;racks onto a plans
perpendicular to the axis of the helix and resulted in circles. The second set
was related to the dip angle of the helical tracks and resulted in straight
lines. Combining the two sets of tracks produced a three-dimensional repre-

sentation of the particle trajectories of an event,

Track Recopnition Code

The computer code, PITRACK, was developed to provide track recognition
for the VS. The global strategy used in PITRACK was to develop several
algorithms which provided a few good initilal track candidates, These track
candidates would then be upgraded until they either fulfilled most of the

conditions for acceptable tracks or fziled encugh to be rejected, Several

- 81 -

intermediate stages of tests and a2 final track selection &ete?mimad the
ultimately acceptabie'traaksa Permeating the code was the phiias&pﬁy that
when a track failed a specific test, every effort was wade to modify the
track until it became sccsptable ragther than refect it,

We found no single search algorithm which would provide satisfactory
tyack recognition under all civeumstances, thus several techniques and
multipnle searches were emploved., The most éiéfiauit task was defining
for a digital computer precisely what constituted an acceptable track.
Agein, no single set of conditions was found to exist, so a complex set
of rules was developed to include the diverse range of tracks acceptable
to human 5canner$“ For example, in many cases it was found necessary to
explicitly take inte account certain idiosyncracies of the VS chambers
and readout system, |

Each chamber of the V8 produced two sets of digitizings by wmesns of a
magnetostrictive readout system, The first set was from the high voltage
wires which ran vertically and were parallel to the magnetic field, The
second was from the ground Qires which were rotated at an angle of + 26.5°
with respect to the vertical, the slope altermating on successive chamnbers.
The high voltage and grougd wires were separated by 3/8 inch, with the result
that a spark produced two digitizings in different planes, rather than a
single point in 3-dimensional space,

The projection of the digitizings from the vertical wirves onio the V§
median plane, shown in Figure 2, was caglled the S-view., The vectangle

lizes the liguid hydrogen target. The beam enters from the bottom, and

- 62 -

the magnetic fieid of 10 kG is directed into the plane of the figure. The
nine avcs are the outlines of the cylindrical chambers. The darxker points
are the S-sparks obtained from the vertical wires. The tracks, ag found by
PITRACK, are shown ai@n%‘wizh certain ancillary information. The arce distance
to & spark measured along a chamber from the spectrometer center line was
calied §S. |
Spark height information was cobtained from the slanted wires. It was

generated on the set of lines of intersection of the chambers and & cylinder
defined by the helical path of the particle and was called the Y-view.
Possible spavk coordinates occcurved whenever a slant wire which fired

crossed a vertical wire which alsc fired. The Y-view of a typical track

is shown im Figure 3. The vertical lines represent the chambers and the

dark points are the Y-sparke. The circled sparks have previously been
associated with another track. The horizontal axis is the S*§iew arc distance
along the track. In the Y-view the track is a straight line, The dark
point at the rear of the target is the event vertex.

The Y-view differed from the S-view in two respects. First, the fﬁrme%
was not defined until a possible track had been found in the S-view. Second,
in contrast to the S-view, not all the coordinates defined by the many inter-
sections corresponded to real sparks. Therefore, tracking was performed first
in the S-view. The Y-view was then used to confirm a track candidate and
determine its dip angle.

Strategy

An initial event vertex was obtained by projecting the trajectories of
external triggering particles back into the VS and intersecting them with the
known beam trajlectory. For particles detected in the High Momentum Spectromater

{(HMS8} the digiﬁizingé nearest its extrapolated trajectory in the VS were

- 63 -

accepted as those from the MMS track, Particles detected in the Low Momentum
Spectrometer {IMS) woere not similarly treated because of inexectitudes [n its
srajectory introduced by wmultiple scattering, energy loss, and IMS spatial

reaclution.

pote

¥ive distinet interlocking operations indicated Inm Figuve &4, wers

performed fo extract traecks from the sets of 8 and ¥ coordinates,

1, Seview Track Bvoothesis

Initial S-gpark frack candidates were provided by four search techniques,

The firse, Smooth Track Search, emulated the ability of the humsr eve to
P 5 ¥ ¥

distinguish smeoth arcs in & collection of digitizings., The second, Forward
Search, found tracks with litetle curvature which lay close to one another in

the forward directison. The third, Brute Force Search, resorted to trial and

error to sort out the more complicated tracks, The fourth, 2-spark Search,

looked fdr steeply dipping tracks which exited the chamber volume after
passing through only the first two chambers,

Once an S-spark was successfully associated with a track, it was
excluded from further initial track searches., However, assoclated sparks
would be used to fill in gaps on other tracks during thelr development,
Typically 5% of sll the S-sparks were associated with morve than one track.

2s Seview Evaluation

Track eveluation tock place at many stages of track development. Before
the inltial track evaiuationg &g many sparks asz possible were associated
with the trial tracks, Chanbers were flagged 1f the track missed or went
through an inactive region. Tane most notsble reguirement im track evaluation
wag that trial tracks have a minimum mumber of S-sparks depending on their

configuration.

- Bl -

3. Y¥Y-view Tracking

A search was made for trial S-view tracks to find Y-sparks falling along
a straight line emanating near the vertex. If no track with a sufficient
number of Y-sparks was found, the S-view track was flagged.

Because slant wires alternated in direction from chawber to chamber, the
ambiguity created by rvecording the passage of more than one particle through
the chambers was vemoved. However, reflections due to nearby tracks often
securred on the even or odd nuwwbered chasbers, An example of such a track
refiection i¢ seen in the upper part of Figure 3 among the circled sparks,

Authentic Y-spark associations must therefere include both even and odd

numbeared chambevs.

4. Seview Track Development

The S-spark tracks provided by the initial track. searches had many
shortcomings. For example, the Smooth Track Search often purposely supplied
incomplete tracks., Furthermore incorrect sparks were frequently assecciated
with a track vhen more than one digitizing existed near the track on & given
chamber, or one of the initial searches projected a track imcorrectly to a
neighboring chamber, These problems stemmed from difficulties such as readout
noise, signal inversion, track age, lineup imprecision, delta rays, multiple
scattering, nearby tracks, etc. Convergence to the best possible track in the
Seyiew was affected by examining alternative s?ark combinations, The best
track was defined in terms of, first, the number of S-spavks associated with
the track and then its chie-squared,

The above type of track development was concerned primarily with the
internal consistency of the sparks in 2 track., Further optimization of the
tracks occurred pericdically when study was made of how the tracks collectively
formed an event., For example, since the vertex was not fixed during tracking

whenever it moved significantly an attempt was made to bend tracks to the new

- By -

vertex by substituting S-sparks on the lmnermost and outermost chambers,
provided this resulted in an improvement in the track quality.

5. Intertrack Comparison

<

At several stagges in the program the establisbed tracks ware compared

with one another fo eliminste spuricus

ones, These cccurred primerily iz

the fovwerd direcuion where iracks were a%uﬁégng rigid, znd closely spaced.
Hear the VS center line there were dead regions in each chember which
permitied the nop-sparking passage of the beam particles., Thess desd spots
introduced distortions and cccasional spurious sparking. Thus, for cxampla,
forward tracks and tracks which shaved sparks in the Seview oy the Yeview were
carvefully scrutinized. In other rvegions of the chawbers the compsrison
gllowed replacement of an cccasional incorrect or incomplete track by the
correct one,

The location of the vertex was computed after each new track was found
by forming a weightod averape of track intersections with the beam, The
weighting factor was sinz & for the Z position and cosz 8 for the X position,
where 9 was the angle between the track and the beam at their point of inter-
section. The largest cluster of weighted track intersections was uséd té
compute the event vertex and tracks whose weighted intersections fell outside
this cluster were excluded,

After tracking was completed, if there was an IMS trigger, its track was
selected from smong the tracks identified by the program and fiagged. Any
of the remaining tracks which passed too far from the final vertex were
flagged. These tracks &ypiﬁa§1y resulted from beam halo particles. secondaxy
intersetions or decavs.

Flexible requirements were an imporitant ingredient in the code. 8ince

the chamber efficiencies had been found to be ~ 85% and independent of the

.
.

5
2z s ‘
number of tracks™, a valid track would be expected to have a small nuwber of

- 66 -

migsing sparks in thé S-view, However, before rejecting a trizl track with
several apparent misses, the S-spark acceptance window was enlarged to allow
sparks twice as far from the projected trajectory as normal to be sssociated
with the track, again providing they had no nearby neighboring spsrks. Such
poorly fitting Sesparks were flagged after tracking was complerad.

Another useful technigue resulted frow the observation that two or move
digitizings frequently occurred in near yr@ximity to one another and thatc
vhese groupings weve probably associated with the passage of e single partvicle.
Such S-sparvk groupings were treated gs g unit, zlthough the individual
digitizings retained their identity. On the average PITRACK asscciated 35%
of the S-view digitizings into tracks and an additional 157 were indirectly
associated by this method. Most of the remaining digitizings are obsevved in
the forward direction and form a non-random background.

Figure 2 ié an.S-view of an atypical event containing several difficult
gituations with which this code must contend: a 2-spark track, two side-
going tracks with multiple sparks on several chambers, a portion of a chsmber
where there are no éigitiziﬁgs, tracks which cross one another near ;he vertex,
& possibly ambiguous or spurious track in the forward direction, and several
sparks around the dead spaces,

Initial Searches

Four separate searches constituted the Smooth Track Search, sach of
which began by selecting from two adjscent chambers one S-spark each whose
line of connection roughly pointed toward the vertex. A circle was thus
defined and used to predict the location of sparks on adjacent chawbers. A
spark near the predicted location was accepted only if it lay within some

engular window., If accepted, the spark was used to calculate @z new curvature

- &7 -

for the track whichk then predicted the locatiom of & spark on the next
chamber, Each spark of a track was regquived to have a minimum separation
from neighboring sparks on its chamber. If the spark did not meet this
separation criterion oy if there wag no spark in the angulay sccepiance
window, a miss was reCorded for that chawber. The search would stop Lf two
consecutive chambers 4id not provide spark candidates. This procedure often
vesulted in pavtial and inpcouplete bracks whiék required routines o extend
and complete them bafore they weres evaliuated.

During the Smocth Track Search the firmness in location of the vertex
was continually evaluated., Occasionally for M8 triggers the vertex location
had to be stepped through the length of the target until & track with a
sufficiently large angle could be found to localize it, 1If the vertex was
found to lie more than one inch outside the physical limits of the target,
processing of the event was halted after the Smooth Track Search and the
event was flagged.

The Forward Search operated by choosing twe previcusly unassociated
S-sparks, one from the first two chambers gnd the other from the last two.
From these sparks a straight line was constructed which was intersected with
the remaining chambers. If at least three additional sparks could be found
within a2 window avound this line, the track was sent on for development and
evaluation,

With the vertex well determined, the Brute Force Seavrch begen by taking
all the remaining wvnasscciated S-sparks, connecting them two-at-a-time with
the vevtex to form a circle, If enough sparks were found within a window
around the circle, the track was sent on for further work.

The 2-spark Track Search examined pairs of unassociated S-sparks on the

fivst two chambers. Here the only constraint gccurred in the VY-view, where

- &8 -

it was required that twe Y-sparks be found which defined & straight line
passing near the vertex. This seavch increased the effective g8061id angle

of the V8 by 20% to 2t sy, Care was exercised to insure that spuricus tracks
were not introduced by this seagrch.

Eyaluation and Performance

PITRACK was written in FORTRAN IV and vequired 72k scial words of
CHC 6800 of core storage for execution, Packing and unpacking routines
required by the format of cur data taves accounted for ~ Z0%Z of the core used,
Reconstruction time éé@ﬁﬁ@ed on many factors but we found empirically its
average approximately depended upon the charge muitipiiaity of the svenit, N as

£~ 0.4 4+ 0,04 &2 {seconds)
{(e.g. for a &-prong L.8s and for & l0-prong 4.4s8). The time to reconstruce
individual events, however, varvied by a factor of three or more from this
average.

The reliability of PITRACK was evaluated by scamning a ssmple of -several
hﬁn&r@d H4S trigger events witilizing the interactive graphics program VUE.
Initially an event’s digitizings were displaved on a2 vides screen with the
PITRACK solution superimposed as in Figure 2. The scanner by examining the
event in various perspectives, such as the one shown in Figure 3, either
verified or improved upon the sclution. Interactive operations, using a track
ball and teletype, allowed the association of any sparks to make new tracks,
and the deletion of sesgociated sparks on all or part of any track.

When WE was used on the Brookhaven Sigma 7, where it occeupied 18k
decimal words of core, data to be inspected was stored on a disc file of the
€00 6600. A high speed data link, BROGKNETE, permitted events to be transe
ferred to the Sigma 7 cove at a rate of ~ 200 ms/event when vequested by the

scanner., After scanning, the event was rveturned te ancther CDU 6600 file

where it could be retrieved at a latey time.

- % -

About 94% of the tracks were identiffed by PITRACK, of which 3% requived
some improvement, while another 2.3% needed an slteration of flags., Less

than 1% of the identified tracks were found %o be spurious in the scan. Of

gy
e
g
o

the unidentified tracks, a quarter were nolt acceptable on the basis of
code's predetormined criteria, yet the scanner gccepted them on an individual

basils. We found that the performance of FITRACK was independent

multiplicicy up to S-prongs. For example, in 2 sample of &-pron
76% had every track identified. Thus, we concluded that theve wag litile
correlation among the unidentified tracks,

The performance and yisld of the PITRACK ssawvch procedurss are given
in Table I. The Smocth Track Search which was meat to £ind the easy tracks
in fact did identify 70% of all tracks found, In addition ite vield was
high ~ wore than half the trial tracks it identified were finally accepted.
The Brute Force Search, which was left to sort ocut the move difficult tracks,
exgmined more than twice ss many trial tracks as the Smooth Track Search,
yet only 5% of those were eventually accepted.

We have thus far procéssed with PITRACK ~ 800K events recorded by MASS,
For these events the V5 and PITRACK successfully i{dentified 837 of all |
charged particles originating from the primary vertex, the remaining 17% were
secounted for by particieé escaping detection by being produced outside the
V8 sclid angle {~ %%}, in the dead spots of the chambers (~ 1%}, by particles
of toc low & momentum {(~ 1%}, and by software ineffliclencies {(~ 6%4). Most
of these losses can be recovered by requiring charge balance.

Our corrected multiplisigy distributions arse compared in Table LI with
bubble chambe; &até%&t the same energyv, four-momentum transfer and missing

mass, Our average chavge muleiplicity, is ~ 5% higher. This systematic

“cn?

deviation is not unexpected since we have not covrected our date for undetected

interactions of secondaries, gamma conversions and decavs of neuirval
particles near the primary vertex, charge misidentification of fast tracks,
era, If & 5% excess of tracks is uniformly added to the bubble chamber
sultiplicity distributions to simulate these effects, the MASS and BC
digstributions are seen to be consistent.
Conclusions

We have written & pattern recognition ?XSgram for a digival cempazér
which asscciates digitizings from & set of nine cylindrical wire spark
chambers into helical tracks in 3-dimensiomal space, The code successfully
identifies ~ 94% of all tracks found by & human scanner while ~ 1% of

the tracks it finds are spuricus. Datas taken with MASS and reconstructed

by PITRACK are compatible within errors with processed bubble chamber results,

We believe that our piconeering efforte in automatic track recognition
demonstrates that the large amounts of data from a magnetic multiparticle

spectrometer can be correctly and efficiently processed and analyzed.

REFERENCES

1. "Multiparticle Spectrometer System for the 10«30 GeV/e Region,®
J.R, Ficenec, T.8, Clifford, W.N. Schreiner, B.C, Stringfellow,
W.P. Trower, E.W, &nderson, G.B. Collins, N,C. Hien, KM, Mov,

A. Ramanauskas, P. Schubelin, AM. Thorndike, ¥. Turkot, and L. von

Lindern, Experimental Msson Spectreoscopy 1970. (. Baltay and A H.

Rosenfeld, (Columbia University Press, New York, 1870}, 381, £ds.
A more complete and updated description is In preparation.
2, Je R, Ficenec, B,L. Stringfeliow, ¢.B. Collins, A. Ramanguskes,
P. Schubelin and F. Turkot, Nucl. Imst. & Meth., 113 (1973} 535-540 .
3. G. Campbell, K, Fuchel and L. Padwa, BNL 17054, July 1972 (unpublished}.

&, Private Commnication, J. Hanlon and R, Panvini.

w 7l -

Table I, Performance of PITRACK Search Procedure

Search Ldentified field
Smooth,Track 70,1% 57.2%
Forward 1.9% 16.5%
Brute Force 27.5% 8.7%
Z2«gpark Track @,5% ~25%

- FD -

Table IT

4
BC + 5%

is statistical only.

BC Distribution with a 5% excess of tracks.

Charge Multiplicity Distribution in pp Collisfons at 28,5 GeV/ic: MASS vs BC
2 prong 4 prong 6 prong 8 prong 10 prong ﬁbﬁ
N :
BG 30.3% £ .9% 61.7% & L.2% 5.9% % WA4% L.7h & 2% A% & W1% 0 3,65 & 10
mass’ 29.6% & 1.0% 5B.4% + 1.4% 9.8% 2 6% 1.7T4 2 .2% Bh & WA 3,83 & 04
+
BC + 5% 27.6% & 9% 58.9% + 1.2% 10.8% + 4% 2.2% % 2% 3% & W14
BC: Recoil proton identified and momentum < 1.3 GeV/c, missing mass to the identified
proton between 2.0 and 3.0 GeV.

'MASS: Missing mass to the fast forward proton between 2.0 and 3.0 GeV. The error on E&F

,...';?i_.

DT3rRUWsLDg

U2T1EAG IDTBU0IL03C0g ODIy 8T0I3IRdliinyw i) I0C INCAR] IDOTZ

‘814

1

IHRESHOLD
CERENKOV

LOW MOMENTUM L4
TIME OF

SPECTROM EE FLIGHT

_Lg,.
BEAM ANGLE RARNNAY
HODOSCOPE gg 2\
PROTON §
BEAM ; _
28.5 GeV ° : ;Mf» Xﬂ
ARGO VERTEX -
SPECTROMETER

?HRESHGLD
. CERENKOV

MULTIPARTICLE ARGQ SPECTROMETER SYSTEM

-@’D

“&

-
p h
i
) 3
g
Pr— S
Leae? e P o, B
y;,paﬁ"'” O peas o s e o, RN .
o ,e° T, g,
o R o ey
" R g,
P casetevens L St e,
5 i e e e U,y A .
o sou K - G 6o, 5 L e
?J 4575 oo e M g w, .,
P e 2 ’ef & &S, %
r o 2 . o . g w e
K P o s & e o, - o B
£ o i & A“ & W %1‘% \ %
& & o £ s ' o . N
S f o & . . K ", AN
¢ P o . ,.ef ¢ <
¢ ¢ £ & K "
s £y o a gy
£ 8 § B
& L4 N f . e,
L |

l“"h'
1etses

f’
;f
:Zi:!F'H!
Feseg, 2 e sa00s, LX}
LEX 3

TARGET ./

o
P
B
“”s' et
s° I
o8

v
29t »
st
'll"

‘a n‘

3 B
®, %, <.
N, L b, AR . o o
- . L ,
[s, o, & \.., g
. S %o, 5, ® a .
93, . e %, o .
%o 2, o %, .
." SN b, e, Frad g
., 'y, W, .
Y, Y, T
"a,ﬁ 4s, e,
o “ra, e,
-a,“"“ ,’ii“e “‘%'
P o050 "heasge
e RGRTTTIY

el o
f
‘e

S W

\

K

Fig. 2

e
e .-ul»w e

An atypical event in the Vertex Spectrometer

el

- 75 -

5

EVENT

<
Y

18 (P ,—)

™5,

UN

*

INCIDENT
BEAM

........

4
r'%
A d
N
A
i

W
£
o
o))
-~

Fig. 3

Y-vicow of a tvpical track., The ciyveled points are reflection

I

of sparks which have been associated with other tracks.

- 76 -

{k Input Event

%

% Determine Initial Vertex g

§ Find HMS Track E

Lo . i

Operation 1. Operations 2 - 3,

8-View Track Hypothesis 2. S~track Evaluation
A« Smooth Track Search 1 3. Yeview Tracking
B. Forward Search &= &4, S-track Development
€. Brute Force Search 5. Track Comparison
B. Z-spark Track Search

Overview of Event

Final Intertrack Comparison

/
Select IMS Track

Define Spuriocus Tracks

.4

Qutput Associated Event

¥iz. &

Logic diagram of the Vertex Spectrometer track
recognition code, PITRACK,

i,rn uw WN- t...._s vsl xl&\...;“h.&v}\lwe&.ﬁwtuz\s.
- : T L " i 4
: - - - f«h{.&&lﬂ}iﬁ% -
. R T e e It
.. : m .nn % Y ot T
.u m w T B A 4
: . : F .. 8
841 B : K e
SHH : : B

A

Namrenesssun ene s veaassdBard

et

ive

repe

[16

another

w of an B-prong event i

2

~yie

ag displaved by VUE,

S

- 78 -

COMPPUTER GENERATED VISUAL DOCUMENTATION OF
THECRETICAL STORE SEPARATION ANALYEESR"

by

Harold R. Spahr
Sandia Iaboratories
Albuguergue, New Mexico 87115

A paper presenfed al the Scientific Compuloer Information Exchuange
Mieoting on toples in compuler graphics (sponagorcd by ARC organivations),
New York City, New York, May 2-3, 1474,

‘This work was supporied by the United States Atomic Energy
Commigsion.

COMPUTER GENERATED VISUAL DOCUMENT.
THECRETICAL STORE SEPARATION ANALYSES

o
=4

o L
Harold 8. Spahr
Sandia Laboratories
Albuguergue, New Mexico 87115

ABSTRACT

Recently, a computer code was developed which computes the
theoretical {rajectory of a store (l.e., bomb, fuel tank, etc.) in the
complex aircraflt {flow field after it is released from an aircraft flying
ai subsonic speeds. However, the engineer was still faced with the
problem of documenting the results of the store separation analysis in
a concise, clear manner.

This paper describes a visual documentation system being used
by Sandia Laboratories 1o document the results of theoretical store
separation analyses. The documentation system uses a new Sandia
Laboratories computer program, MOVIEL, with a CDC 86600 computer
to generate a magnetic tape of plotting commands for a DatagrapniX
4020 plotter. Technigues are discussed which reduce the computer
time required for one theoretical store gseparation to a few seconds to
generate a magnetic fape for drawings and tc a8 few minutes to generate
the magnetic tape {or movies.

* ,) . o
Work supported by U. 8. Alomlic Energy Commission,

o
Member of Technical Staff, Aercballistics Division,
Aerodynarmics Proejects Department.

- 80 -

To illusirate the visual documentation provided, the paper contains
computer generated black and white drawings of the side and bottom
views of two theoretical store separation analyses. The paper presentaiion
uses color slides and color movies (with real time and slow motion se-
qguences) of the same two theoretical store separation analyses,

Possible future refinements to and fulure extensions of the MOVIE]L
computer program are discussed.

- B8] -

COMPUTER GENERATED VIS DOCUMENTATI
THECRETICA i E { ANALYSES

The word store, as used in this paper, is deflined a8 any oblecl
{bomb, weapon, rocket, fuel fank, insirumentation pod, or container)
which is carried on an alrcrafi, Thus, store separation analysis is
defined as the determination of the position and attiiude histories of a
store after it is deliberately separated or ejecied {rom the aircrail
while the store is still in the comyplex nonuniform {low field near the
aircraft.

Store separation problems and thelr analysis continue fo be im-
portant in determining the effectiveness of any aircraft-delivered
weapons system. Store separation problems can resultin reductions
in the allowable delivery speed of the weapon, increased dispersion of
the impact point or target intercept point, and even, in rare cases,
lead to loss of the aircraft (References 1 and 2).

Finul store sceparalion studies are usguaily basced on extensive and
expengive wind tunnel tests or full-scale flighl drop tesiy. llowever,
the need has been recognized recenlly for theoretical stere separation
analyses for use in preliminary design and io supplement and, hopefully,
reduce the number and magnitude of wind tunnel and flight drop tesis.
To meet this need, a computer program {References 3, 4, and 5} was
developed by Nielsen Engineering and Research, Inc., under contract
from the Alr Force Flight Dynamics Laboratory, to compute the theo-
retical separation trajectory of an exiernal store released from an air-
craft flying at subsonic speeds. This computer program currenily is
being used by several agencies.

However, the theoretical store separation problem does not end
with the computation of the store separation trajectory. The engineer
is still faced with the problem of presentiing the resulis of the store
separation analysis in a concige, clear mamner, The engineer would
like to replace the tabulated computer outpul of the relative location of
the store and ailrcralt with a graphic preseniation. What is needed is
either a "theoretical chase aircraft” or a "theoretical camera pod”
which would provide pictures or movies of the theoretical store gepara-
tion process similar to those ftaken during experimental wind tunnel or
full-scale drop test programs.

- B2 -

The firel need for o vigual presermiation of theoretical store sepa-~
ralion snalysis resuils s while the engineer i8 examining the offects of
different ejecliion conditions or different flight conditions on the store
separation irajectory. The engineer would like to 'instantly' see the
resulis of one iheoretical store separaiion trajectory to select the in
conditions for the next analysis. Interactive compuler graphics siorse
separation computer codes, such as the one degcribed in References §
and 7, provide the best means of meeting this need,

¢

Pt

The second need for a visual preseniation of theoretical store sepa-
ration analysis resuite arises when the engineer must pregent the resulis
of the analysis in a briefing, letter, or report. This requires generating
permanent visual documentation of the siore separation process. To pro-
vide permanent vigual documentation on shori time scales and al low cost,
the visual documentaiion must be computer generated using off-line plotters,
A visual documentation system wihich generates permanent visual documen-
tation of the theoretical siore separation process can also be used to meest
the first need, described in the preceding paragraph, with longer time
scales. Thus, for those organizaiions which do not have aceess to an inter-
active graphics terminal on a large compuler, a system which gensrates
permanent documentation of the store separation process can be used to
meet both needs.

This paper describes a permanent visual documentation system
being used by Sandia Laboratories to provide visual documentation of
theoretical store separation analyses. The documentation systern uses
a new Sandia [.aboratories computer program, MOVIEL, with a CDC 6600
computer to generate a magnetic tape of plotiing commands {or an off-
line DatagraphiX 4020 piotter.

This paper first defines the desirable characterigtics of a perma-
nent visual documentation system for the theoretical store separation
process. Then, the computer program MOVIEL is described. Tech-
nigues are discussed which reduce the computer time reguired for one
theoretical store separation to a few seconds to generate the magnetic
tape for drawings and o a few minuies to generate a magentic tape for
movies.

Next, the Sandia Laboratories modified DatagraphiX 4020 plotier
and the output media provided from if are described. To illusirate the
visual documentation provided, the paper coniaing black and white
drawings of the resulis of two theoretical store separation analyses.
Color and black and white 35mm slides and color and black and white
movies {with real time and slow motion seguences) of theoretical store
separation analyses results alsc can be generated,

The paper also describes "g‘sf)? seible futare z*eﬁnemems to and
future extensions of the MOVIEI computer program. The final sc
of the paper defines how a copy of the source deck of comy
MOVIED can be reguasied.

Refore one examines th
gtore geparation result
major desirable characteristics
These characteristics are:

& Curke

1. A wide selection of outpul media;

2. Mipimum use of computer time;

3. Provide aileast two orthoponal views of the store soy
Process;

4. Show the store shape, including {ins, in both orthogonal
5. Reguire a minimum of input daia;
6. Rapid availability of visual documentaiion;

7. Easy conversion from computer to computer and plotier
plotter; and

8. Awvailable tc government agencies and their contraciors.

Setio

Drogram

the

views;

Lo

Each of these major desirable characteristics is discussed in detail in

subsequent paragraphs.

Different output media are reguired for different purposes.
and white drawings of the theoretical siore separation results are
for informal briefings where slide or movie projection eguipment

Black
needoed
is not

ailable, and for documentation in reports or letters, Color glides and
color movies are desirable for more formal briefings and presentations
where the ionger lead time required for color film processing is avail -

able.

The computer code used to generate the plotter commands should

use a minimum of compuier time. The computer time reguired pe

v frame of

outpul documentation should be very small to permit genevating thee}re’si«
cal store separation movies corresponding to the high frame rates of

several hundred frames per second used for experimental store s

apara-

tlon movies. This permiis dimc&: side-by-gide projection and compari-

son of the theoretical and experim ma‘z gtore separation resulis.

Total computer time required for visual documeniaiion shouid be
kept to a rvelatively small percentage of the computer time reguired to
compute the theoreiical store separation irajectery. Otherwise, the
cost of the complete store separation analysis will be significantly
increased,

The visual documentation srovided should contain at least two
orthogonal views of ithe store separation resulis to show the relative
nosition of the store and alrcralt to determine whether gtore and air-
craft contant ocours. One of these views ghould be a side view for
comparison with piciures or movies ohiaiped later from camera pods or
a chase plane in full-scale {light drop fests or pletures o movies ob-
tained later through the side walls of wind tunnels during drop tests.

W

The store shape, including fins, should be shown in both orthogonal
views. By showing the store shape, including fins, store and airvcraft
contact can be defermined which would not be apparent if only the siore
centerline were shown.

The computer program used to generate the plotter commands should
require a minimum of input data. Input data defining the relative position
of the store and aircraft should be automatically generated by the compuier
program which computes the theoretical store separvaiion trajeclory. A
visual documentation gystem will be used the most if the time reguired to
prepare the input data is a relatively small fraction of the time reguired
to prepare the input data for the store separation trajectory computer
program.

The visual documentation system should rapidly provide the degired
output media. Freguently, the mass properties of a protoiype siore are
measured a few days before the full-scale drop test. Thus, a desirable
goal of a visual documentation system is to provide black and white out-
put media prior to 8:00 a.m. from visual documeniation computer pro-
gram runs submitted prior to 5:00 p.m. the preceding day.

The visual documentation sysiem should be easy to convert from
computer {0 computer and plotter to piotier to increase its uss by the
store separation analyvsis community. Thus, the computer progran: used
to generate the magnetic tape of plotier commands should be written in
a widely used sclentific programming language available on most com-
puters.

The computer program used to generate the magnetic tape of
plotter commands should be usable with the same plotier used at differ-
ent compuier facilities. Thus, a "standard, " readily available plotter
language should be used. Nonstandard plotting language subroutines
should be used only when their use provides significant benefits.

Since different computer facilities will have different plotiers,
the computer prograrn used to generate magnetic tapes of piotier com-
mandsg should be eagily converted {rom plotier to plotter, This conver-
sion will be aided by using the smeallegt possible subsel of plotiing
commands.

Obwviousiy, a vis da‘?“y«*a’*‘m on svsie
separation analyses i
‘'2%(‘5 (‘=(\$I1Ejll”§'(\ B f‘xf’v ’,,,' Ly
mands should be .
al no cost,

p@\

o for theoretical stores
only if it ig readily avallable. E“h‘.,g
generstos the magnetic lape of plot com-

government agencles and theiz

COMPUTER PROGRAM MOVIE

Computer program MOVIED was writien at Sandia Laboratories
prepare a magnetic tape of plot commands o generate visual documenta~
tion of the resulis of theoreticsl siore separation analyses. To facililate
conversion of the computer program from computer to computler, the
program was written in FORTRAN (Reference 8), the most widely used
engineering and scientific programming language.

: “ !

The first step in the development of the program was to select the
plotter to be used. The modified DatagraphiX 4020 plotter, described
in the next section of this paper, was selected because it is the high-
speed plotter with the widest selection of cutput media available at the
Sandia ILaboratories computer facility.

The nexi step in the development of the compuier code was to
select & plotter programming language for the DatagraphiX 4020 plotier.
The SCORS ploiting ianguage (Reference 8} was selected becausge it is
currently in use by Sandia lLaboratories for the DatagraphiX 4020 and
also is used by a mumber of other agencies.

Next, the visual documentation to be provided was defined. The
theoreiical store separation resulis were to be documented by boih side
and bottom views., These views were tc be generated using any of the
output media available for the DatagraphiX 4020,

Most aircrafi-delivered stores have small low aspect ratio fins
which do not impart significant roll rates or roll angles to the store
during the store separation process. Thus, to simplify the input data
reqguired and to minimize the computer time required, it was decided to
not show any change in roll angle of the separated store. The side and
bottom views of the separated store show an apparent change in length
as the store oscillates in pitch and vaw, bul do not show any change in
roll orientation,

- B

Siides or black and white drawings were to be generated for each
0.1 gecond during the store separation process. Movies {{o be projected
at 16 frames per second) were to present both real time and slow motion
(one-twentieth ag fast as real time) geguences for each of the two views.

Next, the inpul data requh ed to gwmﬂra?c *hé xfl«m&f& documentation
of the theoretical store The form of
the input data used was 8 g flexible a8
possible bul siill simple {0 prepare.

The side view of the aircraft is defined by up 1o 1
with up to 100 X and Y coordinate paire in sach file. The ¢ 3
geometry file are sequentially connecied by st ‘rasg%? line segments to

o

draw part of the asircraft side view,

Figure I shows the X and ¥ coordinate %yc;%eem us;:d definin ;;: the
input data for the awcraff side view, The F-4D aircraft Si e view shown

in Figure 1 is genersted using 3 geometry files w ,Jr;“ a total of 100 points.

The side view of the separated store is defined by up to 10 geom-
etry files with up to 100 X and ¥ coordinate pairs in each file. The
points in & geometry file are sequentially connected by straight line
segments to draw part of the siore side view.

Figure 2 showsg the X and ¥ coordinate system used in defining the
input data for the separated store side view., The BAT nuclear weapon
side view shown in Figure 2 is generated using 6 geometry files with o
total of 84 points.

The bottom view of the alreralt ig delined by up to 16 geomelry
files with un to 100 X and Y coordinate pairs in each file. The points
in a geometry file are seguentially connecled by straight line segments
to draw part of the aircraft bottom view.

Figure 3 gshows the X and Y coordinate system used in defining the
input data for the aircraft bottom view. The F-41) airvcraft botiom view
shown in Figure 3 is generated using ¢ geometry fileg with a total of 122
points.

The bottom view of the separated store is defined by up o 1C
geometry files with up to 100 X and Y coordinate pairs in each file.
The points in a geometry file are seguentially connected by siraight
line segments to draw part of the store botlom view.

Figure 4 shows the X and Y coordinate system used in defining the
input data for the separated store bottom view. The B57 nuclear weapon
bottom view shown in Figure 4 is genceraled using 6 geometry files with
a total of 74 points.

e POsitive ¥V Axis
4»‘"”“‘””

i

Coordinate System Used For Input
Data For Aircraft Side View (F-4D

Aircraft Shown)

Figure 1.

/}’0 gitive ¥ Axis
B

f

/M
\ /

Positive ¥ Axis

Figure 2. Coordinate Sysiem Used For Input Data For
Separated Store Side View {B57 Nuclear
Weapon Shown)

Positive ¥ Axis

/

/

Pogitive X Axis

Figure 3. Coordinate System Used For Input
Data For Aircraft Boitem View
{F'-4D Aircraft Shown)

 Positive Y Axis

e

f
|

Positive N Axis

Wigure 4. Coordinate System lsed For lnput Dula For
Separated Store Bottom View (BB7 Nuclear
Weapon Shown)

- 89 -

The input data in the

four sets of geometry files degceribed previ-

custy can be in any unifs, .‘%Pa%c facters are ided for sach set
gecmetry {iles o scale i put dimensionsg o fuil-scal mens in
éi/i’:f‘%,a

store ¢

manual means
di gﬁEZ« he
drawing of 3
digitizer cursor i
the cursor ¢
PDP-10 ¢«
dise *1 e are aut

The next get of dala z‘eq;zg.rf
the store relaitve to the alre: e and Lo%’m T views i
time step in the store separaiion tragec*’forv caiculation. This is :
by giving the X, Y, and Z coordinates of the nose and tail of the store in
an aircraft fuselage coordinate gystem. Figure 5 shows a side view of
thig aircraft fuselage coocrdinate sysiem, while Figure € shows a boltom
view of the same coordinate system.

The X, Y, and Z coordinates of the nose and tzil of the separated
store are in uniis of feet. ‘The time ig the time from the sitart of the
gtore separation trajeciory in seconds.

The punched card input data deck defining the location of the nose
and tail of the separated store and the time is generated automatically
when the theoretical siore separation trajectory program (Heferences 3,
4, and 5) is used. Four cards were added to the QUTFEFUT subroutine in
the theoretical store separafion trajectory program to generate {his input
data deck.

The aireraft {1ight path angle and the fuselage angle of attack must
e bupp!m@ in degrees. These angies are used to rofate the alrceraft and
ithe store in the gide and boltom views to provide the correct perspecti

Control parameters must be entered 1o determine the gize of the
aiveraft and epar“ted stm"e; and po }fiiO n them in the side and boltom
view. The time in seconds in the thecretical store separsiion process
when the visual documentation iz to be nt@ppec& must also be supplied as
input data.

- G .

o

TIME = 0.0000 SECONUY

TIME = 0.0000 SECONDS

a——

TIME = .3000 SECONDS

=

7
5

(31 = 3000 SECOMY
~amE——
-
L
S

TIME = ,5000 SECONDS

TIME = ,5000 SECONY

1

Figure 7. Selected Frames of Visual Documentation For An EG&G
Pod Released From An OV-1C Aircraft At 250 Knots
True Airspeed At Sea Level

- Q7 -

TIME = 0.0000 SECONDS 5/]

@ 0.0000 secouo%
rdll éfij

— ‘\'&
TIME = .4000 SECONDS J]

Q @; . 4000 SECOND

- N

TIME = .7000 SECONDS A

Selected Frames Of Visual Documentation For A Sandia
Laboratories Prototype Store Ejected From A F-4D
Aircraft At A Mach Number Of 0.7 At 15, 000 Feet
Altitude Above Mean Sea Level

Figure 8.

- 98 -

2. Define the speed, altitude, and flight path angle of the drop
aircraft at the time of store separation;

3. Define the separated store; and

4. Define the ejection velocity and ejection angular rates of
the separated store at separation.

This refinement can be done easily, but would require numerous time-
consuming changes to computer program MOVIEL.

An additional desirable refinement would be to add the capability
to generate close-up views of the separated store where some parts of
the aircraft and perhaps store are outside the field of view. This can
be casily done, but would require adding a "scissoring' or "clipping"
subroutine with logic to eliminate the points outside the ficld of view.

A highly desirable refinement, which will be completed in the near
future, is to add the capability to present experimental data from wind
tunnel tests or full-scale drop tests directly on the output media for
comparison with the theoretical calculations. This will require read-
ing in 2 second set of store position data from the experimental test.
Then, the store will be drawn twice per frame of output media.

One store drawing, in one color, will show the position of the
store from the theoretical calculations. The second store drawing, in
a second color, will show the position of the store from the experimental
test at the same time. This capability is being developed to compare the
experimental results from Reference 16 with the results of planned theo-
retical store separation analysis for the same store and aircraft at the
same flight conditions.

An additional highly desirable refinement, which will be completed
in the near future, is to add the capability to present '"strobe'' pictures
of the theoretical store separation. Pictures made of experimental store
separation tests in wind tunnels sometimes use a ''strobe' light which is
used to repetatively illuminate the aircraft and store several times during
the store separation process. This results in several pictures of the
separated store, all on the same frame of film, which correspond to its
location at the times the ''strobe' was pulsed.

A desirable long-term refinement of the visual documentation sys-
tem would be to add three-dimensional representations of the separated
store and aircraft to permit generating visual documentation as seen
from any arbitrary angle. The three-dimensional shapes could be
represented by quadrilateral surface elements (figure on Page 49,
Reference 17), half-tone shading techniques (Figure 1-6, Page xxii,

- 99 -

Reference 18), station lines (Figure 3.8, Page 34, Reference 19), or
detailed station lines and selected longitudinal lines (Figure 4.0, Page 34,
Reference 19).

While the three-dimensional representations would add additional
realism, several problems arise. The input data needed to define the
separated store and, especially, the aircraft would increase significanlly
in magnitude. Also, the computer time required to compute the location
of all the points in the three-dimensional representation of the separated
store would increase very significantly over the current two-dimensional
visual documentation. The final problem is that '"hidden line'' subroutines
would be required to most effectively use three-dimensional representa-
tions of the separated store and aircraft. The computer time required
to do the "hidden line'' computations for each frame of a movie might be
prohibitive with current subroutines and computers.

The visual documentation system defined in this paper could be
extended in at least three areas. The first area would be to extend the
MOVIELl computer program to prepare slides and movies showing the
separated store, its orientation, and the corresponding body normal
force and side force distribution along the store body during the store
separation process. The theoretical store separation trajectory com-
puter program {(References 3, 4, and 5) currently computes the neces-
sary store body loading data as part of the calculation of the theoretical
store separation trajectory.

A second area where the visual documentation system could be ex-
tended would be to extend the MOVIE1l computer program to draw flow
streamlines around the store to show the flow angularities in the flow
field. This would require a significant modification to the theoretical
store separation trajectory computer program to compute the required
flow streamline data. The additional computer time required would be
significant. Thus, the flow streamlines might be shown only for the
store in the carriage position rather than being recomputed and redrawn
for each frame of a theoretical store separation movie.

The final area where the visual documentation system could be ex-
tended would be to add the capability to draw shock waves. This would
prepare the MOVIEL computer program for use with any supersonic
theoretical store separation trajectory computer program which might
be developed in the future (perhaps based on References 20 through 22).
The shock wave presentation would probably be limited to defining the
shock waves from the aircraft and the separated store in a plane con-
faining the nose of the separated store in both the side and bottom views.

- 100 -

CONCLUDING REMARKS

This paper has described a system used by Sandia IL.aboratories to
provide permanent visual documentation of the results of theoretical
store separation analyses. This visual documentation system is routinely
used to rapidly and economically generate visual documentation of theo-
retical store separation analyses using a variety of output media.

To date, the only application of computer program MOVIE1 has
been to generate visual documentation of the theoretical store separation
trajectory analyses, as documented in this paper. However, since com-
puter program MOVIE1l documents the motion of one object relative to
another object, this program should be useful for other applications
involving relative motion. Since this paper is being presented to the
AEC computer community, computer groups in other agencies may want
a copy of computer program MOVIEL.

A preliminary version of the FORTRAN computer program MOVIE]L,
which generates DatagraphiX 4020 plot commands in the SCORS plotting
language, can be made available to requestors with a need for the program.
Atomic Energy Commission computer program dissemination policy re-
quires that each request be treated as a separate case, and that signed
authorization be obtained from several levels of management at Sandia
Laboratories. While this policy prevents an exact definition of the
availability of the computer program, it should be available to almost
all government agencies and most of their contractors.

Requests for the FORTRAN source card deck, sample input data,
and sample output visual documentation should be made by a letter to:

H. R. Spahr

Division 5625

Sandia L.aboratories

P. O. Box 5800

Albuquerque, New Mexico 87115

The letter should briefly define the need for the computer program,
describe projects it would be used on, and describe briefly any planned
use of the computer program to support contracts from government
agencies. The letter should also briefly describe the computer and
plotter that the computer code will be used with.

- 101 -

REFERENCES

"F-14A Crash," Aviation Week and Space Technology, June 25, 1973,
Page 25.

"Production AIM-7F Enters Test," Aviation Week and Space Tech-
nology, August 27, 1973, Page 38.

Frederick K. Goodwin, Marnix F. E. Dillenius, and Jack N. Nielsen,
"Method of Predicting Loading and Trajectories of Single or TER or
MIER Mounted Stores on Swept-Wing Aircraft, "' Volume 2, Aircraft/
Stores Compatibility Symposium Proceedings, August 1972, sponsored
by JTCG/ATLNNO, held at Dayton, Ohio on December 7-9, 1971

Frederick K. Goodwin, Marnix F. E. Dillenius, and Jack N. Nielsen,
"Prediction of Six-Degree-of-Freedom Store Separation Trajectories
at Speeds Up to the Critical Speed - Volume I - Theoretical Methods
and Comparisons with Experiment, " Air Force Flight Dynamics
Laboratory Technical Report AFFDIL-TR-72-83, Volume I, October
1972.

Frederick K. Goodwin, Marnix F. E. Dillenius, and Jack N. Nielsen,
"Prediction of Six-Degree-of-Freedom Store Separation Trajectories
at Speeds Up to the Critical Speed - Volume II - User's Manual for
the Computer Programs, ' Air Force Flight Dynamics Laboratory
Technical Report AFFDIL-TR-72-83, Volume 11, October 1972.

Calvin L. Dyer, '"An Interactive Graphics Program for Predicting
Six-Degrec-of -Freedom Store Separation at Speeds Up fo the Critical
Speed, "' Air Force Flight Dynamics Laboratory Report AFF DI/ HGC-
TM-73-58, July 1973.

Marnix . E. Dillenius, Frederick K. Goodwin, Jack N. Nielsen,
and Calvin L. Dyer, "Extensions to the Method for Prediction of Six-
Degree-of-Freedom Store Separation Trajectories at Speeds Up to
the Critical Speed, Including Interactive Graphics Applications and
Bodies of Arbitrary Cross Section, ' Aircraft/Stores Compatibility
Symposium Proceedings, Volume 2, sponsored by JTCG/ALNNO,
held at Sacramento, California on September 18-20, 1973.

"Control Data 6600 Computer Systems, FORTRAN Extended Refer-
ence Manual, 6600 Version 3, " Publication No. 601 76600, Revision
K, Control Data Corporation, February 22, 1973.

"Section 1II - Programmer's Reference Manual, "' SC-4020 Usage With

IBM-7090/7094, CDC-3600, Univac-1107/1108, CDC-6600, SC-M-70-
68, Sandia Laboratories, Albuquerque, New Mexico, March 1970.

- 102 -

10.

11,

12.

13.

14.

15.

16.

17.

18.

19.

20.

REFERENCES (CONT.)

"Routines to Generate and Store SD-4020 Commands, "' Sandia Com -
puting Newsletter SN 0012/1971, Sandia Laboratories, Albuquerque,
New Mexico, August 9, 1971.

"Section II - Introduction and Basic SC-4020 Description, "' SC-4020
Usage with IBM-7090/7094, CDC-3600, Univac-1107/1108, CDC-6600,
SC-M-70-68, Sandia Laboratories, Albuquerque, New Mexico,

March 1970.

C. J. Fisk, '""Cathode Ray Tube Color Plotting, " SC-RR-68-546,
Sandia Laboratories, Albuquerque, New Mexico, January 1969.

'""35mm Computer Generated Color Slides of an EG&G Pod Released
From an OV-1C Aircraft, ' available on loan from H. R. Spahr,
Sandia Laboratories, Albuquerque, New Mexico.

"35mm Computer Generated Color Slides of a Sandia Laboratories
Prototype Store Ejected From a F-4D Aircraft, "' available on loan
from H. R. Spahr, Sandia lLaboratories, Albuquerque, New Mexico.

"16mm Computer Generated Color Movie of an EG&G Pod Released
From an OV-1C Aircraft and a Sandia Laboratories Prototype Store
Ejected From a F-4D Aircraft, ' available on loan from H. R. Spahr,
Sandia Laboratories, Albuquerque, New Mexico.

James R. Myers, 'Separation Characteristics of the B-57 Bomb From
the F-4C Aircraft Equipped with ECM Pods at Mach Numbers from
0.605 to 1.30," AEDC-TR-72-93, June 1972, Arnold Engineering
Development Center.

D. S. Warren, '"Tomorrow's Structural Engineering, ' Astronautics
and Aeronautics, July 1973.

William M. Newman and Robert F. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill Book Company, New York, 1973.

William A. Fetter, Computer Graphics in Communication, McGraw-
Hill Book Company, New York, 1973.

F. Dan Fernandes, ''Theoretical Prediction of Interference Loading
on Aircraft Stores - Part I - Subsonic Speeds, "' NASA CR-112065-1,
June 1972, General Dynamics.

- 103 -

REFERENCES (CONT.)

21. F. Dan Fernandes, '""Theoretical Prediction of Interference Load-
ing on Aircraft Stores - Part II - Supersonic Speeds, '' NASA
CR-112065-2, June 1972, General Dynamics.

22. F. Dan Fernandes, ''Theoretical Prediction of Interference l.oad-

ing on Aircraft Stores - Part III -~ Programmer's Manual, "' NASA
CR-112065-3, June 1972, General Dynamics.

- 104 -

ABSTRACT
C. H. Turnbull, 8442
Sandia Laboratories Livermore

TWO APPLICATIONS OF DATA ANALYSIS BY INTERACTIVE GRAPHICS
Analysis of Data from Lagrangian Codes

Contour plots have proven very useful in analyzing the data from two-
dimensional hydro codes. However, it is difficult to know in advance how to
specify the plot limits to show the most interesting data to best advantage.
This problem has been met by giving the analyst an interactive code by which
he can easily adjust 1imit data and get a look at the resulting plot.

Data from the hydro code is organized first by time step. The interactive
code gives the analyst the ability to select the set of data he wishes to study,
to "zoom" to the area of interest, to select which parameter he wishes to
observe, and to select the levels at which the contours are to be drawn to
provide him with the most meaningful plots.

Since the CDC 250 is used as the interactive graphics device, we try to
keep central memory requirements as low as possible. By using ECS (Extended
Core Storage) to store the data for any particular time step, the contours can
be plotted by having the data for only nine zones in central memory at any
instant. The use of overlays aids in reducing central memory requirements.

This code has been in "production" status for approximately two years,

- 105 -

Analyzing Spectral Data

A recurring problem is the analysis of data in which the data curves are
in fact the sum of a family of similar curves. In one application, the
family of curves is Gaussian. 1In another application, each curve in the
family involves a double exponential function.

Since there is no one answer to this type of problem, the analyst must
apply some knowledge to the selection of parameters to approximate the fit.
When the analyst has arrived at a close approximation, a nonlinear least-
squares fit algorithm will make final adjustment of the parameters. The
operator may apply constraints on the least squares algorithm by allaowing
only selected parameters to change.

This code has been in production for approximately one year and takes
advantage of ECS and overlay procedures to reduce the amount of central

memory vequired.

- 106 -

C. H. Turnbull, 8442
Sandia Laboratories Livermore

Analysis of Data from Lagrangian Codes

Large two-dimension hydro codes are used to study the effects of external
forces or internal energy on materials. The high volume of data associated
with these codes makes graphic representation an expedient way of analyzing
the data. For example, Figure 1 shows the initial condition of a small
problem run on the TOODY code. This example has 895 zones and the TOODY code
retains 20 values for each zone as it steps from one time step to another
(called cycles in the TOODY code).

The engineer using these hydro codes is interested in variations in
effect with respect to time. Figure 2 shows contours of axial stress in the
same configuration at 8.02 microseconds of problem time.

Without graphics it would be necessary to read a listing of nearly
18,000 numbers at each time step of interest to the engineer. This example
problem is relatively small. Some jobs contain over 20,000 zones or 360,000
numbers per cycle.

Plotting routines have been used for data analysis for as long as the
TOODY code has been in use. The code prepares a plot data file and the
engineer provides data to the plotting routines to get the type of plot
needed to make the desired analysis.

When running a TOODY problem, the engineer will request much more output
information than he really needs because it is more economical to discard the

excess output than to rerun the problem had he not requested cutput at the

- 107 -

proper time steps. Using batch processing to obtain these plots would
necessitate either getting all the plots on one run or iterate with several
runs to get the desired information.

Considerable savings is achieved by giving the engineer the capability
of interacting with the plot routines. The same iterations are used at the
console as would be used by requesting one plot at a time in batch mode. The
difference is that the picture is observed in a few seconds instead of from
two hours to one day for each iteration.

Sandia Laboratories Livermore has had a CDC 250 system attached to a
6600 for about three years. The 1024 x 1024 raster picture is maintained on
the face of a 19-inch CRT by the 252 controller. This controller has 8,000
24-bit words with a Timited instruction set for generating characters at 4
different sizes; and these, along with vectors and/or dots, can be generated
at 2 different intensity levels. The characters have the added capability of
being in either Roman or Italic form.

When interacting with the 6600 from the 250 console, the job ties up one
control point and the code remains in central memory at ail times. All
changes in the picture require some interaction with the 6600. However, when
the program awaits some activity from the operator, the 6600 will not use CPU
time except to check for an interrupt request from the 250.

Because the interactive job has a tremendously low CPU utility factor,
it behooves a programmer to use all the resources available to reduce the
amount of central memory required to do the job.

At Sandia Laboratories Livermore, we accomplish this by using three Tevels
of overlay available to the SCOPE system and the use of ECS (Extended Core

Storage).

- 108 -

The use of overlays is the obvious technique of programming in function
modules where the selection of a function switch or Tight pen pick, etc.,
would call in an overlay to diagnose the request so that more than one function
will not be in memory at one time,

The sequential address, random access, and buffer I/0 features of ECS,
are extremely useful..

The plot file from TOODY is a buffered file. Each time frame on a plot
file contains one record of general information identifying that frame plus
one record for each I-line necessary to define the problem.

When the console user defines the frame he wishes to study, the program
searches the plot for the record that identifies the desired frame. At this
point, the code takes advantage of the consecutive addressing of ECS.
Knowing the number of J-zones on this I-line, the ECS address of the adjacent
zone on the next I-line can be computed. Since one of the 20 parameters of
each zone is an integer (material number) which will not be larger than 20,
two pointers are packed into 44 bits of that word. If we consider for a
moment that I-Tine 1 is above I-line 2 and J-zone 1 is to the left of J-zone
2, each zone has a pointer to the ECS address of the zone directly above it
and the zone directly below it. Special values are used to indicate no zone
is in the respective direction. Adjacent zones on an I-Tine are adjacent
data in ECS. With the pointers added, each I-line is written to ECS. The
4040 word array necessary for the transfer of the data from mass storage
(or tape) to ECS is part of an overlay and the central memory space is

available for other use in later steps.

- 109 -

To draw the contour curves, we must have one zone and its eight immediate
adjacent zones in memory at one time. The random access feature of ECS serves
here. The pointer system gives us the ECS address of the zone above and below
and the buffer feature provides easy access to the data for three consecutive
zones.

In actuality, only one zone is needed at a time to draw the boundaries
and grids. The I/0 time for this would be excessive and we have discovered
that we can keep two I-lines in memory in the grid drawing overlay with the
same CM requirements as the contour module with only rine zones in CM at one
time.

Some examples of the types of plots we can observe are: Figure 3 shows
the material code numbers displayed for each zone. This information is
helpful in setting up a problem to assure the problem definition is proper
before submitting the problem to a long computer run. Figure 4 shows integer
values of axial stress with a divisor of 10]0. This is used as an aid in
selecting the contour values for best representation. Figure 5 shows some
of the integer values removed where too much display can cause confusion.
Figure 6 shows the Zoom capability. We have enlarged the area of axial
stress in tension and displayed selected values. Figure 7 shows the ability
to superimpose the grid on the display of Figure 6. Almost any combination of the
mentioned displays can be superimposed on each other. We can not display contours

from more than one vector at a time.

- 110 -

Analyzing Spectral Data

Some of our physicists at Sandia Laboratories Livermore are studying
gamma ray induced radioluminesence spectrum from various materials. An
example of data obtained from laboratory equipment is shown in Figure 8,

It is assumed the data curve is the sum of a series of Gaussian curves, each
being a function of three independent parameters, X, Y (the coordinates of
the peak of the curve), and S (the standard deviation). To date, we have
not come up with a good analytical solution to this problem so we have
attempted to give the physicist a tool to help him find a solution.

The engineer may have a data file in the computer containing coordinate
sets for several curves. At the 250 console, the engineer may select any set
of data from that file. The code will compute scale limits from the data and
display the data on the screen as a series of points,

At the top of the screen, we find a display of the values of the parameters
for the Gaussian curves. Six columns (for six curves) and three rows (three
parameters per curve). If the Y or S parameter is equal to zero, that curve
has not been defined.

At this point, the user, with the Tight pen, will pick one of the
parameters in the first column. The display for that parameter wiil start
blinking. There will also be a prompting message, "To use the T-cross for
parameters, pick here," (Figure 9). The operator may type in a value for
that parameter or he may pick the prompting message. If he chooses to type
in the value, the value will appear on the screen and he may repeat the
process until all three parameters in that column have been defined. If

he picks the prompting message, that message disappears, the T-cross is

- 111 -

turned on at the center of the screen and a new prompting message, "When
cross in desired position, pick here," appears (Figure 10). With the

1ight pen, the user moves the T-cross to where he believes the peak of a
curve should be (Figure 11). When he then picks the word HERE, the X
parameter takes on the value of the T-cross and, when the average of three
consecutive points becomes Tess than Y/¢F§: the distance from X to the
horizontal location of the middle point becomes the half width of the curve.
The standard deviation is computed and a curve is drawn on the screen (Figure

12). The user now has control of that curve (more on this later). He may change

any of the three parameters by typing the symbol followed by the percent of
the value to which he wishes it changed. For example, typing "“s-3.5" would
reduce the standard deviation by 3.5%.

When the first curve is in the desired shape, the user can pick a
parameter in the second column and repeat the process. Up to six curves
can be generated and, when more than one curve is defined, a TOTAL curve
is computed and displayed. Figure 13 shows the use of four Gaussian curves
to fit the data. The high sweep on the left is considered background noise
and not included in the fit.

In order to properly fit the data, it is obvious that the user must be
able to adjust any curve he so desires. It was indicated previously that
the user had control of the last curve defined. In order to change any
curve previously defined, the user must get control of the curve he wants to
modify. Two methods are available:

1. Pick any parameter of the curve to be modified. This will make

the display value of the parameter blink and also make the curve

- 112 -

blink. (This is important because it is easy to forget which set of
parameters is associated with a particular curve.) The user may
then type in a new value for that parameter or he may type any of

the three parameter symbols followed by a percentage change desired.

2. Pick the curve he wishes to change. The curve will blink and the
curve can be modified by the percentage change method described

above.

Should the user want to delete any curve, he may do so by getting controi

of that curve by the method described above and selecting a prescribed
function switch,

At Sandia Laboratories Livermore, we have in our user's library a non-
linear least squares fit routine which will adjust the variable parameters in
search of the best fit to given data. In our problem, the number of parameters
provided are three times the number of curves.

It is interesting to note that at the same time the code described up
to this point was being developed, the present principal user of the code was
attempting to use the least squares fit routine in batch mode. The starting
parameters were approximated by visual scanning of the data curve. It was
usual for the batch program to take four to six minutes of 6600 CPU time to
iterate to a solution. Quite often these would take more than 15 minutes of
CPU time. It became obvious that the time to find a solution was dependent
upon the quality of the approximation of the input parameters.

We incorporated the least squares routines into the interactive program.

The user can select a function switch which allows the use of the least squares

- 113 -

routines. A vertical line will appear at left-hand and right-hand data points.
These indicate the boundary limits of the data the routine will attempt to fit.
The operator has the capability of moving these 1imits to the area of curve

in which he is interested. Figure 14 shows the Timits have been moved.

When the user signals he has selected the desired limits, he defines an
iteration Timit which was included to prevent the long runs described above.

He then has the opportunity to "freeze" any parameter he wants to be held
constant.

When the code arrives at the best fit it can or has reached an jteration
limit, the parameter value display is revised and the curves redrawn. The
standard deviation of the data points from the TOTAL curve is computed and
displayed (Figure 14). The process may be repeated from this point. A curve
may be added or deleted in an attempt to find a better fit.

This method of arriving at a set of parameters for the least squares
curves seldom takes more than 30 seconds to arrive at a solution and most of
the time the result is in less than 8 seconds. The final results are much
better using this combined method. The first estimate of the parameters is
better. The user has the opportunity to interject some of his knowledge of

the sample into the solution. Computer usage time is way down.

- 114 -~

" s ine o

anew 4 e (LR UV ST TR
e

* e 4

“
J [[] [] [[1 1 1
[] LN "
v . 4
PR . TIME 3 ALSaro0e KE N
20 PromLEN
X

FIGURE 3

v np UL NN T TR TR
% seveLtn
YICTOR $ETna PRICTINEE T2T Wamed -8 0REDE.E 5 THAGADS'Y
.
a
3 - “
[
[
[
s . Breisor o 10 2

FIGURE 5 11

e g
e ' oman
T BN SRLEMES

L R R L BT TR
ar emsr

COTE oty ses

[P

FIGURE 2

fereLe we a2

Y caen TINE © @ 9229506 sEC

VECT00 AL Ike PROCESIED

TIT WANGE -6 UMINE 3 TAGREEL14

I T TN TT I

R S A T

"

.
"~ .
L it i
-

. . srvisom « e
v e .
warn -

= NCLION BUINE PRACESSED T2 Bamed - TATEEE. 1Y 1 CWAREE. 4
S
L
_ yoinanen
I3 "8
* i
:
- :
:
- 3
:
- :
A
Foo-
A
"~
1 1 1 1] t 1 1 1 1 1 1 1 I 1 1 |
e an “n LN 1}
o .

FIGURE 6

®IGLE Ne. bep
o pain

TINE 2 0TI-08 MC. B
'

- cton ogtus seskeiseo | orr efner o rovacefis o “““;'.‘ |
: {| Tkt
. /‘.‘\\ p——- i l:'
- %r\ E ' :
“%A@b§ it
) A~ HE
{ N ER S
|,n‘q 71_7‘ . \\\
- X
.o L
2

\ / {/ iy \\\\\ *
av {
AR HTAN
ST AR
Z P!I!I!IIII\HIMII -
e [‘T*i |' U I‘ V
FIGURE 7
£ 0 0. 0 0. 0.
Y 9. 0. 0. ¢ 0. 0.
S N N T I
. % o
- \\ ¢ vatone
5, -g\/’/ \\\ . Mo
FIGURE 9
. oI 0. .
£o 0 ° 0 0. 0
v Q. 0 ¢ 0 ¢ 0
o o
A\-/’/' .. . N _

FIGURE 11

~mw
ceo

FILE W & MWD M W

-
-
P

cwo

FIGURE 8

FILE W0 4 AECONO MO 90
0 0. 0 0.

0 ° o 0.

e oo

T

xR

R R

BRI

s

BT

e

R

R

T

YA

R TNT]

2 stz

sSs.
E2
Y 4

958E+00 0. 0.

'FIGURE 10

[AR O)
19%€-01 o, 0.

eoco
cova

396Ee 08 O]

- - - . -
. « & 0w " v

oo

T

IR]

Iy

PR

Cran

ot

FIGURE 12

(R

QAR)

S 2.40%6-01 1 1296-0) 2 257€-01 2. §16E-0 0
E 24458400 2 44BE400 2 BG0E400 3. 373E400 0
¥ 2.439404 4 TIBEL0T 3 41BE04 2 142F404 O

TH RIE Tl WEMIOuN 8 HSRIAW P1Y C1MES, Pler Ted 1wl on) wevE 1.C o

ToE OESINED LOCHTInN wde BOTe SPE CHPRELT PICe Tef NORD 75T

v
.

coo

Ty

.

ey ol

e

A

R Y

FIGURE 13

- 117 -

PO] carae

I o e e
$ 4. 081E-01 1 044E-01) BIAE-0! 4.296E-01 O
€ 2700400 2 IBE 2.0820+00 3)S4£400 0.

haal S.06TE+0% 1 498€+04 0.
suany o4 "

Yy

coe

L R
)
s)
-t
VM
R
«tatesa
e
v ren

FIGURE 14

LTI

STABAN
AN INTERACTIVE GRAPHIC COMPUTERIZED
STABILITY ANALYSIS PROGRAM*

B. J, Wimber**
Sandia Laboratories
Albuquerque, New Mexico 87115

ABSTRACT

This document describes an interactive graphic computerized stability
analysis program (STABAN). Control system root locus plots, amplitude
response characteristics, and attendant stability parameters are made
available for interactive computer manipulation, Examples of the use of
STABAN are included,

*
Work supported by the U. S. Atomic I'mergy Commission

*k
Member of Technical Staff, Guidance and Control Division, Tilectro-
Mechanical Subsystems Department.

- 118 -

STABAN
AN INTIHRACTIVE GRAPHIC COMPUTERIZED
STABILITY ANALYSIS PROGRAM

I. Introduction

A computerized program for stability analysis and design of linear
control systems with the use of the Sandia interactive graphics system was
developed, This program is entitled STABAN (STABility ANalysis).

Control system stability analysis is computational in nature., How-
ever, the graphic methods associated with control system analysis, such
as the root-locus plot, amplitude response, Bode plot, Nyquist plot, etc.,
convey far more information than several reams of detailed computer
listings, However, to obtain these graphs for all but the simplest systems
required a great deal of effort, Once the graphs were obtained, design
changes could be made. But to determine the effect of these design
changes, the graphs had to be redrawn with the new input information and
the process repeated several times to obtain an optimum design, Thus,
much of the control system engineer's time was used in laborious calcu-
lations and careful point by point graphing.

The emerging interactive graphics technology appeared to be the
solution to the control system designer's dilemma; however, before a use-
ful program could be made available, an interactive generalized graph
plotting package had to be developed, This has been done, and the resulting
casy to use, fast, and efficient interactive graphic computer program
STABAN is now available, This paper introduces STABAN and shows how
it is used, A design example is included for a better understanding of the
program's utility and flexibility. ‘

II. Basic Control System Fundamentals

This section presents a brief discussion of control system funda-
mentals as they relate to the use of STABAN, Reader familiarity with the
Liaplace transformation is assumed,

Generally, any control system can be represented by a block diagram
which shows the transfer function of each component in the system as well

- 119 -

as the interrelationship of each component and its role in system operation,
Conventional methods' are used to reduce a complex block diagram system

to the following hasic form:

where
G(s) is the Laplace transform of the feed-forward control
system elements

H(s) is the L.aplace transform of the feed-back control
system elements

K is the open-loop servo gain
C(s) is the Laplace transform of the control function
R(s) is the Laplace transform of the response

The response is related to the control by the usual mathematical relation-
ship (also referred to as the closed-loop transfer function Gcﬁ (s)):

_R(s) _ G(s)
Gcﬂ(s) T C(s) T 1 + KG(s)H(s)

The concept of "'stability' of the closed-loop system can be summed
up as follows:

For a system characterized by linear differential
equations with constant coefficients, if for some
control function, c{t), the response, r{t), does not
grow without bound, the system is said to be stable,

The characteristic equation (CE) of the system contains the param-
eters that are needed to determine the degree of stability of the system,

The CE is simply the denominator of the closed-loop transfer function and
can be written in expanded form as follows:

)
(5,)

- 120 -

n
I
CE=1+K
g m
S 1

where
.th

2 represents the i open-loop zero

pj represents the jth open-loop pole

£ is the integration exponent
The roots (sj) of the CE may be calculated as a function of gain, K, and
their location can be plotted on the s-plane, Each point, sj, has a real
value, oj, and an imaginary value, jw;. This plot is the well known root

locus plot and is one of the displays provided by STABAN,

The roots of the CE are obtained by setting the above equation equal
to zero. Hence, the equation becomes

sﬂrﬁl(—§+1) +K?I(—S— +1) =0
Pj Z5

From this equation, one cannot resist the temptation to point out that:

1) For K = 0, the roots of the CE are simply the poles of the
open-loop transfer function,

(2) For K = =, the roots of the CE are simply the zeros of the
open-loop transfer function, Thus the beginning and end of
the root-locus trajectory are easily determined,
If the above equation is expanded into polynominal form, the result is:
N .
3 4, +kB)sT 2o N=m+2
i=0
The Ai and Bi are coefficients of the CE and are made up of the control
system parameters, This form of the CE is used in the root solving sub-
routine, For convenience, the calculated coefficients, A; and B,, are

available in one of the STABAN displays.

The open-loop transfer function (Goﬂ(s)) is written as follows:

G (s) = KG(s) H(s)
of

If s is allowed to take on imaginary values only, i.e,, let

S = jw,

- 121 -

the open-loop transfer function becomes:

G_, (iw) = KG(jw) M(jw)

Substitution of values of w into Gy (jw) will result in the open-loop
amplitude response where both the amplitude ratio and the phase angle for
each value of w are provided, This amplitude response and the important
indicators of stability, i.e., phase margin (PM)} and gain margin (GM),
are readily presented using STABAN, This display also provides the servo
designer with the capability of being able to ''shape'' the open-loop ampli-
tude response to his satisfaction by simply selecting open-loop poles and
zeros as his judgement dictates,

If the open-loop transfer function G,y (jw) is plotted on polar co-
ordinates, the degree of stability is shown by the plot's avoidance of the
-1 (1/180°) point of the plot, This important element of the Nyquist
criterion can be easily investigated with the polar plots generated by
STABAN,

The closed-loop transfer function may also be written as follows:

K Z‘fw(s)
fw P_ (s)
G (s) = fw
cl Z, (s) Z . (s)
1+ K -—-~—«fw K —————fb
fw wa(s) fb be(s)
where
K feed forward gain
fw
Z. (s) feed forward zeroes
fw
P, (s) feed forward poles
fw
be feedback gain
Z'f'b(s) feedback zeroes
be(s) feedback poles
or
G (s) - Kow Zow'S) Pp, ()
cs - CE

- 122 -

Thus, if the poles of the closed-~loop transfer function (roots of the
CE at the preselected open-loop gain, K) are available, the amplitude re-
sponse of the closed-loop transfer function, Ggp(jw), can be obtained
easily. STABAN provides this capability., The STABAN program consists
of the interactive graphic computer language developed at Sandia Labora-
tories Albuquerque? for use with the Control Data Corporation's 6600
computer, Digital Equipment Corporation's PDP-9, and the Vector General
display equipment,

The program is ready to receive interactive commands and data when
Menu A (Figure 1) is displayed, The symbols shown on the Menu are those
associated with the open-loop transfer function of the control system being
analyzed,

All of the variables in the Menu are capable of being interactively
varied in accordance with specific design requirements, Changes of the
variables and selection of the desired display are accomplished using the
light pen and keyboard attached to the terminal,

To change a variable:

(1) Hold light pen directly over variable to be changed and
touch ring near end of pen with finger, The value of the
variable will disappear, (This procedure is referred to
as a '"it'"".)

(2) Using the terminal keyboard, enter the new value, ob-
serving the proper format. The number will appear on
the screen as it is typed,

(3) When new value has been properly entered, depress ESC
(Escape) key.

After the appropriate variables are inserted, one can select one or
more of the following displays:
COEF
ROOT-1L.OCUS
AMP RESP
L.OG MOD
MODULUS
The display (or displays) is selected by a light pen "hit' of the desired code

word. An asterisk preceding the code word indicates program acknowledge-
ment of the selection,

- 123 -

NG INTEGS= 1
NI ZEA0ES:

NO FILES < 4

WHN (X)) =2

WHY (LXP) . Y

UMM - 2.NUt 2
Note: The values that appear on the screen as shown 1iMx n.ofE o
in this figure as well as in Figures 2 through 6 vl LR
i))) Vi 2. 5nt
are from the open-loop transtfer function:

K fITH 2.0t

7EBNEY

2 HH.un L1

2.5 x 10”(.’1 ,]} Y. N 0

(‘-”E(s) = 0 - 3 . 0.00 . 0D

; 8 i 8 0y u.ow
et)) [) °

120 + j248 120 - j248 , 0,25 0.00 _—

0,00 0.00

. . g.00 000

Amplitude response range: 0,01 to 10,000 radians/sec, b.00 0 00

Root locus plot in upper left quadrant bounded at 250 0.00 0.00

rad/sec, 0.00 0.00
POLES

This example is integrated with STABAN to provide -120.00 Zuh.on

. . -120.00 -2u48.0

a means of testing the program, Anv of the variables 120.00 -2u8.00

-.25 .00

may be changed by using the light pen, 25 g0

0.00 0.00

0.00 0.00

0.00 D.0N0

0,00 4. 00

0.00 0. 60

.00 G

COEFS
RAGT-LOCUS
AMP RESF
L.OG MOD
MODULUS

END =HARD COPY COMPUTE

Figure 1. MENU A

- 124 -

1" run the program, hil COMPUTIE, The graphic digplay will indi-
cate that the 6600 computer is operating on the data by showing a message:

6600 WORKING

When the desired display is on the graphic monitor, wait for the above
message to disappear before attempting to input more data,

III. The STABAN Displays

A description of the displays follows,
Menu A

The variables in the Menu are associated with the open-loop transfer
function as follows,
NO INTEGS = Number of integrations, £
NO ZEROS = Number of simple zeros, n (n =10)
NO POLES = Number of simple poles, m (m <10 - £)

WMN (I5XP) = Minimum angular frequency exponent (power of 10)
used in the calculation of amplitude response
(angular frequency in radians per second)

WMX (EXP) = Maximum angular frequency exponent used in the
calculation of amplitude response

UMN = Left bound (abscissa) of root-locus plot (radians
per second)

UMX = Right bound (abscissa) of root-locus plot (radians
per second)

VMN = Lower bound (ordinate) of root-locus plot (radians
per second)

VMX = Upper bound (ordinate) of root-locus plot (radians
per second)

K GAIN = Open-loop gain corresponding with design require-
ments and used in the calculation of amplitude ratio

ZEROS

Actual complex value of zeros entered as

real part imaginary part

- 125 -

POLES - Actual complex value of poles entered as

real part imaginary part

COEFS - Code word for coefficient display
ROOT-LOCUS - Code word for root-locus display
AMP RESP - Code word for amplitude response character-

istic display
LOG MOD - Code words for polar plot of amplitude re-
MODULUS response
COMPUTE - Code word used to execute the program

The values shown in Figure 1 as well as the values and graphs in
Figures 2 through 6 are from the following open-loop transfer function:

2

6/ 8
2-5x10(%-+1)

GoQ(S) =

s s 8
S(120 rjoas " 1)(120 248 1)(0.25 * 1)

The amplitude response ranges from 0,01 to 10,000 radians per
second,

The root-locus plot desired is the portion in the upper left quadrant
of the s-plane bounded at 250 radians per second,

COEFS

Selection of this code word will result in the display shown in Figure 2,
The main difference between this display and that of Menu A is the appear-
ance of the following terms:
NO COEFS
KL =
KU =
NDK =
A-COEFS
B-COEFS
Z-S+P-S

1l

- 126 -

END

Figure 2,

COEFS display

- 127 -

=HARD COPY

MO CNLFSY R

L= 0, 0ay
Ky = 1. pot
HNOK= 1.0n0¢

WHMMIEXE] =2

WMX (EXP) = 4

UMM -2.S0¢t
UM 0. 00t
VMM 0. 0GF
VMX- 2.50¢t

K GHIN- 2501
A-LIFFES
2. 107498 4

SOGA6E- 2

T.AN2ONE

IRV P T}

i 0

2

Shatng

SHanuE o

nandae o

haair o

.00008 6

B 0081

O onntt o

.

LJudgnue o
0.0000F 0

[s)]

L2H00F -4

5. 00000 2

BUSIUYL S
0. DO0LE l'].
0.0000t 0
0.0000t 0
0.00008 0

2-5 + P-5
REAT-LACUS
AMF AESP
LOG Mo
MODULUS

CAMFUTE

The terms NO COEFS, A-COEFS and B-COEFS are associated with the
polynomial form of the CE (see page 5). Since poles, zeros, and inte-
grators are the input variables, as entered in Menu A, the corresponding
coefficients of the polynomial form of the CE are calculated and displayed,
NO COEFS is the degree of the polynomial plus 1 (used in the root solving
subroutine). To observe the original values of the poles and zeros and/or
change their values the user must select

Z-S+P-S
and Menu A will again be displayed with the original pole and zero values,

The terms KI,, KU, and NDK are the lower, upper, and incremental
values of the open-loop gain K. As explained in Reference 3, the values
of KL, KU, and NDK must be chosen so that the 6600 computer is not re-
quired to calculate a large number of roots, If this happens, the graphic
terminal display will respond with a message "DISPLAY TOO LARGE".
Adjustment of KI,, KU, and NDK should be made so that the above message
does not appear,

ROOT-LOCUS

Selection of this display (see Figure 3) alone will provide the s-plane
bounded by preselected values UMN, UMX, VMN, VMX, and a point by
point plot of the root locus beginning at the lower gain, KI., and ending at
the maximum gain, KU, incrementing by the amount NDK, Also shown on
the display are radial lines of constant damping ratio,

From this one display, the control system design engineer can obtain
the following information about his design.

(1) The value of open-loop gain, K, which corresponds with the
desired time response of the closed-loop system (i.e,, damp-
ing ratio), Although this is shown in the s-plane as an inter-
section of root locus plot with lines of constant damping ratio
(ZETA), the exact gain values versus damping ratio are
tabulated below the s-plane plot, More than one value of gain
may be displayed for a given damping ratio depending on which
segment of the root locus plot intersected that damping ratio
line.

(2) The resonant frequency of the closed-loop system,

(3) The value of gain where the root locus crosses over into the
right half s-plane (system becomes unstable).

- 128 -

23N

220

210

180
170
160

150

130

320

1o} -

100
90
ag
70
60
Sa
40
30

20

JETRH
FTR
HTR
“FIH
ETR

IR s

TR
JETR

7
{LTR =

END

JEWR L
\\
.\\\
N
AN
AN
N
gslﬁ= .B
~N
~.
\\
o]
L .
E K .6875E+06
.2 K . 998E+0G
= .3 K . 342E+06
= .4 K . DBSE+06
= ,5 K . BO3E+06
= .6 K .CB2r+06
7 K . LORE +06
= ,8 K . 935E+06
=0.0U K . 6AYE+ 06

XXXXXXXXX

L B R

1
1

-009E+06
JUD7E+06

1.821E+06

DD I WON

. 223E+06
JUUYYE-02
SB1E-D2
.183E-02
tUBE-N2
.S67E+0S

EE

K

Figure 3,

—_—— W

.238E-01
L216E-01
.BOUE-D]
.211E-01

L120E-01

7010 .2 /L TR

\

o

POLES AT K GRIN

-B.2BE+Dl 2.16E+02
-6.26E+01 -2.16E+02
-4, 436401 8,27E401
-4 Y4y3E+01 -8.27E40]
-2.67E+01 0.

=HARD COPY

ROOT-LOCUS display

- 129 -

0

;

.01
.al

ni

NN
Lgu
LD
LN
.an
0

ny

in

N0

-.nn

neTHELS
L AVARIT I
O POLEY, - Y
WML A1) 7
WHXTE AP .y
UMK 2. 808
UMX = Q.0nt
VMM - 0. 00t
VM- 2. 508
GRIN= 2.5M1
2EROES
-40, 00
4o, 00
0.01 n
0.00 [t}
o.00 ¥
1,00 "
u.on f
.00 1
vLun {
0. 00 0.
POLES
120,00 2us
~120, 00 PYyH,
. Ph
-, 75
0.0 n
0.00 0
0.00 0
0.00 U
0.00 1
0 J.00 a
COEFS
ROQT-L OCUS
AMP RESP
LOG MaD
MODULUS
COMPUTE

.0
]
.nn
L
San

g

(4) The exact value of all roots of the CE (poles of the closed-loop
transfer function) as a function of open-loop gain K. The
closed-loop poles are calculated for each increment, NDK, of
gain K, To obtain the poles for any open-loop gain value simply
locate the symbol: K GAIN = (Menu A), enter the value of open
loop gain, hit ROOT-LOCUS, hit COMPUTE, and the value of
the poles will appear near the lower right corner of the display
with the heading: POLES AT K GAIN,

Along the right side of this display, as well as with the other dis-
plays, is either Menu A (poles and zeroes are shown in the figure) or the
COEFS display, Thus, the designer has the capability to interactively
change values of variables and examine the effects of those changes, Thus,
a design that may have taken many days using previous methods can be
accomplished in a matter of minutes using STABAN,

The root locus plot is an excellent analysis tool, However, in some
cases design efficiency is enhanced with the use of the amplitude response
of the open-loop transfer function,

AMP RESP

Selection of this display (see Figure 4) alone will provide the open-
loop amplitude ratio and phase angle response as a function of frequency.
This response is plotted as the frequency increases from the preselected
lower bound (WMN exponent) to the maximurm bound (WMX exponent), A
very important feature of this display is the scales of amplitude ratio (db)
and the phase angle on the left side of the graph, Note that the 0 db ampli-
tude ratio and the 180° phase angle are the same ordinate position, Thus,
one can determine at a glance two very important indicators of stability,
i,e., phase margin (PM), which is the phase angle avoidance of the 180°
phase shift condition, and gain margin (GM), which is the factor by which
the open-loop gain is less than the 0 db amplitude ratio condition when the
phase angle equals 180°. This display relates directly to the "Bode"
diagram, which has proven to be an excellent design tool for servo de-
signers, A brief discussion of basic principles will facilitate a better
understanding of the use of the amplitude response in control system de-
sign.?

Design Using the BBode Diagram

The Bode diagram is simply an asymptotic approximation to the
actual amplitude ratio response, One needs only to determine the
"preak" frequencies of the open-loop transfer function and using

- 130 -

ANGLE

PHASE

-840

-60

-80

-100

120

- 140

- 180

-180

-200

22n

281)

-300

@

AMPLITURE R3TIQ

120}

104 p-

GOL.. L o~

16U x\,,,, R

Mmoo - e

PENIPAG S

e

[PV G ST

it s S

17-02

1E-01

LE+Q0 1E+01

FREQUENCY

Figure 4,

- 131

1E+02

T 1E+D3

)
(110 SN R ———— ;\v\- P - . —
. \
.! \ ‘ot A
20— e e N L S I, .
e N . B
ol | . . S W B o
y .
-20l- - Lo, - . ' —_
-yt U S AU S VU - SRS -
o8 X]
60b.. - T B A — —
-~
. " 4
B0} - e . N
. ..
L1001t JROUI U L
-120 b—- —

=HARD COPY

AMP RESP display

~E~0u

HO [HIEBS: |
NO ZERDES= 2

NO POLES =y

WMNIESF) -0

WM TEXE T -

UM = =250
UMy = .00t
VMN= G.are
VHX 2.50t

K GRIN- 2501
ZFROE~

[=}

=40, 00 N

-40.00 N3
o.0u 6o
0.00 .00
0.04 0N
n.no n.ng
0.00 u.un

0.00 0.

0.00
0.G0
POLES
-120.00
-120.00

-.25

o o

2u8

~. 25
0.00
0.0C
0.00
0,00
0.00
0.00

COEFS
ABAT-LOCLG
AMP RESF
LOG MOD
MJOULUS
COMPUTE

-748.
U
N0

o o e o o D

G

.an

.00

an
oo

n0

oD

)
no

L0

semi-log paper draw an asymptotic approximation to the amplitude
ratio, The slope of the asymptotic approximation would correspond
with the order of the term being approximated, i,e,,

1st order - 6 db/octave
2nd order - 12 db/octave
3rd order - 18 db octave

"
Nth order - 6Ndb/octave
The following principles govern this design technique:

(1) Crossover at the 0 db of amplitude ratio should be with a
slope of 6 db per octave,

(2) The ratio of the break frequency at the end of the 6 db/
octave crossover segment to the break frequency at the
beginning of the segment should be on the order of 7 to 1
for adequate stability,

(3) The 0 db crossover point should be approximately at the
center of the 6 db/octave segment,

By using the above principles, the servo designer can ''shape'' his
amplitude response to achieve gain requirements and provide for adequate
phase and gain margins, Once the amplitude response has been shaped to
the designer's satisfaction, the root locus plot of the new system design
can be displayed simply by selecting ROOT-LOCUS., Some adjustment of
KU, KIL., and NDK may be necessary to obtain a well defined root locus
plot,

Another indicator of servo system performance is the L.LOG MODULTUS
or MODULTUS (Nyquist) plots,

LOG MODULUS

This display (Figure 5) is a polar plot of the amplitude response,
Since the radius is the logarithm of the amplitude ratio, the behavior of the
control system in the mid-frequency range of interest can be easily observed,
This behavior is illustrated by the amount of phase angle ''roll-off" in the
low to mid-frequency range, Also displayed is the calculated value of the
PM, the GM, and the frequency, W(® DB), at which 0 db occurs,

MODULUS

This display (IFigure 6) is also a polar plot of the amplitude response,
However, the critical area of interest in this case is the region of the

- 132 -

ol

END

-270
l SN
-2uo -300
. —— =
-210 -330
L
\
] 000
-30
K
-120 -60
-90
MIDULUS VS PHASE (LOG SCALE)
PM~ 28.29
WO DB)=1.21E+02
GM= 1.87
»HARD COPY
Figure 5, LOG MODULUS display

-~ 133 -

NB INTEGS= 1|

ND ZtROFS-
NO POLES = 4

WHN (
HMX
UMN=
UmMx -
VMN-
VMX=
KGR

EXF)
EXP)

N,

ot

-4
4

POLE
~12
-12

COEF

0.00
.00
nona
.ty
v.hu
a,.0n
a.0n
0.00
0.00
0.00
S

0.00
0.00
- 25
-.25
0.00
0.00
0.00
0.00
0.00
0.00

5

RBOT-LOCYS

My
LOG
HOLY
ComMP

HEG#
MOD)
s
UTE

2

. s0g
MU

. HOE

S0t

el

= -]

2us.

248.

i

b
]
]
.00
.00
.00
.00

Ny

o o

MDD

LOa

.nn

END

MODLL TS VS PHASE

PM= 28.29
HID DBE)-1.21Fe02
GH- 1,87

s HURD LOF Y

Figure 6, MODULUS display

- 134 -

-330

\
/

NO INTEGS -
WD ZERDL - 2

NO POLE" "

HWHULLE X B -2
WHX (R 211 - 4

UMt 2.0
ML .0y
VHIN- 0. Gl
VHX = 2.5t

K GRiN= 2,50t
TEROES

=40, 00
~40.00
0.00 it
.00 IR
0. 00 i
N, nn 1l
oy "
¢ .00 1)
Ity r
1o i
e
R TIRIRE] 3
S120.un e
ot
oH
0.0 1]
0.Q0 @
0.00 0
Q.00 il
[l 0
(U 0
CNEFS

ABAT-LACUY
AMFP RESFP
LNG MOD
MO LY

LM

L0
L

i)

nd

]

Q0

0ong
ng
L0
.na

S SN

-1(0 DB at 180°) point, Clearly shown is the PM, the GM, and the tra-
jectory with which the -1 point is crossed, The calculated values of PM,
GM and W(p DB) are also displayed,

Incorporated within the STABAN program is the capability of obtain-
ing a hard copy of any display desired, One needs only to "hit'"' HARD
COPY and the display is stored on a memory disk within the PDP-9 for later
processing using an on-line printer such as the Gould Model 4800 plotter,
Another useful feature afforded by the graphic display technique is that
pictures of the displays can be taken with a Polaroid camera and developed
in seconds for use in log books, etc,

1IV. Example of Use of STABAN

The following example is presented in detail to illustrate the use of
STABAN in solving an actual control problem, The design is for an attitude
control system stabilized with the use of a conventional rate sensor,®
The simplified single axis servo block diagram is shown in Figure 7, where
C(s) is the Laplace transform of the input torque to the platform and R(s) is
the L.aplace transform of the platform motion,

C(s) T R(s)
o Js
I\'g
l\‘j S I\CA(S) - 52 2t
— t——s +1
2 w
w n
n

Figure 7. Simplified single axis servo
block diagram,

The CE of the uncompensated (KCA(S) = 1) system is

s:2 2L

CE =s]l— +—=s8+1] + KA(s)
2 w
wn n

- 135 -

where

wn = 276 natural frequency
=0.,5 damping ratio
K KCK

K=1/J Kc = 3 g open-loop servo gain
K, =2.7x 104 dyne-cm/volt servo amp gain
K =1

c
Kg = 14,7 volts/rad/sec rate sensor gain

2
j = 515 gm-cm platform inertia

The STABAN input data and attendant root-locus plot is shown in
Figure 8. As shown in the figure, the system will go unstable at a gain
K = 276 sec~l, The appropriate compensation is not immediately obvious
from this display. However, if the amplitude response is selected, as
shown in Figure 9, some idea of compensation required is clear if the rules
for design given on page 14 are followed,

Since there is a second-order break due to the rate sensor at a fre-
quency of 276 rad/sec, we can use this as the break frequency at the end of
the 6 db/octave crossover segment, Then for adequate stability the begin-
ning of the 6 db/crossover segment should occur at 27% =40 rad/sec, wy.
Therefore, between some low frequency wy and wy, we need to ''stretch” the
amplitude response to obtain the required open loop gain before crossover,

We desire the amplitude response of the lag compensator shown in
Figure 10, The transfer function of the lag compensator is

EZ(S) T8 +1

El(s) T ars +1

where
T = Rz(,
R1 +R2
a =—R—>-1
2

- 136 -

A0

7E1R-.., 3 ot

o
~300

ZETR
JETR
ETH
ZETR
TETA
ZETR
278
ZETR
/ETR

o

“oa
-OQQGIUIFU)M-

"
(=]

END

XX X®X

.913E+02
.382E+02
. S47E+D1
. 291E+01
- 985E-02

WD —

[y

. 7GOE+D2

Figure 8,

~200

Root locus plot of uncompensated system |

-100

POLES AT K GRIN
-1.38E+D2 2.39€+02
~1.3BE+02 -2.39E+02
-3.6BE-15 0.

®HRRD COPY

~ 137 -

N IMTFGS= |
NO ZEROFS: 0
NO PODLES = 2

WHMN(EXP) =-2
WHYLEXP = 4
UMN-= S.0UF 0
DLYS n.o0v 6
VMR- 0.0ut 0
VHX= 3.00t 2
K GRIN= |.00F O
ZEROES

0.00 0.0u
0.00 0.00
0.00 o.00
0.00 D.00
0.00 0.00
0.00 0,00
0.00 0.0u
0.00 0.0
0.00 0.0
0.00 0.0¢

POLES

-138.00 239.00

-138.00 -2139, 04
0.00 0.0
0.00 0.Qu
0.00 0.0
0.09 g.or
0.00 0.6
.00 0. ni
0.00 8.0
0.00 oo

COEFS

ROAT-tacus

AMF RESP

LOG MGD

MODULUS

COMPUTE

B
100
t2n
LU0
160
LBO
“d’.?OU
w
-
Q
ped
% -220
w
2]
<L
I
a.
-2u0
~260
- 280
-300
-320
-3u0
END

100 - - o e e . -
PO et dec b b C Pt ettt e i, ,,
ey,
[210 SR O - e
— . SNSRI S R
,,,,, - - SO - -
- - - e B . -
.
.
.
| \\ ; [
g o i . S Lo :
— -, N
2 00 : \‘\;.
- -20r o gemiefee iy e R i
s ~
o
o .
% .
2 -y ' S — e
P
a
x*
o«
e R BT e
| .
-80 R 'JT.,_ c—
.
H "‘v.
R . H . STty
-100 .
-120 ———
WO — e o R S SR U P
L .
-160— S SR S — o .
1€-02 LE-01 1E+00 1E+01 LE<02 1£403 tre0y
FHEQUENCT

Figure 9,

- 138 ~

®HARD COPY

NE gt

POUE- «

HHNEXF)

HHXY (EXP =y

UMM - - 3. 001

UM/ G,

VMh: (I LTIaT

VMX = 3. 0m

K GAIN: 1.00f 1

7EROLS
0.0u yonn
0,00 [N
0 on [
0.00 (U
.00 u.
fa,no Vo
0.006 ti.n
0.¢o Nl
.00 0.n
] it

POLFL

-13B.00 2%9.u:

~138.6G0 -239. 1
0.00 0.

0.00 0.ar
0.00 0.m
0.00 0.
0.00 0.0
.00 0.
0.10 0. m
0.09 Q.

Cofrs
RAGT-L AU
AMP Ri
LOG MOD
MODULYS
COMPUTE

Amplitude response of uncompensated system

We will let 7= 1wy, - 1/40 = 0,025 sec, l.et us assign w_ = 0,25 rad/sec,
The transfer function becomes: @

12, (s) (% | 1)
B, () (s) :

0.25 "1

1
o—AAVVW, O
Ry
E1 i E2
o~ ©

Figure 10, Lag compensator

The amplitude response of the lag compensator and the input variable
values are shown in Figure 11, We can see from Figure 11 that we can
stretch the open-loop amplitude response characteristic of our system by
43 db, Thus, if the lag compensator is used

S
(264—1

S
(o,zs“)

A(s) =

We can see its effect on closed-loop stability by the root-locus display
shown in Figure 12, As is shown in the figure, the maximum gain before
the system goes unstable is 37,790 sec™l compared with 276 sec™! pre-
viously, or an increase of open-loop gain by a factor of 137 (43 db).

Thus, the system has been made more stable than before, It still is
not clear as to how stable the system is until one selects a particular open-
loop gain commensurate with design requirements, Let us assume for the
purpose of this example that our design requirements can be met with a
gain K =1,2 x 104 sec™1,

We now desire the degree of stability afforded by our selection of
compensation and open-loop gain, By imputing the desired K value into the
computer and selecting AMP-RESP, LOG-MOD, and MODULUS, the dis-
plays shown in Figures 13 and 14 appear, As shown in both figures,

- 139 -

PHASE ANGLE {DEG!

END

20

-4a

- 60

-80

=]
o

MPLLITURE RATIG(DB) -

o
S

140 &

-160

180

200

240

180

140

120

100

80

60

uo

20

-20

-yn

~60

1€E-02

"L TTE e ey

1E-01

Figure 11,

1E+00

1E+01L
FREQUENCY

1€£+03

wHARD COPY

LE+OU

L.ag compensator amplitude response

and input variable values

- 140 -

NO INTEGS= O

NO ZEROES= 1

NO FPOLES =

KWHN(EXP] =-2

WHMX (EXP) = Y

UMN= -3.00¢ 2

UMX= 0.00t ¢

YHN= ¢.00t ©

VMX= 3.00F 2

K GAIN= 1,00t O

2ERGES

-40.00 0.00

0.00 0. ou
0.00 0. a
0.00 0, a0
0.00 (. at
n.nn n_nn
.00 0.Nu
0.00 0.00
0.a0 6.0
0.00 0.00

POLES
~.25 0.00

-120.00 -248.00

0.00 0.00
0.00 0.00
0.09 n.00
0.00 0,00
0.00 0.o0C
0.00 0.00
0.00 0.00
0.00 0.00

COFFS

ROAT-LACHY

AMP RESF

LOG MaD

HoBuLYS

CAMPTE

SEED]
San
a0

S50
ua
3n
20

1q

-3

du g
"
-

7ET

DPTDPTDDIDTDD

ZETH- . 2 \ik-LR:—f,-Q.f—l%#u S

nn

Wohouon oo on
CTNOVEWN -
XXX XXX XXX

W@ — N A

R oMo owomoEon

t
j=}

. 7B0E+ DY
. 153E+04
-6B1E+04
L 179E+DY
- 9S9E+00
.621E+03
1.207E+0Y
1.U52E+0U
3. 778E+0Y4

XAXXXXXXX

LT S I

W = g s

Ta00

2.
1.

YS58E+02
267E+03

2.857€+03

.B8BE+03

193E+03
T4GE-01

.283E-0!
.807E-02

X XXX X

B ow o

.B36E+00
.677E+00
. 158E-01
.9736-01
.527€-01

Figure 12,

- 141 -

POLES AT K
~9.33€401
~9,33E+01
-4.48E+01
~4.4BE+DI

#HARD

GAIN

2. 18E+02
-2.16£402
Y.60E+01
-4.60E+D]

crer

NO INTEGS=
NO ZEROLS-

NMX(EXP) =
UMN=
DMy
VMN:
VHX=
K GRAINe
TEROA
~40.
0.00

- o o o oa oo
[=
k=

COEF,
RIOT-L OO
RNP RELP
L8 Man
MO0 UY

M1

NO FOLES - %

WMNEEXF) =

1
1

y

=3.00f
Q. 0ot
0. oot
3.00¢
1.20¢

-

PHASE ANGLE (DEG-

END

-40

-60

~-80

-100

120

t4q

150

-180

200

i

R0

ol tis}

piLT)

AMPLITUDE F-TICI(DBY-

WO R o) o o o . NO INTEGS- |
(NO ZEAQLS: |
. ’ ' o ND POLES = 3
120 g B SN S U VI SO
WMNEXP) =. 7
NMX (EXP) = Y
100 e e e
- UMN~- N
UMX = 00t
80 1— e VMNe .00t
VMX= . 00t
K GRIN= L2
gu - ZEROFS
-40, 00 u
0.00 t.
1] e
" 0.00 u
- 0.00 .
20 i e aae 0.00 ¢
n,on
0.00 0.
0 - 0.00]
o .66 0.
Lo 0.00 0.
20~ POLFS
138 N 2w
m > 118 0 2
N [
. . \
v X HRID] "
G . * [0
0,1y {
o-0n s
B L ATy et SIS TS BSOSO SRR S
" I 0.00 0.
L v 0.01; M1
nn R e sl el T .00 v
, o . PRI I N [
J ‘ i : ‘ COEFS
1200 Lo U T FO S - - e —— ROGT-LACHG
1€£-02 LE-01 1E+00 1E+01 LE+02 1€+403 16«0y
FREQUENCY AP RESF
LOG Man
MODULUS
«HARD CO COMPUTE

Figure 13, Amplitude response of
' compensated system

- 142 -

-~

- 300
. // ~
—~—.. .
e 4 ™,
; N\,
. |
7 ~
J N3
S TN
/ .
i '. . : A
| \-‘ 4
\ ‘
|- \ :
" i ' } [
* Iz i 1 Lnn}'*
o g i / j
; ! / /
N ;
| G
| N : B
. - S
T .

MODULUS VS PHRSI

wHARQ C2P

Figure 14,

- 143 ~

NOQ INTEGS=
NC ZERQES-
NO PGLES =

WM CEXF = o

WMy iEXF -y
€L st
iy PRI
Mt I
v M |
oLHIN H
Zehnt
-4o, o g, 0
0.00 [N
0. 60 .o
0.080 0.0
Q.on o,
0.00 0.0
0.00 0.0
0.00 0.0
0.2% c.on
POLEY
S135. 000 e oan
~138.0 SO, GO
5,20 0.0
.00 f.na
b 0,040
v G.0u G,y
a.06 {i. £t
0.0 0,00
0.09 0. 06
C.on G.no

R
ACQT-L AT
AMF BELE
L3G HAO
MODULYS

coamPuTE

~

PM = 46° and GM = 3,15 at crossover frequency of 86,5 rad/sec, Thus
the system is adequately stahle for the value of gain and compensation we
have selected,

It may be of interest to view the calculated closed-loop amplitude
response of the system. With reference to the closed-loop expression:

1

GcJZ (s) = gs
K(E)+ 1
1+

S S S
S(138+j239 * 1)(138—3‘239 * 1)(0,25 i 1)

L R — 1) S 4 1)(S_ 4 1)
) J&38+j239 (138-3’239 0,25
CH

We see that all we need is the poles of G,y (s), which are the roots of the
CE at the selected open-loop gain value, These roots are listed on the
root locus display near the heading: POLES AT K GAIN, Furthermore,
we see that the zeroes of G,y (s) are simply the open-loop feedback poles,

Therefore all that is required is to input these values of poles and

zeroes and select AMP-RESP, and the closed loop amplitude response as
shown in I'igure 15 will be displayed,

- 144 -

it

1

- iyn

RO
o
!
i
NER KN
i
5
o
1
P
-240
=261
~280
300
=300
-3yg
T
END

P |

Hn

an

|
i’
X i.
1
\
|
\

!
[
|
N
»
ot
L ny

|
I
!

T

f
!
|
i
- ﬁ} . -
FUSIN 3 5 S ,,,.+__
. ..
’
- _— . -
.
JE«O1 LE+02
FREDQUFNLY

Figure 15,

- 145 -

.rco--th..4

wHARO 1 (0

NG OINTEGS=: 7

N3O ZEROES-
NO POLES =

WMNEEXP) =

WMX LEXP)

UMN= 2.
UMX - (LN
VHN o,
VMX- 2.
K GRINY |,
2ERNE
~138.00
-138,00 -
-.25
0.00
0.00
0.00
u.oo
0.n0

ooy

Ly
0,00
POLES
-93.30
-93.30 -
-4Y. 80
~44,80
0.00
0.00
0.00
0.00
0.00
0.00

COEFS
ROOT-LOCYS
AWF RESP
LOG MOD
HODULLS
COMELTH

-

Hut
it
nye
Rl

ong

26,

218,
U6,

-ub

o o o o o

.0C
LAt

References

Swartz and Friedland, Linear Systems, McGraw-Hill, N, Y, (1965),

N. Horton, J, Long, H. Sumlin, and R. Young, Sandia Interactive
Graphics System Applications Manual, SI.A-73-0953, Sandia
Laboratories, Albuquerque, New Mexico,

D, C. Jones, Memorandum of Record, dated
February 21, 1973 General Stability Analyses Program
June 20, 1972 Root-Locus Plot Program

December 7, 1972 Bode Plot Program

Eveleigh, Virgil W, Introduction to Control Systems Design, McGraw-
Hill, N, Y, (1972) Chapter 9,

B, J, Wimber, Development of a Two-Axis Inertial Altitude Refer-
ence Assembly (TIARA), SC-DR-72 0779, Sandia Laboratories,
Albuquerque, New Mexico,

N. Horton, DGRAPH - 6600 Graph Plotting Package for the Vector
General Display, SLLA-73-0952, Sandia L.aboratories, Albuquerque,
New Mexico,

- 146 -

APPLICATION OF PEPR
IN MEDICAL RESEARCH

I. A. Pless, B. Wadsworth, D. Zahniser,
Massachusetts Institute of Technology

(Paper not received in time for inclusion in
the Proceedings)

- 147 -

*
Crysnet - A Network of Intelligent Remote Graphics Terminals
D T W I i e N Tt i T i L e A O e i i]
.;.
by H. J. Bernstein, L. €., Andrews, H, M. Berman , F. C. Bernstcin,
G. H. Campbell, H. L. CarrellT, H. B. Chiang, W. C. Hamilton*,
D. D. Jomnes, D. Klunk§, T. F. Koetzle, E. F, Meyerg, C. N. Mbrimotog,

*k
S. S. Sevian, R, K, StodolaT, M. M. Strongson, and T. V. Willoughby

Brookhaven National Laboratory, Upton, New York 11973

*Work performed under the auspices of the U. S, Atomic Energy Commission
and supported by the National Science Foundation under contract AG~370
and GJ-33248X, and in part supported by U. S. Public Health Service
Grants CA10925 and RR05539 from the National Institutes of Health.
1_Institute for Cancer Research, Philadelphia, Pennsylvania 19111,

iDeceased.

§Department of Biochemistry and Biophysics, Texas A & M University,
College Station, Texas 77843,

k%
Department of Biophysics, University of Leeds, England.

- 148 -

1. Introduction

We will describe a group of intelligent remote graphics terminals
forming a network for crystallographic computing. The terminals»provide
high resolution interactive graphics with batch mode access to the central
facility via dial-up voice grade lines. They are used for the determination
of molecular structures from X-ray and neutron diffraction data. There are
three such terminals at present, one at Brookhaven National Laboratory, one
at the Institute for Cancer Research in Philadelphia, and one at Texas A & M
University. Each consists of a DEC PDP11/40 with card reader, iine
printer/plotter, disk, magnetic tape and Vector Genexal 3D display.
Communications are_via 2000 baud syachronous, half duplex lines using a
CDC mode 4c protocol. The preferred central site is the Brookhaven
National Laboratory Central Scientific Computing Facility with two CDC 6600s.

By providing enough computing capability at the remote site, inter-
active graphics are supported without interactive use of the central site
and without high speed dedicated lines. Off the shelf logic costs are
now sufficiently low that such a terminal is moderate in cost (well below
$100K, $70K in this particular case). As a bonus, the terminal is powerful
enough to do a significant portion of the computing usually done at the
central site.

Though some new approaches are being tried in the development of
these terminals, the main thrust is not to create something at the frontiers
of graphics. Rather we seek to apply the fine basic work and applications
designs of others to build a useful tool for the working crystallographer,

to conserve his time, and help make him more effective. We have used only

- 149 -

commonly available hardware, have kept the software as portable as possible,
and have concentrated on working down from the needs of crystallographers,
rather than up from all possible features. We have borrowed freely from
the ideas of Levinthal (l) and Katz and Levinthal (2), but hope to provide
similar facilities at much lower cost. For information on
other efforts in this area, we would suggest the content and bibliography
of Van Dam and Stabler (3), Newton (4) and Raub (5). WNewman and Sproull (6)
should be consulted for more basic detail.

This effort was started by W. C. Hamllton and E. F. Meyer and is being
carried forward by T. F. Koetzle and E. F. Meyer under NSF contracts now
entering their third year. There are many facets to the project, but here

we will comsider it from the graphics terminal point of view.

2. The Nature of Crystallographic Computing

Crystallographers attempt to determine molecular structures from
diffraction patterns produced by X~rays or neutrons scattered by crystallized
forms of the molecules under study (7). The raw data consists of diffraction
intensities, and reasonably accurate information on the number and types of '
atoms involved in the scattering. One tries to take this data and infer a
conformation of atoms which 1o correct. Thin g a non-trivial task for
several reasons,

1. The data does not, in general, determine the structure,

since only intensities are collected and phases would be required

to analytically obtain scattering densities.

2. The crystals are imperfect, and often deteriorate in the

course of data collection.

- 150 -

Thus the crystallographer makes an iterative use of computers, fitting
models to his data,looking at the nature of the errors, and correcting
until he has a chemically sensible structure. This is called refinement,.

The basic needs are for

1. A means of submitting programs and data to a reasonably

large computing facility to reduce raw data and fit models.

2. Facilities to obtain information about known structures

to use in plecing together models.

3. Graphic facilitles to look at tentative and final models,

or look at forms of the data which have physical significance,

and to prepare final results for publication.

These needs can be met by an in-house computer or standard remote batch
facilities, by a good library, and by ball and stick models and paper
plotters. Data tapes can be mailed.

A person in computing is tempted to say that all one need do is add
graphics capabilities and information retrieval programs to some remote
system, hand it to the crystallographer and leave. As E. F. Meyer has
pointed out (8), it is not so simple.

Half the problem is psychological, and the rest is financial.

One must provide a system that the crystallographer is willing to use.
One must provide a system he can afford to use.

Let us consider the financial question first. An ordinary remote
batch terminal costs between $20K and $60K. Graphics capabilities add
between $10K and $50K to this price. The money will be there only if

adding those capabilities reduces some other costs by about the same amount.

- 151 -

In our case the savings are there. Perhaps the same system in another

field would not have such an effect, but for crystallographic work we

benefit from the absolute time savings of being able to look at a tentative
configuration in many different orientations in a few minutes rather than

having to spend hours with ball and stick or to spend days waiting for plot output
to be mailed, from the ability to compare images and density maps visually,

which is both cheaper and faster than using a computer, and from the

ability to use the computing capabilities of the terminal which were

mandated by the graphics requirement for general problems not requiring

a powerful cpu.

This last is likely to be a sore point with many in the field,
especially those devoted to timesharing or running large central sites.
Van Dam and Stabler (3) seem to think such use strewn with pitfallsof
software incompatibilities and misuse of hardware. Our experience has
been that most small I/ bound FPRTRAN programs can be usefully run on
the terminalvrather than at the central site, saving time, phone bilis,
and aggravation when the central site is down or overloaded. Thus,
given a set of coordinates, such data manipulations as computing bond
distances, angles, best fit planes, etc. are well done on the terminal.

The psychological problems are tougher to meet. Crystallographers
use computers, but few of them like having to read manuals while they
lunch, The terminal must be easy to use by an unsophisticated user and
forgiving of mistakes. The terminal must be stable and reliable, so
that the crystallographer can spend his time doing crystallography, not
soldering, or debugging. For this reason it is important that the
components of a terminal be standard, easily wmaintained, and likely

to have spare parts available.

- 152 -

3. The Crysnet Terminals and Software

The terminals are as in Figure 1, with sufficient hardware to run
a disk operating system., The display has 3D rotation and depth queuing
capabilities, so that a model may be seen in three dimensions, either by
showing a stereo pair, or by using motion and dimming to give the
impression of depth. Further the hardware is well suited to providing
independent motioﬁ for different images so that we will be able to dock
molecular fragments.

The terminal software matches the task. There is a communications
package to send jobs to the central site and to return listings and files
for display. There is a display program which accepts coordinate
information in any of the formats common to crystallography and which displays
the corresponding model with facilities to introduce new bonds and
inquire about the geometry. A base of data on protein structures is
maintained at the central site with retrieval programs. The existing
central site crystallographic programs have been modified to produce
outputs better suited to remote use. These three components,'communications,
molecular display, and remote oriented central programs,were the basic need.

In addition we are providing utilities to move display images and
paper plotter plot files to the printer., This last is being done from
incremental plot files, which are converted to vector oriented commands
at the central site and then shipped over the phone lines. At present,

a plot of the complegity of Figure 2 takes about 3 minutes to transmit.
This speed is not great, but is a significant improvement over the 24 hours
needed to obtain a plot by mail. The algorithm used in reducing the many
small vectors to larger vectors, which we term resolution reduction, is

expected also to be of value in achieving flicker free display of complex

- 153 -

proteims. Experiments conducted by P. A. Wilson (9) have indicated that
for this display angles flatter than 176° may always be removed.

In the remaining year of the project we will be providing display
capabilities for electron density maps, other 3-D contour display
capabilities, and more flexibility in the molecular display. Efforts
will be made to switch to a multi-programming mode to allow overlap
between communications and display work.

Most of the code is written in FPRTRAN, calling assembly language
subroutines for special features. The lack of a special display language
has not been felt and this pedestrian approach has allowed crystallographers,
~ who tend to be FPRTRAN programmers, to write programs for the display
themselves. Further it is reasonably likely that the same programs can
be adapted for use with other display systems, and we are able to borrow

static and dynamic display programs from other systems.,

4. Experience and Conclusions

We have been able to use the terminals as they were intended for
only a few mouths as of this writing, but it has become clear that a
reasonably priced intelligent remote graphics terminal with good stand-
alone computing capabilities can conserve a working scientist's time and
dollars. On several occassions, the ability to take arbitrarily formatted
coordinate information,display it, and manipulate it, has saved hours or
days of time. The stand-alone computing capability has shown its value
in converting what would normally be idle time on the terminal to a

reduction in central site computing use.

- 154 -

Our experlence with the communlications portions of the system has
indicated some need for faster speeds than 2000 baud, and lower overhead
protocols. Coordinate information is not a major problem in most cases,
but display buffer loads,and contour data can be painfully slow.
Fortunately, the terminal computing capabilities reduce the need to
transmit such data often, but designers of future systems would do well
to consider 4800 baud modems and/or binary protocels with small core

requirements, as well as data compression techniques.

- 155 -

References

1.

4,

Levinthal, C., '"Molecular Model-Building by Computer', Scientific
American 214, 42-52 (1966).

Katz, L. and Levinthal, C., "CHEMGRAF - A Computer System for Three-
Dimensional Molecular Structure Studies', draft publication by Graffidi
Laboratories, Dept. of Biological Sciences, Columbia Univ., N. Y., 1971.
Van Dam, A. and Stabler, G. M., "Intelligent Satellites for Interactive

Graphics", AFIPS Conference Proceedings, 42, NCC 1973, pp 229-238.

Newton, C. M., "Graphics in Medicine and Biology", AFIPS Conference

Proceedings, 42, NCC 1973, pp 639-642.

. Raub, W. F., "Automated Information~Handling in Pharmacology Research",

AFIPS Conference Proceedings, 40, SJCC 1972, pp 1157-1165.

Newman, W. M. and Sproull, R. F., "Principles of Interactive Computer
Graphics", McGraw-Hill, N. Y., 1973, 607 p.
Stout, G. H. and Jensen, L. H., "X-ray Structure Determination--A

Practical Guide", Macmillan, London, 1968, 467 p.

. Meyer, E. F., "Interactive Graphice and Remote Computing" in Computational

Needs and Resources in Crystallography-—Proceedings of a Symposium,

Albuquerque, New Mexico, April 8, 1972, National Academy of Sciences,

Washington, D. C. 1973, pp 105-108.
Wilson, P. A., "Resolution Reduction on the PDP 11", BNL semester

student report, fall 1973,

- 156 -

o=

MODEM

CARD READER \

/

PRINTER/PLOTTER MAG TAPE
VECTOR
GENERAL
3D DISPLAY

a0,

Fig. 1

CRYSNET terminal configquration

- 157 -

Fig. 2

Converted Calcomp plot transmitted to terminal

- 158 -

SESSION IIT

General Graphics Facilities

Chairman: A, M, Peskin
Brookhaven National Laboratory

- 159 -

A SET OF DEVICE-INDEPENDENT FIRST LEVEL GRAPHICS ROUTINES *#

by Nancy A, Storch
Lawrence Livermore Laboratory, University of California
Livermore, California 94550

ABSTRACT

This paper describes TV80, a set of graphics
routines used as a language to plot points, lines and
characters by Fortran applications programs, It is a
device-independent version of a set of routines long
used at Lawrcnce Livermore Laboratory., Whereas the
0old routines were limited to one device, TV80 allows
access to a number of devices through independent

software processors. Features include scaling,
clipping, scan conversion and character generation
for raster devices, identification of output,

handling of on-line display hardware, and generation
of display commands.

BACKGROUND

Since 1964, the major portion of the computer graphics
produced by scientific programs at Lawrence Livermore Laboratory
has been done with a single set of Fortran subroutines. Thesec
were originally designed to generate display code for two Data
Display Inc. high speed CRT's, called DD80's ([1][2]. The CRT's
image was recorded on 35mm film. The major use of the film was to
obtain hard copies from the Xerox Copyflo. Some of it was used
for movies. One DD80 was driven by a batch system IBM 7094 and
the other by a time-shared CDC 6600, The Fortran subroutines were
used to produce graphs, contours, three-dimensional isoplots,
histograms, flowcharts and reports. Although they were simple
routines which accepted data in the user's coordinate system, drew
a grid, and plotted series of 1lines, points or characters, they
were versatile enough for most wuser's needs. Files containing
DD80 drawing commands were put on tapes and later plotted at
certain times of thc day by the operating system. This mode of
operation is still in use with output being plotted on either a
PD8N or an Information Intcrnational Inc. FREO,

During the past ten years, our entire work environment has
changed considerably and will probably continue to do so at an
ecven faster pace. Most of the Laboratory's work is still donc by
targe hydrodynamic codes which are written primarily in Fortran or
assembly languages for faster program execution. Although numeric

B I I I e I I I]

* This work was performed under the auspices of the United States
Atomic Lnerpy Commission.

- 161 -

output continucs to be standard procedure, most users want
graphical output,. Thus we face new demands for interactive
graphics editors, color movie capabilities, shaded-tone pictures
and command languages for specific graphic applications. Today we
have twice as many users (approximately 1500), and our compute
power is twenty-one times as great. We operate in an elaborate
system of networks and computers to support time-sharing in which
most uscrs have both a teletypewriter and a television monitor in
their office (which they use 1in combination as an interactive
terminal), and a nearby remote job entry/exit terminal. A number
of different graphics output devices are also available, some more
rccently acquired, some have been around a while; among these is
an uparaded DN8O0 with color, grey level and raster capabilities.
Figure 1 shows the different graphics choices available to a code
running in one of our network "host" computers, a CDC 7600.

When raster devices were acquired, programs were written
which scan converted previously made DD80 files [3][4]. The FR8D
was made to simulate the DD80 and accepted DD80 tapes. We did not
have the «capability to wuse features of the FR80 which were not
compatable with the DN80; these included a larger address space,
control over intensity, spot size, character size, character
rotation and arc drawing. Also a number of routines similar to
the DD80 routines but different, had come about to produce
plotting tapes for CalComp and Gerber plotters [5][6]; these
forced users desiring a choice of outputs to include repetitious
coding for each plotting package.

TV80 DEVELOPED

Therefore to satisfy the users requirement of easily using
different devices in a like manner, and to more fully utilize the
capabilities of the devices, we produced a totally new set of
device-independent routines, called TV80 [7]. These routines
could easily be integrated into existing codes because TV80 would
contain a subset of routines which were identical in name and
argument list to the old routines. TV80 would also serve as a
foundation for higher 1level graphics packages being developed
simultaneously [8][9]. In general, TV80 routines are not only as
fast as the routines they are intended to replace but also they
are easy to maintain and modify and can be expanded to control
additional devices. TV80 consists of (1) device-independent
routines that define display windows, establish mappings, draw
lines, characters and points, and (2) software processors for
different graphics output devices and data formats. TV80 can also
be used to make a general-purpose picture description file.

- 162 -

HOW TV80 WORKS

-~

Figures 2 and 3 show the relationship of TV80 to the user's
code and graphics devices. A processor is initialized when a call
is made from the wuser's program to a special "ID" routine,
e. g. DDS8OID., (The inclusion of this call in a program causes the
entire DD80 processor to be loaded with the user's code from a
graphics librarv.) If the initialization process for this device
was successful, the processor sets its status to "active'" and
stores pointers to itself in the jump table used by TVSWCH, a
routine in TV80, Initialization for an offline device includes
creating output files and constructing an identification page
which contains the time, date, machine, security labeling and
distribution of hardcopy or film, Online devices are reserved by
the ID routinc for the current user by sending a request to cither
a4 remote system or the host opecrating system, For «classified
data, a procedure is followcd whereby the system verifies that the
user is at a certain monitor by having the wuser type in a code
which has been displayed on the monitor. Processors also create
temporary working files. Error recovery techniques are used
depending on the output device selected.

Except for initialization, release, and special device or
data base features, the running of the separate processors is
controlled by the routine TVSWCH. The value of a specified task
identification number is used by TVSWCH as an index into a jump
table which 1locates those portions of each processor which handle
the designated task. Tasks currently being used are: position,
draw points, draw 1lines between pairs of points, draw lines
connecting points, draw characters, output picture or buffer, and
advance frame. Most of these tasks have their counterparts in the
device-independent section of TV80. Individual processors are
called in turn to handle the task and when finished to return
control to TVSWCH. Those processors not currently "active'" are

skipped. No intermediate data base 1s constructed, Integer
arrays of coordinatc values are passed in common blocks. The
arrays have already been scaled and clipped by TV80's
device-independent routines, Character strings and information

about size, orientation and intensity are also passcd in common
blocks.

While a code is running, a call to GSTAT, a
device-independent routine in TV80, may change the status of a
particular processor from active to inactive or disconnected; or
from inactive to active or disconnected. Once disconnected, a
processor can only be activated again by a call to its
initialization routine. Disconnection severs all program ties
with that processor's device and/or data files. At that time
files may be given to the operating system for later plotting or
printing. Inactive status is wuseful when you wish only to
temporarily turn off output to some processor.

- 163 -~

Although almost any number of device processors may be active
at a time, users are generally limited in that the choice of where
pictures are to be displayed or printed must be made before the
picture is gcnerated. An exception 1is a hardcopy feature which
will send a television bit buffer after it has been viewed to a
raster printer, We are currently working on a processor to make a
general-purpose picture description file. This will make possible
the saving of a device-independent representation for later use by
either movie or text editors, at which time the decision may be
made to obtain hardcopy from some device.

TVv80 is flexible because program <coordinate data may be
floating-point variables in a program-defined coordinate system or
they may be integers on an imaginary square display recognizable
by TVS80. In the 1latter case, all clipping and transformation
operations are bypassed when the data 1is sent to the processors.
The program may turn clipping on or off. Although each processor
has its own buffers, these can be reassigned by the user's
program. Depending upon the program, more than one processor may
be made to usc the same buffer; or buffers may be dynamically
allocated and deallocated. A program can increase the size of a
processor's data file when necessary.

Conclusion: A situation existed where we found we had many
different types of graphics devices supported by different
software, To better utilize what we had, we developed a package
of routines similar to those already in use with the flexibility

of having independent software processors. We are continuing our
work on TV80,.

REFERENCES

[1] Cecil, A, and Michael, G, DN8N Programmer's Manual,
Lawrence Livermore Laboratory, Rept. N 2.8-002 (1964).

[2] Ford, J. and Welsh, M., CRT Plotting Routines in Use at

LRL-Livermore, Lawrcence Livermore Laboratory, UCRL-14427-T
(1965).

[3] Keller, P. DDTV-to selectively scan frames of DD8N files
via TMDS, Lawrence Livermore Laboratory, UUR-412 (1971).

[4] Storch, N, and Fuss, D. New Routines PCNTLR and DCNTLR on
G-Machine for Quick Hardcopy of Printer and DD80 Files,

Lawrencc Livermorc l.ahoratory, Nctopus Communique-605
(1973).

[5] Michael, G., Van bewcker, 1. and Hunt, C, Use of CalComp
Plotters, Lawrence lLivermore lLaboratory, UCRL-14834

(1966) .

- 164 -

Schwarz, R, A New ferhber Package for the 6600, lLawrence
Livermorc Laboratory (1970).

Storch, N. TV30: Device-Independent Graphics Routines for
the CDC 7600 Computer, Lawrence Livermore Laboratory,
Working Paper UCIR-748 (1974).

Archulecta, M. lidden Surface Processing, Lawrence
Livermore laboratory, UCID-30057 (1973).

Archuleta, M, Interactive Surface Plotting, Lawrence
LLivermore Laboratory, UCID-30058 (1973).

- 165 -

File Storage

| PDP/10}L———— Other Host Computers

User's Code
in
20 Remote PDP/111's
Printers PDP/8's HO?E Dgor;ggggr

PDP/8's
PDP/11

BOO Teletype-
writers

PDP/11

96-channel

Television
System

Gerber
Plotters

Fig, 1, Graphics devices available to user's code,

- 166 -

- L9T -

~ User's Code] Y
————————— - - _—I— _——
Mathematical | Routines 40 | Command | Ildbrary |
| model of problem ' manipulate { Interpreter | routines {
! { data bases I |
e S
VoYY
To initialize To initialize Ghange
DDB0 processor othar device
processors status - TV80
_________________ I ALt »
|
Set parameters l
Device~independent |
GSTAT routines Cip _ |
Transform to TV8O
coordinate system'

Db80
processor

[r— T —

Device Processors

to graphics devices

Fig. 2. Relationship of ¥V80 to the user's code and graphics devices,

User's Code

[estar] [cvswca]

DDBOID v
Connect to DD8O or Disconnect DD30 or Task routines
create output files give files to system
for later processing |
K]

I/0 routines

Fig. 3. The DD8O processor.

- 168 -

GRAIL - A Graphical Device-Independent

Picture Description System

J. A, Brooking

February 8, 1974

Introduction

The absence of a definitive, accepted standard for graphical data structures im-
poses severe restrictions and penalties on installations which deal in any sub-
stantisl way with data which represents pictures, and with programs to generate

these picture-defining data.

A restriction appears when the installation considers upgrading existing graphical
output facilities. Consider the case of an installation with a heavy investment

in application software which generates graphical data to be realized on an exist-
ing plotter or Computer Output Microfilm (COM) device. When the capacity of this
existing equipment becomes exceeded by the workload (either through increased work-
load or decreased capacity caused by equipment deterioration), the installation is
restricted (by reprogramming costs) to consider only those vendors which offer, at

a minimum, graphical subroutines with calling sequences essentially identical to
those which are available for the obsolete equipment. Ideally, the picture describ-
ing code generated by the existing programs should also be compatible (upward at least)
with that of the newer device. The minimum requirement above 1s generally satisfied
by the seme vendor (which is to say & given vendor will most likely supply compatible
subroutines for his entire product line). The ideal is almost never satisfied. The
consequence of this restriction is that those who have invested in a large body of
graphical-oriented code are prevented from any meaningful competitive bidding pro-
cedure and so must either mske a sole-source procurement or commit themselves to a
reprogramming effort, the cost of which obliterates any differences in prices gquoted

for competitive equipment.

- 169 -

A penalty is imposed on an installation which 1s unable to}agrvice its graphical
needs;; by only one type of device. An exsmple of this is the installation which
requires COM equipment for high volume archivel output, a high precision automatic
drafting machine for quality engineering drawings, a fast incremental plotter for
general utility graphics, and a low-precision, “quick-look" device such as an
electrostatic printer/plotter. Of course, an installation with such a heavy re-
quirement for graphical output will probably have considered interactive graphics,
and these will typically also have varietiies of subroutine calling sequences and

internal picture-description codes.

What penalties are imposed on an installation with such a wealth of graphics devices?
No vendor today markets a set of devices to fill all tbe needs of this installation.
(Vendors may, of course, subcontract to original equipment manufacturers tor‘aomc
devices, but this really does not solve the problem, as will be seen). The result
of this situation is that the installation must be content to suffer one of the
following situations:

1. (More likely). The installation is forced to clutter its subroutine
libraries with a different set of routines for every different device
it installs. In turn, the customers of the installations are forced to
learn a different set of conventions and calling sequences for every
device they use.

2. (Less likely). The instesllation undertakes to maintain subroutines for
all devices which are installed, which subroutines appear the same for
all devices. When new devices are installed, a new subroutine set will
be provided.

Unfortunately, both situations have rather obvious defects, as well as advantages.

‘'ne advantage of the first is, of course, that it minimizes local maintenance; one

- 170 -

simply installs the vendors' software packages and gives the users the vendors'
manuals. DUisadvantages: A plethore of subroutines of similar function occupying
library space, a group of users who can never remember whetber to use XCFLOT or
SYMBOL to draw charscter data on the COM (and if SYMBOL, which calling sequence is
correct), and of course, all those routines with the local modification to identify

the output as belonging to individual customers must be maintained.

The second alternative affords the users an apparently compatible set of subroutines
at a cost of a heavy maintenance load for the installation. The compatibility is
only apparent, however, since the subroutine set implemented for a 48" x 96" flatbed
drafting machine will rarely be very meaningful when implemented for an 11" in-
cremental plotter. (For example, how does one interpret an 11" move on the pen on
the plotter as a 48" move on the drafting machine? Is a 48" move on the drafting

machine to be interpreted es an 11" move on the plotter?)

A disadvantage of both conditions is that the selection of graphical output device
must be done prior to the time the graphics program is executed. In the first
case, selection is done at the time the program is written while in the second case
gselections may be deferred to load time. In neither case, though, can selections

of device be made dependent upon conditions which arise during program execution.

Another disadvantage of both situations is the lack of control on user progreams.
This disadvantage is particularly evident during debugging when lines of "semi-

infinite" length often appear along with 3800 coincidentsl points, and character
28

strings which wrap around the scope 27~ times ("I forgot the number of characters

should be an integer, not a real!")

- 171 -

This paper will propose n asolution to the graphics problem which will offer the
following ndvantnges:
1. A subroutine library which i3 identical for all devices and
suitable for implementation on a variety of computers.
2. A picture-description code which is suitable for realization
con any graphical output device.
3. Maximum ease of conversions to new graphics devices, either
add-on or replacement.
Lk, Selection of device at any stage: before, during or after
program execution.
5. "Entry-level" programmer knowledge at a minimum, but highly
sophisticated techniques available.
6. Abundant error diagnostic features to facilitate program

debugging.

The GRAIL System at KAPL

GRAIL is the collective term which is used to describe the conventions for des-
cribing pictures, subroutines which implement these conventions, and post-processor
programs which transform GRAIL picture description files into device-dependent
plcture description files. We shall discuss the conventions used to describe

pictures in GHAIL, and show how these conventions contribute to realizing GHRALL

design obJjectives.

The elementary building block in GRAIL is the byte of twelve bits length. The bvasic
structural unit in GRAIL picture description is the instruction segment, which
consists of two or more contiguous bytes. The first byte defines the type of

instruction segment, and determines the syntax of the remainder of the segment.

‘Gtructural entities which can be included in instruction segments are parameters,

values and characters. Parameters are cune byte long, and give environmental and

parametic information such as required security markings, line flavor (solid, dotted,
etc.) and character encoding mode (display code, ASCII, etc.). Values on the other
hand are numbers and represent coordinates on the display surface. There is one
distinguishing feature of values: they may (but need not) be comprised of more

than one byte. This enables a high degree of coordinate precision to be attained
where necessary without the requirement that all coordinates be siecified with the
higher precision. An instruction segment is defined to specify the number of bytes

in a value. Value strings are formed by concatenating more than one value, and are

terminated by a value of 77778 (with don't care values used as required to pad the

terminating value to the required precision).

Characters occupy one byte each, and may be concatenated to form character strings.

A character string is defined as a contiguous set of non-null characters, termin-

ated by a null character. (A null character is a character with byte value 0008.)

The graphic associated with character encoding is determined by a parameter. Graphics
so specified are independent of device, snd if not specified otherwise, are defaulted

to the normal character set of the computer on which the GRAIL file is generated.

The overall structure of a GRAIL file consists of a set of initializing parameter
segments, followed by the main body of the file: the picture description, which
consists of one or more frames. Initializing paremeters include, for example, the
identification of the computer on which the file is generated, the identity of the
user who is running the job, the date and time the job is run, the frame gize and
the precision of values. The order of these parsmeters is important, being used

by the realization routines to identify the GRAIL file as such, and 80 no initlial-

ization parameters are written on the GRAIL file until the user performs the first

- 173 -

non-parametric picture-describing subroutine call. This enables him to specify

any non-default parameter settings in any order he chooses.

GRAIL gubroutines include capabiliﬁies for generating Lhe usual graphicel primi-
tives of move, draw, draw symbol, draw brokem line polygon, etc. These are des-
cribed in Appendix A: GRAIL System Description. It may be worthwhile to note that
some options are available in GRAIL which are not found in the usual run-of-the-
mill graphical subroutine library. Among these are variety of character-drawing
parameters such as roman or italic (slanted} font, aspect ratio and inter-character
spacing. Line drawing options include line "flavor" (solid, dashed, dotted and
end-point). The selection of data representations for line drawing includes wector
wode (X3,Y1,Xp,¥2,...,X Y), incremental mode (Xo,¥,,0X),D¥;,...,DX;,0Y), and auto-
incremental mode (XO:DXO:YO’Yl"'°:Yn)' Values may be scaled or unscaled for all

coordinate representations.

Realization programs are programs which read GRAIL picture description files and
generate files which can drive particular devices. At KAPL realization routines
are available for CalComp 565 and 763 incremental plotters, a CDC 280 Computer

Output Microfilm unit and a Versatec Matrix 1100A electrostatic printer-plotter.

As a parenthetical note, the KAPL computer systems are linked together in various
ways. In particular, as seen in Figure 1, KAFL graphics devices are driven directly
or indirectly by both CDC 6600's and by the PDP-10. (The 7600 can drive only the
off-line CalComp thrdugh magnetic tape). Accordingly, jobs executing on any computer
in the network are given access to any graphics device in the shop. For example,
execution of the control card.

GRAVER.
on the 7600 will cause a GRAIL file to be forwarded to the PDP-10 and plotted on

the Versatec plotter.

- 174 -

FIGURE 1

KAPL Computer Network and Graphics Devices

cDe) cpe CcDC
6600(A) 6600(B) 7600(C)
N N N
DEC
PDP-10(D)
e e e — - — o
]
Y _ . Y

Vector General
3D2 Graphics

PUGUIPHPSSIS, |
Versatec , CalComp 565 '
%
System

Matrix 110 iPlotter (R.I.P.)

- - s

- 175 -

In the nature of a conversion note, GRAIL went into production in July of 1973,
at the time our Versatec plotter was installed. The facts that (a) GRAIL was
the only language by which the Versatec could be used, and (b) turnaround on
the Versatec from all four computers was almost instantaneous, gave KAPL users

strong motivation for using GRAIL subroutines.

GRAIL Features which Contribute to Design Objectives

Given this brief introduction to GRAIL, what features in GRAIL contribute to the
realization of GRAIL design objectivea? First of all, device independence is
yielded by three primary attributes of GRAIL: (1) the inclusion in all GRAIL
files of "environmental deta" which provide realization routines with information
about the intention of the programmer as he was writing his picture descriptions.
(2) The ability to specify multiple precision values as coordinates enable GRAIL
files to be realized on any device, while precision is maintesined for the most
exacting dev.ce on which the file will be realized. Thus, for example, if one

is creating high precision engineering drawings, he can debug his program using
low-precision, quick look devices such as the Versatec plotter. Then, without
changing his program (and in fact, without regenerating the GRAIL file) plot it
on an automatic drafting machine which recognizes GRAIL files. (3) The last
primary attribute of GRAIL which contributes to device independence is the accept-
ance by GRAIL reslizetion programs of instruction segments which bave no meaning
for the device on which the picture is being realized. For example, an instruction
segment exists to specify intensity of displayed information. If this segment 1s
encountered by the CalComp realization routine, it 1s simply ignored, since there

is only one intensity for CalComp lines: On.

- 176 -

Machine independence is obtained by the use of a standard unit of informmtion:
the 12-bit byte, and by the definition of a uniform set of graphics associated
with internal character codes. The selection of 12 bits per byte was made be-
cause 12 divides both 60 (the CDC word length) and 36 (the PDP-10 word length)
evenly. Additionally, the expression of up to 4000 units as & value can represent

up to 40 inches while maintaining 0.0l inch precisiom.

Our third objective of ease of use 18 served by several features in GRAIL.
Probably the ‘most important of these is the inclusion of multitudes of default
options. These defaults enable the programmer to avoid the tedious task ;)f
specifying everything about his picture before he draws it. For example, the
engineer who wants nothing more than to draw a graph of a simple function can do
this by calling six subroutines: two for x- and y- scaling, two for x- and y-
axes, one to draw the function which has been generated by his program and stored
in an array, and last, an end-of-frame subroutine. Since he did not elect to
override default options he will generate an eleven-inch lquai'e graph, with 0.21
inch character heights, 7:6 character aspect ratios, solid line mode, etc. The
"price of admission" to GRAIL in terms of knowledge is, then, small. Should the
engineer later decide to plot other curves, or give labels to his graph, or in
other ways improve it (in what is called the Creeping Elegance Syndrome) he can

do so, simply by reading more sections of the manual.

Another facet of the GRAIL implementation is that error conditions are, for the
most part, handled with grace and forgiveness. A labeled common block is used

to convey error conditions to programs calling GRAIL subroutines. When an error
condition is noted by a GRAIL subroutine (such as a coordinate value which exceeds

the frame boundary) a number is placed in one variable of this common block and

~ 177 -

the other variable 15 incremented by one. Careful progremmers mey declare this
common block in their programs and test these variables to determine if something
went awry in their GRAIL subroutine calls. Alternatively the programmer may

call a subroutine which causes full disgnostic print-outs when errorsoccur. In
any case, 1f errors in specificetions or coordinates do occur, the erroneocus

value is ignored and the default value used instead.

Interactive Use of GRAIL

At the pregsent time we are formalizing the plan for extending GRAIL for inter-
active use. ™his plan {8 based on a number of premises:
1. The main application programs at KAFL are modular in nature; some
modules process input, some do one kind of calculations, some do
other kinds of calculations. Still others generate pictures based

on input data or on computational results.

2. The computational modules use substantial amounts of 6600 and T600

computer time, and can not be practically performed on the FPDP-10,

to which the Vector General grephics system is attached.

3. Interactive Graphics at KAPL will be used for the creation and modi-
fication of complex geometrical constructions cowmposed of a variable
initial library of simple shapes, any member of which may be trans-
lated, rotated, scaled and/or reflected, and added to the construction.
Intermediate constructs way be added to the basic library, and any
member of the library may be changed at any time, causing all instances
of that member in the construction to assume the changes of the library

figure.

- 178 -

k. The description of interactive graphics in (3) above is sufficiently
broad and general that an interactlve package which performs those
functions for one application can perform those functions for any

application.

With these premises in mind, we are building an application-independent inter-
active graphics package for our network vhich shares the workload as appropriate
among the various members of the network, and which uses GRAIL files (with

enhancements as described below) as the common picture and description media.

The implementation plan we have devised will be to impose an Interactive Module
into application programs as they presently exist. Figure 2 {llustrates a (000
or 7600 non-internctive, grapllc-ortented application, with several compututlional
modules, each tollowed Ly graphical modules. The graphical modules generate

GRAIL files which may be the results of the preceding calculation or geometrical
representation of input. At job termination the GRAIL files, in a non-interactive

environment, will typically be plotted or microfilmed.

Figure 3, shows the imposition of our interactive module which is entered just
after.the last graphical module has completed. This module will be responsible
for getting the GRAIL files previously generated to the PDP-10 ind awalting the
results of whatever modification is performed by the user om the Vector General
terminal. The response from the PDP-10 will be either a revision of the input
to the problem or a termination signal. If a revision is received, the problem
input is modified accordingly and the problem is re-entered at the beginning.

If a termination is received by the interactive module, the last revisiom of input

is saved and the program exits.

- 179 -

FIGUHE 2

Typical Graphic-Oriented Application Progrem

\ Process
(Begin —D Input

Computsation
No. 1

N
Graph Results
of
Computation 1

Computation
No. 2

Graph Results
of

Computation 2
=

s
T

Computation
No. "N"

I
A4

Graph Results

- 180 -

of
T

FIGURE 3

Graphic-Oriented Application with Interactive Module

Begin
Input

Process

Computation
No. 1

Graph Results|
of
Computation

Computation
No. 2

J

Graph Result
of
Computation

Computation
NQ . " N" |

|

Graph Results
of

Computation "N
T

\v/

- 181 -~

o

a1

J

Interactive
Module

Un the PLP-10, a program 18 executing which implements interactive interpretation
of GRALIL files by means of the Vector General graphics system. The user will be
able to select any frames in the GRAIL files for displey, and one or more for
modification. He will be able to perform the kinds of construction descrived

in (3) above using a standard set of display input commands, and thereby modify
the geometric model used as input to the CDC application program. Graphs of
results generated by computational modulées will be displayable to assist him in

making decisions about the modification he makes.

GRAIL extensions for interactive graphics, then, will consist of (a) the enrich-
ment of agtructures expresslible Iln GRAIL rile, including graphical gubroutining,
and (b) the ability to declare variables for use as coordinates, scale factors,

and transformation arrays, and the assignment of descriptive strings to these

variables.

Finally, the presently available mechanisms for intercomputer file transfer will
be used to establish and maintain communication between graphic application

programs on the CDC computers and the interactive driver program on the PDP-10G.

- 182 -

1
Systems Programming Languages and Graphics Terminals

Thomas Stuart
Courant Institute of Mathematical Sciences
New York University

Abstract

Faced with the design of an interactive graphics system, many researchers
with widely differing applications have settled on a random access CRT display
attached to a miniprocessor, In most cases this small computer is in turn linked
to a larger time-shared facility, and it is the software implications of this

overall hardware design with which this paper is concerned,

Such a setup is usually arrived at by a compromise between an estimate of
required computational power and the reality of financial resources, The inser-
tion of the small computer between the display device and the applicétions
oriented large computer causes difficulties in three main areas:
(1) Decreased utility services, compilers, and other system software where
it's needed,
(2) A more complex design for the graphics software, due both to an added communica-
tions channel and the division of labor between computers,
(3) A degradation of response time when interaction between display and applica-

tion programs is necessary,

It is asserted here that the use of a systems programming language will aid
in tackling each of these problems., With respect to the first, system software,
one has an obvious application of the earliest arguments for a systems language,
The extension of these arguments to the second difficulty, the design and im-
plementation of a graphics system, receives major attention, Though a choice
of programming languages would usually have no clear, direct effect on the third
problem, response time, it does have an indirect influence since the response
can never be completely independent of communications software, The disadvantages
of a systems language are not to be ignored either, Finally, the use of a

specific language, LITTLE, is described briefly,

- 183 ~

Introduction

As with any new item of hardware, the development of graphics terminals
brought a host of problems, Among the various types of terminals, one that
has found a wider audience is the programmed beam CRT driven by a computer of
relatively limited resources, Usually these resources are too limited for a
complete resolution of the specific applications problem and, hence, a more

versatile computer is used to handle the larger computational tasks,

At the outset, the advantages of such a design were not readily apparent,2
Given a number of applications with varying graphical demands and varying computation-
al requirements it was difficult for designers to choose an optimal system even
when the system was to be used for a single application and its needs were well
defined beforehand, The earliest solutions took one of two forms: if the com-
putational tasks were large, plug the CRT into the large computer; if not, get
a mini to drive the display, Neither solution was very practical with most

problems,

When the memory and I/0 facilitics of a large computer are employed Lo drive
the display directly the volume of data transmitted to maintain the image re-
presented a serious drain on, and waste of, the resources available, degrading
production in a time sharing system., On the other hand, if the driver is a more
or less independent processor with a small memory set by a program in the main
memory only as needed, the degradation this time occurs at the terminal, which
has real time requirements undreamt of at IBM, CDC, or elsewhere, So long as
an image is just being regenerated, the main processor need contribute little
time or space to graphics, but whenever the picture changes in some manner not
handled by the hardware of the CRT controller, then, within milliseconds, a
generally large program must be in central memory and executing, The percentage
of the time which must be devoted to this program of course depends on the appli-
cation, but many problems will vary during the course of a job from a fraction
of 1 per cent all the way up to 100 per cent, No time-sharing system which allowed
this would be time-shared any longer, Essentially, the only types of interactive
graphic display that can profitably be driven by a time-shared computer (with or

without an intermediary processor) are displays of a relatively static nature,

~ 184 -

alphanumeric displays, storage tubes, point plotters, etc,, and we are not
concerned with their special problems here, Whether a design lacking degrada-
tion on either end might be implemented is problematical, for such a facility

would be a costly feature,

The other solution, driving the display from a stand alone minicomputer,
was simply inadequate for the computational necessities of most problems, if
not initially, then as additional projects were attempted, Expanding applica-
tions can outstrip attempts to upgrade performance of the minicomputer with
great speed, However, this approach did possess the advantage of adaptability
in some cases, for, if a large computer was near enough for a low cost, high
volume transmission line, then the computational portion of the graphics problem
could be undertaken, and all one had to face was reprogramming the system to
reflect the minicomputer's shifted status - from central processor to intelligent
terminal, The choice of this latter system, while it may in some cases involve
substantial effort to convert, was eventually advantageous for its users, for
the choice of a larger computer as driver has led to, or will lead to, the

junking of both software and hardware,

The decision to employ this type of interactive graphics termirnal - CRT
attached to minicomputer attached to main computer - is not an easy one, since
response time between applications program and display is degraded, and since
it can only be more difficult to develop software, but it is a choice that ex-
perience forces, because there is no avoiding the need for the computational
power of a large computer, and there are no projects that justify a dedicated
mammoth and the concomitant waste, Once that basic choice is made there are
still many questions to be answered concerning hardware characteristics of the
display, the minicomputer, and the peripherals, Answers are impossible to
generalize and will often depend more directly upon the specific application and
financial backing., 1In any case, though these considerations are very important,
the remainder of this paper is concerned with the other half of a system design,

software,

- 185 -

Software

Software difficulties increase enormously with this terminal design. First,
and most obvious, it is because there are two computers instead of one to program,
Communication between them is always a non-trivial problem, especially when
entering a time-shared community with some real time desires, The software
interface between the graphics routines on the mini and graphic processing in
the main computer is only one of the added interfaces, There are now applica-
tion routines both on the time-shared computer and at the terminal, each re-

quiring interfaces with the graphic routines where one sufficed earlier,

Perhaps not so obvious is another effect of the two computer choice, an
immediate repercussion being that every time a new routine is written there
is a choice to be made: where will it run? The answer to this question is in
many cases neither apparent nor trivial, Factors influencing the choice will
include -
(1) The memory available at the terminal, both in core and in storage devices,
(2) The access time of these devices,
(%) The speed of the link (or links) to the main computer,
(4) The priority this particular task would be accorded in the mailn computer
at this time,
(5) The frequency of performance of the task for each application, and
(6) The volume of data to be processed during a particular job.
Whereas the first three of these factors tend not to change frequently and do
absolutely determine the location of many routines, the latter three are time
dependent variables and merit more attention, Of course, we always wish to
carry out a process on the minicomputer when possible, Whether or not it is
feasible depends not only on the hardware available, but the run-time environment,

The fourth, fifth and sixth factors constitute that environment,

The priority of a task coupled with the time of day can sometimes determine
the optimum location for executing a routine, Especially would this be true
for processes requiring a few seconds on a mini and an order of magnitude less
in the time-shared facility, In peak use hours, the mini is still a preferable

location, whereas at night it never would be,

- 186 -

The fifth faclor, [requency of task performance, becomes important as a
determinant only when high, For an infrequently performed task the location
is relatively unimportant when a choice is available, When the speed considera-
tions point to the main computer as the prime site, then it still may be
desirable to have a back-up routine for avoiding down time impediments, But
when the frequency is high, speed assumes large importance and we have a boosting

of the importance of the priority factor just cited,

The last effect, the volume of data, is the most unpredictable in its
importance, It is here that many graphics applications will envelop a range
of specific jobs that include some production runs requiring a large computer
and some that do not, An ad hoc decision is usually made to program for the

worst casc, a decision which is often forced by the difficulty of reprogramning,

Specific cases which will be affected by one or more of these factors are,
it should be emphasized, quite dependent on the hardware, That is, the affected
routines will change from one system to another, but so long as a graphics
project embraces a large number of tasks, there will be many falling in the

range of interest,

Now that some of the complexities of the programming have been established,

it may be reasonable to summarize, to characterize the problem,

First, the problem is many faceted, It embraces transformation and manipula-
tion routines, access of various utility functions on both computers, an executive,

probably some data analysis routines, more than likely a complex data structure,

Sccond, the program requires a formal structure for interfacing ite

divisions and also because it 1s to be wrltten by more than one person,

Third, there is a high emphasis on the speed of execution, both because
there are some real time criteria, and because it is designed for continuous

or frequent production,

Fourth, it is likely to change frequently with changing needs, priorities,

applications, and hardware,

- 187 -

Fifth, since it not only serves as a service program for large applications,
" but also carries out simple display problems as a stand along package, it must

be supremely easy to use,

Sixth, some of the routines or tasks are to be written for two machines to

best advantage,

In many interactive graphics projects a seventh characteristic would also
be important, hardware independence, This takes either of two forms, an ex-
tension of the sixth characteristic to the whole of the graphics program because
the package is to execute on two, different minicomputers, or, alternatively,

some routines are to produce images on two, different display devices,

Then, it is appropriate to ask, what is the vehicle through which this
problem is to be implemented, how shall it be programmed, in other words, which

language?

Language

The above summary of the problem is a re-statement in specific graphics
terms of the definition of a system problem given in the recent review article,
"Systems Programming Languages",3 Obviously, then, we have a system problem
for which systems programming languages were developed, Obviously, then, we

should use a systems language, Or perhaps not,

There are several very good reasons why a systems language should not be
used, First, it doesn't exist, Though this is not likely the case in most
large, time-shared systems, it is very frequently the case for many mini-
computers, If it doesn't exist, then its creation is generally beyond'the
resources of a graphics project, Another reason is that it just isn't fast
enough, Even though systems languages are designed for efficiency, they simply
cannot match a routine coded in an assembly language. A systems language is
also often machine dependent where there may be strong reasons to lean in the
opposite direction, writing in FORTRAN, for instance, Then, too, FORTRAN has an

audience in the applications field where there may well be need to interact with

- 188 -

and modify the graphics program itself. There are many other reasons for the

4
persistence of FORTRAN in the graphics field, but as Newman and Sproull state
in an introduction to a discussion of the language in their text, Principles of

Interactive Computer Graphics, "one language which has been used time and again

as a graphics system basis is FORTRAN, If it were not for this, there would be
little need to mention FORTRAN at all, for its performance in meeting our
criteria is abysmal'., The discussion that follows the quote is recommended

reading,

My own list of most negative attributes in its use in graphics include slow
speed, poor character handling, no macros, no bit or field operators, and an
extremely poor base upon which to build a graphic language., None the less, being
dissatisfied with FORTRAN is still insufficient incentive if no alternative is
readily available, and some of the &eficiencies pointed out in the aforementioned
review2 are serious, Some systems languages are no faster than FORTRAN; some are
quite complicated to learn; most are very machine dependent. It is understandable
that many will rely on the assembly language for the most crucial speed, bit

and field needs, and just put up with FORTRAN's other attributes.

However, I was luckier. At the Courant Institute, Jacob Schwartz began
development of a language called LITTLE in 1968.5 The two basic goals of this
language are machine independence and efficiency.6 cThe LITTLE compiler aids the
first goal by expressing programs as 'machine’ language for an 'unknown machine',
unknown, that is, at the time of program construction, with characteristics such
as the word size considered a compile time parameter, The machine dependent section
of LITTLE is a routine that maps the 'unknown machine' language onto the real
machine, but this task is not at all extraordinary for any new machine, because
the ILLITTLE compiler is written entirely in LITTLE, The approach bears some
similarity to the 'abstract' machine of the STAGE2 system,7 with the practical
difference of less independence and more efficiency, Thus far, the second goal,
efficiency, has only been measured on the CDC 6600 and is excellent, Efficiency

results on the IBM %60 are expected shortly,

The structure of LITTLE includes MACROS, the usual arithmetic, logical and

relational operations, bit and field operators, a single data type - the bit string,

- 189 -

Lthe common IV, JTHEN. . FLSE, DO, UNTIL, and WHILE constructions, conditional
and unconditicaal transfers, local and global variables and a general program
structure reminiscent of FORTRAN, In essence, if one took FORTRAN and added

most of the opticns a systems programmer would want, one would have LITTLE,

From my own standpoint this structure has the additional advantages of making
a link to existing FORTRAN routines eusy, encouraging easy use to present FORTRAN -

only programmers, and providing a vastly improved base for a graphics language.

Currently it is not a trivial exercise to write a machine block, with an
estimate of four months of intensive work for a Honeywell Series 16 minicomputer,
but this will decrease with the future expression of the 'unknown machine' in a

formal language,

- 190 -

Acknowledgement

Jacob Schwartz, David Shields, and Edith Deak were all very patient
and very helpful in introducing me to LITTLE., Elias Guth aided on the other

end, getting the first code for the Series 16 machines out,

References

1, This work has been supported by PHS grant number NS~10072, General support
by the AEC Computing and Applied Math Center under contract AT(11-1)3077
is also gratefully acknowledged,

2, Foley, J.D., "An Approach to the Optimum Design of Computer Graphics Systems",

Comm, ACM, 14, 380 (1971).

3., Bergeron, R,D,, Gannon, J,D., Schecter, D,P,, Tompa, F ,W,, and Van Dam, A,,
"Systems Programming Languages' in Advances in Computers, 12, Academic,

New York (1972), p. 177.

4, Newman, WM. and Sproull, R.,F,, Principles of Interactive Computer Graphics,
McGraw-Hill, New York 71973) p. 362.

5, Cocke, J. and Schwartz, J., Programming Languages and their Compilers, Courant

Institute of Mathematical Sciences, New York University (1970},

6. Shields, D,, "Guide to the LITTLE Language', LITTLE Newsletter No, 33, Courant
Institute, New York University (1974).

7. Poole, P.C. and Waite, W.,M,, "Portability and Adaptability" in Advanced

Course on Software Engineering, Springer-Verlag, Berlin (1973),

-~ 191 -

UNIVERSITY OF CALIFORNIA

Lawrence Berkeley Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

A BARELY INTELLIGENT TERMINAL
Harvard H. Holmes

March 1974

- 192 -

A BARELY INTELLIGENT TERMINAL

H. H. Holmes
Lawrence Berkeley Laboratory
University of California
Berkeley, California 92720

ABSTRACT

A system for effective use of an intelligent terminal for graphics
applications is described. It provides extensions to the basic hardware
capabilities such as display subroutines and display scaling, and light
pen tracking and inking. It supports a variety of local manipulations on
display files which have been supplied by & host.

An interrogation facility allows the host to send a list of questions
together with the ranges of acceptible answers to the terminal. Thereafter,
a single command will invoke an interrogation of the user. Each ansvwer, in
turn, is checked for validity and is transmitted to the host only upon
completion of correct input. Menus are used when the user must choose cne
of several alternatives. FEach choice of an item may lead to a subsequent
menu. These selections are accumulated and the host is interrupted only
when the entire sequence is complete,

The editing operations allow changes to be made in the local display
image, with or without sending these changes to the host. These operatiocons
are sufficient to allow a complete drawing to be constructed locally, with-
out using the host at all. Our applications include cordinary graphs,
symbolic modeling , and a drafting application.

The terminal hardware is a DEC GTLO display: a CPU, 8K of 16 bit
memory, & display processor, and a communication line tc the host. The
local data structures comprisc a display list, menus, and directories,
supported by a simple brute-force memory allocation scheme.

Our goals for this terminal system are to provide fast response for
display manipulations and editing. 1In addition, we anticipate a substantial
reduction in computing load on the host for those applications primarily
involving cditing of displays. A substantial reduction In communication
bandwidth maken remoto use teasible, ep, at experimental sites via the
ARPA net.

- 193 -

1. INTRODUCTION

One of the problems faced by graphics programmers today is how
best to use the intelligent terminals which are being produced in ever
increasing numbers, At large installations there is an enormous
investment in cxisting hardware and software. One cannot just convert
overnight to one of the new devices, but rather it must be integrated
into the existing systems. And yet one cannot afford to overlook the
possibilities offered by a new device.

We will describe the general tradeoffs involved in the selection
and use of a graphics terminal and then we will describe the particular
facilities which we plan to offer with our terminal, followed by a rough

sketch of the projected implementation and some applications.

II. BANDWIDTH VERSUS INTELLIGENCE

The primary tradeoffs involved in choosing a graphics terminal can
be charactcrized in terms of bandwidth and intelligence. These are
two relatively independent variables which are easily understood. The
selection of a bandwidth and intelligence will determine the computing
load on the host and the applications served. Referring to Figure 1,
we have arbitrarily chosen some benchmark tasks which are appropriate for
a graphics terminal. These tasks are to display, edit or view in motion
either simple or complex pictures. The response time for each of these
tasks is considercd to be 30 seconds for a display, 1 second -for an

edited display and 1/30 sccond for the display of each frame of a moving

- 194 -

display. A simple picture has 1,000 vectors and a complex picture
has 10,000 vectors.

We have selected several milestones in our search for a definition
of intelligence. Milestone 0 comprises no intelligence, for example a
storage tube display or a television monitor. The cost per terminal
is about $5,000. Milestone 1 adds refresh memory, a display processor
and a CPU. Current systems, such as the DEC GT40 and the IMLAC PDS-4
are in the range of $15,000. These systems are intelligent terminals,
able to alter a picture from coded commands and to search a simple data
structure. Milestone 2 adds a disk, more memory and more processor
and/or CPU power. These systems cost about $50,000. Depending on the
application they may either be very intelligent terminals or a minimal
satellite processor. Examples are the DEC GT44 and the IBM 1130 with a
disk and 2250 display. These systems support a high level language and
have enough powef for continuous alteration of displays (animation) and
for searching complicated data structures {(disk resident). Milestone 3,
in the range of $150,000, adds enough computing power to generate all
the parameters for simple motion, or put another way, to simulate simple
dynamic systems in real time. Large mini and midi computer systems fall
into this category.

Bandwidth is th¢ data transmission speed of the host to terminal
connection, fhe cost of bandwidth is proportional to the rate and the
distance involved. Telephone lines cover the range from 100 baud to
10 kilobaud. Acoustic couplers can be used at up to 300 baud, thus giving
true portability. The ARPANET, using special lines, achieves 50 kilobaud.
Computer I/0 channels achieve bandwidths of 10 megabaud or mare, but a

channel connection usually requires that the equipment be in the same

- 195 -

TOOm.

Our chart is constructed by assigning a bandwidth to each type of
graphics activity: motion, cditing or display of simple or complex
pictures. Starting at the left of the chart we extend each activity
to Milestone 1. After some reflection, we estimate the bandwidth
reduction made possible by this much intelligence. To edit a simple
picture, for example, we can keep the display in the terminal and
transmit only change information. We estimate that this allows a
bandwidth reduction of 30 to 1. Complex pictures cannot be so well
structured in the limited memory of the terminal so we estimate a band-
width reduction of 10 to 1 for editing complex pictures. The rest of
the chart is constructed in a similar fashion. We then review the chart
and make revisions as necessary to eliminate inconsistencies or clashes
with common sense cor experience.

We can now consider the computing costs of using the host. These
costs include both the monetary costs and the costs in user frustration
caused by poor response time. We have divided the hosts into two kinds:
cheap and expensive. If we assume that the cost of the host is directly
proportional to fﬁe bandwidth required, then we obtain the lines of constant
cost as shown in Figure 2. We have also drawn lines of optimum cost
effectiveness for the two types of hosts. If these lines are overlaid on
Figure 1, thev suggest what we all knew: as hosts become more expensive,
the optimum tradeoff moves toward the more expensive terminal. Cheap,
responsive hosts can make effective use of less expensive terminals.
Unfortunately, the addition of several terminals will often cause the host

to saturate, changing it from a cheap host to an expensive host. This is

- 196 -

an obvious reflection of the fixed capacity of the host. If a terminal
is connected to a host, it would be wise to expect to process the extra

workload in the terminal itself unless the host is suitably upgraded.

IIT. SOFTWARE SUPPORT

The introduction of terminals at our installation is providing an
incentive to re-examine the software situation with a view to providing
graphics wherever we now provide a teletype. We will not replace all
our teletypes, of course, but we will provide enough graphics terminals
so that they wili be available to whoever needs them. While we have had
CRT consoles for as long as we have had teletypes, they have not been as
well received. The reason is that while the teletypes have gone out to
the users' work area, the CRT coﬂsoles have remained isolated both
physically and in terms ofkprogramming expertese. Now with the opportunity
of providing graphics in the users' work area, we must also make the graphics
terminal as easy to program as the teletype.

The first step in this direction has been the establishment of a
standard device-independent interface at the FORTRAN subroutine level.

We are now in the process of writing device drivers for each type of hardware
to interface at this level. Each device driver can clear the screen,

plot a sequence of lines, or plot a sequence of characters beginning at

a specific point. Drivers for interactive terminals can also read user
defined coordinates from a cursor or a tracking cross. This interface

allows the user to specify his graphics device when the program is loaded.

He may also control two or more devices. The second step in developing

- 197 -

graphics is to modify the several high level graphics languages at our
installation to conform to this standard interface.

We will also develop some high level routines of our own: a menu
routine, a questionaire routine and a modeling-edit routine. We will
implement these on our intelligent terminal as part of the capabilities
of the terminal itself, We feel that the implementation within the
terminal will be easier and will provide much faster response while
reducing the computing load on the host. This immediate response will
make it much easier for the novice to learn to use this facility, since
the results of each action will be instantly apparent. Frustration for
the novice and expert alike will be reduced, since they no longer must
wait for a response from the host. The menu facility will allow the
host to define a tree structure of labeled nodes and send it to the
terminal. When the menu is invoked via a short command from the host
or internally within the terminal, the top of the tree is disp]ayed as
a menu of light pen sensitive items, either text or symbols; when an
item is selected the branches below that node are displayed until a terminal
item is selected. The entire path through the tree is then communicated
to the host. In{this way the user can rapidly select the items which lead
him through a complicated command structure while the interaction with
the host can be reduced to a few I/O.requests.

Figure 3 is a sample menu. When the menu is invoked only the first
two lines are shown; after choosing "output", the types of output are
shown. After the type of output is selected, the user must confirm his
selection. Until the selection is confirmed, the user may change his mind

either by starting over at the top or by backing up one level at a time,

- 198 -

The questionaire is similar in spirit to the menu. It is a
common facility in programs and it is implemented in the terminal to
provide fast response and reduce the computational load on the host.
The user is directed to a page of questions and as he answers, each
answer is checked for validity. Default values may be provided and
any value may be modified until confirmation.

The final and most extensive facility provided in the terminal is
the modeling-edit facility which allows the host to send a picture to
the terminal for modification by the user. Picture elements are grouped
into subpictures.and each subpicture may be included in any other sub-
picture. Any subpicture may be edited by the user; he may add or delete
lines, alphanumerics and subpictures. Each change in the picture is
sent to the host as it is made, so that when computation is desired, there
is no time lost in sending the drawing back to the host. A simple
application of this system is for layout of text, drawings, and other
documentation. The host may supply some paragraphs of text and some
drawings. If each item is a subpicture, then the text and drawings may
be moved about on the screen until the proper composition is achieved.
This especially';uitable for preparing charts, tables and graphs for
publication. The editing facility can achieve a pleasing layout far
more easily and cheaply than multiple batch runs using trial and error.

The greatest gains can be made in the area of modeling. A typical
sequence of the terminal would have the host initialize the terminal with
symbols for electronics: resistors, transistors, etc. The user would
connect these symbols to form a circuit and the circuit would be analyzed

by the host. If the terminal had enough memory, the circuit could remain

- 199 -

in the memory ready for immediate editing as soon as the previous results
had been viewed. Several response curves could also be accumulated for
comparison by overlaying one on another. Programs for such analysis

of symbolic drawings arec already available, but the difficulties of

using current terminals have prevented their widespread use.

1V. HARDWARE

Qur terminal is a DEC GT40 having 8k of 16 bit memory, a PDP-11/05
CPU, a display processor, and a 2400 baud communication line to a
CDC 6600. The CPU has six general purpose registers and a hardware stack.
Interrupts are handled uéing an interrupt vector for each device and
four priority levels are available. Each I/O device is assigned a pseudo-
memory address and all of the CPU instructions may be used to manipulate
data at the device address. The display processor includes a vector
generator, a character generator and logic for direct memory access. A
light pen is also part of the display processor. Light pen and other
display processor - CPU interactions are handled with interrupts. The
hardware does not provide a display subroutine jump so this is simulated
as follows: (1) The display processor executes a stop and interrupt
instruction followed by an address, (2) the interrupted CPU finds the
address by reading the display program counter and (3) the CPU stacks
the address and starts the display processor at the new address. If the
new address is zero, then step 2 is reversed and the display processor is
returned to a prior picture using the address from the stack.

The host is a CDC 6600 with 128k of 60 bit memory and the usual

complement of I/0 devices. All teletypes and the GT40 as well interface

- 200 -

through 2 PDP-8 which handles buffering and local control of the teletype
lines. The PDP-8 is line oriented and will only pass information on to
the host when a complete line. has been received. Characters may be
automatically converted from ASCII to the 6600 internal character code
or they may be passed in image mode allowing every possible 8 bit

character to be sent.

V. IMPLEMENTATION

The terminal program is implemented using the display file as the
primary data structure. This file is continuously executed by the display
processor so that each change in the data structure is immediately reflected
on the screen. Memory is allocated in fixed sized blocks (usually 16 or 32
words) using a bit map to find unused blocks. As each block is filled
with display code, the bit map is examined to see if the next block is
free; if so, then the display code is continued into the next block. If
not, the bit map is then searched for any empty block and a display jump
is inserted from the old block to the new block. The bit map allows most
blocks to be sequentially allocated and this avoids the overhead of a
display jump most of the time. With 32 word blocks, the entire bit map
for 8k words requires only a 16 word table, so the overhead required to
find new blocks is very small.

The display file proper is organized into a master display list, a
directory, and all the subpictures. A subpicture is displayed by putting
a display subroutine jump for it into the master display iist. The
directory contains the names and the first addresses of all the sub-

pictures. It also contains a response code which indicates what is to

- 201 -

be done when a light pen hit occurs on this subpicture. This response
code jdentifies each item as a menu, a questionaire, an ordinary
subpicture, or an internal clement, This mechanism allows menus and
questionaires to be stored as ordinary display elements, while providing
proper response to these items. This scheme also allows the terminal to
utilize menus and questionaires in its internal operation. The edit
commands use this menu facility, for example.

Each subpicture is ordinarily closed, that is, it is defined entirely
with relative beam positioning and the last opération returns the beam to
its original position. This convention allows a subpicture to be modified
subsequent to its inclusion in another picture without disturbing the location
of items in the picture.

The terminal software has four discernable levels: memory management,
display ccde generation, command interpretor, and interrupt routines.

Every action by the user produces an interrupt which is put into a FIFO
queue. As time permits, the command interpretor or the display code
generation routines remove these actions and process them. The command
interpretor uses the current state and a table to decide which of the code
generator routines to call. The code generators ultimately call the memory
management routines to alter the data structure.

A typical interaction would'begin with the terminal initialized to
display a menu. The user points to an item on the menu; after several
hits, the interrupt routines put this action on the queue. The command
interpretor removes the action, finds the response code and activates the
proper routinc. This routine may remove the menu and display another
menu. The user may now ask to erase a line. The command interpretor sets

the proper state and then waits for a light pen hit on a line. When the

- 202 -

hit occurs, the address of the line is passed to the proper code generation
routine. This routine will remove the intensity bit from the line. It
then must remove the line from the data structure if possible. It will
search forward and backward to see if the line is surrounded by invisible
lines. If so, these are combined and the deleted words filled with
display no-operations. If an entire block of 32 words has been deleted in
this manner, the block then must be de-linked and returned to the pool of
available memory. The routine then returns to the command interpretor.
This system is implemented in assembly language using a cross
assembler running on the hbst. The host also has available a text
editor and a loader which operates over the communications line.
Program development procéeds by typing in the new code to be added
to the existing program. The code is then assembled and loaded into
the terminal over the communication line. This usually takes less than
one minute. The code is tested and any revisions can be made and
immediately tested again. At the conclusion of the session the new source
replaces the old one on the permanent file system. This is a great
improvement over most minicomputer facilities; the line printers, magnetic
tape drives, and other peripherals of the host are also immediately

.available.

IV. CONCLUSION

This system will enable an evaluation of the menu, the questionaire
and the model editing facilities. If they are satisfactory, then they

can be implemented for the PP (peripheral processor) driven CRT consoles

- 203 -

with o minimum of trial and error. This ability to procced without trial
and error is very important since the CDC 6600 operating system is not
protected against errors in PP routines.

We feel that this system will go far toward enhancing graphical
communication with the user. Our goal is for the user to regard these
facilities with the game confidence that he has for the teletype and the
text editor.

ACKNOWLEDGEMENT

Worked performed under the auspices of the U.S. Atomic Energy Commission.
REFERENCES

1. Holmes, Harvard., and Austin, Donald M., "Picasso: A General Graphics
Modeling Program', ACM SIGPLAN: Symposium on Two-Dimensional
Man-Machine Communication, Los Alamos, New Mexico, Vol. 7, No. 10,
October, 1972,

2. Newman, William M., and Sproull, Robert F., Principles of Interactive
Computer Graphics, McGraw-Hill, 1973, '

3. van Dam, Andries, and Stabler, George M., "Intelligent Satellites for
Interactive Graphics,'" NCC, 42, 1973, pp. 229-238.

- 204 -

BANDWIDTH (BAUD)

10M Complex Motion

Simple Motion

IM _]

Edit

Complex ™\
A
:

100K — }

|-
{

Edit .

imple N\ | ~~~ "7~ N

[{

10K e = - - D _—— : \
N
Complex {

Display \\‘

1
]
1K Simple !
!
|
I
]
!
100 . 1 T L
$5,000 $15,000 $50,000 $150,000 $500,000 $1,500,000

INTELLIGENCE

Figure 1. Bandwidth - Intelligence Tradeoffs for
Selected Graphics Tasks

- 205 -

BANDWIDTH (BAUD)

10M

3N
>
&&ecf‘ X%
?# -~ 0‘5
0%V~ w»
Cheap Host - $150,000 pe®®
M
100K -
- $150,000
10K <<. . P
E
-~ Cheap
~
Host - $15,000
1K
Expensive
Host - $15,000
100 Y- ; l T)
$5,000 $15,000 $50,000 $150,000 $500,000 $1,500,000
INTELLIGENCE
Figure 2. Lines of Constant Total Cost

{Terminal Plus Computing) and
Lines of Cost Effectiveness

- 206 -

SELECT NEXT COMMAND

INPUT OUTPUT COMPUTATION

SELECT OUTPUT TYPE
HISTOGRAM

SCATTER PLOT
PERSPECTIVE

TIME SLICE

Figure 3. A Sample Menu

Number of Magnets (0 to 8)7 _ 4

— —

Number of iterations (1 to 100)? _ 10

CONFIRM (Y or N)

Figure 4. Sample Questionaire

- 207 -

INTERRUPT ROUTINES

]

ACTION QUEUE

N

COMMAND
INTERPRETOR
CODE
g 4 GENERATORS
MANAGEMENT
"
MEMORY

T TN

Figure 7. Terminal Program Structure

- 210 -

Sandia Interactive Graphlcs System - SIGS

R. Young
Abstract

A generalilzed interactive computer graphics system has
been released for production use at Sandia Laboratories.
The system utlilizes five remote PDP-9 computers and
Vector General 3D2 displays interfaced to a central
CDC-6600 computer. The hardware configuration and basic
system operating software are first described. The orga-
nization of the display fille and its generatilon via
FORTRAN callable display generation routines (DGR's) at
the 6600 are then discussed. The manipulation of the
display file and control of the graphics job via PDP-9
FORTRAN callable display manipulation routines (DMR's)

and utility routines are described., A typical job run
from the PDP-9 to the CDC-6600 1s then presented. Current
and future application programs using SIGS are then listed.

- 211 -

SANDIA INTERACTIVE GRAPHICS SYSTEM-SIGS

R. Young
Introduction

The Sandia Interactive Graphics System 1s the culmination of
testing and evaluation of several graphics systems. The first
graphics system implemented was a stand-alone DEC PDPT7 computer
with a 340 raster scan type CRT. Usage of this stand-alone system
provided our graphics group with several basic facts regarding
a general interactive graphics system. First such a system must
be extremely generalized, flexible, and machine independent as
possible to be of any extensive use for a production gfaphics
system at Sandia. It must be fairly easy to learn and use for
any level of application., The system must also be able to pro-
vide any application with sufficient computing speed, versatility,
core memory, and mass storage in addition to a graphics display
with comparable features,

The necessary computing power can be obtained by interfacing
the graphics display directly or indirectly to a large computer.
The direct interface method usually 1s an involved system programming
task requlring a long design-to~implementation period, assuming
the computer systems group will allow the modifications to be
made to the operation system. In addition, the large computer
will have the extra task of spending a large amount of time servicing
the display generated interrupts and any "bookkeeping" required
in the display file. Many installations have therefore taken
the indirect approach by interfacing the graphics display to a
smaller computer which is then interfaced to the large scale
computer,

In thils method, the sméll computer will service the display
interrupts and provide the necessary "bookkeeplng" for the display
file while the large computer handles the computation tasks, gener-
ates the display file, and transmitts it to the small computer.
Thils type of 1Interface was the next type of graphlcs system
implemented at Sandia, The previous stand-alone PDP7/340 system

- 212 -

was Interfaced to a UNIVAC 1108 running under the EXEC 2 and later
EXEC 8 system. A group of display generation subroutines was
written for the 1108 and display manipulation routines for the
PDPT7. Our graphics system now had the necessary large scale
computing power but was severely restricted by the slow raster
scan speed, display work area, and lack of hardware features of
the DEC 340 CRT.)

A new graphlcs system was therefore planned using a UNIVAC
1108 interfaced to a DEC PDP9 with a LUNDY 32 display system. The
LUNDY display generation routines were already coded for the 1108
when a management decision substltuted a CDC 6600 for the large
scale computer, Since the LUNDY display generation routines were
coded in FORTRAN, it was an easy task to convert the routines
to run on a CDC 6600, Unfortunately, the LUNDY display system
failed to meet the acceptance tests. After evaluating the
available displays on the market, a Vector General 3D2 display
system was selected as a replacement for the LUNDY. Happily all
four Vector General display systems were accepted and are currently
in use. The fifth display will be interfaced to another PDP9
when the funds are available.

Hardware

The present interactive graphics system 1n use at Sandia
utilizes a CDC 6600 as the central computer with four remotes
usiﬁg DEC PDP9 computers interfaced to Vector General 3D2 display
systems. The central computer complex consists of a CDC 6600
main frame with 131K 60 bit words of central memory, 12 tape drives,
4 line printers, card reader, card punch, large system/scratch
disk with 131 million character capacity, large user disk packs
with 107 million character capacity, extended core storage of
500K word core, and 6674 data set controller which can handle
up to four Bell 301B data sets.

The basic configuration for each of the four remotes consists
of a DEC PDP9 computer with 16K 18 bit words of core memory, EAE,
memory protect, 2 DEC tape transports, paper tape reader and punch,

- 213 -

card reader, KSR 33 teletype, magnetic disk memory with two
platters giving 524K words of storage memory, four data channels,
direct memory access multiplexer (allows up to four devices to
use the DMA channel simultaneously), interface to a 301B data
set, and a Vector General 3D2 display. All of the Vector General
displays are equipped with an alpha-numeric keybecard, light pen
with 3 microsecond response time, character generator, display
hardware subrocutining, 21 inch high speed CRT with 10 mil spot
size, plcture label scaling, intenslty modulation, phosphor
protect, and a PDP9 interface via the DMA multiplexer, Two of the
displays also feature the control dilals and data tablet optilions.
The communication between the central computer and the remote
computer is made via Bell 301B modems on telpak lines providing
a serial transfer rate of 40.8K baud with full duplex capability
for each remote. The central computer 1s interfaced to the four
301B's using a CDC 6674 data set controller. The remote computer
1s attached to its 301B using a DEC DPO1BJ interface which

accesses memory through one of the four available data channels.

Systems Software

CDC's scope version 3.3 with Sandia modifications is the
current operation system for all jJobs run on the 6600. CDC's
interactive graphics system (IGS) provides the software inter-
face to scope. All 6600 user graphics jobs run under CDC's
FORTRAN extended compiler. At the remote PDP9, a special
Sandia coded executive device handler (DPB) interfaces with IGS.
DPB handles all code translation, format conversion, communica-
tion synchronization, input-output file transmission, data
transmission, and all display file transmission. In reality,
DPB makes responses to all IGS status requests and issues direc-
tives to IGS which resemble a CDC 1700 computer, the computer
normally used with the IGS system.

DPB also generates a software cyclic error code to comply

with the hardware cyclic error code produced and checked by the
6674,

- 214 -

A Sandia coded device handler (VGI.) services all Vector General
display interrupts, can start and stop the display, and returns
information to the user which allows the dlsplay file to be modified
and manipulated. Compilation of all user code to be executed at
the remote PDP9 1s done via DEC's FORTRAN IV compiler running
under DEC's V5A resident keyboard monitor disk system, The display
file is allocated the remaining PDP9 memory after the user's PDP9
program, necessary device handlers, display manipulétion routines,
and library routines have been loaded.

Genceral Overview

The Sandla interactlve graphics system can be thought as belng
divided into three major components: The CDC 6600 computer, The
Vector General Display, and the PDP9 Computer.

The CDC 6600 is used to do calculations and to generate all
of the Vector General Display commands via Fortran callable display
generation routines (DGR's). The 6600 1s used for the "Heavy
Computation" and picture preparation. As the display commands are
generated, they are transmitted to the allocated PDP9 display file
memory via the IGS-DPB communications network. The Vector General
display is started when the user 6600 program indicates that the
display file is complete,

The PDP9 program is used to control the operation of the 6600
program and to manipulate the display fille after 1t has been sent
from the 6600, It is possible for the display file to be altered
and redisplayed locally, or the 6600 will recompute an entire new
display file with new parameters on command of the PDP9 program,

It is improtant to note that the PDPY program 1s in command. It
should call in appropriate 6600 action when necessary and deal with
the resulting display file, manipulating it where required. Data
arrays may also be sent back and forth between the PDP9 and the
6600. This capability facilitates transferring new parameters to
the 6600 which may be used in recreating the display file.

- 215 -

Display File The display flle can be thought of
as having a structure similar to that of a Fortran program. It

i1s divided into four general areas: the Main Display Routine,
the Vector General Stack, the Display Subroutine, and the DISTAB
(Display File Description Table).

The Mailn Display Routine area is similar to a Fortran main
program. In it, there may be statement numbers (called NAMES or
TAGS) which can be used to point to any part of the display file
(except the Vector General STACK area). Statement numbers can be
used in a manner similar to a Fortran statement number in a GO TO
statement. -

NAME and TAG statement numbers can also be used to define
display subroutines. NAMES and TAGS defined 1n thls way are similar
to defining a Fortran subroutine in that the NAME or TAG statement
number corresponds to the Fortran subroutine name, A display sub-
routine must be written (defined) before it can be called. All
defined display subroutines reside in the Display Subroutine area
of the display file. Subroutine nesting is also allowed in the
display file; however, the innermost level subroutine must be de-~
fined before it can be called by an outer level subroutine.

Each level of subroutine nesting requires a PDP9 word of memory
in the Vector General STACK area of the display file. The STACK
is used by the Vector General subroutine hardware to save the return
address for each level of subroutine nesting. If subroutine nest-
ing goes to 10 levels, then 10 words of PDP9 memory are needed for
the STACK area. Subroutines are important in the display file
for the same reason that the subroutine concept 1s useful in Fortran
code. The subroutine allows repetitive use of code without the
actual duplication of the display instructions. Thils is extremely
useful 1in conserving core on the PDPJ,

The DISTAB(Display File Description Table) is used by the
Display Manipulation Routines (DMR's) to find any statement number
NAME or TAG in the Main Display Routine or the Display Subroutine
areas of the display file.

- 216 -

The total display file sent from the 6600 1s arranged in PDP9
core as follows:

System Routines

Main Display
Routine

Vector General
Stack

Unused Core

o | o= O

Display
Subroutines

DISTAB

H x O Q

User's PDP9 Program

Statement numbers are divided intoc two basic classes, NAMES
and TAGS. The basic differences between a NAME statement number
and a TAG statement number are: A NAME statement number can be
returned while retrieving light pen hit information, while a TAG
statement number cannot; and the range of values for a NAME is
1<NAME<255 as compared with a range for a TAG of 1<TAGs32767.

- There are four routines which the user's 6600 program can
use to deal with subroutine setups and calls:

CALL DTAG(ISTNO,ISUB) Define a tag.

CALL DNAME (ISTNO,ISUB) Define a name.

CALL DEND(ISTNO) Define the end of a subroutine.
CALL DCALL{ISTNO) . Generate a subroutine call,

where ISTNO = a unique statement number: 1 to 255 for a NAME and 1
to 32767 for a TAG.

ISUB=1 if this NAME or TAG is a pointer only; ISUB=2 1f this
NAME or TAG defines a subroutine. NAME and TAG statement numbers
are useful in two basic ways: They can be used as pointers to any

-~ 217 -

porticn of the display file (except the STACK) or to define display
subroutines.

Each call to DTAG or DNAME makes an entry into the DISTAB.
Each entry contains the statement number [NAME or TAG, with a flag
indicating whether the NAME or TAG is a pointer (ISUB=1) or a sub-
routine definition (ISUB=2)J] and a display instruction which points
to the display code following the CALL to DTAG or DNAME. If the
statement number is a NAME, then an addltional entry 1s made in
the DISTAB. This entry will allow the NAME value to be avallable
to the user when retrieving light pen hit Information.

If the user calls DTAG or DNAME with ISUB=2 (the statement
number defines a display subroutine) then the display instruction
in the DISTAB will point to the first word of the display subroutine.
A call to DEND must then be made to finish defining the display
subroutine. (This is similar to the Fortran END statement) and
must be made before another call to DTAG or DNAME with ISUB=2),

For ISUB=1, no call to DEND 1s necessary.

If a subroutine is defined using a NAME statement number,
then that NAME value is only in effect to the end of the subroutine.
One might well wonder why a TAG not pointing to a subroutine would
ever be useful. Suppose that the user generates flve pictures on
the 6600 side but wishes to have only four of these displayed on
the CRT. If a statement number (ISTNO) has been placed before the
call which generated the picture he doesn't wish to view, then it
is possible in the PDP9 program to cause that part of the display
file to be "turned off."™ Without an ISTND, there is no reference
point to allow us to get at that portion of the display file from
the PDP9 program. One's filrst inclination is to place ISTNO's
all through the code. But note that ISTNO's require storage
and should only be used where really necessary.

Suppose we have some code which draws a plcture. Let's set
this up as a subroutine using TAG 100:

CALL DTAG(100,2)
(code to draw the picture)

CALL DEND(100)

.

CALL DCALL(100)

- 218 -

Note several things in this example. First, the code between
DTAG and DEND does not place instructions in the "main display"
routine, but into the dlsplay subroutine area.

This section of our program merely sets up the procedures for
a subroutine in the display file. The actual display file
commands wlll only be executed when a call to DCALL 1s issued.

The CALL DCALL(100) may be issued whenever required. However,

we cannot CALL DCALL{100) until after the DEND statement defining
that subroutine. Once set up, the subroutine may be DCALLed as
often as necessary.

The display file structure looks very much like a Fortran
program. The statement numbers allow the programmer to ref-
erence specific areas of the display file. Also, subroutine
calls help prevent duplication of code in the display file,

Enough TAGS should be used to supply necessary flexibility at the
PDP9 but no so many that core 1s unnecessarily wasted.

Display Generation Routines - DGR's

There are three general levelns of routines avallable to the
graphics user under SIGS. The low level (system level) routlines will
give the user complete control and responsibility over hls graphlcs
display. Users are discouraged from using the low level routines
whenever possible since they require a much better understanding of
the Vector General and its display instruction set. The intermedlate
level routines should be used as they provide the user with
considerable flexibility, but avoid the necessity of doing highly
detalled graphics programming. The high level routlnes give much
user convenience and maximum output with minimum programming with
a sacrifice on flexibllity. Only the intermediate level DGR's will
be described here.

Two inltializing routines must be called before any of the dis-
play code generating DGR's can be called. The first (CALL DINIT(3HTST
or 3HRUN)) one gets the PDP9 display file boundarles from the PDP9.
If DINIT is called with 3HRUN, the system will know that a display
file or listings are to be sent to the PDP9, If DINIT i1s called
with 3HTST, a debug run on the 6600 is assumed. For this case, no

- 219 -

communications link between the 6600 and a display 1s established.
DINIT must be called before calling any other graphics routine. Also,
only one call to DINIT with the argument 3HRUN is permitted in any

one 6600 program. The second routine which must be called (call
DISIZ (NAMES,ITAGS,ISUBS,ISTACK)) controls the size of the DISTAB

and the minimum size of the Vector General display stack. All
remalning PDP9 core is given to the display file,

For the intermediate level DGR's, all arrays of coordinate
values must be in rasters (from -2048 to 2047). There are three
routines available which convert user coordinates within specified
boundaries to scaled integer raster values. The first (DBOUND)
specifies the maximum and minimum user values which can be used in
the two conversion routines, The first converslon routine (DFTOI)
takes a floating point value and converts it to a scaled integer
raster value (between -2048 and 2047). The second conversion routine
does the reverse. Since these two routines use and produce absolute
values only, two similar routines are provided to convert floating
point values to scaled relative values.

Intermedliate level DGR's have been written to allow use of
most of the Vector General features. There are routines which posi-
tion the beam invisibly for two dimensional relative or absolute
Vectors, and also for three dimensional relative and absolute
Vectors. The circle-arc routines can draw a circle or arc leaving
the beam at the end of the circle or arc or at the center of the
circle or arc. A multitude of Vector drawing routines provide the
capability of drawing Vectors in two or three dimensions, as
relative, absolute, incremental, and auto-lncrement in X, Y, or
Z, A character routine agllows the entire 192 character set to be
used in the four avallable character sizes. A tracking cross
routine used with the DTRACK DMR routlne at the PDP9 allows any item
to be moved with the light pen until any key on the display keyboard
is pressed., A group of load register type routines allows selectlve
blinking, light pen enabling-disabling, and modification of the

- 220 -

coordinate scale, pilcture scale, X, Y, Z offsets, intensity offset,
intensity scale, rotation coefficients, and temporary general
registers. Of course, all of these routines can be used with the
statement number and subroutine defining DMR's (DNAME, DTAG, DCALL,
and DEND). Another group of DMR's provide for the swapping of
designated arrays between the 6600 and the PDP9. Presently up to
elght arrays can be swapped with a maximum size of 93 PDP9 words for
each array. The size limttation 1s caused by the size of the communi-
cation buffers used in IGS and DPB. Real, integer, double precision
(PDP9 only), and data (no conversion) types can be swapped.

Display Manipulation Routines-DMR's

The PDP9 display manipulation routines allow the user to inter-
act with the display file in a varilety of ways. The light pen
routines permit identification and selection of items 1n the dis-
play file by name register or temporary general reglster values.
The name values are defined at the 6600 via the DNAME routine while
the TGR values are defined by the DLDLPNO routine.. Any display
keyboard value can be obtalned by use of the DKEYBD routine, OQOften
a user will generate more information in the display file than he
desires to see simultaneously on the dlsplay. The DBREAK and DLINK
routines have been written to provide the user with an easy method
to selectively "turn on" and "turn off" portions of the display
file. Both routines will work on any portion of the display fille
which have been identified by statement number names or tags.

The DCHANG routine allows a character string (whlch has been
identified by a statement number name or tag) displayed on the CRT
to be changed using the display keyboard. If the character string
happens to be numeric it may be desirable to convert 1t from
ASCII to a fixed or floating point PDP9 number for future computation.
Conversions are accomplished using the DFNUM and DINUM routines.

Many times Et is useful to be able to directly set or retrieve
the contents of one or a consecutive string of the Vector General
display controller registers. To set a display controller register
or string of registers, the DSETR routine can be used. To retrieve
a register or string of registers, the DLISTR routine should be -

used, The first register must be identifled by a name or tag

- 221 -

statement number,

In order to simplify the format problems which can arise by
using such routines as DLISTR and DSETR, two conversion routines
are avallable. DVGTO9 converts a display controller register to
a signed Integer PDPY value, The DI9TOVG routine performs the reverse
operation. (applies only to reglsters 8 to 13, 17, 19 to 31, and
70 to T79).

The DROT routine is avallable which can change the rotation
coefficlents of any portion of the display which was flrst identi-
fied at the 6600 by a name or tag statement number and followed by a
call to the 6600 DROT routine.

If light pen tracking 1s necessary, then the PDP9 DTRACK
routine can be used in conjunction with the 6600 DCROSS routine.
DCROSS generates a subroutine defined tracking cross with a user
specified name statement number. The trackling cross is turned off
via a call to the 6600 DBREAK routine. The call to DTRACK at the
PDP9Q attaches the tracking cross toc any user item defined by
another statement number name or tag. Tracking continues until
any key 1s depressed on the display keyboard.

For the graphics systems which have the control dials option,

a DIALS routine returns the value of any designated control DIAL

to the user in VG format. For systems also equipped with the
optional data tablet, the X and Y coordinate values for the loca-~
tion of the stylus plus its vertical locatlon above the data tablet
can be obtained via the DTABIT routine.

The PDP9 DMR's also provide the swappling of designated arrays to and
from the 6600. The DESIG routine is used by both the 6600 and the
PDP9 to specify which arrays are to be swapped. Their size,
dimensionality, and type. -Each time DESIG is called 1n both computers,
a correspondence is established between the arrays designated in

the two computers. The calls should agree in number, order, array
type, dimensionality, and array slze. 1In order to store any array
from either computer (all arrays are stored on disk at the 6600
using CDC's data manager), the DSTOR routine is used. when it 1is
necessary to retrieve an array from elther computer whilch has been
"DSTORED", then the DFETCH routine may be used.

- 222 -

Job Flow and Control
The CDC 6600 operating system program management 1is based on
the use of "control points" as a method of handling the allocation

of resources to each user program. There are seven control points
avalilable to the system. The control points on the 6600 used for
interactive graphics are used in the following way.

Control Point

1 JANUS (input/output)

2 Export High Speed (graphics communication)
3 IGS (graphics execution)

it BATCH

5 BATCH (execution of BATCH jobs)

6 BATCH

7 BATCH

Every job (graphics and non-graphics) 1is loaded from the input queue
into central memory at a BATCH control point. The order of loading
from the input queue into central memory at a control point is
determined by job priority and job size. Sufficient information is
retained by the operation system for Jobs executing at each control
point in order to allow the system to timeshare the use of central
memory, roll jobs to and from disk, provide I/0 (read tapes, Print,
etc.), and other necessary tasks.

Before running an interactive Job, the user will usually read
in his PDP9 and 6600 programs using the card reader via PIP and
store each program as a file on the disk. The PDP9 program is then
complled and the object O/P is stored as another flle on the disk.
At this point, the user can make any DAT slot assignments for any
device handler (Dectape, Disk, Line Printer) needed for his graphics
run, The PDP9 is then loaded and execution begins.

Followlng are the chronological events 1in the 1ife of an
interactive job.

1. The PDP9 program calls DSTART which establishes hardware

and software communications with the 6600. DSTART puts
out two messages via the PDP9 teletype. "Line Active"

- 223 -

indicates the PDP9 has received a hardware response from
the 6600; "6600 Active" indicates the PDP9 has recelived a
software response from the 6600,

The PDP9 program then calls DJOB which sends the 6600 program
to the 6600. At this point the PDP9 program usuaily

needs a display file from the 6600 before it can continue.
The program can wait via a Fortran lcop, or it can go to
"Sleep" via a call to DSLEEP and wait for the 6600 to
respond,

The 6600 job is placed in the input queue, and at this time
the job name is printed on the PDP9 teletype.

Execution begins. (The job is assigned a BATCH control point.)

BATCH execution finishes.

The job 1s swapped to the graphics control point, IGS.

IGS operates as a very hilgh priority BATCH Jjob along

with the normal 6600 work load. Under IGS, the individual
graphics jobs are timeshared independently from the rest
of the BATCH work load. At this time, a short listing

1s produced consisting of a banner page and dayfile and

is placed in the output queue. A message 1s printed

at the PDP9 teletype saying that the job is in the IGS
queue.

Interactive execution begins. The 6600 program performs
the necessary computatlons and creates a display fille.

When the 6600 nrogram has completed its appointed task

and 1s ready to glve control back to the PDP9 progfam, the
user can call DWAKE. DWAKE 1ndlcates to the PDP9 that

the 6600 program portion currently in execution has finished
and the 6600 has rolled out the job. The display is
started 1f the 6600 has (RE) generated a part of the
display fille. The PDP9 program can now continue execution.
When the PDP9 program has completed 1ts current tasks, it
can call its version of DWAKE (the PDP9 version of DWAKE
does not halt execution or initiate a wait loop) and then

- 224 -

9.
10.

do a Fortran loop or call DSLEEP, The 6600 program is then
rolled back intoc core and execution contlnues. This ex-
change of control between the 6600 and the PDP9 may con-
tinue for as many cycles as 1s necessary to complete the
graphics job.,

Interactive execution finishes. The 6600 program usually
termlnates the job upon command from the PDP9 through a
parameter sent via a swap array.

The listing is placed in the output queue.

At the first opportunity, export will take the listing out
of the output queue and try to send it to the PDPI.

The following details will be helpful in understanding the
events and are keyed to the events they describe:

1,

2-3.

4-5.

3-6.

Once communication is established, it willl be broken if:

a. The 6600 goes down.

b. The line to the 6600 fails.

c. The PDP9 stops (failure, program error, stop statement,
program stop key, etc.)

The job does not enter the input queue until it all arrives

at the 6600. If communication is broken before the job

goes into the input queue, the 6600 throws away the

information recelved up to that point and forgets all

about the PDP9,

Operator intervention is often necessary to get to step 4

in a reasonable length of time. It 1s often expedient

to call the operators on the "hot 1line" and call attention

to the fact that the Jjob is in the input queue.

Control cards down to and including the card containing the

file name specifled on the overlay (0,0, FNAM) card

(example: FNAM) are executed at the BATCH control point.

If communication 1s broken at this time, executlon will

proceed until call DINIT (3HRUN) is executed at the

graphics control point and will hang, waiting for the PDP9

to become avallable again.

- 225 -

9-10.

This is the first opportunity to generate a display file
and put a picture on the dilsplay.

If communications 1s broken at this time, the job will
abort and the chain of events will stop at 9, at least
temporarily.

If there is a listing in the output queue that came from
a PDP9 that is in communication, event 10 will occur
unless a call to DSPDIR has been made to stop it. If
someone leaves a listing 1in the output queue as a result
of breaking communications at the wrong time (as above),
the listing will be sent back at the first opportunity,

even though the opportunity is hours later, and the current
graphics user is another person,

It is often very useful to know how far along the 6600 has
progressed on a job, or to send some special directive to the
6600. A special routine, DSPDIR, has been created for this

purpose,
l.

2.

DSPDIR can be used to:
End communication (this willl also cause the 6600 job to
be killed).
Search the input and output queues and divert any Jobs
or listings from that PDP9 which sent the directive.
A diverted listing is printed at the 6600,
Print out on the PDPY teletype the current status of your
Job on the 6600, This is useful when one is waiting around
for the 6600 to do something.
If a listing (not a display file) 1is currently coming
across from the 6600, stop 1t. The listing 1s rewound
and placed back in the output queue. No more listings
will be sent during this communications session.

Another routine which is convenient to use in conjunction with

DSPDIR is DSWICH. This routine returns a value set in the PDP9
accumulator switches 1 through 17 at the instant that accumulator

switch O

1s flipped from off to on. Use of these two routines to

control PDP9 and 6600 control is much better than reading characters
from the PDP9 teletype since the Fortran formatting package occupiles

- 226 -

much core and should be avoided where possible.
program could look as follows:

C GET AN ENTRY FROM THE ACCUMULATOR SWITCHES
CALL DSWITCH(I)
I=TI+1

C CHECK FOR A BAD SWITCH SETTING
IF((I.LT.L. OR (I.GT.5)) GO TO 4

c BRANCH TO SWITCH SETTING
G0 TO (5,6,7,8,9),T

C END COMMUNICATIONS AND TERMINATE JOB

5 CALL DSPDIR(0)

GO TO 4
C SEND 6600 LISTING TO THE 6600 PRINTER
6 CALL DSPDIR(1)

GO TO 4

c PRINT THE JOB STATUS ON THE PDPQ TELETYPE

7 CALL DSPDIR(2)

GO TO 4
C STOP A 6600 LISTING FROM COMING ACROSS
8 CALL DSPDIR93)

GO TO U4

C . CONTINUE THE PDP9 JOB
Ly CONTINUE

Current and Future Applications

A typical PDP9

DAVINCI (anonym for deleting, adding, verifying, and inte-

grating network circuit images) 1is an interactive graphlcs

program that allows the user to edilt precision art work data.

In addition to several manipulation capabllities 1t has
window and pattern capabilities. The Input to DAVINCI is a

deck of Gerber plotter instructions that are translated into

a data base used by the graphics system to produce a display

- 227 -

of the clrcuit geometry. The output is a Gerber plot tape.
DAVINCI is a production program being used by precision graphics
personnel, It takes about one day to train these people to use
DAVINCI. 1In the past, if a printed circuif needed more than

15% revision the board was redigitized. With DAVINCI this is
not done. Lead time is reduced on the average from several days
to several hours.

Much of the 6600 computer time at Sandia 1s devoted to
the solution of complex hydrocode problems. Hopefully, a consider-
able savings 1in computer tlme can be realized by graphically
monitoring the development of hydrocode problem solution. Mesh
elements, for example, can be monitored and altered before a
degenerate solutions results. The time saving here is to be
realized by stopping the execution of obviously degenerate
runs and changing parameters in real time on other runs to obtain
a successful solution. Since these programs use a rather large
amount of computer time (several hours 1s typical) and core
(large is on the order of 300000 octal words of central memory),
even a small percentage reduction in time would be significant.
Graphic hydrocide applications are presently in the development
stage. .
A typical data reduction process at Sandla requires several
distinct reduction programs to convert raw measured quantitiles
to final results which can be interpreted in a more meaningful
way. The total data reduction process usually requires several
days and often many partial reruns to complete. A graphlcs data
reduction process is in the development stage which will reduce
both turn-around time and reruns. The general steps In the process
will be as follows:
1. Digitize or reformat and edit raw data from telemetry
systems, PCM systems, or tracking systems, etec.
2. Examine the edited data via the Vector General CRT to
select parameters for the next processing step.
3. Perform the selected operation on the data such as
filtering, Integration, or generalized mathematical
transformations.

- 228 -

b, Plot or display the data derlived from the preceeding
step to verify proper parameter selection.

5. Repeat the two previous steps, if necessary, until
satlisfactory results are obtalned.

6. If parameters were properly chosen, then the next
process step 1s consldered and parameters are selected
for that step.

This interactive, lterative process 1s continued untll the de-
sired reduction step has been completed. ¥From one to twenty
steps may be required.

GAIN (graphic and for investigating networks) 1s used as a
front end for gceptre a clreult analysls propram wldely nused 1n
this country. GAIN provides the clrcult desipner with a capa-
bility to interactively define clrcult topology on the display
screen and specify parameters to control the execution of
sceptre. At the conclusion of the interactive session, GAIN
generates the appropriate input data stream to allow sceptre
to analyze the circuit which was deflned. GAIN is désigned to
eliminate, as much as possible, computer-and-man time wasted
because of incorrect sceptre input data.

The Nielsen/Air Force Flight Dynamics Laboratory computer
program, SOURCE, has been recently adapted to interactive
graphics. The new program displays graphical output created
by program source which computes source and sink distributions
to model axlsymmetric bodies 1n subsonlic compressible flow. Per-
mits the user to rapldly to see both the deslired shape and the
resultant shape and change the Input data interactively. The
time required to generate an acceptable source-sink distribution
for a body has been compressed from approximately two weeks to
approximately one hour. This system has been used to develop
a model for the fuselage of the F-UD aircraft and will soon be
used to develop a model of the body of the SLA B57 Tiger prototype
weapon. These models will be used to theoretically analyze the
store separation of the B57 Tiger from the U4FUD aircraft prior to

the full scale drop test program.

- 229 -

RLOCUS is a computer program used by the Exploratory
Measurements Divislon. Thils applicatlion 1s similar to
the program "SOURCE" in that the user can modify para-
meters for his 6600 program at the display. The graph
that 1s returned to the display after each 6600 run
Indicates to him the proper parameter choices for the
next run. It is not unusual for him to execute 40 to 50

times in a one hour session reducling the solutlion time
from 2 or 3 weeks to 1 hour.

- 230 -

APPENDIX A

6600 Display Generation Routines -~ DGR's

Initialization
DINIT(3gRUN)
DISIZ (NAMES,ITAGS,ISUBS,ISTACK)

Conversion
DBOUND (AMIN,AMAX)
DFTOI(F,I)
DFTOIR(F,I)
DITOF(I,F)
DITOFR(I,F)

Positioning
DMBA2 (IX,IY}
DMBA3(IX,1Y,12)
DMBR2 (IX,1Y,12)
DMBR3(IX,1Y,IZ)

Circle Arc
DARC (IV M, IRAD, IANCL,NDEGS)
DARCCTR (Iv M, IRAD, TANGL, NDEGS)

Vector

DVAAX2 (IVM,INC,IA2,NMPTS)
DVAAX3(IVM,INC,IA2,IA3,NMPTS)
DVAAY2(IVM,INC,IALl,NMPTS)

DVAAY3(IVM,INC,TALl,IA3,NMPTS)

- 231 -

DVAAZ2 (1VM,INC,IALl,NMPTS)
DVAAZ3(IVM,INC,IALl,IA2,NMPTS)
DVA2(IVM,IALl,IA2,NMPTS)
DVA3(IVM,IAl,IA2,IA3,NMPTS)
DVECT(IVT,IVM,IAl,IA2,IA3,NMPTS,ID)
DVIAX2 (IVM,INC,IA2,NMPTS)
DVIAY2(IVM,INC,IALl,NMPTS)
DVI2(IVM,IALl,IA2,NMPTS)
DVI3(IVM,IAl,IA2,IA3,NMPTS)
DVRAX2(IVM,INC,IA2,NMPTS)
DVRAX3 (IVM,INC,I1A2,IA3,NMPTS)
DVRAY2 (IVM,INC,IALl,NMPTS)
DVRAY3(IvM,INC,IAL,IA3,NMPTS)
DVRAZ2 (IVM,INC,IAL,NMPTS)
DVRAZ3(IVM,INC,IAl,IA2,NMPTS)
DVR2(IVM,IAl,IA2,NMPTS)
DVR3(IVM,IALl,IA2,IA3,NMPTS)

Statement Number and Subroutine
DCSIZ (NDIST,NDISP)
DFSIZ(NWORDS)

DNAME(ISTNO,ISUB)
DTAG(ISTNO,ISUB)

DCALL(ISTNO)

DEND(ISTNQ)

DBREAK (ISTNO)
DLINK(ISTNO1l,ISTNOZ2)

DTRUNK (ISTNO)

- 232 -

DJUMP

Character
DCHAR(IHKV,ISIZ,ICARA,NCHR)
DISVAL(IHV,ISIZ,VALUE,FRMT)

Load Register
DBLINK(I)

DCOSCL(FNUM)

DLDLPNO (LPNO)

DLPON

DLPOF

DOFSET (IX,1Y,1Z)
DPICSCL (INUM)
DSET2D (INUM)
DSET3D(INUM)

DROT (ALPHA , BETA, GAMMA)
Array Swappiling
DESIG(ARRAY,ITYPE,I1,I2,13)
DFETCH (ARRAY)
DSTAT{NSTAT)

DSTOR (ARRAY)

Tracking

DCROSS (ISTNO1l) used with DMR DTRACK

Communication

DWAKE(TI)

- 233 -

APPENDIX B

PDP9 Display Manipulation Routines - DMR's

Initialization
DSTART(ISO,ICI,FILEC,ILO,FILEL)
DJOB

Conversion
DFNUM(IARAY,FLT)
DINUM(IARAY,INT)
DVGTO9(IVG,IPDP9)
DYTOVR (IPDP9,IVG)
DCNVRT (IPDP9,XVALUE)

Statement Number and Subroutine

DCHANG (ISTNO, IARAY)

DLISTR (ISTNO,IREGNO,IARAY)

DSETR (ISTNO, IREG, TARAY)

DMOVE (ISTNO,IX,I1Y,IZ)

DROT (ISTNO,ALPAH,BETA,GAMMA)

DTRACK (ISTNQL,ISTNOZ2,IXEND,IYEND) used with 6600 DCROSS
DBREAK (ISTNO)

DLINK (ISTNOL, ISTNOZ2)

DRCHAR (ISTNO, IPDFG)

Display Interaction
DFO

DIALS (IREGNO, IVALUE)
DTABLT(IX,IY,ILOC)

DKEYBD(IVAIUE)

- 234 -

DLPREG (IVAL)
DLPHIT{IVAL)

Array Swapping
DFSIG(ARRAY)
DFETCH(ARRAY)
DSTAT (NSTAT)
DSTOR (ARRAY)

Communications
DWAKE
DSLEEP

DSPDIR(N)

- 235 -

UNIVERSITY OF CALIFORNIA

Lawrence Berkeley Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

CONFERENCE PROGRAMS WITH INTERACTIVE GRAPHICS
Donald M. Austin

March 1974

- 236 -

Conference Programs with Interactive Graphics

Donald M. Austin
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

ABSTRACT

Multi-user conference programs provide interaction between users at
remote terminals through the mechanism of a time-sharing or multiprogrammed
host computer system. Extension of the conference program idea to include
terminals with graphic input and output capability will provide a more
natural medium of interaction and information exchange for a large class of
problems.

The major problems to be solved in developing this type of network
graphics facility are the interfacing to a variety of graphics terminals
through a device-independent graphics system, providing reasonable data
transmission rates necessary for interactive graphics, and the design of
a suitable man-machine interface language to handle a variety of problem
areas. Operating system requirements for both shared-program and shared-
file conference systems are investigated, and the implementation of such
a system based on the BKY 6000 operating system at LBL is explored.

- 237 -

I. TINTRODUCTION

Conference programs arce interactive programs which allow scveral
users to interact with cach other through the mechanism of a time-sharing
or multiprogrammed host computer operating system. Representative
examples are the single-host MOTIF program on Dartmouth University's
DTSS [1] and the FORUM program of Institute for the Future which runs on
the ARPANET system under TENEX [2]. These programs provide textual
communication between participants with the additional advantage of
having computational and data base facilities of computer systems as
an integral part.of the activity. On a network of multiprogrammed
system with remote terminals, users may interact with each other and
a data base in a real-time environment or on a delayed basis via a
storage file mechanism.

Graphics is a natural extension to text based conference programs.
The availability of graphics terminals has reached the state that this
extension is both practical and useful for problems in which communication
by pictures is the natural method. Interactive grapﬁics applications
cover most areas of problem solving, but the programs are usually written
for specific systems and a relatively small number of these satisfy both
criteria of extensibility and transportability.

The major problems to be solved in developing this type of network
graphics facility are the interfacing to a variety of graphics terminals,
providing reasonable data transmission rates necessary for interactive
graphics, and the design of a suitable man-machine interface language to

handle a variety of problem areas.

- 238 -

I'I. APPLICATIONS FOR INTERACTIVE CONFERENCE GRAPHICS

Some more or less specific examples of interactive conference
graphics programs will help define the problems associated with
implementation of such a system. Applications may be separated into
two rather broad categories which characterize the nature of the

interactive graphics - display with commentary and game situations.

A. Display with Commentary

Perhaps the simplest applications of interactive conference graphics
are the analysis ﬁrograms which display a picture (graph, set of data,
schematic, flow chart, etc.) and allow the users to select features of
interest and comment on them. A further extension of this category includes
features such as windowing, zooming, overlaying plots and guiding the
analysis by command menus and parameter setting. Many existing interactive
applications could be extended to permit easy and natural communication
of idcas between remotc users. anference manipulation of graphical
data bases, such as urban planning, transportation network design, or
architectural design, is an area which overlaps this category and the

game situation arca.

B. Game Situations

This category includes programs in which input from more than one
user is required. Obvious game situations are those usually associated
with the term, such as chess, economic modeling games and other decision-
testing applications. A broader definition éncompasses teacher-student

and question-answer applications in a graphics based problem area.

- 239 -

I11. DEVICE-INDCPENDENT GRAPHICS SYSTEMS

A. Types of Terminals

In order to be very useful, conference graphics programs require
that the host computer be able to communicate with a variety of interactive
graphics terminals and hard-copy devices. These terminals can be classified
as follows:*

1. "Dumb" terminals, which perform i/o only.

2. '"Semi-intelligent'" terminals, which have a limited instruction

set display processor and local memory.
3. "Intelligent" terminals, which have central processors as well

as display processors and local memory.

For the first class, the host computer must speak to the terminal
in its language. There is no sub-picture capability and each change
in the display must be done in the host computer. An example of this
type is the Tektronix 4012;

The semi-intelligent terminal has a limited subpicture capability
and at least a ''start address'" operation code, so that portions of a display
can be changed selectively without re-transmitting the entire picture.
Translation of the graphics data into display commands must still be done
by the host computer.

The intelligent terminal has a fairly powerful computer and is
capable of performing many graphics operations locally, including

translation of graphics data into display commands, simple transformation

*cf. Ref. 3 for a review of terminal classifications

- 240 -

of subpictures and editing.
In a conference system utilizing a variety of terminals, most
operations will be reduced to the lowest common denominator, for if
each user is to have an identical display all operations on the graphics
data structure necessary to generate‘a new display must be done by the
host for the lessef endowed terminals. However, a reduction in data
transmission can still be realized by utilizing the full power of each
type of terminal in the conference. For example, suppose a zoom operation
is called for. For "dumb" terminals, the appropriate transformation of
the data structure, translation into terminal display commands and the
transmission of the new picture to the terminal must be carried out by
the host. For the intelligent terminal, however, only a simple para-
metrized zoom command need be transmitted and all the other operations
can be carried out locally.
Graphics input devices available fall into three categories:
1. Character input devices, usually a keyboard with 6,.7, 8 or 12
bit character codes.
2. Numerical input devices, such as potentiometers, or function
keyboards.
3. Two-dimensional input devices, such as light pens, joy-sticks,
mice, tracking balls, data tablets; thumb wheel cursors.
{(There exist some three-dimensional input devices, such as the
Lincoln Wand and 3-D joy sticks, which form a fourth category,

but these are usually too exotic to be useful with 2-D terminals.)

- 241 -

B. Requiremeﬁts for Device-Independent Graphics Systems

Given the above constraints it is evident that applications programs
for conference graphics should be based upon a device-independent graphics
system. Such a system consists of general high level routines for creating
displays such as grid, smoothed curves, etc., plus some low level routines
for translating a graphics data structure into terminal-specific display

instructions. Ideally, the system should meet the following requirements:

1. Allow full use of available hardware features, such as
character generators with variable sizes, fonts and orientations,
and vector‘generators with variable line widths and intensities.

2. Allow for support of several devices simultaneously, including
hard-copy devices operating in parallel with the various types
of terminals.

3. Allow for high level graphics operations such as picture sub-
routining and incremental display modification.

4, Allow modular selection of high level routines and have small
memory requirements for low level routines.

5. Allow for the various categories of input devices.

A common implementation of a device-independent graphics system employs
a high level intermediate display language with a set of graphics commands

in either a fixed-length format, such as

OP CODE X Y OP CODE | X Y

or a string format, such as

BREAK | OP CODE X1 Y1 Xz Y2 cen Xn ,Y“ BREAK

- 242 -

Translation of the intermediate display file into device specific
commands can be done as a separate job step or in line by specifying at
load time the proper library of low level subroutines. Through picture
subroutining, a mixture of the two methods can be used.

The study by the Network Graphics Group for the ARPA computer network
covers most aspects of device-independent graphics protocol [4]. The
protocol proposed by this group is to be implemented at various levels of
sophistication,' and provides features for interfacing with all types of

terminals.

- 243 -

IV. OPERATING SYSTEM REQUIREMENTS

In order to implemeﬁt conference programs on a host computer system,
the operating system must contain certain features. Two possible conference
systems will be discussed - the shared-program system and the shared-file
system. The applications possible with these two systems share consider-
able overlap (the shared-file system has more general possibilities), but

operating system requirements differ considerably for the two.

A. The Shared-Program System
For a single set of related applications, particularly in game
situations, the most efficient method of conferencing is the shared-program
system. In this system, multiple terminals are connected to a single job
running at a single control point (thus a single user operating system
~is even suitable if one has the resources to tie up a host computer with
interactive jobs). Features required of the host operating system are:
1. Multiple-terminal interface.
2. Multiple-terminal connection to a single jpb.
3. An interrupt or polling capability which allows the host
computer to service any one of the connected terminals with
reasonable response time {including log on and log off).
4, For interactive graphics programs, a device-independent graphics
system and an appropriate set of interpretors.
The third requirement is perhaps the most troublesome. The concept is
simple enough - it requires that the program be informed by the terminal

handler whenever any terminal logs on or off the conference program.

- 244 -

In addition,Ait requires that the program be able to post reads to all
connected terminals and be activated {rolled into central memory) when any
input is forthcoming.

Typically such a program would consist of an applications module,
a high level graphics module, an executive module and a set of interpretor
modules, as depicted in Figure 1. The applications module operates on some
data base to produce interesting data, which is fed to the graphics module
for creation of a display file. The executive module directs input to the
interpretors for translation and transmission to the terminals. Terminal

response is fed back to the executive for further action.

B. The Shared-File System
The shared-file system is somewhat more general than the shared-program
system in that communication is between separate jobs, each of which may
include different applications programs and data bases. Features required
of the host operating system are:
1. Multiple-terminal interface.
2. A multiprogrammed or time-sharing system.
3. Special file'types accessible by more than one program simultaneously.'
4, An interrupt or polling facility which allows a host program to
service any of the conferee's with reasonable response time
(including log on and log off).
This system is the basis of the conference systems mentioned in the
Introduction (DTSS [1] and FORUM [2]) and seems to suit a wider variety
of opecrating systems than the shared-program system.
A schematic of this system is depicted in Figure 2. The executive

module rcads the input files from the terminals and creates a global

- 245 -

VI. A PROPOSED IMPLEMENTATION

The computer center at LBL offers the following facilities relevant
to interactive cqnferencing:
1. Interconnected CDC 7600, 6600 and 6400 with over a billion (60 bit
words) of on line mass storage. |
2. A terminal handler system being expanded to 256 terminals with
data rates up to 9600 bps.
3. A variety of interactive terminals, including Tektroﬁix 4012's,
DEC GT40's, CDC 250 VISTA consoles, plus several hardcopy devices.
4. ARPANET cénnection (soon).
The BKY operating system currentl} allows an implementation of a shared-
file system through a facility called ''shadowed' COMMON files. This
facility allows a job to capture a COMMON file created (and temporarily
released) by another job, obtain read-only access (i.e., SHADOW the file)
and return it to the system. The originating job then recaptures the file
by the COMMON operation and retains write access. Anything written on the
file can be immediately read from the shadowed file. Thus in Figure 2, the
executive program shadows all the input files for the connected terminals,
and all the terminal programs shadow the global display file simultaneously.
Polling is accomplished by periodically reading the system File Name Table
into executive program memory space and checking a list of prespecified
file names for users logging on or off the conference. By maintaining an

updated list of file pointers, the programs can determine when new input

is available on a given file.

- 248 -

On the BKY 6000 system, interactive jobs are automatically rolled out
of memory after a period of inactivity. Thus, while the terminal programs
can be rolled in on demand, the éxeuctive program, which is not connected
to a terminal must execute a recall loop in order to relinquish the central
processor to other jobs. This becomes unnecessarily expensive for long
periods of inactivity. One solution, albeit a rather clumsy one, is to
have a chairperson terminal connected to the executive program. It is then
the chair's responsibility to insure that response time is maintained at a
reasonable level. A much more elegant solution is to provide a peripheral
processor (PP) program which resides in one of the 20 PP's attached to the
6600. This PP program can perform the polling function by "waking up"
the executive program when new input is forthcoming. Going one step further,
the same PP program is capable of doing direct memory-to-memory block
transfers, eliminating the need for auxilliary storage files (at least for
input from the terminals, which tends to be smaller than the global display
file).

The shared-program system has already been implemented for the primitive

Berkeley Remote Facility, and a new system under development for the implement-

.

ation of the ARPANET connection at LBL.

- 249 -

VII. CONCLUSIONS

Conference programs with interactive graphics on a variety of terminals
offer a useful method of communication between users at remote sites. The
problems involved have for the most part been solved in one way or another,
and all that remains is fitting the pieces together into a coherent system.

The shared-program system allows several terminals to connect to a single
job, offering features usually associated with conference or game situations,
where all users are interacting with the same data base. The addition of
graphics broadens the applications possible with this system to include many
problem areas not feasible with text-only systems.

The shared-file system connects several interactive jobs and thus provides
several host-sized computer facilities to the conferees. This system is in
fact a natural extension of computer networks and is considerably more general
than the single-host, shared-program concept, since only the graphics and
file transfer protocols need be specified. Program languages, analysis programs
and data bases available to the users can be as varied as required for a

particular application.

ACKNOWLEDGEMENT

Work performed under the auspices of the U. S. Atomic Energy Commission.

- 250 -

SHAREP

FIGURE 1. DIAGRAM OF THE SHARED-PROGRAM ENVIRONMENT

APPLICATIONS

MODULE

GRAPHICS

MODULE

- =

EXECUTIVE
MODULE

TYPE 1| TERMINAL

INTERPRETOR

TYPE 2 TERMINAL

INTERPRETOR

T

~ 251 -

SHAREF

TERM 1

INPUT

FIGURE 2.

&

TERMINAL 1
PROGRAM

DIAGRAM OF THE SHARED-FILE ENVIRONMENT

EXECUTIVE

PROGRAM

=

GLOBAL
DISPLAY
FILE

TERM N

INPUT

TERMINAL N
PROGRAM

- 252 -

DEMOC

FIGURE 3. DIAGRAM OF THE DEMOCRATIC ENVIRONMENT

FERMINAL TERMINAL 2

PROGRAM
PROGRAM

TERMINAL 3

PROGRAM

[
o

~ 253 -

REFERENCES

McGreachie, J. S., Multiple Terminals Under User Program Control in
a Time-Sharing Environment, Comm. ACM 16, 10 (Oct. 1973), 587-590.

Amara, R. and Vallee, J., FORUM: A Computer-Based System to Support
Interaction Among People, Institute for the Future, Menlo Park,
Calif., 94025,

van Dam, A., Intelligent Satellites for Interactive Graphics, Proceedings
of AFIPS, 42 (June, 1973) 229-238.

Michener, J. and Sproul, B., Proposed Network Graphics Protocol,
Network Graphics Group Note No. 5, NIC No. 19933, ARPA Network
Information Center, Stanford Research Institute, Menlo Park, Calif.
(Oct. 1973).

- 254 ~

GRAPHICS APPLICATIONS FOR FINITE
ELEMENT CoDE PROCESSING

V. K. Gabrielson

Sandia Laboratories
Livermore, California

- 255 -~

ABSTRACT

This paper describes the application of interactive graphics to mesh

generation and to output display processing of finite element codes.

INTRODUCTION

An interactive graphics terminal has been used for a number of finite
elment applications for several years. For mesh generation, it has been used
primarily to verify mesh designs, reducing the time required to create a
desired mesh. In evaluating and processing output data, the terminal has
been used to scan the large amount of data finite element codes produce,
permitting detailed study (in given regions of the structure) of any of the
stress and strain vectors produced by the code. Displacement plots of the

node points can be constructed for the best visual presentation.

Currently, two types of terminals exist at SLL (Sandia Laboratories,
Livermore), an interactive terminal which requires a dedicated control point
and memory on the CDC 6600, and two DVST (Direct View Storage Tube) displays,

which are used with the CDC 6600 Intercom system.

Since both systems are competing with the CDC 6600 batch processing, the
emphasis is on small memory requirements for these interactive graphics
applications, effective data handling procedures internal to the code, and

adapting the structural codes to interface with the graphics.

- 256 -

Mesh Generation

The use of mesh generation programs as separate input processors is quite
common for finite element codes. 1In general, they are coded for specific
finite element codes; any generalities usually result from effort spent by
the programmer to make them adaptable to more than one application. The FEMESH
code has been used in this capacity for several years at SLL. The code is
designed primarily for finite element codes in which the node points are mapped
onto the (i,j) unit grid. The code described here for the DVST terminals was

an adaptation of this code.

Features of the FEMESH code which make it attractive for terminal applications
are: small memory size, mesh can be designed in sections, a simple meshing

algorithm, small input data set, and few limitations on size of completed mesh.

Features of the DVST terminal for which the code was designed include:
keyboard input, a display tube of 1024-760 rasters, tracking cross, and a heat
sensitive printer for recording data displayed on the screen. The CDC Intercom
software is used, and the system shares a CDC 6600 Intercom control point which
competes with normal batch processing and other Intercom users. Applications
programs are written in Fortran using system subroutines for the tracking cross,
displaying text, and constructing line vectors. A DVST is a write-only display
(the display can be refreshed only by erasing the total screen), which restricts
interactive capability. The use of the Intercom system allows the user to
communicate directly with the SCOPE operating system on the CDC 6600, permitting
the use of UPDATE and file processing programs from the terminal. In addition,

the Intercom text EDITOR program can be used. The Intercom system restricts

- 257 -

programs to less than 600008 words of memory, and neither ECS (Extended Core

Storage) nor tape storage can be used.

The mesh code used at the terminal has the following capabilities: input
data can be entered at the terminal or accessed from a permanent disk file;
a graphical display of the current data set can be generated; the entire data
set or any part of it can be listed on the display with the graphics display;
editing of the data set can be done by inserting, deleting, and changing data
records; the tracking cross can be used to extract coordinates of data points;
and areas of the display can be enlarged, using a "zooming" option. The current
input data set is always stored, to ease recovery from errors and to allow the
job to be performed at discrete times. The node point data set of the completed

mesh design can be processed for several finite element codes.

The following gives a brief description of the meshing procedure used in
the code. The structure to be meshed is represented as a body of revolution
and may be divided into two-dimensional regions of common materials. Each
region (PART) is treated independently of others in the code, and is defined as
four sides consisting of point sets representing line and arc segments. Each
region is then subdivided into an (M x N) array of quadrilateral elements which

produce the mesh.

Finite element codes require each element to be defined by its four node
points. The node points on the boundaries of the region are computed from the
data sets defining the sides. The (M-1) x (N-1) set of node points internal to
the region are computed as follows. For a given internal point (X’Y)m,n such

as jllustrated in Figure 1, the x coordinate is computed as

- 258 -

Xoon = 9% * KXy o ¥ KgXp nar * KgXy)/ (Ky + Ky + Ky + Ky)

A similar equation applies to Ym,n* The Ki's are weights whose numeric values
are determined as a ratio of the node points' relative location (m,n) from each
of the region's sides to the smallest subdivision of the given node row or
column. For equally spaced nodeé, this reduces to

1/(n-1) K2
1/(N+1-n) Kq 1/(m-1) .

It

N

it

1/{(M+1-m)

3}
i

K3

For rectangular regions this produces a proper orthogonal mesh. For more
general regions, adjustments to the K's are made by weighting functions W,
which are applied to the respective Ki and apply over all node points internal

to a region.

For further enhancement of the mesh in given regions, the subdivisions
along any of the given surfaces can be proportioned. Appropriate adjustments
are made to the K's for such definitions, resulting in the same proportioned

relationships for the internal mesh points in the region.

The following example illustrates the use of the mesh code with the DVST
terminal. The boundary data sets of Figure 2 were input at the terminal, and
a display verifying the data is shown in Figure 3. The SCAN option is used to
list the data and insert data specifying the number of subdivisions in each region.
Data is again listed on the display for verification. If errors are noted the
data is edited; if correct, the mesh is constructed on the display as shown in

Figure 4. Adjustments'to the mesh are made by using the WEIGHT and RATIO options

- 259 -

by inserting their specifications in the data set using the editing procedure.
The user may iterate in this sequence until satisfied. If desired, the editing
procedure allows him to add new regions and change boundary data sets of
previously defined regions. (Also, interactive features such as the tracking
cross and windowing as illustrated in Figure 5 can be used.) To use this data
in the finite element codes, the regions are mapped onto an (i,j) unit grid.
This option is available using a mapping procedure for locating each given
region on the (i,j) grid. Displays of these resuits are constructed on the
terminal for verification and illustrated by Figure 6. After the mapping is

verified, the data can be processed for a given finite element code application.

The feasibility of using a DVST type terminal for mesh generation has been
shown. The program has the features of being small in memory size, with small
input data set, and it can be applied to complex structures due to region
definitions. Few Timitations are imposed on the size of the problem since the
code does not require two-dimensional arrays. The code was used effectively for
the problem illustrated which created proper meshes for an ablation calculation

and stress analysis of a nosetip of an aerodynamic test vehicle.

Qutput Processing Using an Interactive Terminal

An interactive graphics terminal has been used for processing output data
files for the SASL code for several years. The output file of this finite
element code for linear elastic axisymmetric stress analysis included the
boundary data set, the (n,z) coordinates of the node points, the geometry data
required for each element, the displacement of each node point, and the stress

and strain functional values for each element. The code uses the Q4 integration

- 260 -

element, which computes the displacements at the four node points and computes
stresses and strains at the integration point within the element. The code

can be used for applications having nonlinear material properties; this involves
an iteration process in which an output data set can be generated for iteration.
The output file for each data set includes displacements for each node point

and 22 stress and strain vectors at each integration point.

The program for processing this data at an interactive terminal provides
the capability for tHe analyst to display the mesh, access any of the data
sets in the file, and construct displacement plots of the node points as functions
of the boundary data set, magnification factors, and regions of the structure
such as shown in Figure 7. For any given data set, any of the 22 stress or
strain vectors can be accessed and displayed as contour plots over the two-
dimensional space describing the structure. The analyst can select contour
levels, and contours over regions of the structure can be displayed in detail
using windowing techniques. Several options are available for contour display

as shown in Figures 8-10.

Features of the interactive terminal for which the code was designed are
a CRT (Cathode Ray Tube) display of 1024 x 1024 rasters, 12 function interrupt
switches, and a typewriter keyboard. The program, processed by'the CDC 6600,
is written in Fortran, with subroutine calls to graphics system programs which
produce necessary code for the 8192-word memory of the terminal controller used
for generating the display on the CRT. The terminal requires a dedicated

control point and sufficient memory to process the program on the CDC 6600.

- 261 ~

This direct coupling with the CDC 6600 has the advantage of high-speed
processing, allowing extensive calculations to be made between interactions.
Having access to large data stores and ECS makes it attractive for output
processing applications. The unit is also directly tied to a CRT plotter used

with the CDC 6600, and film records can be made of any display at the terminal.

The disadvantages of direct coupling are that it increases the cost of
processing, and that the system in its present status cannot be expanded.
Aithough no restriction of program size is required, practical processing

requires codes to be under 500008 words of central memory and 2000008 words

of ECS.

The implementation of the output processor for the SASL code to be
applicable to any size problem required special efforts in coding. Since
only one function value existed for each element, knowledge of the element's
neighbors was required for contour plotting. Therefore, contour plots were

designed using the (i,j) unit grid as the basis of the contour map.

Figure 11 illustrates the problem, in which the X's imply node points
and 0's, integration points. The contour area is noted by the dotted line,
and is divided into four triangles in which the functional values can be
determined at each vertex. The use of triangles for contour plotting
simplifies the logic, since a contour line can only intersect two of the

sides,

- 262 -

Since the maximum (i,j) varies greatly between problems, a form of dynamic
dimensioning was used which changes all arrays to desired dimensions prior to
compiling. ECS was used effectively for storing the node points associated
with each element, and data for contouring was stored as a function of the j
lines of the i,j grid. Storage required for 1000 element data sets is around
500008 words; 3000 element data sets required 750008 words. (Less than 1000008
words of ECS is used for any size problem.) The code has been used effectively
for processing this type of data at SLL, and it is the primary means of

evaluating output from this particular code.

Qutput Processing for the GNATS Code

Since the terminal was used successfully as a means to provide greater
flexibility for processing data from a finite element code, it was considered
as the primary output processor for a new nonlinear, large deflection, stress
code recently developed at SLL. From the experiences learned in the preceding
application, considerable effort was given to the design of the output data set.
This code has incremental loading capabilities which produces an output data
set for each increment. It also is designed with the higher order Q8 integration
element with many options as to number of node points and integration points used
per element. For example, Figure 12 shows an element with eight node point
displacements and nine integration points internal to the element. For this
case, the data computed which may be of interest for postprocessing is over 300

items of data per element per data set.

The structure of the output data file is as follows:
(a) file containing all parameters of the data set,

(b) a load set file for restarting purposes,

- 263 -

(c) a data record for each element containing all coordinates, displacements,
stress and strains for data set one, and

(d) a data record for each element containing data for data set two, etc.

The graphics code written to process this data has the same capabilities
as noted before for contour plotting, mesh display, and displacements. The
basic difference between the two applications is that sufficient data exists
within each element providing the means to treat each element independently
for contour plotting. For this application, the basic contour element of
Figure 10 is used on the Q8 element. In this case; the functional values and
coordinates must be determined at the node points of the element by fitting a
function over the two-dimensional space by a least squares procedure. This
capability eliminates the need for the (i,j) unit grid required in the SASL

applications.

ECS 1is used more effectively since all element data can be stored for a
given data set. This increases the speed of contour processing and the code
can process any size problem without change in dimensions. The code currently
requires about 500008 words. The ECS required is a function of the problem
size and type of element used. The use of ECS is a tradeoff with central memory
requirements and speed of data transfer. The code is programmed such that the
random access feature of ECS is not required and data could be processed from

sequential disk storage.

Since contours are computed independently over each element, the function
is averaged at the node points to obtain a continuous contour such as shown in
Figures 13 and 14. A contour can be obtained that is not averaged which can

result in a very discontinuous function at the element boundaries such as shown

- 264 -

in Figure 15. This display aids in determining the quality of the integration
option used, coarseness of the mesh, and the type of methods used to evaluate
the function at the node points. In addition, contours can be constructed on
displaced meshes such as shown in Figure 16, which illustrates a problem of
large distortion. To improve the accuracy of the contour function over the
element, a refinement of the triangle evaluation has been implemented permitting
8- and 16-triangle options to be used. The triangle option used is a function

of the integration option and coarseness of the mesh.

Several of these options have been experimental since the code is in the
development stage. The only means to evaluate many of these options is by
graphical display. The use of the interactive terminal provides a convenient

means to do this quickly, and in the detail necessary for proper comparisons.

Conclusion

The use of interactive terminals for the applications shown has been con-
sidered quite valuable at SLL. The relatively high cost of processing pays off
in the ability to reduce time to analyze data, check validity of solutions, and

produce quality graphical outputs that emphasize special aspects of the problem.

The reduction of time was clearly shown in the mesh application for the
nosetip analysis. The time span for the analyst to construct a mesh using the
DVST program obtaining a usable data set for the structural analysis program was
about three hours. The same reconstruction was required on another code for
which the DVST application was not available. The procedure required processing
a large code for mesh generation and verifying the results from the film records.

The span of time resulted in over two days to complete the task.

- 265 -

A similar type reduction of time can be obtained with evaluating output
data files from finite element codes. The amount of calculations required
to produce the plots is large but when processed by the CDC 6600, no serious
problem with speed is encountered. About two to three seconds of central
processing time is required to produce the contour plots shown. The elapsed
real time to display this data at the terminal is normally between five to

ten seconds, which results in no appreciable wait time for the analyst.

The experience gained by having the power of the CDC 6600 available pro-
vided the ability to learn techniques on file structure and reducing memory
size. The current programs will continually be improved for new applications
and equipment as it becomes available. The programs should be adaptable to
interactive systems which use PDP-type computers for processing terminal

requests but use the CDC 6600-type computer for computation and file storage.

- 266 -

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

10
11
12
13
14
15
16

List of Figures

Representative region and mesh definitions

Input data set

Display of input data set

Display of mesh using equal subdivisions

ITTustration of a windowing of Figure 4

(1,3) Yine display of completed node point data set

Example of displaced mesh option with SASL data

Example of CONTURS over large complex problem with SASL data
Exampie of CONTURS using divisor option with SASL data
Exampie of contour identification option with SASL data
Details of SASL contour requirements

08 element with nine integration points

Display example of contour option using GNATS data

Windowed display of Figure 13 with divisor option

Example of contour result when function is not averaged at node point

Example of contours on problem having Targe deflection

- 267 -

(x,¥)

"N+

x - denotes node points
o - denotes element

Fig. 1 - Representative region and mesh definitions

Fig. 2 - Input data set

PART 1 1 1

SIDE 1 1 2 2.18 0.0 1.25 0.0

SIDE 1 2 2 1.25 0.0 0.0 0.0

ARC 1 3 3 1.25 0.0 1.25 180.0 96.0
SIDE 1 3 2 1.12 1.24 2.0 1.34

SIDE 1 4 2 2.0 1.3 2.0 0.92

ARC 1 4 3 2.18 0.92 0.18 180.0 270.0
SIDE 1-4 2 2.8 0.75 2.18 0.0

PART 2 1 1

SIDE 2 1 2 3.0 0.0 2.18 0.0

SIDE 2 3 2 2.18 0.75 3.0 0.75

PART 3 1 1

SIDE 3 1 2 3.0 0.75 2.18 0.75

ARC 3 23 218 0.92 0.18 270.0 180.0
SIDE 3 2 1 2.0 1.0

SIDE 3 3 2 2.0 1.0 3.0 1.1

SIDE 3 4 2 3.0 1.1 3.0 0.75

PART 4 1 1

SIDE 4 1 2 3.0 1.1 2.0 1.0

SIDE 4 3 2 2.0 1.34 3.0 1.44

END

-~ 268 -

PART 1 3

Fig. 3 - Display of input data set

2.£

X

LECTU

Fig. 4 - Display of mesh using equal subdivisions

- 269 -

A A s B . el . ket e . &

X .
11111

=270 -

Fig.

Fig.

E
&

1

e

nae
s

7 - L[xample of disp]déed mesh option with

T 73 W HM‘I LI SR S {1 T]
»ar Line

8 - Example of CONTURS over Targe comnlex prahlem with SASL

- 271 -

Hiees g

SASL data

data

[

vicTon '(l’nl SROCENLID siegre L1104 "

Fig. 10 - Example of contour identification option with SASL data

- 272 -

.
0 e S
l g : z —] 1 S~ 7 l
TS A S N
— . (- A >
U R Y A S R
J BASIC CONTOUR ELEMENT

4 TRIANGLES
SASL CONTOUR AREA

Fig. 11 - Details of SASL contour requirements

x
g

° o ° l
Q8 ELEMENT BASIC CONTOUR ELEMENT
16 TRIANGLES

Fig. 12 - 08 element with nine integration points

- 273 -

owme: e ey e
VECTCR BEING PPOCESHO
L
Z
LS
| 1 '
R)
e Liatine e
s

R R
16007 maned -

‘.
V-

Fig. 13 - Display example of contour option using

pEAL s

AMoe v (50 Y TR s 4 NPT s g NP
YECTOR DEING PRORISSED? s1epl LT SR 2 1] ."3
- - 2
- -9 N
' g
rae
-
U
L T T T T T R T
NISE tI8 wpsm ieppr y B0 .0
erssiog L2206 LINEIR S0LLTIEN
£15d - LIAD PamamgtIN vogen

P4 N

GNATS data

1048

$ony g
YR T
XL - 1
LT TT T
[I T
sy I
$oes igtes 3
LR T TR
[[T
s %
sy r
[1LE] 1
Y 0
sms 1
$rw 1
LRI
LY RTITT]

') 1 1
wielhe oo
o ra00.48

Fig. 14 - Windowedvdégﬁﬂay of Figure 13 with divisor option

- 274 -

i

‘llll‘(l!

] t] ' 1 t 1]] t 1 !) !]
» M e . R

Cin eaemppe

Fig. 15 - Example of contour result when function is not averaged at node point

See t ae 1 MIe s WID S W 4 Wy
VECTOR BEING PROCESSED s1ek LITTT SIS T7T L0 3 "es.

s 9810
M iU
e LT

. 1 [T

- 1L toade 0

-

Fig. 16 - Example of contou;; oh prbb]em having large deflection

- 275 -

Bortram Bussell

The Inverse Window:

A Solution to Non-Rectangular

Windowing in Interactive Graphics

1. WINDOWING

The operation of windowing in the field of interactive graphics
has been widely explored (1, 2, 3, 4, 5]. Various hardware and
software techniques for a range of windowing capabilities (some-
times referred to as scaling, zooming, or scissoring) have been
studied; both two~dimensional and three-dimensional windowing
capabilities have been derived. The purpose of a windowing proce-
dure 1is to create a subset of real-world data which is of interest
to the user and which he desires to display on a graphics terminal
CRT; in this manner, a windowing procedure is essentially a "filter",
removing from the real-world data set all data outside the area
of interest of the user. Windowing does not reduce or enlarge the
size of the picture on the CRT. Subsequent processing operations
affect the size and orientation of the image on the CRT, while
the windowing operation merely isolates the subset of real-world

data that is of interest to the user.

The real-world area lying inside the window is defined by

some window boundary. The boundary can be an arbitrary closed

curve, possibly created by freehand sketching with a light pen or
tablet. This general window boundary offers the most flexibility
to the operator, since he is free to place the boundary in the
real-world independently of geometric constraints which other
techniques require. However, subsequent processing of this window
boundary (to determine which real-world data is inside and which

data is outside the window) is difficult due to the need for

*This research was supported by the U.S. Atomic Energy Commission,
contract No. AT(1ll-1l) Gen 10, Project 14 and is a portion of the
research contained in [6, 7].

- 276 -

explicit specificacion of the boundary value at every resolvable
point touched by it. Certain approximations to a continuous curve,
such as replacement of the curve with a polygon, or approximation

of the area bounded by the curve with contiguous rectangular windoWs,
as discussed below, can simplify windowing calculations. No
significant work utilizing an arbitrary boundary window has ap-
peared in the literature to date.

A more formal way in which the window boundary can be speci-
fied is by a functional description. Functional specification is
useful where the window area naturally fills a simple mathematical-
ly described curve (e.g. a circle or an ellipse), as might be the
case for real-world data associated with optical scanning or proces-
sing. Functional specification can be thought of as a parametric
version of an arbitrary boundary, with the advantage that coordi-
notes along the bouhdary may be calculated.

A third type of window boundary specification is the use of
an n-sided polygon. A general polygon is the most flexible,
although an orthogonal polygon, one whose sides are parallel to
the real-world data axes, offers reduced processing requirements.
lio general purpose windowing procedures have been developed for
the polygon boundary. The general polygon is a useful approxima-
tion to the arbitrary or functional boundary; the approximation
cain be made as accurate as necessary by increasing the number of
sides on the polygon. The orthogonal polygon is a special case
of the general polygon, but the loss in generality is offset by
the decreased processing requirements. The inverse window,
described in section 2 below, uses an orthogonal polygon boundary.

Finally, the most commonly used type of window boundary speci-
fication is a rectangle, whose sides are parallel to the axes of
the real-world coordinate system (a rotated rectangle becomes a
special case of the polygon). This type of window forms the basis

for most of the other window processing procedures. For example,

- 277 -

in the case of the arbitrary window boundary, contiguous rectangu-
lar windows could be concatenated to approximate the area bounded
by the continuous curve, as an approximation to that region. Each
elementary component, or rectangulér window, is relatively easy to
process. In general, the accuracy of the approximation is inverse-
ly proportional to the size of the rectangular window and therefor

also proportional to the windowing time.

A single circumscribing rectangle is often a practical alter-
native to the continuous boundary, and in any case forms the basis
for the multiple contiguous windows and the inverse window process.

We define, then, as the first graphical element, the display‘window.

The display window is some rectangular area, wholly contained with-
in the real-world, which precisely circumscribes the graphic data
of interest for display on the graphics terminal. The boundaries
of this window are specified by the two X coordinates XO, XM, and
the two Y .coordinates, YO, and YM. These four coordinates are

expressed in real-world dimensions.

An important consideration is the relationship of the window
boundary values to the real-world coordinate system dimensions and
values. Since the window boundaries are expressed in real-world
coordinates, it is actually unnecessary to know the units or dimen-
'sions of the real-world data. In the process of extracting the
real-world data which lies within the window, various arithmetic
operations are performed on the ratios of the window boundary
values to the real-world values. Hence, as long as all coordinates
are expressed in identical units, there is no inherent requirement

in the display system that data be expressed in any particular units.

Let us examine further the elementary aspects of windowing.
Figure 1 illustrates what we call a basic window component, a line
connecting two real-world points P,y and PZ' In the illustrated
case, the line connecting these two points intersects the display

window boundary at a point Pi2’ Since only the data within the

- 278 -

Real-World

Display Window

PK
P

2

Figure 1 Basic Window Component

- 279 -

window is to be displayed, the graphics terminal should never
need to "see” the line segment from P, to Piz. "The determination

of window boundary points (Wnp's), like PiZ’ is the purpose of &
windowing algorithm. The coordinates of WBP's must be determined

to specify the visible segment to the graphics terminal.

The determination of window boundary points is not equivalent
to so-called "edge violation detection” contained in some graphics
terminals. Edge detection implies that all of the display data
is being sent to the graphics terminal vector generator for pro-
cessing, and that an error or attention condition arises when
some element of this data attempts to generate a line which would
fall off the physical boundaries of the CRT.

The process described here is much more flexible and more
important to real-world data processing. In the first place, we
are concerned with a virtual edge, the boundary of the display
window, rather than a physical edge, such as the hardware limit
of the CRT deflection system. Secondly, a system of this design
will be processing large amounts of data; it might be normal for
the display window to\contain a small percentage of the total real-
world data and we would like to reject unnecessary processing of
data outside the display window; hence, we have a greater problem
than just detecting boundary crossings. Simple edge detection
schemes will not work in this environment.

Several more complex cases exist in windowing. Consider the
line segments shown in Figure 2. The line from P1 to P2 crosses
_ the window in two places; hence there are two WBP's for this line
and the line from Piz - Piz is displayed on the CRT. Another im-
portant case arises when the segment just considered continues
to Pg. Of the two initial lines P, - P, and P, - P, we are

1 2 2

. \ . . o ' - " ' -
interested in viewing only the two segments PlZ P12 and P25 PS.

- 280 -

Figure 2 More Complex Window Components

- 281 -

It is common in many graphics terminals to specify only tne nextc
saquential endpoint of a line segment, and as a result the original
real-world data is usually similarly structured, showing two line

X and the second from P2 to PS’
However, the windowing operation will produce three segments: The

segments, one stretching from Py and P

visible segment from Piz to P12’ the invisible segment from PiZ to

) 3 : L}
Pog and the visible segment from P25 to Pe.

Another important case is also illustrated. Line segment
Py = P, lies entirely outside of the window. No sophisticated tech-
nigques are required here to determine window boundary points. How-
ever, in the many application areas where data is distributed uniform-
ly over the real-world, the majority of the real-world data will
probably fall outside of any particular display window. This condition
implies that segment P3 - P4 will be the most fregquently arising

window compecnent. Any algorithm for windowing must dispose of this

component with minimum overhead.

The fourth type of line segment is one wholly contained within
the window, such as P6 - P7. These four line segment cases exhaust
all possible cases which a windowing algorithm must consider.

Table 1 summarizes these cases.

Case End Point 1 End Point 2 WBP1 WBP2
1 Inside Window Outside/On Window TBD None
2 Inside Window Inside Window None None
3 Outside/On Outside/On Window None None

Window
4 Outside/On Outside/On Window TBD TBD
Window
(TBD = To Be Determined)

Table 1 Windowing Cases

- 282 -

A possible fifth case, that of both end-points outside the window
with the resulting line segment crossing the window boundary at
a single point (which must, therefore, be one of the four corners),
is handled as a degenerate form of Case 4; that is, WBPl = WBPZ.
Finally, the case of functionally specified graphical informa-
tion which crosses the window boundary needs some consideration.
This type of data, exemplified by the character string in Figure 2,
is usually drawn on the CRT with the use of a special hardware
generator. This generator normally has a rigid format; for example,
it cannot draw an arbitrary portion of a character. Therefore,
windowing this type of data involves determining the set of characters
inside the window, the set outside the window, and the character,
if any, which is on and clipped by the window boundary. Those
characters outside the window are clearly discarded, but further
consideration must be given to the character which lies on the
boundary. ° Several alternatives exist. One is to delete
this character, or the string containing it, altogether; however,
if two contiguous windows share this same character, and each
deletes the character, then the composite window will have lost
‘some information without the knowledge of the user.

Another approach is to invoke a line-~segment replacement pro-
cedure to draw on the CRT only the portion of the character within
the window; in this manner, two contiguous windows would each
display their portion of the character, and the composite would
have no information loss. However, this scheme requires that a
software subroutine be present to effectively simulate the hardware
function generator; this is costly of time and high-speed menory,
and a large data table is usually required to define the allowable

character set.
A third alternative is to adopt the operating procedure that

2 character is displayed only if it falls entirely inside one or

more windows. The special function generator can now be used to

- 283 -

create the character; however, for this convenience, a more
global test must be made to determine if the window edge that
intersects the character is an edge common with another window,
and then if the character is contained entirely within the conti-~
guous windows.

Each of these schemes, and indeed the entire process of
piecing together contiguous rectangles, has the disadvantage that
the final display list is fragmented and not easily related to the
original real-world data set; in addition, certain functionally
generated items may be lost {(or expensively retained). A novel
approach to this contiguous window problem is presented by the

inverse window. The inverse window is defined to be some rectangu-

lar area in the real-world inside of which data is to be discarded,
rather than preserved. When used in conjunction with a normal
circumscribing rectangular window, inverse windows permit a
polygonal-shaped area of the real-world to be displayed without
the problems of special functionally-generated data outlined above.

Consider Figure 3, in which it is desired to display the data
contained within a continucus window boundary within the real-world.
The first process is to develop the circumscribing rectangular
window, as illustrated. The data within this window is extracted
from the real-world data set, and is used to form a sub-real-world

within which further windowing operations will occur.

The continuous boundary is then approximated, to any desired
level of accuracy, by orthogonal line segments forming a closed
orthogonal polygon. The corner points of this polygon define the
coordinates of a series of inverse rectanghlar windows, indicated
by shaded areas in Figure 3, in which the data from the subreal-
world is to be removed and discarded; the remaining data repre-
sents, to a close level of approximation, the data from the original
recal-world which is contained within the continuous boundary.

The linc and function data within the polygonal boundary is preserved

- 284 -

ibing
Rectangular

Circumscr

}
\\\%\3
& P
A
:

Window

Window

...

\\\

SN\

to be displayed)

(Area

"

Approximating Orthogonal Polygon \

Continuous

Inverse Rectangular Windows

Figure 3 Inverse Windows

- 285 -

in data structure; that is, a single straight line in the real-
world is still a single line in the display list, rather than the
several lines which would have been generated by the use of

contiguous rectangles.

A factor which makes the inverse window approach even more
suitable for approximating continuous or polygonal window boun-
daries is the ease with which the conventional rectangularVwindow
algorithm can be modified to process the "inverted" case. This
technique is explored in Section 2.

2. THE INVERSE WINDOW [6]

The concept of inverse windows is illustrated in Figure 4.
First, the entire real-world data set is passed through the normal
windowing operation to derive a subreal-world data set; this first
windowing '‘operation is identical to the normal rectangular window
described in the previous section. In the case of inverse window
processing, this first rectangular window is referred to as the

circumscribing rectangular window. It is this circumscribing

rectangle which is depicted in Figure 4.

Within the circumscribing rectangle is some orthogonal poly-
gon whose sides are either horizontal or vertical. By definition,
the orthogonal polygon which defines the area of data to be pre-
served is exactly circumscribed by the circumscribing rectangular
window. Therefore, the orthogonal polygon will have one of its
sides co-linear with each of the four sides of the circumscribing

rectangle. We can then derive a set of inverse rectangular windows,

the set {Ri}, which covers the area within the circumscribing rectan-
gular window containing data to be discarded (shown as the shaded

area in Pigure 4}.
The inverse window processor can be treated simply as another

type of windowing processor, substitutable for the common rectangular

window processor. This relationship is illustrated in Figure 5,

- 286 -

Circumscribing

aaaaaaaaaaa

¥M, 1.0 // R/// P1 = Po3
2“7/////*&/&

1
0

o
12
8

/A

X0 ~4————— Normalized Coordinates

Real-World

S Inverse Window

\- \
~ Processor
Single
Rectangular Clrcumsqublng
WINDOW WINDOW
}7 l
Sub-

Inverse Sgiia
WINDOW List
=’:é

ey SA—
L
a—" —

VIEWPORT

i

Figure 5 Inverse Window Processor Module

~ 288 -

where the single rectangular window processor is shown as an
alternative to the inverse window processor. Within the inverse
window processor, there are several sequences of operations.

First the circumscribing window must be determined. This isolates
the subreal-world data set and is passed on to the viewport proces-
sor. Next, the set of inverse windows which exactly covers the
arca of data to be discarded must be derived (that is, the set {Ri}

in Figure 4 must be found). Finally, the data within each rectangular
inverse window must be determined and discarded, leaving in the

end only the data within the polygonal window for display on the
CRT. '

The boundary for the orthogonal polygon may be determined in
one of several ways. It might be specified by interactive input,
wherein a light pen or tablet is used to specify the set of points Pi

which define the polygon; an input verification program would be
used to guarantee that all input segments are either horizontal
or vertical, and that the set is closed.

The boundary for the orthogonal polygon may be-specified by
a) interactive input
b) the graphic syvstem or user program

¢} approximation to a more general window boundary.

To derive the set of rectangles {Ri} which covers the area

of data to be discarded requires a preprocessing of the list of
points which defines the boundary polygon. This preprocessing
insures that the list of boundary points is ordered; e.g. ordered
in a clockwise fashion, with the first point representing one of
the points on the circumscribing rectangle (such as point Pl in

Figure 4). 1In addition, the list must be closed, so that the last

in the list is identically equal to the first entry. Finally, no
two sides of the polygon are permitted to intersect (that is,

- 289 -

only a single, connected area within the polygon is treated here).

Proceeding clockwise around the polygon, it is then possible
to determine which quadrants of the coordinate system (centered
ak each successive point of the polygon boundary) are inside or
outside the area in which data is to be preserved. Using this in-
formation, it is possible to derive a procedure for "walking"
around the polygon boundary to determine, at each point in the
boundary data list, the appropriate inverse window(s). As each
rectangle is tentatively determined, a check must be made to de-
termine how far that rectangle can extend before intruding into

the area which is to be preserved. For example, the rectangle R5

in FPigure 4 must be constrained so that it does not extend into
P .

9* P107 Py1r and Pyy

It is possible, of course, to overlap the inverse windows when

the display area bounded by the points P

necessary.

Once the set of inverse windows has been determined for the
given polygon, the actual inverse windowing operation can begin.
As the first step, the data within the circumscribing rectangle
is extracted from the real-world and forms a data set termed the
subreal-world. The data within this subreal-world is maintained

entirely in normalized coordinates, since that data set is just

the output of a normal rectangular window processor.

The actual process of inverse windowing is easily implemented
with slight modification to the windowing tools generally present.
In each data case, the inverse window performs the dual of the
operation performed by the normal window processor. Because of
this dual characteristic, only slight modificatiohs of the soft-
ware and hardware algorithms which implement the normal rectangular
window processor are required. These modifications consist of
accepting line segments instead of discarding them (and vice-versa),
and by-passing the scaling operation at the output of the window

processor when the processor is in the inverse mode. By not scaling

- 290 -

the output,

the output data is preserved in the same coordinate

system as the input data; since this data is already the normalized

data set from the circumscribing window,

the final output set
after i iterations (one for each Ri) through the inverse window

processor will also be in the same normalized coordinate system,

as required for subsequent viewport processing.

Timing comparisons were made between clipping with hardware

and a software clipping divider on a 360/91 [7].

refer to those in Table 1.

The casées listed
All times are in milliseconds.

Time {ms)

Hardware | Software Software Time

Case Remarks Normal |{Inverse | Hardware Time
1 non-orthogonal .01675 1.04 1.01 60
1 orthogonal .01675 1.02 1.01 61
2 trivial acceptance .0075 .098 .09 13
3 non-trivial .00325 .15 .15 46

rejection
3 trivial rejection .00075 .090 .093 120
non orthogonal .01675 2,03 1.96 121
4 brthogonal .01675 1.98 1.96 118
Table 2

These results indicate that the hardware algorithm is

approximately two orders of magnitude faster than the software

implementation provided here.

An illustration of the effect and operation of the inverse

window process ig illustrated in Figure 6 (7).

Here,

data is represented by a neural network in Fiqure 6a.

- 291 -~

the real-world
The super-

Figure 6 Inverse Windowing Example

- 292 ~

posed non-rectangular window and circumscribing rectangle is shown

in Figure bb. Figure 6c shows the clipping outside of the rectangle.
The complete windowed display is shown in Figure 6d. Under soft-
ware implementation, CPU time for this example was under 500 milli-
saconds., It is reasonable to assume that the hardware implementation
would be two orders of magnitude faster.

Inverse windowing represents a significantly new technique
for determining the contents of non-rectangular windows. The
alternate techniqus of using contiguous rectangles within the area
to be preserved is much less desirable because it generates a
longer display list containing segmented real-world vectors.
Another alternate technique which should be rentioned is a "pure"
computation of the intersection between a line segment and the
volvgon (or continuous) boundary. This is clearly a costly, "hidden-
line" processing procedure, and does not make use of existing hard-
ware or software which is necessary and available for the normal
window operation. The author has been informed [8] of another
proposed procedure which permits convex polygonal windows. 1In
this procedure the data is rotated until sides of the window are
parallel to one of the screen's coordinate axes. The clipping
procedure is then applied to a half-space. One rotation and clip
for each polygonal side finally removes all extraneous vectors. No
results or reports of this procedure have been seen. Although novel,
this windowing technigque is not as versatile as that described here,

whore convexity of the polygon is not at issue.

- 293 -~

r
.

~J

REFERENCES
Coggan, B. B., "The Design of a Graphic Display System,"
UCLA Department of Engineering Report 67-36, Augqust 1967.

Sproull, R.F., and Sutherland, I. E., "A Clipping Divider,"
Proceedings of the FJCC, 1968.

Sutherland, I.E., "Sketchpad, a Man-Machine Graphical Communi-
Cation System," Lincoln Laboratory Report 296, MIT, January 1963.

Thornhill, D. E., et al., "An Integrated Hardware-Software
System for Computer Graphics in Time-Sharing," Report Number
ESL-R~356, MIT Electronic Systems Laboratory, December 1968.

Newman, W. M. and Sproull, R. F., Principles of Interactive
Craphics, McGraw Hill Book Company, New York, 1973.

Taxin, H., "Interactive Graphics in the Computer Aided
Design of Digital Systems," Ph.D. Dissertation, UCLA, Dec. 1970.

Buchness, R., "Non-rectangular Windowing Using Interactive
Graphics,"” M.S. Thesis, UCLA, Dec. 1973.

Private Communication from W.M. Newman.

- 294 -

APPLICATIONS OF COMPUTER-GENERATED PERSPECTIVE PLOTS*

by
Melvin L. Prueitt
Los Alamos Scientific Laboratory
‘ of

The University of Californis
Los Alamos, New Mexico 8T75Lk

*This work was performed under the auspices of the U.S. Atomic Energy Commission

Key Words and Phrases: Perspective Plots, Hidden-line Removal,
Computer Graphics.

- 295 -

APPLICATIONS OF COMPUTER-GENERATED PERSPECTIVE PLOTS

By
Melvin L. Prueitt

INTRODUCTION

The most important characteristic of the modern computer is 1its
ability to handle large quantities of numbers quickly. But this very
feature poses a problem to slow-witted man. No one can assimilate the
vest volume of information which the computer can generate. The problem
is compounded by the fact that coming generations of computers will be
even faster.

One solution, which is largely used today, is to selectively print
out ohly the most important items of information. Even then the gquantity
of date printed is often far too large, and much of it is never read.
Furthermore, the quality of the ocutput is usually not such that it is
reedily assimilated by the analyst. That is, human beings were not de-~
signed by nature to perceive relationships among numbers in a printed
table.

But the visual system was designed to translate line drawings into
subjective "reality." The mental hardware almost instantly translates
a curved line on a two-dimensional surface into a form which allows the
observer to perceive relationships among various points of the curve.
It is true that some precision is lost in going from a table of numbers
to a plot of the same numbers, but roughly two orders of magnitude more
information is presepted to an observer by a curved line than by a

single number.

Even two-dimensional curves are often insufficient to represent the

- 296 -

large amount of data that needs to be displayed. Two orders of magni-
tude more information than the simple curve may be presented (with some-
what less precision) by a perspective projection of a three-dimensional
surface. The visual portion of the human brain incorporates the neces-
sary hardware to reconstruct a three-dimensional surface from a two-
dimensional perspective drawing.

This visual hardware is more adept at interpreting perspective plots
than isometric plots. Figure 1 compares an isometric plot (a) with a
perspective plot (b). The isometric plot is a representation of the
well known "optical illusion stairway."! In attempting to reconstruct
the figure, the brain finds that it is ambiguous. The logic circuits
of the brain then presents to the consclousness an inverted view of the
stalrway. WNot finding that view superior to the first one, 1t switches
back. Figure 1(b) is much more satisfying to the human optical system.
It doesn't have to work so hard in interpreting the geometry.

In cases where one is not troubled by the ambigulty of an isometric
plot, proper interpretation may still be difficult. ObjJects in the back-
ground appear too large in relation to features in the foreground. The
effect is familiar to anyone who uses a telescope or binoculars. Greater
magnification in a telescope implies closer epproach to an isometric
image.

Since the computer can produce a perspective plot just as easily as
an isometric plot, 1t is recommended that the former be used.

A desirable feature of perspective plots is the removal of hidden
lines. PFigure 2 illustrates the confusion that can arise when hidden
lines are not removed. With all lines present, the pilcture tskes on the

characteristics of an X-ray photograph. By removing the hidden lines,

- 297 -

the figure gives the appearance of an opaque surface. Some information
is lost, but comprehension is gained. Hidden portions of the surface

may be studied by having the computer rotate the surface.

APPLICATTONS

The princlpal value of perspective plote arises from the fact that
man can quickly evaluate the shape of a surface. He can see trends and
relationships that might be difficult or impossible to perceive in a set
of mumbers. The following examples are offered to inspire greater use
of perspective plots as computer output.

At the Clinton P. Anderson Meson Physics Facility at the ILos Alamos
Scientific Laboratory a magnetic fleld was generated in the path of the
accelerator beam. The question arose: How good was the magnetic field?
About 25,000 measurements were made at various points in the field vol-
ume to determine the characteristics of the field. But what can one see
from 25,000 numbers? The problem was resolved when Professor Gordon Lind
from Utah State University (who was visiting at L.os Alamos) fed the num-
bers into a computer and used our PICTURE program to plot them. Figure 3
shows one component of the magnetic field over the aree of a "slice" taken
through the field volume. This makes an interesting plot, giving the
"shape" of the magnetic field. But the surprising features of the plot
were the unsuspected striations running across the field. Without the
plot, the striations probably would have gone undetected until some seri-
ous anomaly occurred in later operation. The eye picks 1t out immediately
in the plot.

Dr. Marvin Mueller of LASIL used PICTURE to plot calculated laser

absorption on & material as a function of angle of incidence (left to

- 298 -

right in Figure 4) and depth of penertration (front to back). He could
nct only see the over all absorption characteristics at a glance, but
he observed. for the first time, ripples along the ridge which dencted
interference phenomena.

Sometimes one is focled by examining isolated values in a two-
dimensional array of numbers. Dr. Robert Rowell of the University of
Massachusetts sent me some computer-generated data on Mie scattering to
be plotted. He alsc sent a sketch, shown in Figure 5(a) to give a rough
idea of the way the final plot should look. After examining the sketch,
I assumed that the surface would gradually change from a flat shape to
an undulating shape from front to back -~ that there would be valleys
running from front to back. I was surprised when I saw the computer plot
of the data (Figure 5(b)).

Figure 6 is a plot of CN cross-sections as a function of photon
frequency and temperature made by Dr. Athel Merts and NWorman Magee of
LASL. The dats for the plot were generated as part of their work in
determining cross-sections in stellar atmospheres. Such plots are use-
ful not only for study of the physical behavior of matter and energy, but
they are valuable tools of communications for describing results to
colleagues.

Fipgure 7 also exemplifies the pedagogical value of perspective plots.
Dr. Paul Stein of LASL worked with three chemical equations for gases
which were recognized to be conic equations. Dr. Carson Mark worked out
the geometrical interpretation and showed that they could be represented
by cones with parallel axes. The simultaneous solution of these equations
represented the chemical equilibrium of the chemlcal solution. The ques-

tion arose: Did the set of simultaneous equations have a solution? That

- 299 -

question could be answered by examining the corresponding cones. That
is, do three cones whose axes are parallel intersect in a point? It was
not immedistely obvious to0 many people that the cones do intersect in a
point. With a plot, Dr. Stein could point out to others how they inter-
sect. Then it became obvious.

This figure also shows how the computer can be used to generate
patterns on the surface. Patterns can be used to identify various parts
of the surface when a color plotter is not available.

Stanley Marsh of LASL wanted to know the shape of fragments of
material as they traveled away from the center of an explosion. He took
e high speed radlograph of such particles and scanned the negatives with
8 densitometer. The resulting numbers were fed to a computer and plotted.
Figure 8 is actually a plot which shows the thickness of a particle mov-
ing at 20,000 kilometers/hour. This provides some idea of the shape of
the particle.

Professor Gordon Lind maede some plots of the nuclear spectra for
several isotopes. In Figure 9 the energy increases to the right. From
foreground to background, each row of three lines represents a different
isotopes. The physicist can use such plots to study the relationships
among energy levels in different nuclei.

Some people use perspective plots to detect errors in large com-
puter programs. Dr. Don Baker and Lawry Mann plotted some 6000 values
of computer calculations from a large plasma program. It is rather dif-
ficult to scan 6000 numbers for each of several variables and for each
of many time-cycles to detect misbehevior in the computation. In Figure
10, the "canyons" around the periphery of the plot were immediately spot-

ted to be improper calculation rather than real physical phenomena..

- 300 -

Often one single point on a plot projects far above the others, signify-
ing an error. One point would be very difficult to find in 6000 numbers.

Mathematicians find perspective plots useful for displaying functions
of two variables. Figure 11 shows a step function and its twb-dimensional
Fourier Transform calculated by Dr. James Breedlove and George Wecksung
of B G &. Pigure 12 represents the summation of several bivariate nor-
mal distribution functions.

Geologists would find perspective plots useful for displaying under-
ground formations. Figure 13 is a simulation of the earth's surface a-
bove and a geological layer below, Besides the use of such plots for his
own study, the geologist could use them as audiovisual aids in describing
his conclusions to colleagues.

Perspective plots provide a more familiar rendering of terrain than
topographical maps. Figure 14 is a topographicel map of the ocean floor
of the Bering Sea. Deaniel J. Brown of NORFISH at the University of Wash-
ington produced the plot of Figure 15 which shows the same region of the
ocean floor 1n perspective.

Daniel Brown also sent me the plots shown in Figure 16 depicting
mountain terrain and the location of a planned highway.

Besides the foregoing examples of applications which involve data
as a function of two variables, perspective plots may also be made of
data which are normally considered to be functions of one variable by
utilizing another variable such as time. For example, if one has a shock
wave data relating relating pressure with distance along a shock tube,
time may be chosen as a second variable and the perspective plot would
provide the history of the pressure waves on one plot.

If one has a function of three variables, such as a magnetic field

- 301 -

in space, a "slice" may be taken and the magnetic fleld intensity would
represent the height of the plot while the two space coordinates would
be represented by the base dimensions of the plot (see Figure 3). Then
if the slice 1s moved through the field in the direction normal to its
surface, a movie of the perspective plots could be made giving the mag-
netic field strength throughout the space. Alternatively one might want

to plot the shape of a surface which has a constant magnetic field.

CONCLUSTON

Computing power 18 largely wasted when the output consists of printed
numbers. In order to make better use of our computers, a concerted effort
should be made to force the computer to communicate to us in terms which
we naturally understand: pictures. With graphical output, the investiga-
tor gets at the solutions faster and understands them more clearly. Per-
spective plots are presently the best way to communicate large amounts of

information to man from the computer.

- 302 -

4

()
U
s

of optical illusion stairway.

- 303 -

Figure 1. (a) Isometric projection

Figure 1. (b) Perspective projection of stairway.

~ 304 -

) seh nidden line 5 pemoved .
Fioure 2. Perspective plet with hidden lines no me

s &L

§
Lad
3
o

b

2

i
7
%
g wagnebl

g2
s

s
3
2
o e compunent O
f
i

[anl

5
f
4
A

b
e

z

4
e

;
:
P
7
ﬂ* 3 #

&3
gy
i
s
-
S
%
o
&
A0 S0 S)
=
7
o s
iR

i

o o a4
7

&3
e

it

Sy

of & faw

Re

ring:

-

Mie scabls

-

gars

i

s
A~

Oong

ints,

3900 ¢

of

i
S

Figure

- 309

w\.,/

]

rabiong.

G e 03

O oro

6,

- 310 -

wm—;li %4

T R

3
LA i LG e
S N YT N T TEIN S SN TR TR TR R T SR T T
s y- o x - . -y . ol 3] 5 A e e
Flpure 7. Conne represenbing chemicsl eguabtions,

o

bakern from o densle

ragpent
soead rad

o B

£
&

Lograph.

o

omatay reading of

317 -

o)

2y

8. 3008 0%

ARG

%

up on & plo
ylasms.

5
i

@
o
R
Y

E oS
[]
o
Pt

¢
s
@
o
[N

THAOISUBIY JOTANOL 81T PUR SOTURIIRVA OAY UL UOTISURY

LI e N

LIS 21T

H

dess " 1T

pandva

o PSR

A0
P

LI A

f L b g i Ty

£

;

;.

RN
Ll i

RSN NN

(L Liid

1A

several biveriste normal distribution functions.

£ a
A

ztion ©

fedaicia

o

%

Figure

- 316 -

: P =} Fal E 4 -
Filgure 1%, Simidevic
above and

spnn BuTasyg eun U

J00TI umeao Jo dwn Teorudsaiodoy *y1 exnBig

18

ki
g

Figure 15, Perspective projection of the cceen floor region shown
in Plgure 1h.

- 319 -

UADEE W1 ABMIBETY PUODETd

SUTRIISN

cazeT 9% qo7d uy
SOOULBLUNC 3O 80T T sandid

Abstract

Picture Processing Techniques Applied to Electron Microprobe Data

M. D. Jones, 8443
W. B. Estill, 8314

In the traditional mode of operation, the electron microprobe acquires
data by scanning an electron beam across a sample in television fashion.
The X-rays emitted by the sample are counted and displayed "on-line” to
give & picture that qualitatively describes the distribution of chemical
elements over the sample surface. Data obtained in this way is very noisy.

and has little quantitative use.

We have devised a new technique, whereby data is acguired digitally
at a Tattice of points on the sample. The data is converted "off-Tine” to
picture form using a CalComp microfilm plotter. The resulting picture is
tess noisy than those obtained in the traditional wode. Moreover, the
data can be analyzed quantitatively, and standard picture processing

techniques can be ysed to reduce blur or to smooth out noisy data.

- 321 -

ABSTRACY

DEFicient Cuvve Fitting Using Interactive Graphics

ot

t freguently occurs that an analytic Fit of experimental discrete

data is desired. This may be o provide z program with an efficient weans

of finding dats values, or %o interpoiate the data, or to estimate deriva-
tives of the data. UWnile numerous ieast scuares fitting routines exist,

it is still impossible o guarantee that the fit have the subjective property

of "locking right” and most users are unable to explain what they mean by

this.

We describe two programs in use for the last two years that allow the
user to interactively vary the parameters of the fit and obtain good fits
with the desived properties. Both programs use poliynomial splines (piecewise
polynomials} of arbitrary order to it the data. The first program allows
the user to specify knot locations {the place where successive polynomials
meet}, observe the fit, and then modify the fit by adding or deleting knots.
The second allows the user to also constrain the fit fo possess specified
values or derivative values at particular points or to be bounded {or

derivatives bounded) at specified points.

The discussion will incliude fmplementation methods and the hardware

systems used.

- 32% -

