
BNL 18803

SECOND ANNUAL
AEC SCIENTIFIC COMPUTER INFORMATION

EXCHANGE MEETING

PROCEEDINGS OF THE TECHNICAL PROGRAM
THEME: COMPUTER GRAPHICS

May 2-3, 1974
New York City

Hosted by

BROOKHAVEN NATIONAL LABORATORY

ASSOCIATED UNIVERSITIES, INC.

UPTON, NEW YORK 11973

NOTICE

This report was prepared as an account of work sponsored by the United States
Government. Neither the United States nor the United States Atomic Energy Com­
mission, nor any of their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that its use would not infringe
privately owned rights.

SECOND ANNUAL

AEC SCIENTIFIC COMPUTER INFORMATION

EXCHANGE MEETING

PROCEEDINGS OF THE TECHNICAL PROGRAM
THEME: COMPUTER GRAPHICS

General Chairman: Y. SHIMAMOTO

Program Chairman: A.M. PESKIN

May 2-3, 1974
New York City

BROOKHAVEN NATIONAL LABORATORY

UPTON, NEW YORK 11973

BNL 18803

CONTENTS

May 2, 1974
Thursday Morning

OVERVIEW OF SESSIONS
A. M. Peskin, Brookhaven National Laboratory

SESSION I

Advanced Systems

Chairman: R. M. Lee
Lawrence Livermore Laboratory

1. PRIM-9: AN INTERACTIVE MULTIDIMENSIONAL DATA DISPLAY
SYSTEM. M. A. Fisherkeller, J. H. Friedman, SLAe;
J. W. Tukey, Princeton

2. DISPLAYING COMPLEX THREE DIMENSIONAL OBJECTS. M. J.
Archuleta, Lawrence Livermore Laboratory

iv

3

34

3 . COMPUTER GENERATED MOVIES--ANOTHER DIMENSION IN MAN­
MACHINE COMMUNICATION. R. Elliott, R. Orr, E. Pequette,
Los Alamos Scientific Laboratory 44

4. AN INTERACTIVE DIGITAL IMAGE PROCESSING AND DISPLAY
SYSTEM. L. Hayes, C. Journeay, M. Wirth, Lawrence
Livermore Laboratory; L. Hatfield, University of
California, Davis 47

5. A COLOR MOVIE FACILITY. S. Levine, Lawrence Livermore
Laboratory 48

- iii -

May 2, 1974
Thursday Afternoon

SESSION II

physical, Engineering, and Biomedical Applications

Chairman: G. H. Campbell
Brookhaven National Laboratory

6. ADVANCED GRAPHICAL DISPLAYS USED IN THE ANALYSIS OF
HIGH ENERGY PHYSICS DATA. M. F. Hodous and I. A.
Pless, Massachusetts Institute of Technology 59

7. A PATTERN RECOGNITION CODE FOR CURVED TRACKS IN CYLIN­
DRICAL SPARK CHAMBERS. W. N. Schreiner, D. R. Gilbert,
W. P. Trower, Virginia Polytech Institute and State
University of Virginia; P. Schubelin, Brookhaven
National Laboratory 60

8 . COMPUTER GENERATED VISUAL DOCUMENTATION OF THEORETICAL
STORE SEPARATION ANALYSIS. H. R. Spahr, Sandia,
Albuquerque 79

9. TWO APPLICATIONS OF DATA ANALYSIS BY INTERACTIVE
GRAPHICS. C. H. Turnbull, Sandia, Livermore 105

10. STABAN--AN INTERACTIVE GRAPHIC COMPUTERIZED STABILITY
ANALYSIS PROGRAM. B. J. Wimber, Sandia, Albuquerque 118

11. APPLICATION OF PEPR IN MEDICAL RESEARCH. I. A. Pless,
B. Wadsworth, D. Zahniser, Massachusetts Institute of
Technology 148

12. CRYSNET. H. Bernstein, Brookhaven National Laboratory 149

- iv -

May 3, 1974
Friday Morning

SESSION III

General Graphic Facilities

Chairman: A. M. Peskin
Brookhaven National Laboratory

13. A SET OF DEVICE-INDEPENDENT FIRST LEVEL GRAPHIC
ROUTINES. N. A. Storch, Lawrence Livermore Laboratory 161

14. GRAIL--A GRAPHICAL DEVICE-INDEPENDENT PICTURE DESCRIP­
TION SYSTEM. J. A. Brooking, Knolls Atomic Power
Laboratory 169

15. SYSTEMS PROGRAMMING LANGUAGES AND GRAPHICS TERMINALS.
T. Stuart, New York University 183

16. A BARELY INTELLIGENT TERMINAL. H. H. Holmes, Lawrence
Berkeley Laboratory 192

17. SANDIA INTERACTIVE GRAPHIC SYSTEM--SIGS. R. Young,
Sandia, Albuquerque 211

18. CONFERENCE PROGRAMS WITH INTERACTIVE GRAPHICS. D. M.
Austin, Lawrence Berkeley Laboratory 236

19. GRAPHICS APPLICATIONS FOR FINITE ELEMENT CODE PROCESSING.
V. K. Gabrielson, Sandia, Livermore 255

20. NON-RECTANGULAR WINDOWING. B. Bussell, University of
California, Los Angeles 276

21. APPLICATIONS OF COMPUTER-GENERATED PERSPECTIVE PLOTS.
M. L. Prueitt, Los Alamos Scientific Laboratory 295

ABSTRACTS

PICTURE PROCESSING TECHNIQUES APPLIED TO ELECTRON
MICROPROBE DATA. H. D. Jones, W. B. Estill, Sandia
Laboratories, Livermore 323

EFFICIENT CURVE FITTING USING INTERACTIVE GRAPHICS.
J. F. Lathrop, Sandia Laboratories, Livermore 324

- v -

OVERVIEW OF SESSIONS

A. M. Peskin, BNL
Program Committee

The topic of computer graphics serves well to illustrate that
AEC affilliated scientific computing installations are well repre­
sented in the forefront of computing science activities. The par­
ticipant response to the technical program was overwhelming--both
in number of contributions and quality of the work described.

Session I, entitled Advanced Systems, contains presentations
describing systems that contain features not generally found in
graphics facilities. These features can be roughly classified as
extensions of standard two-dimensional monochromatic imaging to
higher dimensions including color and time as well as multidimen­
sional metrics. Session II presents seven diverse applications
ranging from high energy physics to medicine. Session III describes
a number of important developments in establishing facilities, tech­
niques and enhancements in the computer graphics area.

Although an attempt was made to schedule as many of these
worthwhile presentations as possible, it appeared impossible to
do so given the scheduling constraints of the meeting. A number
of prospective presenters "came to the rescue" by graciously with­
drawing from the sessions. Some of their abstracts have been in­
cluded in the Proceedings.

I wish to acknowledge the contribution of Robert M. Lee (LLL)
for his assistance in the planning of this program.

- vi -

SESSION I

Advanced Systems

Chairman: R. M. Lee
Lawrence Livermore Laboratory

- 1 -

PRIM-9

An Interactive Multidimensional Data Display and

Analysis System

Mary Anne Fisherkeller, Jerome H. Friedman

Stanford Linear Accelerator Center*
Stanford, California 94305

and

John W. Tukey

Princeton University**
Princeton, New Jersey 08540

ABSTRACT

(SUbmitted to A.E.C. Scientific Computer Information Exchange Meeting,
May 2-3, 1974)

PRIM-9 is an interactive data display and analysis system for the

examination and dissection of multidimensional data. It allows the user

to manipulate and view point sets in up to nine dimensions. This is

accomplished by providing all 36 two-dimensional projections along the

original axes at the push of a button, along with the ability to rotate

the data to any desired orientation. These rotations are performed in

real time and in a continuous manner under operator control. From the

parallax effect, arising from the dynamic aspect of this continuous

rotation, one perceives a third dimension (depth into the screen).

PRIM-9 gives the operator the ability to perform manual projection

pursuit. That is, by rotation and view change he can look at his data

from all possible angles in the multidimensional space and try to find

- 3 -

those th~t provide inter~~ting ctructure. The system also allows inter-

active maskinG and isolation. The user can conveniently mask on 8ny or

all of the current variables) thus isolating interesting structures

found along the way. These interesting structures can then be further

analyzed alone) or may be subtracted from the total sample to simplify the

search for still other structures. In addition to this strategy, the

user may invoke an automatic projection pursuit algorithm. Starting at

any projection (view), this numerical algorithm will search (in much the

same manner as a human operator) for those projections that provide

interesting structure. The system also incorporates the ability to

save either temporaril~ or permanentl~ any interesting view that is found.

The operator can return to these views at any later time or reproduce

them on a hard copy device.

*Supported by the U.S. Atomic Energy Commission under Contract AT(043)515

**Prepared in part in connection with research at Princeton University
supported by the U.S. Atomic Energy Commission.

- 4 -

lllTRODUCTION

PRIM-9 is an interactive computer graphics program for Picturing,

Rotation, Isolation, and Masking - in up to 9 dimensions. It is im-

plemented on the Graphics Interpretation Facility of the Stanford

Linear Accelerator Center, Stanford University. This facility consists

of an Information Display's IDIIOM refresh CRT and a Varian 620/i mini­

computer; linked to an IBM 360/91.

PRIM-9 is a result of a continuing program of research into tech-

niques for applying computer graphics to exploratory data analysis. A

general introduction to its properties and uses is documented in a 25

minute sound motion picture enti tied IIPRIM-9"~ produced by the Computation

Research Group of the Stanford Linear Accelerator Center, Stanford

University. This note details its properties with emphasis on the human

engineering aspects of its implementation and on the various data analysis

problems to which it can be applied.

PRIM-9 has been developed toward ends of very different breadth and

distance: first, to gain insight into what can be learned by looking at

the numerical aspects of data in more than two aspects at a time and,

second, to implement a tool for pictorial examination and dissection of

rrultidimensional data. The development of PRIM-9 has grown through many

stages, and many of the early techniques that were implemented and then

later discarded may turn out to be central to other data display systems.

The resulting system as it is currently implemented is especially straight-

forward in concept. Its emphasis is on picturing and rotation on the one

hand and masking and isolation on the other. Picturing means an ability

to look at the data froll! several different directions in the multidimen-

sional space. Rotation means, as a minimum, the ability to turn the data

so that it can be viewed from any direction that is chosen. Picturing

- 5 -

and HCIUlti<;H are essential ab l.Ll. t Len, va luable alone, 'but the 1r uae f'u.Ineas

is greatly enhanced ~hen combined ~ith Masking and Isolation. Masking is

the ability to select suitable subregions of the multidimensional space for

consideration. That is, only those data points that lie in the subregion

are displayed. Isolation is the ability to select any subsample of the

data points for consideration. That is, only'those points in the selected

subsample are displayed. It is important to note that masking is tied to

coordinates. If ~e rotate the data points, different points will enter

and leave the masked region. Isolation, on the other hand, is tied to

the data points. Under all operations of the system (except further

isolation), the isolated sample remains the same. In the absence of ro-

tation, masking and isolation are equivalent; however, in the presence of

rotation the distinction is essential.

By interactively applying picturing, rotation, isolation and masking

to his data, the user can, in particular, perform projection pursuit.

That is, he can look for those views that display to him interesting

structure. He can isolate any structures so found and study them sepa-

ra-~ely andlor remove them from the rema ining sample, simplifying the

search for still further structures. In this way, he may gain consider-

able insight into the multidimensional properties of his data. As an

aid to this process, the present version of PRIM-9 also provides an auto­

2
matic projection pursuit algorithm. This algorithm assigns to each vie~

a numerical index that has been found to closely correspond to the degree

of data structuring in the projection. When invoked, the algorithm ~ill

search for those vie~s of the multidimensional data that maximize this

projection index. At any point in the interactive session the user may

invoke the automatic projection pursuit algorithm. Starting at the

current vie~, the algorithm will find the view corresponding to the first

- 6 -

maximum of the projection index, uphill from the starting view. Manual

projection pursuit can then continue from this new (hopefully more

structured) view. The algorithm can also be invoked at the beginning of

the session starting with the various original or principal axes of the

data. The resulting views can then provide useful starting points for

further investigation.

The next section gives a brief description of the hardware and soft-

ware configuration of the Graphic Interpretation Facility of the Stanford

Linear Accelerator Center, on which PRIM-9 was developed. This is followed

by several sections describing the implementation of the various features

of the PRIM-9 system. The note then concludes with a section discussing

various techniques for applying these features to some multidimensional

data ana lysis problems.

THE GRAPHIC INrEHPRFJrJ\TION FACILITY

The Graphic Interpretation Facility of the Stanford Linear Accelerator

Center (SLAC) is pictured in Figure 1 and is described in detail elsewhere. 3,4

A brief description emphasizing those properties relevant to the imple-

mentation of PRIM-9 is included here.

The primary computing resource at SLAC during the development of PRIM-9

was an IBM SYSTEM/360 Model 91, with 2048k bytes of storage, operating under

*as/WIT with HASP. The two basic components of the Graphic Interpretation

Facility are a Varian Data Machines 620/i computer5 with 8k l6-bit words of

storage, and an IDIIOM Display Console
6

with a 2l-inch CRT made by Infor-

mation Displays, Inc. When the display is operating, the 620/i memory con-

tains a program for the 620/i to execute and a program (display file) for

*the current resource includes, in addition to the S/360-91, twin IBM
SYSTEM 370/168' s, operating under VS/2R1.6 with ASP.

- 7 -

the IDIIOM to execute. These two programs run concurrently with the IDIIOt-l

stealing cycles from the 620/i. The instructions (orders) in the display

.file may display characters, points, or straight line segments, perform un­

conditional or subroutine jumps, count and index, or interrupt the 620/i.

Characters, points, and lines are positioned on a 1024 by 1024 raster unit

grid on the face of the CRT. The 620/i instruction set includes, in

addition to the usual set for a standard mini-computer, instructions to

start and stop the IDIIOM in its execution of the display file, and in­

structions to read and reset registers associated with the display operation.

Interaction at the console is by means of a solid state aiphameric

keyboard, a light pen, and a function keyboard with 32 buttons. Under

program control, portions of the display file may be designated as light

pen sensitive or insensitive. When the light pen is pointed at a sensitive

item on the CRT, the 620/i will be interrupted. The function buttons

generate interrupts on both the cLos in{T, and the opening of the switch.

This means that software can pr-oduce ei ther (1) s Lngl.e impulse for each

depression of the button (cyc1inC) or (2) a repeated impulse ~ontrolled by

software timing, occurring so long as the button remains down. This last

facility, especially when combined with automatic reversal (see below), is

of great importance in allowinr, effective control. Plastic overlays may

be placed on the function keyboard to identify the purpose of each button.

The 620/i and SYSTEM/360 are connected through an IBM 2701 Parallel

Data Adapter Unit. Data may be transmitted in either direction through

this link. The 620/i can interrupt the SYSTEM/360 and determine whether

the SYSTEM/360 is trying to read or write; however, the SYSTEM/360 is

not able to interrupt the 620/i.

- 8 -

Al.Lhough the Fac i.Lt t.y can operate in a s tand-raLone f'a s h l.on , !f!():3t of

our work (including the implementation of PRIM-9) has been done using it

in conjunction with the SYSTEM/360. The SYSTEM/360 provides fast compu-

tation and mass storage, while the 620/i maintains the display.

4
A package of PL/l procedures, the IDIIOM Scope Package, has been

provided for writing highly interactive programs on the IBM 360/91 without

burdening the writer with all of the details of programming the 620/i and

IDIIOM. The user of this package can, by means of procedure calls, control

the display console in addition to having all of the facilities of PL/l

available to him. Procedures are supplied to construct graphic dLapLay

elements which will display information on the IDIIOM CRT, and transmit

elements as well as interrupts between the SYSTEM/360 and 620/i.

IMPLEMENTATION

A. Scaling and Coordinates

The data is stored (in the 360/91) in initial coordinates either

as scaled before entry or as rescaled to fit into the display region.

It remains in this form. Rotations to current coordinates are per-

formed by a transformation ~atrix. An ongoing step of rotation in-

volves (A) updating this transformation matrix (multiplication by

a simple rotation matrix) and (B) passing the data through the modified

transformation matrix and transferring the relevant'coorainates to the

620/i. Thus in the PRIM-9 system, it is important to distinguish be-

tween the initial coordinates and the current coordinates. The initial

coordinates are defined to be an orthogonal set of fixed axes in the

multivariate space. The input data to PRIM-9 consists of a number of

ordered sets of numbers. Each of these numbers is assigned to the

initio 1 ax i.o c orrer.pond Lng to its position in the ordered set. These

nurnbo ru then become the v a Luc s of the initin 1 coor-d.tnatcc and ('(JC:h

- 9 -

another ort.hogona L s et spanning the same .spe ce that is connected

to the original set by a similarity transformation. That is, each

of the current coordinates is a particular linear combination of

the initia 1 coordinates. So long as only rotations are used (see F

for oxcoptl.oun) , t he ao Li nca r combinations are restricted to those

Lhat do not, change the interpoint distances in the multidimensional

space.

Rotation has the effect of continuously changing the linear

transformation between the current and initial coordinates. At the

beginning of the session, the initial and current coordinates coincide,

but as soon as a rotation i:; performed the current coordinates be-

come distinct from the initial ones.

B. Picturing

For picturing, PRTh1-9 provides the choice of any two of the

current coordinates as horizontal and vertical axes. Two buttons

cycle through the choices. One button changes the coordinate dis­

played in the vertical direction, while the other button changes

the coordinate shown along the horizontal direction. In this way,

it is en s v to go t hrough the (~IM) (NDIM is the total number of

coor-dLnn t es) pos s LbLc displays, 8,3 well as getting from one

particular display to another. Choosing a display involves selecting

two integers i and j, where i is the y (vertical) coordinate and j is

the x (horizontal) one. Pushing the first button increments i by one

and the second, similarly, increments j, both modulo NDIM. In order

to speed up the selection process, all unnecessary combinations have

- 10 -

been eliminated by requiring that i be greater than j. That is, i

**cycles from 2 to NDIM while j cycles from 1 to i-l.

C. Rotation

Being able to see projections on all coordinate pairs can be

very useful. But it is not enough. To be able to get reasonably

to any two-dimensional projection means 'either a way to call for

the projection that we want, or a way to move about in the multi-

dimensional space. Since we usually do not know just what we want,

and when we do we will find it difficult to learn to call for it in

8 general way, we need a way to move about. Continuous controlled

rotation is a natural way to move about (change projection) in a

multidimension~l space.

In the implementation of controlled rotation, one natur811y

thinks of turning a ~~ob. However, the configuration of the Graphic

Interpretation Facility does not support a knob. Thus, we are forced

to implement rotation through pushing buttons. The naive approach

to the control of a single rotation by buttons involves two buttons,

with these responses:

- to one button: rotation "to the right" at a constant

angular rate so long as the button is depressed.

- to the other button: rotation "Lo the left" at the

same constant angular rate so long as the button is

depressed.

**If we were programming this action again, we would use a constant-step
version of the increasing-step-and-reversal control described under
rotation.

- 11 -

This type of cont roL has two serious flaws:

- if the rotation rate is slow enoueh for fine adjustment,

the dc:loy time for large rotations is undesirable -- so

undesirable as to be nearly impractical.

- if used naively -- two buttons per rotation -- it is too

easy to use up too many buttons. '(PRIM-9, in its present

version, makes as D13ny as (~) = 36 different rotations

available.)

Both of these disadvantages can be overcome, the first by an

"increasing-step-and-reversal" control, the second by "time-

sharing" the rotation drive.

The type of rotation control used in PRIM-9 has two features:

(1) rotation reversal rotation in one sense so long as

the single button is held down -- when the same button

is released and then again depressed, rotation in the

opposite sense so long as the button is held down.

(2) rotation cy increasing (accelerating) steps. These

steps are presently taken as 1, 1, 2, 4, 8, 16, 32, ..•

times a small (unit) angle. (Note the repetition of 1.)

The largest possible step is limited by a speed limit

settable at 1, 2, 4, 8, 16, 32, 6l.~, or 128.

This combination of rotation reversal and acceleration gives

the operator fast and easy approach to a desired data orientation.

The rotation starts out slowly but qUickly accelerates to the speed

limit so long as the button remains depressed. When the operator

sees an interesting data orientation on the CRT screen, he releases
J

the button. Due to htunan reaction time, both in perception and in

- 12 -

releasinc; the button, the rotation usually overshoots the desired

data orLerrta t.Lon. Jy~prr:~~sj nrr, the same button again causes the

rotation to proceed in the opposite dire6tion, starting out at the

slowest speed, and acain accelerating. When the desired orientation

again comes into view on the screen the button is released. Now,

due to the slower speed (the acceleration usually has not reached

the speed limit), the overshoot is much less (in the opposite

direction). Again, depressing the button causes rotation reversal

at the slowest speed allowing the operator to home in on the desired

data orientation. In the usual case, at most two reversals are

necessary. This strategy allows rotation in both directions, mini­

mizes the delay time for large rotations, allows a slow rotation for

fine adjustment, and requires only one button to drive the rotation.

In order to specify a rotation, one needs not only to specify

the sign and magnitude of the rotation angle but also the rotation

axis. A general rotation axis in a multidimensional space (for ex­

ample, in terms of its direction cosines) is complicated to under­

stand and time consuming to specify. In PRIM-9, directly available

rotations are confined to those associated with pairs of the current

coordinates. This makes both control and understanding relatively

easy. A rotation axis is specified by two integers i and j. These

integers specify the current coordinate axes that participate in the

rotation. 'l'hat is, coord Lnate n L nnd j rotate while Lhe other NlJD-1-2

coordinate axes, orthogonal to i and j, remain fixed. It is possible

to get from any o~e two-dimensional projection to any other, with

relative ease, by combining these selected rotations in the correct

amount and sequence (this is the multidimensional analog of the Euler

angle specification of a rotation in three dimensions.) The two in-

- 13 -

tegers (i and j) that spec i ry the coordinates that participate in the

rotation are selected in exactly the same manner, as discussed in the

previous section for choosing the curren~ projection axes. The

selection is controlled by two buttons that cycle through the (N~IM)

possibilities. One button cycles through 2 ~ i s: NDIM in increments

of one while the other, similarly, cycles through 1 s: j ~ i-l.

If the axes that define the rotation coincide with the current

projection axes, then the data points will simply move in circular

orbits about their relative mean in the projection. If neither axis

corresponds to a current projection axis, then the display will re­

main unchanged because the rotation is orthogonal to the current

projection axes. Both rotation axes are "invisible" to the screen.

Useful rotations occur when one of the axes that participates in the

rotation corresponds to a current projection axis, while the other is

one of the NDIM-2 axes orthogonal to the current display plane. In

this case, the operator sees the projected points change their

positions on the screen as the invisible coordinate is rotated against

the visible one. When an interesting pattern emerges, as a result of

, the rotation, the operator can home in on it as described above. T~e

invisible coordinate can then either be rotated against the other

visible one or the operator can change to another invisible co­

ordinate. He can then rotate these new coordinates to try to

sharpen the structure even further. Continuing in this manner,

the operator may manually iterate to a data orientation that pro­

vides an informative view of his multidimensional point cloud.

- 14 -

Easily recognizable continuous rotation provides en additional

advantage. Its dynamic effects let one see an additional dimension)

not instantaneously, but yet at the same'time -- in the best sense

of those words. This is due to the relative motions of the points

associated with parallax. The points that are closer in the in­

visible rotation coordinate move across 'the screen more rapidly than

those that are farther away. This parallax effect gives the illusion

of a third dimension (depth into the screen) and this aspect seems to

be a very useful complement to the two aspects (horizontal and vertical)

provided directly by the screen.

To help in the interpretation of a particular projection, a

display of the initial coordinate axes, as projected onto the current

projection plane, is easily switched (With a pushbutton) in and out

of view. This display allows the user to see graphically the linear

combinations of the original coordinates that comprise the two axes

of the current projection plane. Another button (neutral) returns

the display to its initial state. That is) the current coordinates

are reset to the initial ones.

- 15 -

D. Masking

Masking is the ability to select any subregion of the multi-

dimensional space, and have only those data points that lie in the

subregion displayed on the screen. Masking is used in connection

with isolation and also has some interesting uses of its own (these

are discussed in the last section). It is important to note that

masking is tied to the coordinates. Under rotation, the data points

will enter and leave the masked region.

The flexibility of PRIM-91s masking, like the flexibility of

its rotation, is limited so that it is easy to control and understand.

PRIM-9 allows simple masking on any or a.ll of the current coordinates.

Th8t in, thoee pointe for which Xi < F
i

or those for which B1 < Xi' or

both -- for a single i or several i's -- are caused not to appear on

the screen. Here X. (1:5 i :5 NDlli) are the current coordinates and
l

Fi, Bi are forward and backward bounds on each of these current

coordinates.

Masking is controlled by five buttons. One button toggles the

masking on and off. A second button cycles (one step per press)

through the integer, i, (1:5 i :5 NDIM) which identifies that current

coordinate to which the mask is to be applied or altered. The third

identifies which edge F (front), B (back) or J (joint) is to be

driven. These three options are cycled through by successive pushes

of the button. The fourth button drives the selected mask in a

continuous motion using the same "increasing-step-and-reversal"

control technique described above for rotation. The fifth button

allows the rapid selective removal of the mask for a particular coor-

dinate (identified using the second button) by resetting both the

front and back mask edges to their outside positions.

- 16 -

This is in contrast to the effect of the first

button which, when toggled off, removes the masks on all coordinates

simultaneously. The J (joint) drive moves the front and back masks

together in the same direction and speed~ maintaining a fixed

separation between them. This allows driving an unmasked zone of

chosen width back-and-forth on a particular coordinate.

If the masking coordinate is one of the current projection axes,

then driVing the mask away from its outside position 'and toward the

center of the screen will cause the points to disappear along an

advancing line, accelerating to the speed limit so long as the drive

button is held down. When the button is, released and again depressed,

the masking line will reverse, starting at the slow speed. The masked

points will reappear as the mask boundary retreats. As for the case

of rotation, this control allows the operator to arrive at and home

in on a desired mask position easily and quickly.

A masked coordinate need not be a current projection axis. For

example, one can mask on a current coordinate orthogonal to the pro­

jection plane. As the mask moves from its outside position on this

"invisible" coordinate, points will disappear from various regions

of the screen giving insight into the relationship contained in the

data between the invisible coordinate and the two visible ones. In

particular, the joint drive allows driving an unmasked zone of chosen

width back-and-forth on the invisible coordinate. This will cause

points to appear and disappear as the mask passes through the various

values along the invisible coordinate. More sophisticated techniques

using moving masks are discussed in the last section.

- 17 -

Isolation is the ability to select an arbitrary subset of the

data sample at any point in the analysis, and perform upon this

subset or its complement (the full sample with the subset removed),

all operations that one can perform on the full sample. Experience

with PRIM-9 has shown that isolation is . a most essential adjunct

to picturing and rotation. It extends the system from being a purely

linear device to a piecewise linear device, greatly increasing its

effectiveness and power. Some of Lt s more standnrd app l.Lr.a t.Lono oro

discussed in the last section.

As implemented in PRIM-9, isolation begins with masking. The

data points to be isolated are defined by constructing a mask (in

terms of the current coordinates) that just contains the points to

be isolated. As the mask is applied, the points that are masked

out disappear from the screen, making it relatively easy to inter­

actively construct a mask that just includes the desired sutset of

points to be isolated. It might seem, at first thought, that because

of the limited flexibility of PRIM-9's masking, it would be difficult

to construct mask boundaries that include arbitrary point Gubset3.

This turns out not to be the case. This is due mainly to the fact

that the current coordinates, on which the mask is defined, can be

interactively rotated to an arbitrary orientation with respect to

the initial coordinates, and that the isolation can be applied

repeatedly in defining the subset. In this way, the user can con­

struct a piecewise linear approximation to any boundary surface in

the multidimensional space to sufficient accuracy to just include

the points to be isolated.

- 18 -

When all of the undesired points have been masked out, so that

only the sUbsample to be isolated appears on the screen, the user

presses a button to invoke the isolation. This causes a menu of

options to appear. Figure 2 is a photograph of this menu. The user

selects the appropriate option by touching a light pen to those places

on the screen that define the option.

The numbers at the right reference the sixteen isolates that

can be simultaneously defined. Isolate "O:::::ALL" always references

the total sample and "15=RESlDUAL" is reserved for special use with

the "residual after" option. This leaves fourteen isolates that can

be arbitrarily defined and stored by the user.

Touching the light pen to one of the seven options to the left

causes a question mark to appear either to the right of the option

or at a blank space within it. Touching the pen to one of the six-

teen numbers causes the selected number to replace the question mRrk.

When all of the question markn hnve been re p.l.aced by numbo rn and Lho

command is correct, then touching

The commands are:

FILL n:

RECALL n:

SUBSELECT ON nl FILL n2:

INTERSECT nl AND n2 FILL n3:

UNION nl AND n2 FILL n3:

"APPROVED" initiates the Bction.

Save currently ma&ked subset at n.

Recall isolate saved at n and re­

place current subset with it.

Save at n2 the intersection of the

current subset with the isolate

stored at nl..

Save the intersection of isolates

nl and n2, at n3.

Save the union of isola tCB nl ~J nd

n2, at n3·

NOT nl BUT n2 FILL n3: Save the intersection of the com­

plement of isolate nl with isolate

nz , at n3·

- 19 -

REr..: IDU/iL M"l'EH n 1\ ilia: Replace isolate 15 by the inter­

section of the complement of

isolate n with the current isolate

15·

If only !J number is light-penned, "RECALL" is the default command. I\G

each subset is isolated, the remainder may be saved with the last com­

mand. An asterisk appears to the left of those numbers that represent

isolates that are currently in use. When an isolate has been saved or

recalled, it becomes the current subset. If instead of a light pen

hit the button invoking the isolation is simply pushed a second time,

the display will alternate between the current subset and the entire

data sample. The current isolate number always appears at the bottom

of the screen.

F. Scale and Location Transformations

The location may be displaced in either the positive or negative

direction and/or the scale can be expanded or contracted on any

current coordinate axis. This is accomplished by specifying a "key"

integer, i, (1 ~ i ~ NDIM) representing the coordinate to be trans­

formed. A single button cycles through the possible values of i.

Another button displaces the origin of the selected coordinate while

a third button scales the coordinate. These mtter two buttons drive

the displacement or scale change in a continuous motion, using the

"increasing-step-and-reversal" control technique described earlier.

G. Saving Views (Projections)

Quite often during a session, the user finds a projected view

of his data that is sufficiently interesting to warrant saving it so

that he may return to it later in the session, at another session, or

perhaps record it permanently on a hard copy device.

- 20 -

PRIM-9 provides for both temporary (within a session) and perma­

nent (between sessions) view saves. The permanent saves can also be

transferred to a hard copy device at the-user's discretion. This

facility allows the user to continue with an analysis after he has

found an interesting view. If further analysis should not improve

the structuring, or perhaps even worsens it, the user can simply re-

call the saved view and begin again on a different track.

Saving a view (projection) consists of storing the transformation

matrix connecting the initial coordinates to the current coordinates

along with the mask bounds at the time of the save. Up to six

different views may be saved on a temporary basis and another eighteen

may be saved in a permanent disk data set. The temporarily saved views

are simply identified by their number, i (1 ~ i ~ 6), while the perma­

nently saved views on the disk are given identifying names typed by

the user on the keyboard. If no such name is typEd, then the system

assigns a default identifier which is the date and time of the save.

To retrieve one of these Views, the user depresses a button which

presents a menu on the screen listing the names of all of his saved

views. He selects a view by touching the light pen to the appropriate

name.

H. Automatic Projection Pursuit

The PRJM-9 system provides the user with a sort of "automatic

pilot" for rotation. That is, at the user's request, the system

will invoke a numerical algorithm that automatically searches for

data orientations (projection directions) that display interesting

structure. This algorithm is detailed elsewhere
2

and only its

general properties, as they relate to the implementation on the

-PRIM-9 system) are discussed here.

- 21 -

The automatic projection pursuit algorithm assigns to each pro-
A

jection a numerical index, I(F,t), that corresponds to the degree of
A

data structuring present in the projection. Here ~ and t are the two

orthogonal unit vectors representing the particular two-dimensional

projection of the NDIM-dimensional data. The more structure present-
A

in the projection, the larger I(Q,t) becomes. The essence of the
A

algorithm is to find those projection directions (Q and t) that maxi-
A '"

mize I(K,t), subject-to the constraint K . t = O. This projection
A

index, I(K,t), is constructed to be a smooth function of its arguments

so that sophisticated numerical maximization algorithms can be

employed, minimizing the CPU cycles r-equLred .

The automatic projection pursuit algorithm can be invoked in

two ways from the PRIM-9 system. At the simplest level the user

simply depresses a button. Starting with the current projection

(appearing on the screen), the algorithm finds (a~d displays on the

screen), the projection corresponding to the first local maximum of
A

the projection index, I(K,t), uphill from it. In this search the

horizontal coordinate, K, is held fixed while the vertical coordinate

is varied in the (NDIM-l)-dimensional subspace orthogonal to K.

Depressing the button a second time causes the search to continue,

but this time the veritical coordinate is held fixed at the previous

A "'*
solution value, t = t , while the horizontal coordinate, K, is varied

"'*
in the (NDIM-l)-dimensional subspace orthogonal to t , seeking a

A*
further maximum of I(K,t). Pressing the button a third time causes

a further maximization, this time holding the horizontal coordinate

K fixed at its solution value, K = k*, and again varying the vertical

one, but this time in the subspace orthogonal to the new horizontal

coordinate K*. This procedure of alternately holding one coordinate

- 22 -

fixed vh i.Le vary1J}!: the other in the ""}'~Y'Qce orthogonal to the

first, CBn be continued (by repeated of the button) until

). At; each .in

this iterative procc the roe ui.t.s s r-e on the screen 8S

the current

The second mode of aLl.ow ;s

Gte

::3 d i.f'f'e rerrt

butt T11ts CfHl.BeS a menu to appea r on the scr-een Li.at

options available. These options allow the cho'ice of any two of

the i.nitial coordinates or prLnc f.pa I axes of' the current data set

(isol.ate) 8S starting axes for the aut omat l c pro,jection pursuit.

ThiE menu a1;:;D a l.Lcws the interactive modification of some of the

pa rame te r s of the automatic a LgorLt.hra 8S well as simply dii1play

the data along the va r Loue principal axes without the correspond

search. The user selects from among these options by touching the

light pen to the appropriate places on the screen where the opt Lons

appear. After starting the search at two of these alternate axe s ,

the user continues it by repeatedly pressing the first button as

described above.

... 23 ~

DISCUSSION

has been avai18ble for production data for 6 r-e

short time so t hat OlA,}"" with t 18

not dis ma1"ly of i mos t inte.rest aLIO use ful. 8

Ln BHa lS

In the data ana is t i.on , the

runct.t.ons as 8 cluster de te ctf.cn and sepe ra t i cn device.

cation of v i.ev "and 8 ut omatic) J the user

tries to fj nd t.hoso date or-Ient» ti.ons t ha t revea 1 to him interesting

structure or c Lus t c r I ng , Us Lng the automatic projection pursuit F!lgor:i.thm

(started at the larger principal axes of the data) to find interesting

starting project:Lons, the user then manually iterates the rotation to try

to find structure or to sharpen any G t ruc ture found. Thi,] Lt e rat.Lon

process usually pr-oceeds 8S f'o Ll.ow s 0 A visible coordinate is rotated

against one of' the invisible ones until the clustering is as sharp as

possible. This invisible coordinate is then rotated against the other

visible one toward the same end. Another LnvLs LbLe coordinate is then

chosen to be rotated against the two visible ones J hopefully Lncree s tng

the cluster formation and After all of the NDTh1-2 LnvLs fb Le

coordinates have been rotated against the current visible ones} the whole

process can be z-epea ted {s Lnce In the pr-oces s of these rotations the

current coordtnates have been considerably so long as progress

made. At any the automatic thm

can be invoked (this usus

rotations is s Low }.

happens when progress being made

- 24 -

· -con ce usee end Ls o.Lat.Lon] to isolate the Clusters

into separate d3ta can then be aDa in-

div Ldua to see ~~ there are different that reveal still

further

the muLtLd imens Lcna L space car; s tl l.L ve considerable as to its

effect of the cont inuous

rote ti on is vcry -d Iona L e f'f'e c t

depth into the screen~

Lns Lght

dirue ns j ona 1 chs r-ac t e r i s tLcs of data point sets. The simplest of these

(as ment Lone d above) is the sliding of an unmasked zone of chosen width

back and forth on the various coordinates invisible to the screen, one

at a time. Another more sophisticated approach might be called the

"concea Led generalized epf.s cot Ls te r!". Its operation would be roughly

as follows. Let each coordinate run be tween -1 and +1, let 8, b , C and

d ~e ana 11 f r-ac t Lons , and let the da t.a for this cxampl.o be s Ix -rlImcnc l fJwd .

picture

masks

rotation

coordinates land 2

F
3

at -8, B4 at +b, F
5

at -c, B6 at +0

play with 3), (5 3), (6,3), (s,4L (6,4),

5)

The unmasked hype rvo l.ume is a hexadecarrt an the four coordinates 3, 4, '5

and 6. Rotating these coordinates among themselves essentially rotates

this hyper-e conLca L (......i..HGCLl not spherics

around among t he (four-dimensional ions of the) points, thus

genera liz the TotBtion of 1:1 convcntio1181 (nector-dlEX) r.

Thin approa dl [,cern;:; often rc:wn I'd

major s t ruc ture in ", point c Loud .

the fIL;; t ~ J 1, (r

- 25 -

, ,11 11 ('t ha t tne core rn one or more

of thc; Lnv La Lb Le crJorc1Jnates) of 3 v Ls Lb l.e concentration of

the natural node J..E~ to orde r]

r-otate urrt iL t.he oncerrt ra t.lcn as

(this will the core),

until onc-sixth to onevf'our-th of all are

blotted out from each side,

(3) operate

(L \
< I rotate among the invisible coor'd i na te s t r'epea

number (j) a 11 the vh l Le .

Appearance of a displacement oscillating with the mask-countermask

is an indication of existence; direction, and amount of curvature.

In the pattern r-ecognftLcn applications, the system runc t tcns as roth

a linear and piecewise linear device in supervised and unsupervised d is-

crimination analysis.

As an example of its use as a linear device in a superlised application;

cousIdez- the problem of' f:Lnding the best Lf.nes r discriminant direction in

the multivariate space for separating tvo known data classes. Here, the

points corresponding to each class are correctly identified from some ex-

is to find the ·best direction separating t.he

onto that directiDn rl'he ana .1-8two classes when the data sre

t erne 1 S ouree and the

as follows" j~ mate Ls added which conteLna the Lnf orma t f.on

identifying the class of each data point. This extra coordinate is

tured (ver-t.Lca inst each of the data coordinates (horizonta in

with the £~cond coordinate.

- 26 -

vlbi.. Le v ic'\oJ the data is rotated among all the

l~DJ]vI c oord inc; tes '10 .i t.h the maxima 1. overlaE. of the tv: 0

coordinate. This process is repeated

ill t; 8 ch of the

NDIM-l the d i.rect.ion of the

the ext ro (eln

direct

It 1.S 'with r o ta t

l:in,(:3 r 'Irri.s is e8B demon-

.strated by cons the simple example of a tvo-dlmens Lone L data set,

consisting of tvo classes whose boundaries are outlined in Figure 3.

Clearly, there "'"'" no single one-dimensional d i.acr Im.inarrt direction that

can completely s cps ra te the two c Las se s (p, and B := B
1

+ B
2

+ B
3

) .

Applying rotation (both manual and automatic), the user might f Lnd a

projection that achieves a Good par-tLa I. scpar-a t Lon (such "018 PI in Figure 3).

Us Lng thL~

Ls ola Led t' rom j t.r: (~Uilp} f'liH'n t II, +

rotated separately) aearchLng for t'urthc r s t.ruc t.ur-e . In the ca ae of s ub-

sB,fl1ple Bl.' this will yield a null result. For the subsample complement to

B
1,

however, the user may iterate to projection P2 which does exhibit f'ur-«

ther structure. Using this projection to apply 8 mask at M2 J the B
2

sample

is isol.ated from. Lts ccmp Lemerrt A + 3".{. Continuing with this procedure , the
j

user can further iterate to projection P3" Applying a mask at M~ i.n this
j

projection completely Lool.a'te s Class A from the r'eme Lnde r of Class B (B':() e

..J

Thus, the of the linear lliask M1, completely

separates the two data classes. For the supervised case, where it Ls known

in advance that there s rc two classes, t hi.s ccmpLe'te s the soIut t on &

- 27 -

andthe

:rotation and lIla) ,+ir unlOD (

For the

~s nine while the

t1:lC) d.lmens One

rotation End vi.ew th structure.

structures Bre found. ere isolsted Bnd the o.Le t.es are e acn Lnd IvL»

studied fu:r-ther f'urt.he r

isolated and so en. When no more can be found among the

isolates, then they are ana separately and together to try to under~

stand their multivariate properties.

CONCLUSIONS

PRLl.1-9 has been in use for a short time exam.ln Lng and dLss ec t.Lng

mu.LtIvarLate data. Its direct value for this purpose will have to be

learned by experience. We have learned from its t.ha t pic-

tor:l.al sys t oms to tI: eI'f'ec t tve must, 8S did PIUM-9, go many ,;

of trial and error

that tbese dct8ilc

control must be is avaf.Lab Le and the pc:

use the If' we had ten knobs arid six sw itches instead of out t ons

and a pen, we would have realized the same four essentials in 8

different "way 0 He now the ve Lue of the 8

the

zorrta I and before us, We nry~ have 8 8

that the t hf.r-d aspect 'dIILc::..~ these two best is this dynem ic aspect

of rotation, more useful than stereoscopy, color, flicker or d Ls t Lnc t fve

cbarac ter-s . We have learned that t.h is s or-t of p Lct or-La f'acilJ. con be

ufieful in different ways: first, direct a.n the intersctive

ana Is of rn1)l:ti.\!t:1r:Late da t.e , 811d se cond J ~3S 8 s ou.rce of Ldea s and

for the Cleve thInS for lliultivarJate

ht ~ The aut.oma ti.c for

Lhe Jnlcror;tJon

computer a Lmum pr ()-

jections.

Finally, and above all) Wf:~ have learned that the four essentials of

Picturing} Rotation, Isolation and 1-1asking need to work together and that

from them much can be learned.

~ 29 -

L Film

RJi}FEHENCES

Stanford Linear Accelerator CE~terJ

Stanford (;8 L'U'CI'rdr: Ed ~ Bin Produc t t ons "

J .a, Friedrrmn

Stanford)

RobLns on, "An On-Line

for Irrt.er-ac t Lve r Generated Animsti

Stanford Linear Accelerator Stanford, California

Report, SLAe PUB-939, August 1971.

4. R.C < Beach, ItTbe SL':;C Scope Package for the IDIIOM--.i\ Collection of

PL/l Procedures <which may be used to control the IDDIOM Display

Cons oLe J H f3tanf'ord LinenI' AcceLe ra t or Center, .ion Hc-

Varian Dat.a {i20/J Comput.cr- MIHlIwl. Bulletin No. -I: J \In r i an Dnin

Machines} 2722 Michelson Drive) Irvine, California.

6. IDIIOM Technical Inf'ormatLon Displays, Inc. _' 333 North

Bedf'ord Road J Mount Kisco, New York 1054-9.

- 30 -

- 33 -

Displaying Complex Three mensi

Michael J. Archuleta

March 20 11 1974

Objects

s ~as prese~tation at the
Second ng enti c InfonYii£tion ng

Work performed under the auspices of th~ U~S'" Atomic Energy Cornml.s s Lon

- 34 -

DISPLAYING COMPLEX THREE DIMENSIONAL 08~)ECTS

by Mlchae J, Archul@ta
Lawrence Livermore laboratory, l-73

Livermore, C~j Ifornl. 9~550

(415) 447-1100 x3361

ABSTRACT

Tnls paper describes a powerful machine
transportable visible surface algorithm. Input to
the algori~hm can be concave or convex polygons.
The outpUt can be a combinat ion of line drawings.
shaded raster! loes, or 30 contour plotS. Several
new techniques for displaying multi-valued
functions are described.

- 35 -

Whi!@ ©t er (@S@$rcne s ~@v@ been PUf5U g @ cleve nt of new
v t s t b l e 5 s c algorithms 'fl. i ~av@ b ~H\ 811 hfully 9 ihe
hCllfl i q ue t @ w@!:! d@\,e OP@t! t G@ry S. WaH! s n .ffi the
University 0 UtanloJ, ~~d the great p @asure n b@ ng ab @ to work
With Gary Wa kins @$ his programmer and thus became quite fami I ar with
the algorithm. There 8r~ s0v@r@! r@asons for usl 9 this a gor t m: i)
It can prod ce & vs leiy c d ere t types of grey level p c r~5~ 2)
! l n e dr aw l n 0\1 put 15 a ve l ab (j I J; a n d 3 l c an handle @ v r broad
rlnge Df D yhedrl IS npul. working wlEh 1 15 algarl h I I hive
been able l~ develop a mac In@ zransportab ~ cade that Inc©rporal~s al i
of the abc¥~ fe~tures plus some n~w sp@cial ech~ ques,

The WatkIns' visible surface algorllhm accepis 15 input convex or
concave polygons, The coordinates for these polygons Ife in a left
handed coordinate system. Polygon c! lpping is performed to a fruslfum
of vision which opens oui along the positive l axis. It assumes thai
ihe eyepalnt Is located at the orIgin of the system. [See Figure 1)
The algorithm prDduc~5 as oulput ellher veclors for I ine draWing
displays or shaded raSter line segments for grey level displays.

proximately 95% of the code Is written In ANSi Fortran. The
reMaining 5% of the code Is highly machine dependent since it tan leke
advantage of packing data together according to the word size of your
machine. Since you must cre~t@ a subroutine which packs ihe data, you
must also develop a subroutine which wi I! unpack the data. The reason
I have you make up your own packing Ind unpacking rOUtines is that
these routines handie up to 13 different variables WhlCh co! !ectlve!y
require 130 bitS. In addition to the packing rOutines, there are
several other machine dependent rout nes which perform teletypewriter
110, and hence are machine dependent.

There are c hr e e "new" features which I have Incorporated into th s
algorithm: 1) Superimposing contour bands on a 3D surf~ce; 2] creation
of cap p o I ygons 1n s l lei ng; and 3) e x t eo s i on s to the c c n c e p I of wage
shilring,

20 contour p10is are noihlng new In compu~@r graphics; ne ther are
3D contour p l e I s l S}. However. the Watkins' algorithm wes designed In
such s way th~i implementing 30 contour plot5 W6S a slmp!e task,

The W~tw!ns' algorlthm prol@c~s &1! 3 dimensional polygons tOte a
20 p l e ne . H~ @ ()'J t ohe U o f1 j;d e f' e r s d i v ; ,j ~ d i I'd ('I h0 r I 20 nt I)! r @S t e r !! n@ S

and the a gOflthm computes the visit! liy @f the ~o!ygons a raSter i lne
ai @ time. A segment tthe portion of the raster! ine which IniersectS
the polygon) is sorted and compared with other segments to see which

- 36 -

are visible. (See Figur@ 2) Each swgrnerd. has x , 1. L (hits x , d@lta
'1, and delta l Information for both the !@fi and righl e~d ~Gl~ls. Th@
d@lta Info ffi!1tlon is added to ih@ currenl d~t~ t@ see what the ~@w

II a ! u e wi! ; be: e nth@ 1'\e)(t 50 C an 1 I n e . 1n 1971 & t t he Uri 'i e r 5 ! i 'f 0 f

Utah, Henri Gouraud &dded a shade and a delia shade to each end pOint
of 8 segment, ThIS resulted n the @w popular Go raud smooth ~h8dln9

eec b n t qu e l E

To do the contour plots, &dded a current contour value and a
delta contour value to the segment lnforma~l©n. Assume we have a

lslble se men! whose left contour va ue Is 10 and right contour va ue
is 18. we are nieresied in see ng contour bands Wt 12 and 5, we
perform a 5 mp e c~!cua!ticn to determine the x location of these
contour ba~d5 on the segment. When we update to the next scan 1;n~, we
might get a different locatiO for the x values. When these points are
connected together, there wi!! appelr b curved conlaur band. (5••
Figure 31 This is father unlqui since mast conlDur p!oll!ng lechniques
mUSt draw straight ines across the face of a polygon. The only way
they can approximate curves Is by increasing the number of polygons or
do curve fiding techniques. (See Figure 4}

Now for a few words about cap polygons. The polygon c! ipper that
is used in this algorithm is simi Isr to the one developed by Sutherland
and Hodgman[41 in that a polygon Is clipped to the six planes of 8

fruslfum of Vision. There developed at lLL a need to be able to c! lp
the front portion of an objeCt away so the innards of a 3D flnlie
element or finlle difference model could be Studied. Since these
models represent sol Ie obJecls. it was necessary to put a cap polygon
over the hoi low she! i created by polygons. (See Figure 5) This was a
natura! for the polygon clipper since it WIHI!d s e ve the edges ihd Ii
had to c r e s I e whi!e c l l pp l nq to Uu front plane of Uu f r us t r ue . Once
the clipper had processed all the polygons of a s e l i d e b j e c t , then H.
would be left wilh a set ~f edges on the fronl piane which defined 3

closed cap polygon. Since contouring and shading information is p&ssed
through the cl,pper, the cap polygon wi I I also have thiS information
and contour bands Cln thus be ploiled an the Inside of an abJecl.

The liSt item worth discussing Is edge sharing. One dr~wblck of
the Watkins' algorithm is lnat adl~tenl polygons ~acl to slore lhe
shared edge twice. 1 h~v~ done nOthlng more lhan provld@ simple coding
to el irnlnate thiS redundant Storage. However. there Is an Ird.ar@stlng
I!pp!icl!d.itH10f edge sharing In doing l t n e drawings. TI~ e , for

nstance. a cy! lnder which is composed @f m&n~ polygons. if ~ou go
through the process of el imlnatlng polygons w~lch f$c~ aw&y from Vau,
and you say don'~ draw edges which are shared, you ~l i I ~nd up with a
piCture c a tube, Since the bach facing polyg@ns wwre never sl@red.
the edges on the perimeter of the cy! inder were neV$r sh~red thus
making them p!ottsble. (Se@ Figure bJ The uti! Ily of this Is In doing

contour plots
c e n t e ur bands

®mbigu ty.

where it Is often dIfficult

@r po ygon boundaries, This
t@ determine which are

t@chniqu@ @so!v@! the

The grl.tesl flatWte Df II I Is lhat this program ! BVII .bl. far
use It inslal III an! Dih_r than Llv©rmofl. There Is I complele
document avallaole a how to USI this algot!thm Ind It can be obtained
by calling or wrH ng to ilHL A l c] of WD k hIS gone Into ihe algarlihm
In mek ng t easy to implement an different computer systems. The
rHH!'!0fOUS c p I l e n s whIch are e v e l La b e allow you to explore M@ny new ways

in displaying your Gats. Thus, i'l e few weeks time, you te@ can be
producing sophist Cited pictures with I pow. ul visIble surflce
algorithm.

REFERENCES

[1] Arcnul@t®. M.J .• Hidden surrace I Ins draWing
algorithm, yier Science Departm@nt, University
of Utah, UTECH-CSc~72-121, June 1972.

[21 Gourlu@, H., Computer display
surfaces, utlr Science Depariment,
ol Uiah, UiECH~CSc-71-113, Jun@ 1971.

of curved
Unlv@rsity

13] Ra sb t de ,
analySIS, ACME
1970.

Y.R., Ce ap u s e r
Winter Annual

grsphlcs
Meeting,

In stress
Novemb@r

[41 Sutherland,
polygon clipper,

pp32-42.

I.E., and Hodgmsn, G.W., Reentrant
Comm. ACM 17, ! LJanuary 1974),

[5] Sutherland,
Schumacker, R.A.,
problem, Natlona!
p

I.E. s

SOftlng IHH.1

Computer

r c u l ! , R.F., and
th@ hIdden surface
Co rd Hen c @ { 1973) ,

[6] Watkins, G.S., A r&a~ tlm@ visIble surface
algorithm, Computer Science DepartMent, Un verstiy
of Ulah, UTECH-CSc-70-10i, June 1870.

- 38 -

I

/
/

/

Eyepoint

Frustrum of Vision

- 39 -

+z

Fiqure 2

Right contour ---~
value Raster lines

at 15

3

- 40 ~

wi th

171 gUT'e 4

Shell of a Cube @fter Cipping
to Front Z Plane

thout cap polygon ttl cap polygon

Figure 5

Cylinder with
all polygons

Cylinder thout Cylinder without
backfacing shared edges

polygons

- 42 -

D1

Mi J. Archuleta

TID le

Technical Information Center
Oak R1dge t TN 37830

- 43 -

5

15

2

2

cmI,PUTE:R C;ENERATED MOVI ES -

DltvfENSION MAN-M_l\CHINE COMMlJNICATIONS*

liott, Orr t and

Icon. C~

typical
run up to 20 hours on a CDC
generate up to a billion numbers.

1em the users of these
what has been

ist-ings are
poor

Static pictures are much better than listings
but are limited to two dimensions. Through
the use of movies, one adds a third dimension
to the communication process. This paper will
describe the evolution of computer generated
movies at Los Alamos Scientific Laboratory and
describe the techniques now in use.

not only an excellent source of information.

but valuable as a teaching medium.

The production codes are used to mode

lcal events and usually calculate

physical variables as a function of time.

"What results do we have from ls.st

night!s production runs?l! is a question

asked daily by weapons designers at Los

Alamos Scientific Laboratory. It is not a

question that can be answered by a single

number or a small set of numbers. A typi­

cal production run will take from 20

minutes to 20 hours of CDC 7600 time and

may generate billions of numbers. Through

the use of computer generated movies we are

able to present a very good description of
what has been calculatcd q The movies are

out that the designer is con-be

are not necessarily rectangular and are, at

times. quite distorted. A number of i­

cal variables are associated with each node

and each zone. Each problem will run sev­

eral thousand cycles; thus generating
billions of numbers. The presentation and

interpretation of these numbers is a very

complex lem.

The production codes exhibit their re­

sults in a number of ways. One method

to generate hundreds of pages of ntcd

output. This is the most 13ua1 demon­

stration to the casual ob crver that the

individual is doing some work shown hy

the huge piles of list occupyin hi

office. They are of very limited usc

otherwise with only a limited number of

pages giving useful information. It should

from 1.000 to

usual de-The geometry of a lem 1S

scribed by a mesh cant

15,000 nodes. These two dimensional meshes strained to such long listings

-:r;:-rl11 s WOI'rpeTtormed under th e auspices of
the U. S. Atomic Energy Commission.

A second form of output IS a set of

e t.c r s will he essential 1'01" his analysis.

In a given case, however he may use only

a small percentage of the formation

mechanical plotter at intervals

lem. These d were then

graphed on 16 mm film with each plot being

times. The res It was poor

movie. rather jumpy, but st 1 valuable

and indicated that movies would indeed

isc y which param-

use of a mechanical plotter. The

tape s to o.r aw on the

ctures

useful purpose

the

problem analysi .

development of 16 mm

turn-around time,

film was from two to six weeks. When this

t1'8.1 Computing
For mm

was reduced to a one

film the Laboratoryls

Eac i Li.ty , the t u'rn e a r ounc t

up to

to at. f plot IS lable, the

tapes are readable, and the plotter does

not malfunction. th designer will have one

excellent plots late in the day-- the use movies became a practical too

of uthe

become immediately

to make moves

lemsSeveral

The standard film rate for 16 mm pro­

jectors is 24 frames/second. This

would require 1440 frames for a one­

minute movie which is very expensive

if done on a production basis.

The designer must decide prior to his

run what kind of movie he wants, the

portion of the problem he wishes to

view, and the time interval for gener­

ating movie frames. It is easy to make

an error,

It is di f f icu l t to make more t han one

movie on a given production fun.

Production codes typically run at a

variable time step, and it is difficult

and expensive to equal time

intervals for the movie.

It is difficult to make a movie and

generate standard COM output on a given

Tun,

In item one (1) we have been able to

reduce the nwnber of frames needed the

4.

"Z
.J.

2.

use of variable speed projectors. These

projectors have rates of from one

to 24 frames/second, both forward and re­

verse. This enables one to stop the film

at various times. reverse it and view a

on of the film repeatedly. This has

invaluable. not in computer-

generated movies but foY other movies also.

for the designcrs~

L

production code:

evident when attempt

simUltaneously

ieal v a r i >

tative indication

between

lations. I

abIes and time. We generated our first

movie from computer- output in

1960. The problem was r un on an IBM 704

computer and the geometry was plotted on a

provided he chose the right 0 param­

eters to plot. 1~8ge plots are excellent

to work from (very detailed, large scale.

and may be written on) but are too time­

consuming and awkward to convey enough

information about a production Tun.

The main source of information has

been and will continue to be computer out­

put microfilm (COM), This is generally

35 mm r o11 fi 1m wi th an ever- I nc r eas i n g

percentage being in color. The Laboratory

will also have a microfiche capability in

the near future. The results are displayed

at regular intervals during the course of a

problem and in many different ways. This

film provides all the information that the

designer was able to request before the

problem was run. In most cases, hindsight

indicates that a picture of the lems at

a given time and a particular view was not

requested and would have been invaluable in

analyz the results of the ion run.

The standard COM output gives little feel

for the relationship between physical vari­

ables and time. However, the data record

of the run is in a compact form on COM and

is saved for later reference.

Movies give the viewer another di­

mension in viewing the results of the calcu-

- 45

Mov Code I ~ was

movie code,

vc to l vc some o I

has in addl ion , a number of

options for titles. A movie can

t

s

ba 1 for

with tit!

de

upon procGss:1

flg t

lie

extended to

We intend to use the code as

others to

movie generation

pI tely generated by

number of oJi idual mav e •

both ends. The
This

from a

most

times

rn t e r-vaLs

ck

th prozluc

ua t e

saved at arge t

po s itLve and

lems,

data

les movie

intermediate file contains al

these prob ems.

durLng cer t a i.n es of lerL and at to ve muLt ip Le plots per r r ame .

of two dimensional timc-dcpenJcnt mesh

ca]culntions.

in presenting the resultsis

This is not the only code us

LASL for movie generation. It IS a

code designed to display the results 0

calculations involving two dimensional

meshes. It has proved itself as a valua­

ble tool in a production environment and

intermedi te file structure is well defined

and is now being by a ority

production codes.

MZC has the ability to generate a

specified set of problem times from those

given through interpolation. This enables

one to make a movie with constant time

increments with Jata that is sparse at some

times anu dense at others or even when

given at unequal time intervals. The code

will also generate new variables from those

given; for example, one may convert from

rectangular to polar coordinates. The

modified data is then available for making

movies.

A ,~2" &" • h d i f f't pre sen t ~ iVl "-' con ..a 1 n 5 e 1 g t 1 - r e r -

ent plotting modules. Each module is inde­

of the athe modules and is easily

modified for special plots. New modules

will be added as required. Each plot

module contains a number of easily speci­

fied options; giving the user complete con-

trol of the movie. Some of the

options available are color, at orien-

tation. control, selection

small time interval at other es. This

1: a

fied node partial mesh selection, and time­

step control. The plot modules include

mesh plots. interface plots, contour plots,

several isometric plots, anal plots,

epd several xperirnental plots.

AN rWfE:RAC'I'IVE DIGITAL I}'1,A.GE

PROC~ESSJN(:; AND DISPI..,.l\Y SYSTEM

L. Hayes, C. Journeay, M. Wirth, Lawrence
Livermore Laboratory; L. Hatfield, University
of California. Davis

(Paper not received in time for inclusion in
the Proceedings)

- 47 -

COLo.R MOVIE FACILITY

R. Levine

March 26, 1974

T1'11,8 paper was prepared for submittal to

Second Spring AEC Scientific Computer Information

Exchange Meeting

- 48 -

IE FACILITY *

1~T CT1fl\;

r nc
v

by St
VermOil: ab o r a ~

re. C ifornia 94 50

At the Lawrence Livermore Luberat
eration of computer-gener cd co
desired color 5C separat

These hI wh te films are
printer us col r filte 5 to r

the present scheme r
is to record each of

black and ito f 1m.
c ined in an optical
final Lm,

:\ major ob s c l e to wid us c of this method is t.h long
turn-around time r cq u red for c I e t i on of the film.
Consequently» color films have been use only in the final stag s
of <1 project rather then during the d ug a s e , Wi t h the intent
to make color film a routine output mcdiHm~ a DD80A Microfilm
Recor de r WEtS modified by adding a ita phosphor CRT and a color
filter changer permitting fast, onc-pass generation of color
computer-generated film.

With the advent of software to produce shaded color pictures,
a new problem appeared. A single color frame at full resolution
contains over 3 million points. Using the point plot command
(36-hits), the storage costs on disk or tape of even. a film of
modc r a t e length b e come prohibitive.

/\ special
representations
raster command
according to a
he dcscy'ihetl
required. In
r c p r c s o n t a t ion
I ow- if: c; 0 } u t i o n

interface was designed that allowed compact
of these shaded pictures. The 36-bit shaded
will plot up to 4095 points. varying the intensity

us e y- spec i fi e d slope. Typ i c a l s haded picturescan
using 0.1% to 1.0% of the storage previously

ndditi.on~ the intcrfrtcc allows compact
of dir;itj7.(~d pictures and automatic expansion of
Ii i c t u res o n a II i - res 01 u t ion 1~ rid.

The direct connection or the device to a CDC 7() () will make
feasible for the first ti me at Law r c nc e Livermore Lnho r a t o r y the
routine generation of complex computer-generated color film.

* This work was performed under the auspices of the United States
Atomic Energy Commission.

- 49 -

DESIGN GOALS

tion of th DD8
facili for direct generation
The requirments r t 5 facili

leTa ilm recorder is to
of color computer- ner t

are

rovi e a
Lilm .

irect recording on colo film r rap d Tn roun ,

2. Cap a I Li of 32 grey levels.

3. Effiei t handling of raster pictures.

4. S tware compati iIi
recorder.

with existing DDsoe erc

DuaOA HARDWARE

The OnaGA [1] is an old (vintage 1962) electrostatic
de ection microfilm recorder. It has the capability for drawing
vectors, plotting characters and plotting points on an ressible
raster of 1024 x 1024 points. It is quite fast in that it can
plot a character or point approximently every 5 microseconds. Its
instruction set contains only five 32-bit instructions.

1. Plot a point at (x,y).

2. Position beam at (x.y).

3. Dr3.'" vector from current beam position to (x,Y).

4. Enter character mode at (x,v),

5. Advance film.

been modified to plot at 32 intensi (grey)
is selected from the interface v a a new

Iter anger with 8 filters has been added
r a V tub e • Th i s CRT has a scia 1 n whit e H

r e co r-di ng of HeolaI'll images. filters arc
the appropriate hits in the new cow:

The DD80i' s
levels. The intcnsi

i\ color
with a new c
e r to <1110\';

selected setting

Color c cr-gcnerated film is created bv u5in
in the camera exposing it thro the color ~iltcTs.
sets the color filter to the desired color and then ou
data to be plotted in that color.

o l o r film
lhc user
uts the

The DDB A inter cos to a portion of the liter network
as shown in figure 1. The DDRO/\ looks like fie tap un i t
to e host s stem. The user interacts with u t e r via the
TTY suhnetwo t\ preview of r ie au ut can be v ewed on a TV
display also connected to computers v a another subnetwork.

- 50 -

h11c£1 t. e user is s a t i s f i e w i t h the
the gr ics to the nDSOA for record
is on-1 nc. no intermediate disk storag

INTElzFACE

t~ she can then direct
film. Since the device
r pictures is rcquircd~

The DD8fJ is connected to two CDC: 7600 PPU~smeans of
LLL designed interface [3]. In adJition to h ling transfer
o f co mm and s the 760 0 tonna0 At t 11 e i n t e 'r f ace con t a ins
logic at allows t OnaGA to appear to the user as if it had an
entirel dif rent structure. luJing some complex new
comman In particular. 32=hit. 4-chara.cter~per-word nnaOA
is programmed usi.ng the 36-bit. 6- aracter-per-word nnso
instructions. The interface translates t s e commands into [11)80
-i s t r uc ti on s , nn80 ta 5 can he n l c t t e d on nn80/\ with n
software t r an s I ti on atsoever' in add i t i on , 3. new command
directs the interface to set intcnsi and to change color
filters.

Four new comMands have been added to the nDSOA via the
interface. Their purposes are to nrovi access to the new color
anrl grey level features to ~11ow a compact description for
certain tynes of raster data.

The raster commands are designed to plot pictures which are
up of points lying on a uniform grid. Since points

appear in a fixed order (left to ri • top to bottom). the raster
commands are designed to provide a savings in user picture storage
by requiring the user to supp only picture information. with
the interface calculating appropiate x.y positions. In
addition. the auto-increment feature allows pictures fined on a
512 x 512 or 256 x 256 grid to be plotted on the 1 1024 x 1024
raster. The inter can automatical plot the picture
information on every other raster position. ski in every other
line, or plot on every oint and every line~ This

ature is operable on all of raster camm

1. COLOR-I\TENSITY

This command sets the intensi an or color filters.
appear heforc or after any other command.

- 51 -

I t can

o

I n t s to be
e intensit

or as

generates TO as
up in 0 a numbeas 1

b
as

the e 0

segment. and
is si

at ttL

d

e

of

over

nt-plot wi the
intensi aarh ryA TO rln. a'"' "'.~ !. v • '," , Ji ,"'"~; L

rigi~ conrnand (SRO 15 Issued WhICh sets
of pI turc. is is ical x=O. v~ 23.

lowed all of the segments. A er raster
of any lin~ _ s plotted."t in~er s~ips the
of 1 nes (O.l~j) an S1t ons Its x re 1St t

segment data need he supplied the user.

tart
t ,

sen uen eel
inearly erp~lated

picture. a Set Ras er
the e
The S
pos t on 1024
correct number
zero. on

a
s s
1024 po
p l.o t tr

3. BUCKET OF!'trENSIT ES (BOl)

This command is designed to plot di itized pictures. and als
facilitates the display of data digitize on a larger grid than
the hardware's 1024 x 1024. The data is organized as a collection
of lines (1024 maxi E;tch line is a collection of picture
clements. A picture element is 2J3$4~ or 6 bits. (1)icturc
elements of 2,3, or 4 bits are used for data that is digitized at
4$8, and 16 levels of intensi respectivly~ The 5 high-order
bits of 6-hit nicture element are used for 32 levels.) so
4 picture element" sizes are p ded to minimize storage when 32
levels are not required. The picture elements are plotted on
raster positions according to the auto-increment setting.

For each picture, the user specifies 4 items.

1. The e r of picture clements to be skipped at the
beg ing of each line. The hardware performs this skip
very rapidly.

2. The er of picture elencnts to be plotted.

3. number of picture clemen s to he skippe a the
of each line.

4. The e1" of hits fin i nr; a i c t u y eel e HI e n t .

formation. along with the numher of lines of data to
is issued prior to t he actual data. This COITlm can

r scanning data. For example, consi r data that has
itized on a 2048 x 1024 vrid. Wi ut moving the data in
ffcrent portions of the 0 d a t a may be presented or

(auto-incremento changing only the control words of
command.

This
be plott
he used
been 0.1
core~

expand
c Bnl

~ 52 -

4. BfJCKET OF BITS (BOB)

This command is i tical to the anI command except for two
distinctions. Firs ~ t p ic t u r elements arc 1 b i t , allowing r
either a i n t or a blank. Se c on d , where a a pears~' the
interface es not issue a int-plot but ra r skips to
the next picture e 1amen t in 5{] n anos e Thus ~ the time:
required to plot a BOB picture is a ion of number of 1
bits present. rather than of the total numher of icture elements
in e p ic t ur e , Data that is format for I s p Lay s can be
plotted very quick using this command.

CONCI,l.1SIO;~

This cili has been siB,ncd to efficient
connu t.c r e ve ne r a t e films with several new a ture s
sto'rage r~(plirements for picture d a t a , thus r e duc
for handling large and complex files.

REFEPENrES

pro e color
that minimize

e overhe

[I] Cecil~ \.
Manual, Lawrence
2.8-002 (1964).

and ~{ichael~ G. nn80 Programmer's
Livermore Laboratory, Report N

[2] Archuleta, ~L Hidden Surface Processing,
Lawrence Livermore Lahoratory, UCID-30057 (1973).

[3] Pryor. K. and Long, R" Lawrence Li ve rrno r e
Laboratory~ Internal Document LEA-73-300S-99
(1973). Readers outside the Laboratory who desire
further information on LLL internal documents
should address ir lYleS to the Technical
Information Department, LL J Livermore:California
94550.

~ 53 -

\..11
.z;:.

TTY

TV
ISPL

boom W PDP-8

PDP-10

Z

STORAGE

7bOO

DOBOA,COLOR, ~ = w

GREY LEVEL,
RASTER
COMMANDS

7600

a

lON Of THE Lll COMPUTEK. NET

f ,1

nnn:RIEUTION

R. Lev Ine

TID File

Ex'Gernal :1. on

L-9

Technical Infonnat1on Center 0

Oa1{ ~ TN

- 55 -

SESSION II

Physical, Engineering, and

Biomedical Applications

Chairman: G. H. Campbell
Brookhaven National Laboratory

- 57 -

ADVANCED G~~PHICAL DISPLAYS

USED IN TI-IE IlNl\LYSI S OF

M. F. Hodous and I. A. Pless, Massachusetts
Institute of Technology

(Paper not received in time for inclusion in
the Proceedings)

- 59 -

it. Pattern tion Code for Curved Tracks

I!1stitute and State Haivers 24061

Bxcokhaven National $ New York 11973

We descrihe and evaluate a computer code$ PI1~£

which associates sparks into tracks from digitizings

produced by a system of nine cylindrical wire spark

chambers operating in a 10 kG magnetic field e PITRACK

was written in FOR~~ XV and requires 12K octal words

of CDC-6600 core storage for execution~ Packing and

unpacking routines required the data tape format

account for ~ 20% of this core~ Track recognition time

principally depends on the initial number.of tracks to

be recognized N, as

per

PIiMeR: i.dentifies A>, 9l}% or all tracks found a human

scanner ~ 1% of the tracks it found were

*Work under the

tPresent Address~ Brookhaven National N.Y. 11973

*Present Address: of Toronto, Toronto~ Canada

- 60 ~

A Pattern Recognition Code for Curved Trac~s in Cylindrical

Spark Chambers

The Multiparticle

inelastic events per hour and

events its firs t
1

The analysis of any significant portion of these data required" a highly

efficient automatic for associating into tracks to form

to a relatively small control sample to keep the data processing tractable~

2.The Vertex Spectrometer t VS, of MASS was a system of nine cylindrical

wire spark chambers operating in a 10 kG magnetic field" Charged particles

produced in an event emerged from a centrally located target, followed helical

trajectories, and where they intersected a chamber a spark occurred~ The data

from each chamber appeared as bWO independent sets of digitizings~ The first

set was equivalent to a projection of the helical tracks onto a plane

perpendicular to the axis of the helix and resulted in circles. The second set

was related to the dip angle of the helical tracks and resulted in straight

lines. Combining the ~o sets of tracks produced a three-dimensional repre-

sentation of the particle trajectories of an event ..

Track Recogniti.on Code

The computer code, PITRACK, was to provide track recognition

for the VS.. The global strategy used in PITRACK was to develop several

algorithms which provided a few good initial track candidates e These track

candidates would then be upgraded until they either fulfilled most of the

conditions for acceptable tracks or failed enough to be rejected@ Several

- 61 -

intermediate stages of tests and a final tra.ck selection determined the'

ultimately acceptable tracks~ Permeating the ~ode was the philosophy that

satisfactory

it ~

which would

rather than

search

when a track failed a

track until it became

We found no

under all circt~~stances~ thus several and

searches were

t r ack ,

The most difficult task was

\\!hat cons t I tuted ancomputer prec

no s

of rules was

set of conditions was found to exist, so a

to include the diverse range or tracks

set

, in many cases it was found necessary to

explicitly take into account certain idiosyncracies of the VS chambers

and readout sys~em~

Each chamber of the VS produced two sets of digitizings,by means of a

~gnetostrictive readout systern~ The first set was fra~ the high voltage

wires which ran vertically and were parallel to the magnetic field~ The

second was from the ground wires which were rotated at an angle of ± 26$5°

with respect to the vertical, the s alternating on successive chambers~

The high voltage and ground wires were separated by 3/8 inch~ with the result

that a spark produced two digitizings in different planes, rather than a

in 3-dimensional space~

The tion of the digitizings from the vertical wires onto the VS

median shown in

hydrogen target~ The beam enters from the and

- 62 -

the magnetic field of 10 kG is directed into the plane or the The

nine arcs are the outlines of the Lndr Lca l chambers, The darker points

are the S~sparks obtained from the vertical wires. The tracks, as found

PITRACK s are shown with certain anc information, The arc distance

to a

called S.

measured a chamber from the spectrometer center line was

t LnEo rma t Lon was ob t a Lned from the sl.an t e d wires. It was

generated on the set of lines of intersection of the chambers and a inder

defined the helical of the e and was called the Y-view.

Possible spark coordinates occurred whenever a slant wire which fired

crossed a vertical wire which also fired. The Y-view of a typical track

is shown in Figure 3. The vertical lines represent the chambers and the

dark points are 'the Y-sparks. The circled sparks have previously been

associated with another track. The horizontal axis is the S-view arc distance

along the track. In the Y-view the track is a straight line.. The dark

point at the rear of the target is the event vertex.

The Y-view differed from the S-view in two respects. First~ the former

was not defined until a possible track had been found in the S-view. Seconds

in contrast to the S-view s not all the coordinates defined by the many inter­

sections corresponded to real sparks. Therefore t tracking was performed first

in the S-view. The Y-view was then used to c on f Lrm a track candidate and

determine its dip e.

Strateg,x

An initial event vertex was obtained ecting the trajectories of

external triggering particles back iuto the VS and intersecting them with the

known beam ectory. For particles detected in the !4omentum Spectrometer.

(HMS) the digitizings nearest its extrapolated trajectory in the VS were

- 63 -

accepted as those from t.he HIllS t r ac k , Par t t.c Les de t.ec t ed in the Lowr1omu1tum

Spectrometer (vlere not s Imf.] treated because of Lnexac ti tudes in t.s

tory introduced energy 105s, and ~iS spatia

Five distinc indicated in 4, were

sets of Sand coordinates"

Initial S

The first,

candidates were

emulated the

four search

of the human eye to

smooth arcs in a collection of

Search, found tracks with little cuz-va tuxe which

The second$'

close to one mlother in

the forward direction~ The third, Brute Force Search, resorted to trial and

error to sort out the more complicated tracks" The fourth s 2-spark Se~Lch,

looked for steeply dipping tracks which exited the chamber volume after

passing through only the first two chambers 0

Once an S-spark was successfully associated with a track, it was

excluded from further initial track searches" Rowever t associated sparks

would be used to fill in gaps on other tracks during their development"

Typically 5% of all the S-sparks were associated with more than one track ..

2~ S-view Evaluation

Track evaluation took place at many stages of track Before

the inItial track as many were assocIated

with the trial tracks" Chambers were flagged if the track missed or went

an inactive Tne most notable requirement in track evaluation

was that trial tracks have a minimum ntmmer of S~sparks on their

- 64 -

3~ Y-view Tracking

A search was made for trial S-view tracks t.o find Y-sparks

a straight line near the vertex~ If no track with a

number of was found~ the S-view track was flagged@

Because slant wir€:1S a l ternated in d Lrec tionfrom chembe'r to chamber 9 the

created the passage of more th&1 one

the chambers was removed~ However~ reflections due to

occurred on the even or odd nu..mbered chambexs , A:!:l

tracks often

of such a track

reflection is seen in the upper part of .3 among the circled

Authentic Y-spark a.ssociations must therefore include both even and odd _

numbered chambers.

4.. S-view Track Development

The S-spark tracks provided by the initial track searches had many

shortcomings. For ~xample, the Smooth Track Search often purposely supplied

incomplete tracks. Furthermore incorrect sparks were frequently associated

with a track When more than one digitizing existed near the track on a given

chamber, or one of the initial searches projected a track incorrectly to a

neighboring chamber. These problems stemmed from difficulties such as readout

noise, signal inversion~ track age, lineup imprecisions delta rays~ multiple

scattering, nearby tracks, etc. Convergence to the best possible track in the

S-view was affected by exa~ining alternative spark combinations$ The best

track was defined in terms of~ first~ the n~ber of S-sparks associated with

the track and then its chi-squared~

The above type of track development was concerned pri:max'ily with the

internal consistency of the sparks in a trackw Further optimization of the

tracks occurred when study was made of how the tracks collec

formed an event e For example, since the vertex was not fixed during tracking

whenever it moved significan an attempt was made to bend tracks to the new

- 65 -

vertex subs

thi.s resulted in an in track

At several stages the progranl the established tracks were

wi th one ano the r to e tim:L.'1a t e

che forward dLr ec r Lon txacks

Near the VS center line there were dead

pas s age of the These dead spot s

forward tracks and tracks which shared

scru t Lnf.aed , In. other of

allowed replacement of an occasional incorrect or incomplete track the

correct one.

The location of the vertex was after each new track was found

by forming a weighted average of track Lnters ec t Ions with the beam, 11H~

weighting factor was sin
2 e for the Z position and cos

2 e for the X position,

where 8 was the angle betwe~l the track and the beam at their point of inter~

section.. The largest cluster of weighted track intersect1.ons was used to

compute the event vertex and tracks whose weighted intersections fell outside

this cluster were excluded~

After was completed, if there was an lMS trigger~ its track wa.s

selected from among the tra.cks identified the program. and

of the tracks which too fa.r from the final vertex were

flagged a These tracks resulted from beam halo

interactions or

Flexible in the Since

the chamber effie LencLes had been found to be F'<J 95% and of the

number of t a valid track would be expected to have a small na~ber of

- 66 -

missing sparks in the S-view~ However, before ecting a trial track with

several apparent misses, the S-spark acceptance window was en to a l

twice as far from the ec t.ed ectory as norrr~l to be associated

with the again had no ss Such

Another u.seful

the individual

to one another and that

associated with the passage of a s

were treated as a u.nit~

occurred in near proxim.i

were

digitizings

these aroupInas

Such S

digitizings retained their On the average PITRACK associated 55%

of the S-view digitizings into tracks and an additional were indirec

associated by this methode Most of the remaining digitizings are obse~~ed in

the forward direction and form a non-r~dom hackground*

F1.gure .2. is a.n S-view of an atypical event containing several difficult

situations with which this code must contend: a 2-spark track~ two side-

going tracks with multiple sparks on several chambers, a portion of a chamber

where there are no digitizings, tracks which cross one another near the vertex,

a possibly ambiguous or spurious track in the forward direction, and several

sparks around the dead spaces e

Initial Searches

Four separate searches constituted the Smooth Track Search, each of

which began by selecting from tw'o chambers one S-spark each whose

line of connection pointed toward the vertex@ A circle was thus

defined ~d used to predict the location of sparks on adjacent chanwerse A

spark near the predicted location was accepted only if it lay within some

angular windmve If accepted, the wa.s used to caIcu'late a new curvarure

- 67 -

for the track which then ted the location of a on the next

chamber e Each spark of a track was to have a minimum separation

from on its chIDuber~ If the did not meet this

criterion or if there was no In the accep t.anc e

a miss was recorded for that chambere 1ne search would stop if OW'O

consecutive ch~~ers not candidatese This often

them befo re

routines to extendtracks whichandresulted in

and

the Smooth Track Search the f Lrmneas in location of the vertex

evaluated e Occas for EMS the vertex location

had to be s the of the until a track with a

sufficiently large angle could be found to localize it0 If the vertex was

found to lie more than one inch outside the physical limits of the target,

processing of the event was halted after the Smooth Track Search and the

event was flagged@

The Forward Search operated by choosing two previous unassociated

S-sparks, one from the first two chambers and the other frmn the last two~

From these sparks a straight line was constructed which was intersected with

the remaining chambers@ If at least three additional sparks could be found

within a window around this line y the track was sent on for and

evaluation ..

With the vertex well determined~ the Brute Force Search

all the unassoc:i.ated S ~ connecting them two-at-a-time with

the vertex to form a eire leG If enough sparks were found within a window

around the circle~ the track was sent on for further work 0

The 2-spark Track Search examined of unassDciated S em the

first two chamber;J~ Here the constraint occurred in the

- 68 -

it was that two be found which defined a s line

near the vertex~ This search increased the effective soli.d

of the VS 20% to 2rT srro Care was exercised to insure that tracks

were not introduced

PIT~~CK was written in FORTRfi~ IV and

CDC 6600 of core storage for execution~ and

12k octal words of

routines

the format of our data tapes accounted for ""' 20'7~ of the core. u sed ,

on many factors but we found its

of the event~N asronlupon the

ReconstrJction time

+ 0@04

1.,8s and for a The time to reconstruct

individual events~ however i varied a factor of three or more from this

average ..

The of PITRACK was evaluated scanning a sample of·several

hundred HMS trigger events utilizing the interactive graphics program VUE.

Initially an event~s digitizings were displayed on a video screen with the

examining the

.5 ~ 121 ther

~ using a trackupon the solution~ Interactiveverified or

PITRACK solution superimposed as in Figure 2. Th~ scanner

event in various perspectives, such as the one shown in

'0&111 and telet:ype~ allowed the association of any to !l.i.ake new tracks~

and the deletion of associated on all or part of any track@

When \~E was used on the Brookhaven 7, where it 18k

decimal words of core, data to be inspected was stored on a disc file of the

CDC 6600@ A data link, events to be trans=

ferred to the 7 core at a rate of ~ 200 ms/event when the

scanner e After scanning~ the event was to another CDC 6600 file

where it could be retrieved at a time e.

About 94% of the tracks were identified of which

some while another 2,,5% needed an alteration of f Less

than l'ft of the identified t r-acks 'were found be in scan , Of

the unidentified a quarter were not 112 on the bas Is f the

code¥

basis", found

mul ity up to a-prongs. For of 6-prong events~

16% had every track identified. Thus t we Iuded that there 1 ttle

and of the PITRli.CK search are

in Table I" The. Smooth Track Search which was meant to find the easy t r acks

in fact did identify 70% of all tracks found~ In addition its was

high - more than half the trial tracks it identified were finally

The Brute Force Search, which was left to sort out the more: difficult tracks,

examined more than twice as many trial tracks as the Smooth Track Search:!

yet only 9% of those were eventually accep ced ,

We have thus far processed with Pll~K ~ 600K events recorded

For these events the VS and PITRACK successfully identified 83% of all

KJ\SS.

charged particles originating from the primary vertex) the ra~aining 17% were

accounted for by particles escaping detection being produced. outside the

VS so l Id angle 9%)~ in the dead spots of the chambers particles

of too low a momentum (~ ~ and sof~vare inefficiencies Nost

of these losses can be recovered by

~ur corrected mult ity distributions are compared in Tahle with
\ 4

bubble chamber data. at the same energy, four-momentum transfer and mf.s

Our average charge 'I"nl. s s ys t ema t Ic

deviation is not unexpected since we have not corrected our data for unde t ec t ed

- 70 -

interactions of secondaries~ gamma conversions and of neutral

particles near the vertex~ misidentification of fast tracks)

etc w If a 5% excess of tracks is

ty distributions to simulate these effects.t the Hh~SS and Be

distributions are s een to be cons Ls rent,

We have written a pattenl program for a computer

which associates from a set of nrne

chambers into helical tracks in 3-dimensional spac8% lbe code

identifies '''J 94% of all tracks found

the tracks it finds are

by PITRACK are compatible within errors with processed bubble chamber results ..

We believe that our pioneering efforts in automatic track recognition

demonstrates that the large amounts of data from a n~gnetic .multiparticle

spectrometer can be correctly and efficiently processed and analyzed~

REF'ERENC ES

L !~ultipa:rtic1e Spec t rome cer Sys tern for the 10-30 GeV l c Region II

JaR. Ficenec, T.S. Clifford, W.N. Schreiner, B.C. Stringfellow)

W.P. Trowe:r~ E.W."Anderson, G..B.. Collins, N.C. Hien~ K.M"

A~ Ramanauskas , P; Sch~belin, A.M~ Thorndike, "F" 'Iurko t , and L~ von

Linderu 3 E~perimental Meson Spectroscopy 1970. C~ Baltay and A.H$

Rosenfeld, University Press~ New York, » 581, Ed-s.

A more complete and upjated tiOTh is in preparation.

2~ J .. R" Ficenec~ B.C. Stringfellow~ G*B .. Collins, A. Ramanauskas,

P.. Schubelin and 'F* Turkot 1 Nuc l , Lns t , & M.eth0~ 113 (19 535=5!+0"

3$ G~ Campbell, K~ Fuchel and L~ Padwa, BWL l7054 J 1972

4. Pri.vate Ooanmmd.ca t Lon , J a Hanlon and R~ Panvfnf ,

~ 71 -

Table I ~ Performance of PITRACK Search Procedure

Search Identified Yield

Smooth. Track 10.. 1% 57 .. 2%

Forward 1..9% 16.. 5%

Brute Force 27,,5% 8 e 7%

2-spark Tra.ck 0,,5%25%

- 72 -

Table II

--,,1
W

Char in Collisions at 28@5 GaV/e: MASS va Be

*Be: Recoil proton identified and momenttun ~ 1*3 GeV/c~

proton between 2~O and 3@O GeV~

1.U~"'~hi.~P; mass to the Lden tiffed

t
MASS: Miss mass to tile fa~t forward proton between 2@O and 3~O GeV~ The error on

is statistical only.

tt
Be + 5%: Be Distribution with a 5% excess of tracks e

s

L4
TIME OF
FLIGHT

18

THRESHOLD
v
CERENKOV

t
LOW MOMENTUM
SPECTROMETER

M LTIPARTICLE ARGO SP

~

'"l",j
1-'"

QQ
e

"'-J
.f:':'-

'N

f :2

An atypical event in the Vertex Spectrometer

- 75 ~

.. ·1··· J..

2 56 8

of sparks \Nhich have been associ.ated wi t1} other t~rack~.

- 76 -

Event

Associated Event

Determine Initial Vertex
Find H:M.S Track

A. Smooth Track Search

B. Forward Search

C. Brute Force Search

D. 2-spark Track Search

Overview of Event l
Final_Intertrack ':'OIDl'ariSOnJ

Select LMS Track

Define Spurious Tracks

I,
______________..,t

. 4

2

Evaluation

IJoaic diaaram of the Vertex Spectromete.r track
Iecognition code; PITRACK.

- 77 _.

F ')

S-view of an 8:..e..E0ng event j.n angther P5~'!':...§J2~;ct:;.L':~:S_

as displayed by VUB,

- 78 -

COMPUTE~R GENEHATED VISUAL DOCUMENTATION OF
TIIEOHETICP1.1., STORE SEPA.R.t1.TION

Harold n.
Sandia Laboratories

s New Mexico 87 1

A pap('t' pt'l'SI.'llled

Mc oI ill~.\; on topics in
Now York C s New

-~~.~-------

"­.,

I he Sc-i e ntific: Co r Inl'orma t.ior: Exch;H'r~('

b (sponsor'l.;d AI';C ol'/;ani:l.aUo!l),
lU74.

This work was supported by the United States Atomic
Cornrni s s ion.

- 79 -

(;OM:-ptrTEH GENERi~iI'EDVISUAL DOCUIVIENTt\, OF
THEORETICAL STOlilE SEPAHATION

Harold R"
Sandia Laboratories

New Mexico 87115

ABSTHACT

Recently, a computer code was developed which computes the
theoretical trajectory of a store (1. €., bomb, fuel tank, etcv) in the
complex aircraft flow field after it is released from an aircraft flying
at subsonic speeds. However, the engineer was still faced with the
problem of documenting the results of the store separation analysis in
a conci.se , clear manner.

This paper describes a visual documentation system being used
by Sandia Laboratories to document the results of theoretical store
separation analyses. The documentation system uses a new Sandia
Laboratories computer program$ 1\:10VIE1. with a CDC 6600 computer
to generate a tape of commands for a LJa,~"",.l:.;;

4020 plotter , 'I'echniques are discussed which reduce the
time required for one theoretical store to a few seconds to
generate a for and to a few minutes to
the magnetic tape for movies.

----_._--
*=Wark SUDUIO!'ted U. S. Atomic Cornmi.as.ion ,

Aeroballisttcs

- 80 -

To illustrate the visual documentatton pr-ovided, the paper contai.ns
computer gener-ated black and white dr-awings of the side and bottom
views of two theoretical store separation analyses. The paper presentation
uses color slides and color movies (with real time and slow morton se­
quences) of the same two theoretical store separation analyses.

Possible future refinements to and future extensions of the MOVIE 1
computer program are discussed.

- 81 -

COTvl:PUTEH GENEHATE:D 'iilISUA, DOCnrvlENTA'TION OF
THEORETICi%.L STOHE SEPARATION ANALYSf;S

INTHODtJCTION

is
and attitude histories of a

from the aircraft
nonunifor-m flow field near the

The word as used in this paper', defined as any
weapon, fuel instr-umentatton

which is car-r-ied on an a ir-c raft ,
defined as the deter-minatton of the
store after it is deliberately
while the store is still in the
aircraft.

Store separation pr-obl erus and their analysis continue to be i.m­
por-tant in deterrnining the effectiveness of any aircraft-delivered
weapons system. Store separation problems can result in reductions
in the allowable delivery speed of the weapon.. increased dispersion of
the impact point or target and even, in rare case s,
Iead to los s of the aircraft (lleferences 1 ami 2).

F'i.nu.l :-;Io¥'(' ;·h~p'H<aUon Htudi(>H a r:e usuut on (~)d,(:nHjv(' :Ulf 1
expensive wind tunnel tests or full-seale teNtH, l i owev o r ,
the need has been recognized recently for theoretical store
analyses for use in prel iminar'y design and to supplernent and, ul l y,
reduce the numbe r and magnitude of wind tunnel and drop tests.
To meet this need, a cornpute r program (References 31 42 and 5) was
developed by Nielsen Engineering and Reaearch, Inc. 2 under contract
frorn the Air Force to the theo-
retical of an external store released f rorn an ai.r-«
craft This pr-ogr-am is

the theoretical store
with the of the store
is still faced with the

does not end
The

of the store
The would

like to r of the relative location of
the store and aircraft with a graphic presentation. What is needed is
either a ! chase aircraft" or a ! canlera 11

which would or movie s of the theoretical ator-e s epara ~

Han process similar to those taken wind tunnel or
full-scale test programs.

- 82 -

The: fi rut need for visual fa<fH·wntatiofl. of theorettcal store se pa-
ntU.orl anal H re sul ts i s whi l« U1\; r is the: effects of
dlff'e r-ent ct i on conditions or different flight conditions on the store
separ-ation t The t: would like to I ! see the
results of one theoretical store to select the
conditions for the next Interactive r store

codes ~ such as the one described in Referenees 6
provide the best means this need.

The second need of theoretical store
ration analysis results arises when the engineer must present the results
of the analysis in a or This
permanent visual documentatton of the store process. To pr-o-
vide per-manent visual docurnentati.on on short t irne scales and at lO'N

the visual documentation must be off -Line
A visual documentation system which visual docurnen-
tation of the theoretical store separation process can also be used to m eet
the first described in the with r t i.rne
scales. for those which do not have access to an i nto 1'-

active graphics t e r-rn inal on a a syste m which gene rates
permanent documentation of tile store separation process can be used to
meet both needs.

This paper describes a permanent visual documentation system
being used by Sandia Labor-ator-ies to provide visual documentafion of
theoretical store separation analyses. The documentation system uses
a new Sandia Laboratories computer pr-ogr-am, MOVIE 1; with a CDC 6600
computer to generate a ma gnet.ic tape of plotting commands for an off­
line DatagraphiX 4020 plotter.

This paper first defines the desirable characteristics of a perma~

nent visual documentation systern for the theoretical store separation
process. T'hen, the computer pr-ogr-am IVIOVIEl is described. Tech­
niques are discussed which reduce the computer t i.me required for one
theoretical store separation to a few seconds to generate the magnetic
tape for drawings and to a few minutes to generate a for
movies.

Next" the Sandia Labor-ator-ies modified DatagraphiX 4020
and the output media provided f r om it are described. To illustrate the
visual documentation provi.ded, the paper contains black and white
drawings of the results err two theoretical store separation analyses,
Color and black and white 35mm slides and color and black and white
movies real time and slow morton sequences) of theoretical store
separation analyses results also can be generated.

- 83 -

The paper also describes possible future refinements to
future extensions of the MOVIE 1 prograrn. The final se ct ion
of the paper defines how a copy of the source deck of program
MOVIE 1 can

These characteristics are:

L i\. wide selection

2. Mirnrnum use t.i.me:

3" Provide
process;

least two

4. Show the store shape. in both views;

5. Require a rrrirrimum of input

6. Rapid availability of visual documentation;

7. Easy conversion from computer to computer and plotter to
plotter; and

8. Available to gove rnrnent agencies and their contractors.

Each of these major desirable characteristics is discussed in detail in
subsequent paragraphs.

Different media are required for different purposes. Black
and white drawings of the theoretical store results are needed
for infor-mal 'where slide or rnovi.e is not

and for documentation in or letters 0 Color slides and
color movies are desirable for mor-e formal and
where the lead t irne for color film proce s
able.

commands should
per fr-ame of
thcor-eti­

rates of

r e sulrs ,

code used toThe C ornmrte
use a mirrirnum of r Erne, The trme
outout documentatton should be very sITla11 to per-mit
cal store se to the
several hundred fr-ames per second used for
tion movies , This direct side -s ide
son of the theoretical and exper-imental store

- 84 -

to a
compute the theoretical store
east of the store
increased,

The visual doournerrtation should contain at l eaat
tnozonai views of the sto re results show the relative

and aircraft to detcrrrune whethe and air
()rIP of these vie ws should v w

or mov io s obtained later f ro m (I

tests
the side walIs of

the store

both
vie WB e the sto r'e
contact can be deter-mtned
centerline were shown.

The pr-ogr-am used to commands should
require a m inimurn of data. Input data defining the relative
of the store and aircraft. should be gene rated r
program which s the theoretical store separation
visual do cumentation system wEI be used the most if the time to
prepare the input data is a relatively small fraction of the time required
to prepare the input data for the store separation
program.

The visual documentation syatem should the desired
output m edia , the ma.s s properties of a store are
measured a few days before the full~sca.le test. a desirable
goal of a visual documentation system is to provide black and white out-

media to 8:00 a. In. from visual docurrientatfon r pro-
grarn runs submirted to 5:00 p, 111. the

store
to generate the
a used scientific
puter-s ,

should be easy to COBV crt f rorn
to incr-eas e rts use the

the pr-ogr-am us ed
commands should be written in

available OIl 1:r10St corn-

The pr-ogr-am used to
cornrna.nds should be usable with the

r Iacil it'ie s , a I s tanua r
should be us ed. Nonstandard

should be used when their use

of

avatlable
subr-outincs

benefits"

- 85 -

facilities 'NiH have diffe r entSince different
the r peogra:m used to generate "4...._"" ••a~

mands should converted fr-om
ston will be aided srnal.lest ~J\.Ig;;:;i.">",b

corn:rnan ds e

at no coat.

COlv1:PUTEH PHOGRi\.rvI NI0VIEl

visual docu merrta ~

es , To fa.cilitate

program. lVIOVIEl was written at Sandia Laboratoz-i.e s to
prepare a of
tton of the results of theoretical store
conversion of the computer- p:rogra:rn from \..,vu..C\J ;"'"' .. to the
pr-ogram was written in P·'ORTRAN (Reference 8)$ the most widely used
engineering and scientific programJning language.

The first step in the development of the program was to select the
plotter to be used. The modified DatagraphiX 4020 plotters described
in the next section of this papers was selected because it is the high-
speed plotter with the wtde st selection of media available at the
Sandia Laboratories r

The next step in the development of the
select a plotter programming language for the
The SCORS plotting language (Reference 9) was selected because it is
currently in use Sandia Laborator-ie s for the Datag r-aphi.X 4020 and
also is used by a numbe r of other s ,

was defined. The
documented both side

any of the

Next, the visual dooumentation to be
theoretical store results wer-e to be
and bottom views. These views were to be
nH·t.",+ media available for the 4020.

Most aircraft~deliveredstores have srnall Low ratio fins
which do not roll rates or roll angles to the st.or-e

the store s process. to the data
required and to rnirrirrriz e the time was decided to
not show any change in roll of the The side and
bottom view s of the store show an
as the store oscillates and yawp; but do not show any ...~,..""""".,:;;;
roll orientation.

vrere to be for' each
process, Movie s be

both real time and 810\'/ mot ion
s for the

Slides or black and white d
O. 1 second the store separation
at 16 r-ame s per second) were to

-twcntir-th as Iast as real t.irne

possible but stil1

documentation
fOrITI of

data as flexible as
to prepare c,

data used was

the
of the theoretical stor-e
the

-s I).
lVThe s ide view of the aircraft is defined UI}

with up to 100 X and Y coordinate in each file.
P'f~·orrH·:t:rv file are connected

of the a ir-c raft side view,

theshows the X and Y coordinate
data for the aircraft side view.

in F'igur-c 1 is 3

The side v iew of the separated store is defined by up to 10 georn·­
etry files w ith up to 100 X and Y coordinate pairs in each file. The
points in a geometry file are sequentially connected by straight line
segments to draw of the store side view.

Figure 2 shows the X and Y coordinate
input data for the separated store side view.
aide view shown in Figure 2 is gene rated
total of 84

syste:m used in the
The 13 57 nuclear weapon

G ry fiJ e s with a

'rile bott.o m view of th o ai r-c r-af't is dcrirwd !;y up to i 0 f{t'Ofll

files with up to 100 X and Y coordinate in eac h f'il e . 'The
in a geornetry file are sequentially connected by straight line
to draw part of the aircraft botto m view.

F'i.gur-e 3 ShO\V8 the X and Y coordinate syatern used in the
data for the aircraft bottom view, The F -4D aircraft bottom view

shown in Figure :3 is gcnoratcd u fi files with a total of 122
points.

The bottom view of the store is defined to 10
geometry files with up to 100 X and Y coordinate pairs in each file.
The points in a geC":HT1etry file are sequentially connected
line segments to draw of the store bottom view.

Figure 4 shows the X and Y coordinate
input data. for the store bottom view.
bottom view shown in 4 is gene rated
a total of '"14 points.

the:

Hive Axis

l

1. Used For
Data For Aircraft Side View -4D
Aircraft ":h",,,,""

Positive Y Axis

~----~-------'--""'-------~------------I

I., . ,
Po s it.ive X AXIS

2. Used For
Separated Store Side View
\Veapan Shown)

Data For
Nuclear

- 88 -

Positive Y Axis

Figure 3. Coordinate System Used For Input
Data F or Aircraft Bottom View
(F-4D Aircraft Shown)

Positive Y Axis

F re 4. Coordinate Used For Data .ITCH'
Stor-e Bottom View (B 57 Nuclear

<.,o.;Jv~r Shown)

in

The set of data pas
the store relative to the aircraft In the side and bottorn view s
tirne step in the store calculation. T'hi.s is defined
by giving the Y 3 and Z coor-di.nate s of the nose and tail of the store
an aircraft Iuaelage coordinate ayst.em, 5 S1'1()"\VS a side v iew of
this aircraft fuselage coordinate while 6 ahows a bottom
view of the aarne coordinate system.

The XI Y, and Z coordinates of the nose and tail of the
store are in units of feet, The tirne is the t.irne f rorn rhe start of the
store separation trajectory in seconds"

The punched card data deck
and tail of the separated store and the time is
when the theoretical store separation pr-ogr-am

and 5) is used. Four cards were added to the OUTP1JT subroutine in
the theoretical store to generate this
data deck.

and the a ttack must
E.'S are used to rotate the and

correctstore in the side and botto m views to
be

Control entered. to det.e r-mine the size the
aircraft and and t.hem in the side and bottom
view. The Erne in seconds in the theoretical
when. the visual docurnentation is to as

data.

TIME = 0.0000 SECONDS

TIME = .3000 SECONDS

TIME = .5000 SECONDS

Figure 7. Selected Frames of Visual Documentation For An EG&G
Pod Released From A~ OV -lC Aircraft At 250 Knots
True Airspeed At Sea Level

- 97 -

TIME 0.0000 SECONDS

TIME ~ .4000 SECONDS

TIME = .7000 SECONDS

Figure 8. Selected Frames Of VIsual Documentation For A Sandia
Laboratories Prototype Store Ejected F rom A F -4D
Aircraft At A Mach Number Of 0.7 At 15, 000 Feet
Altitude Above Mean Sea Level

- 98 -

2. Define the speed, altitude, and flight path angle of the drop
aircraft at the time of store separation;

3. Define the separated store; and

4. Define the ejection velocity and ejection angular rates of
the separated store at separation.

This refinement can be done easily, but would require numerous time­
consuming changes to computer program MOVIE 1.

An additional desirable refinement would be to add the capability
to generate close-up views of the separated store where some parts of
the aircraft and pc rhaps store are out.s idc the field of v ir: w. This can
he easily done, but w ou ld req ui r c adding a 11S C i SHOr-ing " or 1!c1ipping"
subroutine with logic to eliminate the points outside the fidel or v i o w •

A highly desirable refinement, which will be completed in the near
future, is to add the capability to present experimental data from wind
tunnel tests or ful l-is cal e drop tests directly on the output media for
com pa r i s on with the theoretical cal culations. This will require read­
ing ill a s('colld set of store position data from the expe r irncntal test.
'I'hon , the stot'(, will be drawn twice pel' fr-ame of output media .

Om- s l.o r-r: d r-nw ing, in OIH' color, will show the position of the
s to r:c l't'Olll UH! t.hco rcti cal calcul at ions , The second store drawing, ill
a second c ol o r , will show the position of the store frorn the experimental
test at the same time. This capability is being developed to compare the
experimental results from Reference 16 with the results of planned theo­
ret.ical store separation analysis for the same store and aircraft at the
same flight conditions.

An additional highly desirable refinement, which will be cornpleted
in the near future, is to add the capability to present "strobe" pictures
of the theoretical store separation. Pictures made of experimental store
separation tests in wind tunnels sometimes use a "strobe" light which is
used to repetatively illuminate the aircraft and store several t irne s during
the store separation process. This results in several pictures of the
separated store, all on the same frame of film, which correspond to its
location at the times the "strobe" was pulsed.

A desirable long-term refinement of the visual documentation sys ­
tern would be to add three-dimensional representations of the separated
store and aircraft to permit generating visual documentation as seen
from any arbitrary angle. The three-dimensional shapes could be
represented by quadrilateral surface elements (figure on Page 49,
Reference 17), half -tone shading techniques (Figure 1-6, Page xxii,

- 99 -

Referenc e 18), station lines (Figure 3. 9, Page 34, Reference 19), or
detailed station lines and selected longitudinal lines (Figure 4.0, Page 34,
Reference 19).

While the three -dimensional representations would add additional
realism, several problems arise. The input data needed to define the
separated store and, especially, the aircraft would increase significantly
in magnitude. Also, the computer time required to compute the location
of all the points in the three-dimensional representation of the separated
store would increase very significantly over the current two-dimensional
visual documentation. The final problem is that "hidden line" subroutines
would be required to most effectively use three -dimensional representa­
tions of the separated store and aircraft. The com.puter time required
to do the "hidden line" computations for each frame of a movie might be
prohibitive with current subroutines and computers.

The visual documentation system defined in this paper could be
extended in at least three areas. The first area would be to extend the
1'v10VIE 1 computer program to prepare slides and movies showing the
separated store, its orientation, and the corresponding body nor-mal
force and side force distribution along the store body during the store
separation process. The theoretical store separation trajectory com­
puter program (References 3, 4, and 5) currently computes the neces­
sary store body loading data as part of the calculation of the theoretical
store separation trajectory.

A second area where the visual documentation system could be ex­
tended would be to extend the MOVIEI computer program to draw flow
streamlines around the store to show the flow angularities in the flow
field. This would require a significant modification to the theoretical
store separation trajectory computer program to compute the required
flow streamline data. The additional computer time required would be
significant. Thus, the flow streamlines might be shown only for the
store in the carriage position rather than being recomputed and redrawn
for each frame of a theoretical store separation movie.

The final area where the visual documentation system could be ex­
tended would be to add the capability to draw shock waves. This would
prepare the MOVIEI computer program for use with any supersonic
theoretical store separation trajectory computer program which might
be developed in the future (perhaps based on References 20 through 22).
The shock wave presentation would probably be limited to defining the
shock waves from the aircraft and the separated store in a plane con­
taining the nose of the separated store in both the side and bottom views.

- 100 -

CONCLUDING REMARKS

This paper has described a system used by Sandia Laboratories to
provide permanent visual documentation of the results of theoretical
store separation analyses. This visual documentation system is routinely
used to rapidly and economically generate visual documentation of theo­
retical store separation analyses using a variety of output media.

To date, the only application of computer program MOVIEl has
been to generate visual documentation of the theoretical store separation
trajectory analyses, as documented in this paper. However, since com­
puter program MOVIEl documents the motion of one object relative to
another object, this program should be useful for other applications
involving relative motion. Since this paper is being presented to the
AEC computer community, computer groups in other agencies may want
a copy of compute I' program MOVIE 1.

A preliminary version of the FORTRAN computer program MOVIE1,
which generates DatagraphiX 4020 plot commands in the SCORS plotting
language, can be made available to requestors with a need for the program.
Atomic Energy Commission computer program dissemination policy re­
quires that each request be treated as a separate case, and that signed
authorization be obtained from several levels of management at Sandia
Laboratories. While this policy prevents an exact definition of the
availability of the computer program, it should be available to almost
all government agencies and most of their contractors.

Reque sts for the FORTRAN source card deck, sample input data,
and sample output visual documentation should be made by a letter to:

H. R. Spahr
Division 5625
Sandia Laboratories
P. O. Box 5800
Albuquerque, New Mexico 87115

The letter should briefly define the need for the compute r program,
describe projects it would be used on, and describe briefly any planned
use of the computer program to support contracts from government
agencies. The letter should also briefly describe the computer and
plotter that the computer code will be used with.

- 101 -

REFERENCES

1. "F-14A Crash," Aviation Week and Space Technology, June 25, 1973,
Page 25.

2. "Pr-oduction AIM-7F Enters Test,'1 Aviation Week and Space Tech­
nology, August 27, 1973, Page 38.

3. Frederick K. Goodwin, Marnix F. E. Dillenius, and Jack N. Nielsen,
"Method of Predicting Loading and Trajectories of Single or TEn or
MEn Mounted Stores on Swept-Wing Aircraft, It Volume 2, AircraJt./
Slon's Co m put.i bi l i.ty Sy m po s iu m J>r·()c(·(~dings, J\UI~IJSt. 1!l7~, HpOrli';lJr"!'d

by .ITC<i/AI,NNO, hdd at Dayton, Ohio Oil Ikcl'I1Jl)('r' '7 ~}, 1!171

4. Frederick K. Goodwin, Marnix F. E. Dillenius, and J a ck N. Nio ls e n ,
"Prediction of Six-Degree-of-Freedom Store Separation Trajectories
at Speeds Up to the Critical Speed - Volume I - Theoretical Methods
and Comparisons with Experiment, II Air Force Flight Dynamics
Laboratory Technical Report AFFDL-TR-72 - 83, Volume I, October
1972.

5. Frederick K. Goodwin, Marnix F. E. Dillenius, and Jack N. Nielsen,
"Prediction of Six-Degree-of-Freedom Store Separation Trajectories
at Speeds Up to the Critical Speed - Volume II - User's Manual for
the Computer Programs, II Air Force Flight Dynarni cs Laboratory
Technical Report AFFDL-TR-72-83, Volume II, October 1972.

6. Calvin L. Dyer, "An Interactive Graphics Program for Predicting
Six-Degrec-of-Freedom Store Separation at Speeds Up to the Cr-i.tic.al
Speed, " Air Force Flight Dynamics Laboratory Repor-t AFF' DL/ INK>
TM-73-58, July 1973.

7. Marnix F. E. Dillenius, Frederick K. Goodwin, Jack N. Nielsen,
and Calvin L. Dyer, "Extensions to the Method for Prediction of Six­
Degree-of-Freedom Store Separation Trajectories at Speeds Up to
the Critical Speed, Including Interactive Graphics Applications and
Bodies of Arbitrary Cross Section, It Aircraft/Stores Compatibility
Symposium Proceedings, Volume 2, sponsored by JTCG/ ALNNO,
held at Sacramento, California on September 18-20, 1973.

8. "Contr-ol Data 6600 Computer Systems, FORTRAN Extended Refer­
ence Manual, 6600 Version 3," Publication No. 601 76600, Revision
K, Control Data Corporation, February 22, 1973.

9. "Section III - Programmer's Reference Manual, tl SC -402 0 Usage With
IBM-7090/7094, CDC-3600, Univac-l107/ l108, CDC-6600, SC-M-70­
68, Sandia Laboratories, Albuquerque, New Mexico, March 1970.

- 102 -

REFERENCES (CONT.)

10. "Routines to Generate and Store SD- 4020 Commands, 1l Sandia Com­
puting Newsletter SN 0012/1971, Sandia Laboratories, Albuquerque,
New Mexico, August 9, 1971.

11. "Section II - Introduction and Basic SC-4020 Description, "SC-4020
Usage with IBM-7090/7094, CDC-3600, Univac-1107/1I08, CDC-6600,
SC-M-70- 68, Sandia Laboratories, Albuquerque, New Mexico,
March 1970.

12. C. J. Fisk, "Cathode Hay Tube Color Plotting, " SC-RR-68-!146,
Sandia Laboratories, Albuquerque, New Mexico, January 1969.

13. "35mm Computer Generated Color Slides of an EG&G Pod Heleased
From an OV -IC Aircraft, II available on loan from H. R. Spahr,
Sandia Laboratories, Albuquerque, New Mexico.

14. "35mm Computer Generated Color Slides of a Sandia Laboratories
Prototype Store Ejected From a F-4D Aircraft, II available on loan
from H. R. Spahr, Sandia Laboratories, Albuquerque, New Mexico.

15. "16mm Computer Generated Color Movie of an EG&G Pod Released
From an OV -lC Aircraft and a Sandia Laboratories Prototype Store
Ejected From a F-4D Aircraft, " available on loan from H. R. Spahr,
Sandia Laboratories, Albuquerque, New Mexico.

16. James H. Myers, "Separation Characteristics of the B -57 Bomb From
the F -4C Aircraft Equipped with ECM Pods at Mach Numbers from
0.605 to 1. 30, II AEDC-TR-72 -93, June 1972, Arnold Engineering
Development Center.

17. D. S. Warren, "Tomorrow I s Structural Engineering, " Astronautics
and Aeronautics, July 1973.

18. William M. Newman and Robert F. Sproull, Principles of Interactive
Computer Graphics, McGraW-Hill Book Company, New York, 1973.

19. William A. Fetter, Computer Graphics in Communication, McGraw­
Hill Book Company, New York, 1973.

20. F. Dan Fernandes, "Theoretical Prediction of Interference Loading
on Aircraft Stores - Part I - Subsonic Speeds, " NASA CR -112065-1,
June 1972, General Dynamics.

- 103 -

REFERENCES (CONT.)

21. F. Dan F'e rnandes , "The oret.ical Prediction of Interference Load­
ing on Aircraft Stores - Part II - Supersonic Speeds, 11 NASA
CR-112065-2., JlU1e 1972., General Dynamics.

22. F. Dan Fernandes, "Theoretical Prediction of Interference Load­
ing on Aircraft Stores - Part III - Programmer's Manual, T1 NASA
CR-112065-3, JlU1e 1972, General Dynamics.

- 104 -

ABSTRACT

C. H. Turnbull~ 8442
Sandia Laboratories Livermore

TWO APPLICATIONS OF DATA ANALYSIS BY INTERACTIVE GRAPHICS

Contour plots have proven very useful in analyzing the data from two­

dimensional hydro codes. However~ it is difficult to know in advance how to

specify the plot limits to show the most interesting data to best advantage.

This problem has been met by giving the analyst an interactive code by which

he can easily adjust limit data and get a look at the resulting plot.

Data from the hydro code is organized first by time step. The interactive

code gives the analyst the ability to select the set of data he wishes to study,

to II zoomll to the area of interest, to select which parameter he wishes to

observe, and to select the levels at which the contours are to be drawn to

provide him with the most meaningful plots.

Since the CDC 250 is used as the interactive graphics device, we try to

keep central memory requirements as low as possible. By using ECS (Extended

Core Storage) to store the data for any particular time step, the contours can

be plotted by having the data for only nine zones in central memory at any

instant. The use of overlays aids in reducing central memory requi renents ,

This code has been i n "product i on" status for approximately two yet'lrs.

- 105 -

A recurring problem is the analysis of data in which the data curves are

in fact the sum of a family of similar curves. In one application, the

family of curves is Gaussian. In another application, each curve in the

family involves a double exponential function.

Since there is no one answer to this type of problem, the analyst must

apply some knowledge to the selection of parameters to approximate the fit.

When the analyst has arrived at a close approximation, a nonlinear least­

squares fit algorithm will make final adjustment of the parameters. The

operator may apply constraints on the least squares algorithm by allowing

only selected parameters to change.

This code has been in production for approximately one year and takes

advantage of ECS and overlay procedures to reduce the amount of central

memory requi red.

- 106 -

C. H. Turnbull, 8442
Sandia Laboratories Livermore

Analysis of Data from Lagrangian Codes

Large two-dimension hydro codes are used to study the effects of external

forces or internal energy on materials. The high volume of data associated

with these codes makes graphic representation an expedient way of analyzing

the data. For example, Figure 1 shows the initial condition of a small

problem run on the TOaDY code. This example has 895 zones and the TOaDY code

retains 20 values for each zone as it steps from one time step to another

(called cycles in the TODDY code).

The engineer using these hydro codes is interested in variations in

effect with respect to time. Figure 2 shows contours of axial stress in the

same configuration at 8.02 microseconds of problem time.

Without graphics it would be necessary to read a listing of nearly

18,000 numbers at each time step of interest to the engineer. This example

problem is relatively small. Some jobs contain over 20,000 zones or 360,000

numbers per cycle.

Plotting routines have been used for data analysis for as long as the

TOaDY code has been in use. The code prepares a plot data file and the

engineer provides data to the plotting routines to get the type of plot

needed to make the desired analysis.

When running a TODDY problem, the engineer will request much more output

information than he really needs because it is more economical to discard the

excess output than to rerun the problem had he not requested output at the

- 107 -

proper time steps. Using batch processing to obtain these plots would

necessitate either getting all the plots on one run or iterate with several

runs to get the desired information.

Considerable savings is achieved by giving the engineer the capability

of interacting with the plot routines. The same iterations are used at the

console as would be used by requesting one plot at a time in batch mode. The

difference is that the picture is observed in a few seconds instead of from

two hours to one day for each iteration.

Sandia Laboratories Livermore has had a CDC 250 system attached to a

6600 for about three years. The 1024 x 1024 raster picture is maintained on

the face of a 19-inch CRT by the 252 controller. This controller has 8,000

24-bit words with a limited instruction set for generating characters at 4

different sizes; and these, along with vectors and/or dots, can be generated

at 2 different intensity levels. The characters have the added capability of

bei ng in ei tiler Roman or Ita1i c form.

When interacting with the 6600 from the 250 console, the job ties up one

control point and the code remains in central memory at all times. All

changes in the picture require some interaction with the 6600. However, when

the program awaits some activity from the operator, the 6600 will not use CPU

time except to check for an interrupt request from the 250.

Because the interactive job has a tremendously low CPU utility factor,

it behooves a programmer to use all the resources available to reduce the

amount of central memory required to do the job.

At Sandia Laboratories Livermore, we accomplish this by using three levels

of overlay available to the SCOPE system and the use of ECS (Extended Core

Storage) .

- 108 -

The use of overlays is the obvious technique of programming in function

modules where the selection of a function switch or light pen pick, etc.,

would call in an overlay to diagnose the request so that more than one function

will not be in memory at one time.

The sequential address, random access, and buffer I/O features of ECS,

are extremely useful.

The plot file from TODDY is a buffered file. Each time frame on a plot

file contains one record of general information identifying that frame plus

one record for each I-line necessary to define the problem.

When the console user defines the frame he wishes to study, the program

searches the plot for the record that identifies the desired frame. At this

point, the code takes advantage of the consecutive addressing of ECS.

Knowing the number of J-zones on this I-line, the ECS address of the adjacent

zone on the next I-line can be computed. Since one of the 20 parameters of

each zone is an integer (material number) which will not be larger than 20,

two pointers are packed into 44 bits of that word. If we consider for a

moment that I-line 1 is above I-line 2 and J-zone 1 is to the left of J-zone

2, each zone has a pointer to the ECS address of the zone directly above it

and the zone directly below it. Special values are used to indicate no zone

is in the respective direction. Adjacent zones on an I-line are adjacent

data in ECS. With the pointers added, each I-line is written to ECS. The

4040 word array necessary for the transfer of the data from mass storage

(or tape) to ECS is part of an overlay and the central memory space is

available for other use in later steps.

- 109 -

To draw the contour curves, we must have one lone and its eight immediate

adjacent zones in memory at one time. The random access feature of ECS serves

here. The pointer system gives us the ECS address of the zone above and below

and the buffer feature provides easy access to the data for three consecutive

lones.

In actuality, only one zone is needed at a time to draw the boundaries

and grids. The I/O time for this would be excessive and we have discovered

that we can keep two I-lines in memory in the grid drawing overlay with the

same eM requirements as the contour modul e wi th only nine zones in eM at OW~

time.

Some examples of the types of plots we can observe are: Figure 3 shows

the material code numbers displayed for each zone. This information is

helpful in setting up a problem to assure the problem definition is proper

before submitting the problem to a long computer run. Figure 4 shows integer

values of axial stress with a divisor of 1010• This is used as an aid in

selecting the contour values for best representation. Figure 5 shows some

of the integer values removed where too much display can cause confusion.

Figure 6 shows the Zoom capability. We have enlarged the area of axial

stress in tension and displayed selected values. Figure 7 shows the ability

to superimpose the grid on the display of Figure 6. Almost any combination of the

mentioned displays can be superimposed on each other. We can not display contours

from more than one vector at a time.

- 110 -

Some of our physicists at Sandia Laboratories Livermore are studying

gamma ray induced radioluminesence spectrum from various materials. An

example of data obtained from laboratory equipment is shown in Figure 8.

It is assumed the data curve is the sum of a series of Gaussian curves, each

being a function of three independent parameters, X, Y (the coordinates of

the peak of the curve), and S (the standard deviation). To date, we have

not come up with a good analytical solution to this problem so we have

attempted to give the physicist a tool to help him find a solution.

The engineer may have a data file in the computer containing coordinate

sets for several curves. At the 250 console, the engineer may select any set

of data from that file. The code will compute scale limits from the data and

display the data on the screen as a series of points.

At the top of the screen, we find a display of the values of the parameters

for the Gaussian curves. Six columns (for six curves) and three rows (three

parameters per curve). If the Y or S parameter is equal to zero, that curve

has not been defined.

At this point, the user, with the light pen, will pick one of the

parameters in the first column. The display for that parameter will start

b1inking. There wi 11 also be a prompting message, "To use the T-cross for

parameters, pick here," (Figure 9). The operator may type in a value for

that parameter or he may pick the prompting message. If he chooses to type

in the value, the value will appear on the screen and he may repeat the

process until all three parameters in that column have been defined. If

he picks the prompting message, that message disappears, the T-cross is

- 111 -

turned on at the center of the screen and a new prompting message, "When

cross in desired position, pick here," appears (Figure 10). With the

light pen, the user moves the T-cross to where he believes the peak of a

curve should be (Figure 11). When he then picks the word HERE, the X

parameter takes on the value of the T-cross and, when the average of three

consecutive points becomes less than y/~ the distance from X to the

horizontal location of the middle point becomes the half width of the curve.

The standard deviation is computed and a curve is drawn on the screen (Figure

12). The user now has control of that curve (more on this later). He may change

any of the three parameters by typing the symbol followed by the percent of

the value to which he wishes it changed. For example, typing 115 - 3. 5" would

reduce the standard deviation by 3.5%.

When the first curve is in the desired shape, the user can pick a

parameter in the second column and repeat the process. Up to six curves

can be generated and, when more than one curve is defined, a TOTAL curve

is computed and displayed. Figure 13 shows the use of four Gaussian curves

to fit the data. The high sweep on the left is considered background noise

and not included in the fit.

In order to properly fit the data, it is obvious that the user must be

able to adjust any curve he so desires. It was indicated previously that

the user had control of the last curve defined. In order to change any

curve previously defined, the user must ~t control of the curve he wants to

modify. Two methods are available:

1. Pick any parameter of the curve to be modified. This will make

the display value of the parameter blink and also make the curve

- 112 -

blink. (This is important because it is easy to forget which set of

parameters is associated with a particular curve.) The user may

then type in a new value for that parameter or he may type any of

the three parameter symbols followed by a percentage change desired.

2. Pick the curve he wishes to change. The curve will blink and the

curve can be modified by the percentage change method described

above.

Should the user want to delete any curve, he may do so by getting control

of that curve by the method described above and selecting a prescribed

function switch.

At Sandia Laboratories Livermore, we have in our user's library a non­

linear least squares fit routine which will adjust the variable parameters in

search of the best fit to given da~a. In our problem, the number of parameters

provided are three times the number of curves.

It is interesting to note that at the same time the code described up

to this point was being developed, the present principal user of the code was

attempting to use the least squares fit routine in batch mode. The starting

parameters were approximated by visual scanning of the data curve. It was

usual for the batch program to take four to six minutes of 6600 CPU time to

iterate to a solution. Quite often these would take more than 15 minutes of

CPU time. It became obvious that the time to find a solution was dependent

upon the quality of the approximation of the input parameters.

We incorporated the least squares routines into the interactive program.

The user can select a function switch which allows the use of the least squares

- 113 -

routines. A vertical line will appear at left-hand and right-hand data points.

These indicate the boundary limits of the data the routine will attempt to fit.

The operator has the capability of moving these limits to the area of curve

in which he is interested. Figure 14 shows the limits have been moved.

When the user signals he has selected the desired limits, he defines an

iteration limit which was included to prevent the long runs described above.

He then has the opportunity to IIfreeze ll any parameter he wants to be held

constant.

When the code arrives at the best fit it can or has reached an iteration

limit, the parameter value display is revised and the curves redrawn. The

standard deviation of the data points from the TOTAL curve is computed and

displayed (Figure 14). The process may be repeated from this point. A curve

may be added or deleted in an attempt to find a better fit.

This method of arriving at a set of parameters for the least squares

curves seldom takes more than 30 seconds to arrive at a solution and most of

the time the result is in less than 8 seconds. The final results are much

better using this combined method. The first estimate of the parameters is

better. The user has the opportunity to interject some of his knowledge of

the sample into the solution. Computer usage time is way down.

- 114 -

''-'

FIGURE 1

lOt
CI"'_f"

,tPOl III(llo" .",~nlf~

<:1'11(• 1 uur·" H~ ~

'It101: ·I .. 'Iotft·'l 1 ",nU:,'1

FIGURE 2

t.' ..••.• , •. ,t~~..

~~
"0

FIGURE 3

...
•,."MoLl'''

_(C101 tin,,, 'Iocrutl) 1UIt ., ..1,n"1

FIGURE 4

'.11
,tt'" tilunn

11.. • · .. IIC '"

·.....11.,. "Tt"".·,
...
... ItI

..rt1o.MI.... ,..crUIlII

i'

'-,
I."

FIGURE 5 - 115 -
FIGURE 6

,­
I.·••

..,.. mll·.,"I.·....e "

t h I_

~:: ~:

." s­
""r· t

~ 'to I.'

:*:1::,,,.,.,

I
I."

s o.
r o.
TO.

e.
O.
o

o
e.
o

~ , '"f • .,

FI GURE 7

----~-~ --_.~._-- ~~~~~-,., ...

FIGURE 8

5 O.
r o.
, O.

o.
o
O.

e.
O.
o

e.
O.
O.

e.
O.
O.

s o.
r o.
TO.

o
O.
O.

O.
e
e

o
o.
o

O.
O.
O.

";' ":,. '1' f, 'Iott
lQ uU h., t·(I,U fO......"'U••. • j(~ ~.r

FIGURE 9

,/'-",
. /

'~' "'-,
L....- ~ ~__ ~........._._...., I[,tl

FIGURE 10

S 0
r 0
TO.

o.
o
c

e.
O.
o

e.
O.
o

o.
o
o

~. 't.1I

S s. "X-O' O.
r 2.".'00 O.
, 4. ' •• 04 O.

O.
O.
o

O.
e.
o.

O.
o.
e.

O.
o
o

T l '

FIGURE 11 FIGURE 12

•

'lL'",.... ,.. H

5 2"V-01 '.lU£-O' 2 2~P£-0' 2 "'-£-0'
t 2.~~V.00 2 A~er.OO 21i0£.00 , ,7W.00
, 2.~'•• OA ~ Her.O' ,A1W.OA 2 u2£'O~

'. lil.,r 101' ..I.' '.1-"" ,!1 ~lIIiU.•1'" ' 1,- '1I(l" 1.(......
'" 0111'" L.~"l'" 101• .at ~""'tl .ICIf.~ '1"

o
O.
o

, ... ·ft

IlL'" .. 'I"..... ..
S~."'r·.l ' ..«.1\ '.11«'01 ~.2tK", •.
I •. .,...... ,'K•., ,00 '.1101('00 •.f'.'.'" 1.!WIf." •. ,,'It •., '. tIII[... O.

"U"I•• '_"""...

i'
I

..
O.
0.

"

FIGURE 13

- 117 -

FIGURE 14

STABAN
AN INTERACTIVE GRAPHIC COMPUTERIZED

STABILITY ANALYSIS PROGRAM*

B. J. Wimber**
Sandia Laboratories

Albuquerque, New Mexico 87115

ABSTHACT

This docurne nt describes an interactive graphic computerized stability
analysis program (STABAN). Control system root locus plots f amplitude
response characteristics, and attendant stability parameters are made
available for interactive computer manipulation. Examples of the use of
STABAN are included.

*Work supported by the U. S. Atomic Energy Commission

**
Member of Technical Staff, Guidance and Control Division, Electro-
Mechanical Subsystems Department.

- 118 -

•

".

ST/\ H/\ N
/\N INTKHACTIVE GHAPfTIC COMPUTEHIZEIJ

STABILITY ANAl; YSIS PROGHAM

I. Introduction

A computer-ized program for stability analysis and design of linear
control systems with the use of the Sandia interactive graphics system was
developed. This program is entitled STABAN (STABility ANalysis).

Control system stability analysis is computational in nature. How­
ever, the graphic methods associated with control system analysis, such
as the root-locus plot, amplitude response, Bode plot, Nyquist plot, etc . ,
convey far more information than several reams of detailed computer
listings. However, to obtain these graphs for all but the simplest systems
required a great deal of effort. Once the graphs were obtained, design
changes could be made. But to determine the effect of these design
changes, the graphs had to be redrawn with the new input information and
the process repeated several times to obtain an optimum design. Thus,
much of the control system engineer's time was used in laborious calcu­
lations and careful point by point graphing.

The emerging interactive graphics technology appeared to be the
solution to the control system designer's dilemma; however. before a use­
ful program could be made available, an interactive generalized graph
plotting package had to be developed. This has been done, and the resulting
easy to usc, rast , and efficient interactive graphic computer program
STA BAN is now available. This paper introduces STABAN and shows how
it is used. A design example is included for a better understanding of the
program's utility and flexibility.

II. Basic Control System Fundamentals

This section presents a brief discussion of control system funda­
mentals as they relate to the use of STABAN. Reader familiarity with the
Laplace transformation is assumed.

Generally, any control system can be represented by a block diagram
which shows the transfer function of each component in the system as well

- 119 -

as the interrelationship of each component and its role in system operation.
Conventional methods 1 are used to reduce a complex block diagram system
to the following hasic form:

~-. \

1\\ ~; \

where

G(s) is the Laplace transform of the feed-forward control
system elements

H(s) is the Laplace transform of the feed-back control
system elements

K is the open-Ioop servo gain

C(s) is the Laplace transform of the control function

R(s) is the Laplace transform of the response

The response is related to the control by the usual mathematical relation­
ship (also referred to as the closed -Ioop transfer function G c.Q (s l):

R(s) G (s)
G c.Q (s) ::: C(s} ::: 1 + KG (s)H(s)

The concept of "stability 11 of the closed-loop system can be summed
up as follows:

For a system characterized by linear differential
equations with constant coefficients, if for some
control function, c (t) , the response, r'{t}, does not
grow without bound, the system is said to be stable.

The characteristic equation (CE) of the system contains the param­
eters that are needed to determine the degree of stability of the system.
The CE is simply the denominator of the closed-loop transfer function and
can be written in expanded form as follows:

CE

- 120 -

where

z. represents the ith open-Loop zero
1

p. represents the /h open-loop pole
J

.Q. is the integration exponent

The roots (s1) of the CE may be calculated as a function of gain, K, and
their location can be plotted on the a-plane. Each point, si, has a real
value, ai, and an imaginary value, jWi. This plot is the well known root
locus plot and is one of the displays provided by STABAN.

The roots of the CE are obtained by setting the above equation equal
to zero. Hence, the equation becomes

From this equation, one cannot resist the temptation to point out that:

(l) For K ::: 0, the roots of the CE are simply the poles of the
open -Ioop transfer function.

(2) For K ::: 00, the roots of the CE are simply the zeros of the
open-Ioop transfer function. Thus the beginning and end of
the root-locus trajectory are easily determined.

If the above equation is expanded into polynominal form, the result is:

N

L
i=O

N-i
(A. + KB.) S ::: 0

1 1
N ::: m +.Q.

The A. and B. are coefficients of the CE and are made up of the control
syatern pararileters. This form of the CE is used in the root solving sub­
routine. For convenience, the calculated coefficients, Ai and B.. are
available in one of the STABAN displays. 1

The open -loop transfer function (G0.Q. (s) is written as follows:

G (s)::: KG (s) H(s)
0.Q.

If s is allowed to take on imaginary values only, i . e., let

S ::: jw ,

- 121 -

the open-loop transfer function becomes:

C
o2

(jco) = KG(jW) II(jw)

Substitution of values of w into G02 (jce) will result in the open-loop
amplitude response where both the amplitude ratio and the phase angle for
each value of ware provided. This amplitude response and the important
indicators of stability, i . e., phase margin (PM) and gain margin (GM),
are readily presented using STABAN. This display also provides the servo
designer with the capability of being able to "shape II the open-loop ampli­
tude response to his satisfaction by simply selecting open-loop poles and
zeros as his judgement dictates.

If the open-loop transfer function Go.Q (jw) is plotted on polar co­
ordinates, the degree of stability is shown by the plot's avoidance of the
-1 (l /180 0

) point of the plot. This important element of the Nyquist
criterion can be easily investigated with the polar plots generated by
STABAN.

The closed-loop transfer function may also be written as follows:

K
fw

Zfw(s)

p (s)

Gcl! (s)
fw

Zf (s) Zfb (s)
1 + K w K

fw P fw (s) fb P fb (s)

where

K
fw

feed forward gain

Zfw (s) feed forward zeroes

P
fw

(s) feed forward poles

Kfb feedback gain

Zfu (s) feedback zeroes

P fb (s) feedback poles

or

Gcl! (s)
Kfw Zfw(s) P fb (s)

CE

- 122 -

Thus. if the poles of the closed-loop transfer function (roots of the
CE at the preselected open-loop gain, K) are available, the amplitude re­
sponse of the closed-loop transfer function, Gci (jcc), can be obtained
easily. STABAN provides this capability. The STABAN program consists
of the interactive graphic computer language developed at Sandia Labora­
tories Albuquerque 2 for use with the Control Data Corporation's 6600
computer. Digital Equipment Corporation's PDP-g. and the Vector General
display equipment.

The program is ready to receive interactive commands and data when
Menu A (Figure 1) is displayed. The symbols shown on the Menu are those
associated with the open-loop transfer function of the control system being
analyzed.

All of the variables in the Menu are capable of being interactively
varied in accordance with specific design requirements. Changes of the
variables and selection of the desired display are accomplished using the
light pen and keyboard attached to the terminal.

To change a variable:

(l) Hold light pen directly over variable to be changed and
touch ring near end of pen with finger. The value of the
variable will disappear. (This procedure is referred to
as a "hit It.)

(2) Using the terminal keyboard. enter the new value, ob­
serving the proper format. The number will appear on
the screen as it is typed.

(3) When new value has been properly entered, depress ESC
(Escape) key.

After the appropriate variables are inserted, one can select one or
more of the following displays:

COEF

ROOT-LOCUS

AMP RESP

LOG MOD

MODULUS

The display (or displays) is selected by a light pen "hit 11 of the desired code
word. An asterisk preceding the code word indicates program acknowledge­
ment of the selection.

- 123 -

NO iffWf5

"IOfl1lfSc4

U'1fl~ 2. ',lIi 2

Note: The values that appear on the s c reen ns shown

in this figure as well as in Fil..,tures 2 through fl

are from the open-loop tru ns Ie r f'unct i ori:

[I. (Jill r,l

K [,fIlti 2, ',III I,

7FI\i1l ",

~. 5 x

This example is integrated with STABAN to provide

a means of testing the program. Anv of the variables

may be changed by using the light pen.

Ijll.UI) ,(II

4(1. Ill, .r"

U. nil Ii (JO

O.OU U. fll'

0.00 u.uu
O.nl1 0 00

O.OU Q 00

0,00 0 00

O. Oil c.ou
0.00 o.or'

PDLE5

-120.00)LjH.OII

~J20.00 ·246.lI(I

-.25 ,oCJ

-.25 ',CJll

0.00 o Ou
O. [)[J 0.8[1

O.OD O. nu

0.00 U. (Ill

O.OD U, (II,

O. (HJ (1,11
'1

CDff 5

RllOT-LllCIJ5

RMP AESP

LOG MOll

Ml'JDULU~

CllMPUTf

2

s (120 'S,i24lJ + 1) (120 _Sj2.18 I 1) (0.;5 I 1)

Amplitude response range: 0.01 to 10,000 radians/sec.

Root locus plot in upper left quadrant hounded at 250

radl sec.

Figure 1. MENU A

- 124 -

'1'1) run UIl' pr'ogrum, hit (~()N1P(J'J'J';. 'I'hr: gr'aphk diHplu.y will indi­
cat(~ Lh at th« liGOO computer iH ()p(~rating on the data hy showing a rnessagf::

6600 WORKING

When the desired display is on the graphic monitor I wait for the above
message to disappear before attempting to input more data.

III. The STABAN Displays

A description of the displays follows.

Menu A

The variables in the Menu are associated with the open-loop transfer
function as follows.

NO INTEGS = Number of integrations, £

NO ZEROS ::: Number of simple zeros, n (n s; 10)

NO POLES ::: Number of simple poles, In (m ~ 10 - f)

WMN (l1~XP) ::: Minimum angular frequency exponent (power of 10)
used in the calculation of amplitude response
(angular frequency in radians per second)

WMX (EXP) = Maximum angular frequency exponent used in the
calculation of amplitude response

UMN

UMX

VMN

VMX

KGAIN

ZEROS

= Left bound (abscissa) of root-locus plot (radians
per second)

= Right bound (abscissa) of root-locus plot (radians
per second)

::: Lower bound (ordinate) of root-locus plot (radians
per second)

= Upper bound (ordinate) of root-locus plot (radians
per second)

::: Open-loop gain corresponding with design require­
ments and used in the calculation of amplitude ratio

= Actual complex value of zeros entered as

real part

- 125 -

imaginary part

POLES - Actual complex value of poles entered as

real part imaginary part

COEFS

ROOT-LOCUS

AMP RESP

LOG MOD
MODULUS

COMPUTE

- Code word for coefficient display

- Code word for root-locus display

- Code word for amplitude response character-
istic display

- Code words for polar plot of amplitude re­
response

- Code word used to execute the program

The values shown in Figure 1 as well as the values and graphs in
Figures 2 through 6 are from the following open-loop transfer function:

2

s(120: j248 + 1)(120 ~ j248 + 1)(0.s25 + 1)

The amplitude response ranges from 0.01 to 10,000 radians per
second.

The root-locus plot desired is the portion in the upper left quadrant
of the s -plane bounded at 250 radians per second.

COEFS

Selection of this code word will result in the display shown in Figure 2.
The main difference between this display and that of Menu A is the appear­
ance of the following terms:

NO COEFS =
KL =

KU

NDK =

A-COEFS

B-COEFS

Z-S+p-S

- 126 -

END

Figure 2. COEFS display

- 127 -

~.o r~II",~ to

1'[c I). lin!

KIj I . l)iJ ~

N[JIC 1.orif S

wMil ~ t Xf' J

f<MX(D!' J

LIM, •• 2.5tH

UM'(0.011 1

\/MII D.nor
VMX· .2. SOt 2

K G~l] N ~ 2 _ 50 f

Cl1ffS

? \rIFlE

s.. or/lf,l­

1 _F,n)',,-

1,1111111)/

(I 11111'>11/ 0

[I [Jlll1ljf [I

r) JJllf)fJr IJ

'J. IlIlllllI

(j,IIIIIIIJ! II

A I f'Jl' f :,

(J urHIII!'

I),IJ!JUUF

0, I)iH)llf

6, ?'l[JOr .lj

~) (JO()!)! ~

J ,(l[llim (l

0_ OOOIJE

O.OO[JOt

0_ OfJfJlH

a.GOOOE (l

l-5 .. p.]

ROOT·L(JCUS

RMP RESP

LOG MOCl

MODULUS

CliMF'UH

The terms NO COEFS, A -COEFS and B-COEFS are associated with the
polynomial form of the CE (see page 5). Since poles, zeros, and inte­
grators are the input variables, as entered in Menu A, the corresponding
coefficients of the polynomial form of the CE are calculated and displayed.
NO COEFS is the degree of the polynomial plus 1 (used in the root solving
subroutine). To observe the original values of the poles and zeros and! or
change their values the user must select

z-s-r--s

and Menu A will again be displayed with the original pole and zero values.

The terms KL, KU, and NDK are the lower 1 upper, and incremental
values of the open-loop gain K. As explained in Reference 3, the values
of KL, KU 1 and NDK must be chosen so that the 6600 computer is not re­
quired to calculate a large number of roots. If this happens 1 the graphic
terminal display will respond with a message "DISPLAY TOO LARGE".
Adjustment of KL, KU, and NDK should be made so that the above message
does not appear.

ROOT-LOCUS

Selection of this display (see Figure 3) alone will provide the s-plane
bounded by preselected values UMN, UMX, VMN, VMX, and a point by
point plot of the root locus beginning at the lower gain, KL, and ending at
the maximum gain, KU, incrementing by the amount NDK. Also shown on
the display are radial lines of constant damping ratio.

From this one display, the control system design engineer can obtain
the following information about his design.

(1) The value of open-loop gain, K, which corresponds with the
desired time response of the closed-loop system (1. e , , damp­
ing ratio). Although this is shown in the s -pl.ane as an inter­
section of root locus plot with lines of constant damping ratio
(ZETA), the exact gain values versus damping ratio are
tabulated below the s-plane plot. More than one value of gain
may be displayed for a given damping ratio depending on which
segment of the root locus plot intersected that damping ratio
line.

(2) The resonant frequency of the closed-loop system.

(3) The value of gain where the root locus crosses over into the
right half s-plane (system becomes unstable).

- 128 -

1DO

CetUS

aeor-i (leu,;
RMP HE Sf'

LDG Mao

MDDULUS

lEfHlf'i

WHlj11 II J

'1HX II If' I

Nfl 1'111r,

IJHX- 0.011' Ii

VH~j" o. am f!

VMx- 2.5(H i

.1

GI< 1N
2. l6[+02

-2. l6[+02
8.27E+01

-8.2'1[+01
O.

-40.00 • U1

4ll.00 .01

0. fill fl ni,

0.00 o. nil

O. DO U. UI'

n , n(I " ,Oil

1I 00 rJ. III'

O. UIJ IJ. 1111

d. (III 0.11

(1.0lJ 0.0

POU C,

12U. fill ;'4Ilo IHJ

'120,01' (ljI1, i.l0

,2'-, .1)0

-,75 .no

O. no n.no

0.00 (1, (10

0, Oil u.no

O. no (I. rJl.1

.---"'-._--~~-~--"----
0.00 1).[111

o.00 (1,11[1

11 HI'. 1

POLES AT K
-6.26E+OI
-6.26E+Ol
-1I.43E+(11
-4,43E+Ol
-2.67E+Ol

,'I

-Ion

..

... r---- -

5. 120E - [J 1

3.238f-Ol
2,218E-01
1,604[-0 I
1,211 E-0 1

K 1.009E+05
K 1.407E+06
K - 1.821[-06
K 2. 22:1E -06
K e- 9.444[-02
K 7.561E-02
K 6.183f-02
K 5.1116[-02
K = 6.567E+05

-200

K 3.5-/~E+06

K 2.998E+06
K 2.342E+06
K ~ I. 06 9E +06
K 2. 603E +05
K 2, ~B2r f 06
K 3.40I3E+06
K 3.935E+06
K 4. 6fbE +06

ETA- .0J 90

170

20

30

J 20

oJ.·HI .'/
"-,

\ 0

50

80

180

70

50

130

90

2 sn

.'411

'>20

150 -~-_. ~--~-

700

150

11 Il .

/ f. I H - . I
il rR .2
I 1R .3

if' H .4
if' H .5
if I H 0 .5
if TR .7
ill R . e
if. rR ~(J. lJ

END _HPRo COPT COMPUTE

Figure 3. ROOT - LOCUS display

- 129 -

)i

(4) The exact value of all roots of the CE (poles of the closed-loop
transfer function) as a function of open-Ioop gain K. The
closed -loop poles are calculated for each increment, NDK, of
gain K. To obtain the poles for any open -loop gain value simply
locate the symbol: K GAIN =: (Menu A), enter the value of open
loop gain, hit ROOT-LOCUS, hit COMPUTE, and the value of
the poles will appear near the lower right corner of the display
with the heading: POLES AT K GAIN.

Along the right side of this display, as well as with the other dis­
plays, is either Menu A (poles and zeroes are shown in the figure) or the
COEFS display. Thus, the designer has the capability to interactively
change values of variables and examine the effects of those changes. Thus,
a design that may have taken many days using previous methods can be
accomplished in a matter of minutes using STABAN.

The root locus plot is an excellent analysis tool. However, in aome
cases design efficiency is enhanced with the use of the amplitude response
of the open-loop trans fer function.

AMP RESP

Selection of this display (see Figure 4) alone will provide the open­
loop amplitude ratio and phase angle response as a function of frequency.
This response is plotted as the frequency increases from the preselected
lower bound (WMN exponent) to the maximum bound (WMX exponent). A
very important feature of this display is the scales of amplitude ratio (db)
and the phase angle on the left side of the graph. Note that the 0 db ampli­
tude ratio and the 180 0 phase angle are the same ordinate position. Thus.
one can determine at a glance two very important indicators of stability.
i , e., phase margin (PM). which is the phase angle avoidance of the 180 0

phase shift condition, and gain margin (GM), which is the factor by which
the open-loop gain is less than the 0 db amplitude ratio condition when the
phase angle equals 180 0

• This display relates directly to the "Bode"
diagram, which has proven to be an excellent design tool for servo de­
signers. A brief discussion of basic principles will facilitate a better
understanding of the use of the amplitude response in control system de­
s'ign ,"

Design Using the Bode Diagram

The Bode diagram is simply an asymptotlc approximation to the
actual amplitude ratio response. One needs only to determine the
"break" frequencies of the open-loop transfer function and using

- 130 -

I ~IJ

NO lrfl!l['i~

- 21J lbU
NO Pi'll!', ~ 4

~HN I l i ~ J .)

.OJ

. n:

0.011

n.uu 'I. r'o

O. flu (J.rlll

O. fjrr II, "0

O. Oil IJ. UI,

0, no 011

u. (JC) O. [Ill

O. on 0.0(1

POI.t :-

-!?[), on 248. 00

. 120.00 -24e.0['

-.25 . I'D

-.25 .no
0.00 n, no

0.00 u.nu
0.00 0, 00

0.00 O. 00

O. On 0, 0(1

0,00 O. QI'

HRUfe.

.yo. OU

-40.00

vux. 2.501

K Gnl~,- 2 . .,01

'IMN, 0.01" 0

.' .

' .. "....,;.

"

.--,,--"
. . .\

~o -'"'-;-

j OU .-

1?O

-~D

o - ..-.--...

-80

·20 .-

-60

-GO

-eo

2BIJ . l Ill:

[;>0 I 6(1

, tOo

240

·200

~ ~
~ a:
c. -180

."
. llIO~: ~(J ".

r-r-

~j et

l'J ~
; -I Ei[J;:: 20

UJEFS

100 ·120 __
1"· 02 ir-o i IE.OO IE.02 1E'03

Aoe] -LOClI';

AMP Af5P

LOG MOO

MOOULU 5

END .H~AO COPl COMPUTE

Figure 4. AMP RESP display

- 13]

semi -Iog paper draw an asymptotic approximation to the amplitude
ratio. The slope of the asymptotic approximation would correspond
with the order of the term being approximated, i , e. ,

1st order - 6 db I octave

2nd order - 12 db/octave

3rd order - 18 db octave
11

Nth order - 6Ndb I octave

The following principles govern this design technique:

(1) Crossover at the 0 db of amplitude ratio should be with a
slope of 6 db per octave.

(2) The ratio of the break frequency at the end of the 6 db I
octave crossover segment to the break frequency at the
beginning of the segment should be on the order of 7 to 1
for adequate stability.

(3) The 0 db crossover point should be approximately at the
center of the 6 db loctave segment.

By using the above principles, the servo designer can "shape" his
amplitude response to achieve gain requirements and provide for adequate
phase and gain margins. Once the amplitude response has been shaped to
the designer's satisfaction, the root locus plot of the new system design
can be displayed simply by selecting ROOT-LOCUS. Some adjustment of
KU, KL, and NDK may be necessary to obtain a well defined root locus
plot.

Another indicator of servo system performance is the LOG MODULUS
or MODULUS (Nyquist) plots.

LOG MODULUS

This display (Figure 5) is a polar plot of the amplitude response.
Since the radius is the logarithm of the amplitude ratio, the behavior of the
control system in the mid-frequency range of interest can be easily observed.
This behavior is illustrated by the amount of phase angle "roll-off" in the
low to mid -frequency range. Also displayed is the calculated value of the
PM, the GM, and the frequency, W (¢ DB), at which 0 db occurs.

MODULUS

This display (Figure 6) is also a polar plot of the amplitude response.

However the critical area of interest in this case is the region of the,

- 132 -

Nil I NlEc.s. I

NO HAIlES,

Nil POLES - II

-210

END _HARD rop T

/f/l0I';

K [,n IN ?, sm I,

.111

,01

II fill

IJ,1I0

II,OQ

n.no
O.OfJ

o.no
n.no

-120.00 ·248. lIO

-.n· . ntl

-", 2~ ',1111

0.00 n I'"
0.00 O. (1.1

0.00 0, IlII

0.00 0.11"

0.00 0,1111

0.00 0.1111

COff 5

nem -L (lCII'j

ftl1f' liE Sf'

lOG sou

MO[)UIIJ~

CClMPIJTE

POLES

-120.00 ;>48.00

IlHNIEXPI

WHXIEXPi

lJMN~ -2. "lIE Z

UHX' O. (lljl Q

VHN- D.1I0E. 0

VHX· ?SOL 2

·40,flO

'\lI',IIII

II 1111

u.nu

0.1111

O. Oil

O. on
0

00 0.00

0.00

0.00

-60

-90

M~OU!.US VS PHASEf LOr. SCRLE: I

PM- 29.29
101 10 DBI ~ I • 2 1E+0 2

[1H= 1,Il7

-120

Figure 5. LOG MODULUS display

- 133 -

/

lUll

1':Nll

/

·27r)

~------.-_.,--"

·3lJIJ

-60

"'-90
MOOUIII:, vs PHR3f

PM = 20, ;>~

HIO 1m) -1.Zlf'02

GHc 1,67

• IlfHl II CI'I' r

Figure 6. MODULUS display

- 134 -

tiO ZU,r11

ND f-'Ill r'.

HMIII f I f-'I ·2

~MY r f.tf' I _ lj

-1. ',lir

1)1'11-,

'2. Sftl IS

lUl0f',

-qU, DU ,U j

',40, 00 .ni

01] ~ ~ UO

o.nu 1,1, flO

0,01.1 1t,IIO

(1,IHI 1,.r,O

w/ 1/ (Ii

,'rl/ /1 "rl

II f) II "(I

(, Ilf, 1I,IIrj

fill r'.

1,'0, ~ I ,r.J >';,;, ,'u
. I (lJ, U" ,'Ii"' , 0

, ~:' , "0

- , Z~ ,110

D, (111 IJ. rrO

D,OO p.rlU

n,(1(1 0,11(1

(1,11(1 11,110

n [1IJ fl,IIO

n.nu 11.110

COfFs
A(JOi-L ~rw,

AMP Af~,r

L"11PIj'J1

-1(0 DB at 180~) point. Clearly shown is the PM, the GM, and the tra­
jectory with which the -1 point is crossed. The calculated values of PM,
OM and W(¢ DB) are also displayed.

Incorporated within the STABAN program is the capability of obtain­
ing a hard copy of any display desired. One needs only to "hit" HARD
COPY and the display is stored on a memory disk within the PDP-9 for later
processing using an on-line printer such as the Gould Model 4800 plotter.
Another useful feature afforded by the graphic display technique is that
pictures of the displays can be taken with a Polaroid camera and developed
in seconds for use in log books, etc.

IV. Example of Use of STABAN

The following example is presented in detail to illustrate the use of
STABAN in solving an actual control problem. The design is for an attitude
control system stabilized with the use of a conventional rate sensor. 5

The simplified single axis servo block diagram is shown in Figure 7, where
C(s) is the Laplace transform of the input torque to the platform and R(s) is
the Laplace transform of the platform motion.

2
s

2
w

n

K
g

2~+ -s + 1w
n

R(s)

Figure 7. Simplified single axis servo
block diagram.

The CE of the uncompensated (K A(s) ::: 1) system is
c

- 135 -

where

w = 276
n

c = 0.5

KKK
K=l/JK s c g

c J

K =2.7 x 104 dyne-em/volts

K =1
c

K :::: 14.7 volts/rad/sec
g

2
j ::: 515 gm-cm

natural frequency

damping ratio

open-loop servo gain

servo amp gain

rate sensor gain

platform inertia

The STABAN input data and attendant root -locus plot is shown in
Figure 8. As shown in the figure, the system will go unstable at a gain
K =: 276 sec-l. The appropriate compensation is not immediately obvious
from this display. However, if the amplitude response is selected, as
shown in Figure 9, some idea of compensation required is clear if the rules
for design given on page 14 are followed.

Since there is a second-order break due to the rate sensor at a fre­
quency of 276 rad/ sec, we can use this as the break frequency at the end of
the 6 db/octave crossover segment. Then for adequate stability the begin­
ning 'of the 6 db/ crossover segment should occur at 2 ;6 ~ 40 rad/ sec, Wb.
Therefore, between some low frequency wa and ~ we need to "stretch" the
amplitude response to obtain the required open loop gain before crossover.

We desire the amplitude response of the lag compensator shown in
Figure 10. The transfer function of the lag compensator is

r s + 1
ar s + 1

where

- 136 -

II

lE HI ~ . I
lUA .2
iE TA .3
lETA .11
lETA ~ .5
lErA .6
lETR ,7
ZUA ~ .6
lETA-O,O

END

K l.913E+02
K z t.382E+02
K 9.91<7E+01
K • 6.291E+Ol
K 3.985E-02

K ~ 2.760E+02

-200 -100

I'OLES Rl K GAIN
-1.39E+02 2.39[+02
- I. 36E+02 -2.39E+02
-3.68E-15 O.

_HRRD COPT

NO nllOF~,

NO POl.E", • '2

IIMNIDPI '-2

~Hfftxrl . 4

UMN· J. rJUf i

IJMX' O. G~I (,

~MN' O. n,:J1 II

VHX· 3. {JOI

K GAIN- 1.00[0

HAOE')

0.00 0.1][1

0.00 0.00

0.00 0.00

0.00 0.0(1

0.00 0.0(1

O. 00 n.O I ,

D. 00 D. ou

0.00 0, OIl

0.00 0.01

0,00 0.01

f'I)Lf5

118.00 :<'39.01)

-I~B.OO -2~9. UII

0.00 0.0[1

0.00 o.0',

0.00 O. [Jr,

0.00 O.IJi'

0.00 0.01

O. 00 O. fir

0,00 0.0'
0

0.00 0,111

COEF5

R(]('IT-UWJS

AMP RESP

LOG MOO

MODULUS

COMPUTE

Figure 8. Root locus plot of uncompensated system

- 137 -

80 100

• I ~ l' , '• • , ',.... .. , •

~[' ;1'-1 , .'
N!" t!

NO F!Jt f

100

120 GO -._--..._. _
-T-·"-

Im~, IE H' I

END _HARD C~PY

VHh~ u. ('(H r:

~ (,,1111· I, urll II

G. ULJ 1.1 r I r ~

0, no fl.11 1 1

0 f.IIJ 11.11 i

!

00 nu u. fiJI

o.no 11,1]<;
.-.;.,."

o , nIl I, , ,

D. 011 I. fll

elJ IJ [I,

o.r)l) II,

u. (1) [I,ll'

rru r ;

,138, 00 21Y lI'

-1~8.00 -239,11'

O. DO O. n"

O. 00 [10 (JI'

0,00 0, f)1

D. 00 0, nl

0.00 (I, ru

0.00 Do QI

0.1]0 o. rJl

0.00 O. '"

eOff',

AO[J1 -l I'll II',
I r , ()lj

RMP HI ',I'

lOG MD1

MOOUL IJ~)

COMPUTE

IE. 03

....... ,.... - ,.&

-

-.....
-","'-.

.... - "". -- ..
'" :-

.~~~~+-----+-------

140 40 - ~ - ---- .. _---- ...

160 20

Leo

.D
Ci ::
eLJ . ;>00;:; -20
CJ

"r"

'"j u;

l') w
.> Cl

4 -220 ~ -40
uJ -'If) e,
<t x:
I a:
CL

-21>0 -60

-260 -80

- 280 -100

-300 -120 ~-

-320 - 11>0

-340 -160 -----~~-

1[-02 lE-01

Figure 9. Amplitude response of uncompensated system

- 138 -

We will let T·' lUJt-j" 1/40 '" 0.025 sec.
The transfer function becomes:

Let us assign w = 0.25 rad/ Sec.
a

E
2

(s)

E
1

(s)

(io+ 1)

(0.~5 + 1)

~=c

Figure 10. Lag compensator

The amplitude response of the lag compensator and the input variable
values are shown in Figure 11. We can see from Figure 11 that we can
stretch the open-loop amplitude response characteristic of our system by
43 db. Thus, if the lag compensator is used

(s)-+ 1
A(s) = 40

(O,~5 + 1) .
We can see its effect on closed-loop stability by the root-locus display
shown in Figure 12. As is shown in the figure, the maximum gain before
the system goes unstable is 37,790 sec- 1 compared with 276 sec- 1 pre­
viously, or an increase of open -Ioop gain by a factor of 137 (43 db).

Thus, the system has been made more stable than before. It still is
not clear as to how stable the system is until one selects a particular open­
loop gain commensurate with design requirements. Let us assume for the
purpose of this example that our design requirements can be met with a
gain K = 1,2 x 104 sec- 1 .

We now desire the degree of stability afforded by our selection of
compensation and open-loop gain. By imputing the desired K value into the
computer and selecting AMP-RESP, LOG-MOD, and MODULUS, the dis­
plays shown in Figures 13 and 14 appear. As shown in both figures.

- 139 -

0 I BO

20 160

-40 140

·60 120

-60 100

I
80100 ~ ~

~
0
w ~0 ...
w

a.
.J 120 CL 60
lJ w
;Z Cl

« ;;;
w

....JVl« Q..

I 140 ~ 40
o,

160 20

leo

200 -20

220

240 -60
1[-02 lE-OI

END

IE +00

---*~ ---::;;
" .. 41,,1": J

-~ ...-~ ..- ~-.

1E+01
FREQUENCY

.HrlRO UJP Y

t

NI'! unE(,':>~ 0

NO ZEROES: 1

NO POLE':> ~ I

IolHNIEXPJ

Wl1XIEXPJ 4

UHN= -3.001 2

UMX= O. Oaf n

VHN~ 0.001 0

VMX= 3.00F

K Gill N. 1.001 0

ZEROES

-4 O. 00 [I. all

0.00 [1.0,1

0.00 (J.(HI

0.00 (1.0(\

0.00 (I. UC'

o. nn fI n',

0.00 O. nu

O. 00 U. Of,

O. 00 O. fill

0.00 O. nu

POLES

-.2S O.OU

-120.00 -246. on
0.00 O. DO

0.00 D. DO

0.00 0,00

O. 00 0.00

0.00 O.OCI

0.00 O. 00

o.00 o 00

0.00 0.00

COfF3

ROOT -LOf,lI';

RMI' RESP

LOG MOO

MODULUS

CI1MPIjTE

Figure 11. Lag compensator amplitude response
and input variable values

- 140 -

Y I

?O

to

0 -~_._--_._.,----_ .. __.. - -
-300 -200

tr TR .J K 2.780E+04 K 2 _4SBE+02 K 8.835f+00
l.r 11'1 .2 K 2.153E+04 K 1. 267E +03 K 1. 677E +00
ltTA " .3 K r t , 681E+04 K 2. 657E +03 K e- 7.159E-Ol
iff A .4 K 1. 179£+D4 K 4.88GE+03 K 3.973£-01
i'ETfl .5 K B. 9S9E +DO K 7.193£+03 K 2.527E-Ol
lETA .6 K 9.521E+03 K r , 749E -0 I
ItTR .7 K I. 207E +04 K 1. 283E -0 !
lETA .6 K w 1.452£+04 K 9.807E-02
If fA cO.O K " J.7'19[+04

WMNIEXPJ

-_-:.. ~HX(ExPJ " 4

UMN" -3. 1j,'JI i

I)MX", O. (JOf 'I

VHN· O. DOl (,

VMX. som
K GRIN. 1.2OE LJ

ZERa'~

·118.00 - ?~~. !!.

-.2S Q. III

O.OD 0,

no 0,11'

0, (J(I [1.11"

D. 00 0, III,

O. DO 0.01

O. rJD o III,

O. no U.11'

r DE,F:,

RJC) ·L (J(ll~

RMP AE~f"

Ulf. HMn

H('lOUI u:

-40.00 1I.fP

0.00 (l.fI"

0, uo
0.00 (,. nl·

0.00 U. (J!'

11. f1n
"

nr

O. DO n, fJl

0.00 IJ II,

U.OO (I."

O. 00 (I,fit

POLES

-138.00 2,g, (II

NO POL E ~ .

NO Itll EG'S= 1-I

,"

POLES I'll K r:;R1N
-9.33E+Ol 2.16E+02
-9.33£+01 -2.\6[+02
-IL46f+Ol 4.60E+Ol
-IL !J8Etot -4.60ftOl

-100

-'f~iol' '~r:'

\

\

30

4(j

?qO

230
ETA·· .8

no
.'10

200

J 90

180

170

160

150

) uo

130

120

ltD

100

90

60

70,·

60

sn

.'liO

:''/0

."50

:>50 -

":NfJ lI~I'IJ' F

Figure 12.

- 141 -

(1'

o. U'

fl. n,

I) II'

1I.IW

II II"

n.n

0.00 U. [II

WM"l! [X PI

WI'IX'Hf'l

UMN· 3. our

IJM~ " O. J)r,l "
VMNe O. DOt

"

VH~- J.OOf !

K GAJ~- 1.2fn 'i

EROFS

CIlEfS

ArlCn'L(1[II"

AMP RESt

LOG HOD

MODULUS

COMPUTf

!'lei I NTH.";' I

NO nRN),

NO POLF5 " J

! E.,,~

-40,OU

O. (10

D.[I[1

O. DO

u.on
n , (1f1

0.00

O. CiO

O. GO

O. on
PD[FS

11~ nil

- 11/1. 11f!

."., .
11,1111

II II1I

O.IIU

O.IJII

O. 00

~. - n.nu

IE-03

.:, ,

__l....:_._~_~-+.__-'-.__•._~_.__"1

.
----- -. - _...-.

,,'"

"

~-.-.-----.-- ·_·····-.··~·· ··_·1_. __ .~~ ...~ __ -O- __~_.~ ...

IE-Ot
FAlOUENCT

IE-OI lE.OD

: ~ .-.... , . ~

'10

20 -

-20

~ \ ~'II 1111

."111 r.u

?"U .au - -

:'11[J Inri

WI) ·120
1f-O;!

-~o IlID

-60 120 --~-~~

-80 100

I I
~",I

-100 80 -'-~~~--..
.,,

l20 6U - ...

(~O

lLJ
'0

'J

tF,O ~UJ

~
W ,r.
...J

LLJCJ
Z ca
« 160 ~

~ ~<1: x:
l a:

)00

END

Figure 13. Amplitude response of
compensated system

- 142 -

/

/

NI3 lNTEG')=

N~ HADE.:'"

NO POLE') =

j/./!/

,. lJ'll!ri

It 1',['1

-vo uti IJ. (I'

o.au [I. QI

D, co 0, l11

O. cu CJ. nl

0.01 1 [1.0 1

0.00 0 .0

0.00 0.0

o.00 o.

O. :Je' D.OD

P[1LE s
13ft. c·r; -, (-1 rirl

- ~ -:;; f~ . ~ ;.! • rj ~ j

- .~:. u.I]I)

(I. UU ~i. rj fI

() • ~) i J n.
(J

O. uo U. JIU

0, Of; (,

0.01.1 \I I OC!

0.0 1) 0,0[1

o.lll.: O. r)':1

I
/

/
/

'/
/:....
/

\

I.

\
\ //"

~ ,-, II I

I
/

" r:,
CoM

ENII

-I'.:':

RMP REel

lOG MOO

MIJUUL U5

((]MPUTf

Figure 14.

- 143 -

PM = 46 0 and GM = 3.15 at crossover frequency of 86.5 rad/sec. Thus
the system is adequately stable for the value of gain and compensation we
have selected.

It may be of interest to view the calculated closed-loop amplitude
response of the system. With reference to the closed-loop expression:

K(:O)+ 1
+ 1)(13 8 _;23 9 + 1)(0 ,s25 - 1)

1 + ...i----'- _

s(138+~239

1
Js

We see that all we need is the poles of Gc.e (s) 1 which are the roots of the
CE at the selected open-loop gain value. These roots are listed on the
root locus display near the heading: POLES AT K GAIN. Furthermore 1

we see that the zeroes of Gc.Q (s) are simply the open-loop feedback poles.

Therefore all that is required is to input these values of poles and
zeroes and select AMP- RESP 1 and the closed loop amplitude response as
shown in Figur-e 15 will be displayed.

- 144 -

COE:f 5

accr -L OCU3

AMP RE5P

~MN I OrJ

~MX lOP) 4

UlliN, :).1,11(

UM.I;' ll.llll! 1'1

VMN n, illl~ 11

VMX, 2. ~,t'l~

K Gil I N' 1. om
If RI1f,

-] se. [10 239. DC

-]38. 00 239. DC

-.25 O. ~r

0.0(1

0.00 O.

o.au o.
U. (HI D.OI

O. no II /II

~'. (,' U l;,[

0.00 U,I,U

F'DLt '3

-93.30 2lfJ,OlJ

-93. 30 -2l6.1)(J

-411. eo 46.00

-411,60 "45,00

0.00 0.00

0.00 0.00

0.00 0_00

0,00 0.00

0.00 0.00

0, DO 0.00

Ni) HAilES 0

NO pOLES" 4

"1

., .,'.

If >03

.... ,-.

I

I--1----..--~
... -'-- .. ,,_. -,-\ --"" -~ . --

_.+
L_

.. 1. _

"

1E>01
FREQUFNcr

1E>1'0IE I)L

·24,1 1.111 ,

..250 c I
I

-280 1,11.1

300 L

L 3?U 141!

-340

'3h(1

~' ('I 1','

~I , 1'1111

I,ll I 'I

nil 1111:

1111'

L.·II 1'11 1

14f'J IIII

<T,

LF,(1
I.:::)

.' ~ I

"
~.

LJ•.I
I

ti'

1.1

I

lOG MOD

MDOt!L1!5

t Nil CClMf'111t

Figure 15.

- 145 -

Heferences

I, Swartz and Friedland, Linear Systems, McGraw-Hill, N. Y, (1965),

2, N. Horton, J. Long, H. Sumlin, and R, Young, Sandia Interactive
Graphics System Applications Manual, SLA-73-0953, Sandia
Laboratories, Albuquerque, New Mexico.

3. D. C, Jones, Memorandum of Record, dated
February 21, 1973 General Stability Analyses Program
June 20, 1972 Root - Locus Plot Program
December 7, 1972 Bode Plot Program

4, Eveleigh, Virgil W. Introduction to Control Systems Design, McGraw­
Hill, N. Y. (1972) Chapter 9,

5, B, J. Wimber, Development of a Two -Axis Inertial Altitude Refer­
ence Assembly (TIARA), SC-DR-72 0779, Sandia Laboratories,
Albuquerque, New Mexico. .

6. N. Horton, DGRAPH - 6600 Graph Plotting Package for the Vector
General Display, SLA-73-0952, Sandia Laboratories, Albuquerque,
New Mexico,

- 146 -

APPLICATION OF PEPR

IN MEDICAL RESEARCH

I. A. Pless, B. Wadsworth, D. Zahniser,
Massachusetts Institute of Technology

(Paper not received in time for inclusion in
the Proceedings)

- 147 -

*Crysnet - A Network of Intelligent Remote Graphics Terminals
~_~~_"""""~"'~"-,Jo~""~~ ~~~----'

by u. J. Br- r ns t eLn , L. C. Andrew!'>, H. M. tBerman, F. C. Rernstcln,

t *G. H. Campbell, H. L. Carrell, H. B. Chiang, W. C. Hamilton,

§ § §
D. D. Jones, D. Klunk, T. F. Koetzle, E. F. Meyer, C. N. Morimoto,

t **S. S. Sevian, R. K. Stodola, M. M. Strongson, and T. V. Willoughby

Brookhaven National Laboratory, Upton, New York 11973

*work performed under the auspices of the U. S. Atomic Energy Commission

and supported by the National Science Foundation under contract AG-370

and GJ-33248X, and in part supported by U. S. Public Health Service

Grants CAI0925 and RR05539 from the National Institutes of Health.

tInstitute for Cancer Research, Philadelphia, Pennsylvania 19111.

*oeceased.

§
Department of Biochemistry and Biophysics, Texas A &M University,

College Station, Texas 77843.

**Department of Biophysics, University of Leeds, England.

- 148 -

1. Introduction

We will describe a group of intelligent remote graphics terminals

forming a network for crystallographic computing. The terminals provide

high resolution interactive graphics with batch mode access to the central

facility via dial-up voice grade lines. They are used for the determination

of molecular structures from X-ray and neutron diffraction data. There are

three such terminals at present, one at Brookhaven National Laboratory, one

at the Institute for Cancer Research in Philadelphia, and one at Texas A & M

University. Each consists of a DEC PDP11/40 with card reader, line

printer/plotter, disk, magnetic tape and Vector Gene~al 3D display.

Communications are via 2000 baud synchronous, half duplex lines using a

CDC mode 4c protocol. The preferred central site is the Brookhaven

National Laboratory Central Scientific Computing Facility with two CDC 6600s.

By providing enough computing capability at the remote site, inter­

active graphics are supported without interactive use of the central site

and without high speed dedicated lines. Off the shelf logic costs are

now sufficiently low that such a terminal is moderate in cost (well below

$100K, $70K in this particular case). As a bonus, the terminal is powerful

enough to do a significant portion of the computing usually done at the

central site.

Though some new approaches are being tried in the development of

these terminals, the main thrust is not to create something at the frontiers

of graphics. Rather we seek to apply the fine basic work and applications

designs of others to build a useful tool for the working crystallographer,

to conserve his time, and help make him more effective. We have used only

- 149 -

commonly available hardware, have kept the software as portable as possible,

and have concentrated on working down from the needs of crystallographers,

rather than up from all possible features. We have borrowed freely from

the ideas of Levinthal (1) and Katz and Levinthal (2), but hope to provide

similar facilities at much lower cost. For information on

other efforts in this area, we would suggest the content and bibliography

of Van Dam and Stabler (3), Newton (4) and Raub (5). Newman and Sproull (6)

should be consulted for more basic detail.

This effort was started by W. C. Hamilton and E. F. Meyer and is being

carried forward by T. F. Koetzle and E. F. Meyer under NSF contracts now

entering their third year. There are many facets to the project, but here

we will consider it from the graphics terminal point of view.

2. The Nature of Crystallographic Computing

Crystallographers attempt to determine molecular structures from

diffraction patterns produced by X-rays or neutrons scattered by crystallized

forms of the molecules under study (7). The raw data consists of diffraction

intensities, and reasonably accurate information on the number and types of

atoms involved in the scattering. One tries to take this data and infer a

confornl:ll i o n qf n t omu which In co r rr-c.t, Thin in :t no n-v t r l v l u l IlInk for

several reasons.

1. The data does not, in genera~ determine the structure,

since only intensities are collected and phases would be required

to analytically obtain scattering densities.

2. The crystals are imperfect, and often deteriorate in the

course of data collection.

- 150 -

Thus the crys tallographer makes an iterative use of computers ~ fitting

models to his data~looking at the nature of the errors~ and correcting

until he has a chemically sensible structure. This is called refinement.

The basic needs are for

1. A means of submitting programs and data to a reasonably

large computing facility to reduce raw data and fit models.

2. Facilities to obtain information about known structures

to use in piecing together models.

3. Graphic facilities to look at tentative and final models,

or look at forms of the data which have physical significance,

and to prepare final results for publication.

These needs can be met by an in-house computer or standard remote batch

facilities~ by a good library, and by ball and stick models and paper

plotters. Data tapes can be mailed.

A person in computing is tempted to say that all one need do is add

graphics capabilities and information retrieval programs to some remote

system~hand it to the crystallographer and leave. As E. F. Meyer has

pointed out (8)~ it is not so simple.

Half the problem is psychological, and the rest is financial.

One must provide a system that the crystallographer is willing to use.

One must provide a system he can afford to use.

Let us consider the financial question first. An ordinary remote

batch terminal costs between $20K and $60K. Graphics capabilities add

between $10K and $50K to this price. The money will be there only if

adding those capabilities reduces some other costs by about the same amount.

- 151 -

In our case the savings are there. Perhaps the same system in another

field would not have SUcll an effect, but for crystallographic work we

benefit from the absolute time savings of being able to look at a tentative

configuration in many different orientations in a few minutes rather than

having to spend hours with ball and stick or to spend days waiting for plot output

to be mailed, from the ability to compare images and density maps visually,

which is both cheaper and faster than using a computer, and from the

ability to use the computing capabilities of the terminal which were

mandated by the graphics. requirement for general problems not requiring

a powerful cpu.

This last is likely to be a sore point with many in the field,

especially those devoted to timesharing or running large central sites.

Van Dam and Stabler (3) seem to think such use strewn with pitfalls of

software incompatibilities and misuse of hardware. Our experience has

been that most small 1/0 bound F0RTRAN programs can be usefully run on

the terminal rather than at the central site, saving time, phone bills,

and aggravation when the central site is down or overloaded. Thus,

given a set of coordinates, such data manipulations as computing bond

distances, angles, best fit planes, etc. are well done on the terminal.

The psychological problems are tougher to meet. Crystallographers

use computers, but few of them like having to read manuals while they

lunch. The terminal must be easy to use by an unsophisticated user and

forgiving of mistakes. The terminal must be stable and reliable, so

that the crystallographer can spend his time doing crystallography, not

soldering, or debugging. For this reason it is important that the

components of a terminal be standard, easily maintained, and likely

to have spare parts available.

- 152 -

3. The Crysnet Terminals and Software

The terminals are as in Figure 1, with sufficient hardware to run

a disk operating system. The display has 3D rotation and depth queuing

capabilities, so that a model may be seen in three dimensions, either by

showing a stereo pair, or by using motion and dimming to give the

impression of depth. Further the hardware is well suited to providing

independent motion for different images so that we will be able to dock

molecular fragments.

The terminal software matches the task. There is a communications

package to send jobs to the central site and to return listings and files

for display. There is a display program which accepts coordinate

information in any of the formats common to crystallography and which displays

the corresponding model with facilities to introduce new bonds and

inquire about the geometry. A base of data on protein structures is

maintained at the central site with retrieval programs. The existing

central site crystallographic programs have been modified to produce

outputs better suited to remote use. These three components, communications,

molecular display, and remote oriented central programs,were the basic need.

In addition we are providing utilities to move display images and

paper plotter plot files to the printer. This last is being done from

incremental plot files, which are converted to vector oriented commands

at the central site and then shipped over the phone lines. At present,

a plot of the complexity of Figure 2 takes about 3 minutes to transmit.

This speed is not great, but is a significant improvement over the 24 hours

needed to obtain a plot by mail. The algorithm used in reducing the many

small vectors to larger vectors, which we term resolution reduction, is

expected also to be of value in achieving flicker free display of complex

- 153 -

proteirs. Experiments conducted by P. A. Wilson (9) have indicated that

afor this display angles flatter than 176 may always be removed.

In the remaining year of the project we will be providing display

capabilities for electron density maps, other 3-D contour display

capabilities, and more flexibility in the molecular display. Efforts

will be made to switch to a multi-programming mode to allow overlap

between communications and display work.

Most of the code is written in F¢RTRAN, calling assembly language

subroutines for special features. The lack of a special display language

has not been felt and this pedestrian approach has allowed crystallographers,

who tend to be F~RTRAN programmers, to write programs for the display

themselves. Further it is reasonably likely that the same programs can

be adapted for use with other display systems, and we are able to borrow

static and dynamic display programs from other systems.

4. Experience and Conclusions

We have been able to use the terminals as they were intended for

only a few months as of this writing, but it has become clear that a

reasonably priced intelligent remote graphics terminal with good stand-

alone computing capabilities can conserve a working scientist's time and

dollars. On several occassions, the ability to take arbitrarily formatted

coordinate information,display it, and manipulate it, has saved hours or

days of time. The stand-alone computing capability has sho,Vll its value

in converting what would normally be idle time on the terminal to a

reduction in central site computing use.

- 154 -

Our exp e r Jence wL th the communlcations portions of the sys tern has

indicated some need for faster speeds than 2000 baud, and lower overhead

protocols. Coordinate information is not a major problem in most cases,

but display buffer loads,and contour data can be painfully slow.

Fortunately, the terminal computing capabilities reduce the need to

transmit such data often, but designers of future systems would do well

to consider 4800 baud modems and/or binary protocols with small core

requirements, as well as data compression techniques.

- 155 -

References

1. Levinthal, C., "Molecular Model-Building by Computer", Scientific

American 214, 42-52 (1966).

2. Katz, L. and Levinthal, C., "CHEMGRAF - A Computer System for Three­

Dimensional Molecular Structure Studies", draft publication by Graffidi

Laboratories, Dept. of Biological Sciences, Columbia Vniv., N. Y., 1971.

3. Van Dam, A. and Stabler, G. M., "Intelligent Satellites for Interactive

Graphics", AFIPS Conference Proceedings, 42, NCC 1973, pp 229-238.

4. Newton, C. M., "Graphics in Medicine and Biology", AFIPS Conference

Proceedings, 42, NCC 1973, pp 639-642.

S. Raub, W. F., "Automated Information-Handling in Pharmacology Research",

AFIPS Conference Proceedings, 40, Slec 1972, pp 1157-1165.

6. Newman, W. M. and Sproull, R. F., "Principles of Interactive Computer

Graphics", McGraw-Hill, N. Y., 1973, 607 p.

7. Stout, G. H. and Jensen, L. H., "X-ray Structure Determination--A

Practical Guide", Macmillan, London, 1968, 467 p.

8. Meyer, E. F., "Interactive Graphics and Remote Computing" in Computational

Needs and Resources in Crystallography--Proceedings of a Symposium,

Albuquerque, New Mexico, April 8 2 1972, National Academy of Sciences,

Washington, D. C. 1973, pp 105-108.

9. Wilson, P. A., "Resolution Reduction on the PDP 11", BNL semester

student report, fall 1973.

- 156 -

MAG TAPE

/

=1
I

DEC
PDP 11/40

~
MODEM I

VECTOR
GENERAL
3D DISPLAY

(I

PRINTER/PLOTTER

CARD READER~

I~

Fig. 1

CRYSNET terminal configuration

- 157 -

Fig. 2

Converted Calcomp plot transmitted to terminal

- 158 -

SESSION III

General Graphics Facilities

Chairman: A. M. Peskin
Brookhaven National Laboratory

- 159 -

A SET OF DEVICE-INDEPENDENT FIRST LEVEL GRAPHICS ROUTI:-l'ES *

by Nancy A. Storch
Lawrence Livermore Lahoratory, University of California

Livermore, California 94550

ABSTRACT

This paper describes TVaO, a set of graphics
routines used as a language to plot points, lines and
characters by Fortran applications programs. It is a
device-independent version of a set of routines long
used at Lawrence Livermore Laboratory. Whereas the
old routines were limited to one device, TVaO allows
access to a number of devices through independent
software processors. Features include scaling,
clipping, scan conversion and character generation
for raster devices, identification of output,
handling of on-line display hardware, and generation
of display commands.

BACKGROUND

Since 1964, the major portion of the computer graphics
produced by scientific programs at Lawrence Livermore Laboratory
has heen done with a single set of Fortran subroutines. These
were originally designed to generate display code for two Data
Display Inc. high speed CRT's, called DDaO's [1][2]. The CRT's
image was recorded on 35mm film. The major use of the film was to
obtain hard copies from the Xerox Copyflo. Some of it was used
for movies. One DD80 was driven by a batch system IBM 7094 and
the other by a time-shared CDC 6600. The Fortran subroutines were
used to produce graphs, contours, three-dimensional isoplots,
histograms, flowcharts and reports. Although they were simple
routines which accepted data in the user's coordinate system, drew
a grid, and plotted series of lines, points or characters, they
were versatile enough for most user's needs. Files containing
DD80 drawing commands were put on tapes and later plotted at
certain times of the day by the operating system. This mode of
operation is still in use with output being plotted on either a
nURO or an Information International Inc. FRao.

lturi ng the past tcn years, our entirc work environment has
changcd considcrably and will probably continue to do so at ~n

even faster pace. Most of the Laboratory's work is still donc hy
large hydrodynamic codes which are written primarily in Fortran or
assembly languages for faster program execution. Although numeric

)I(This work was performed under the auspices of the United States
Atomic Encrp,y Commission.

- 161 -

output continues to he standard procedure, most users want
graphical output. Thus we face new demands for interactive
graphics editors, color movie capabilities, shaded-tone pictures
and command languages for specific graphic applications. Today we
have twice as many users (approximately 1500), and our compute
power is twenty-one times as great. We operate in an elaborate
system of networks and computers to support time-sharing in which
most users have both a teletypewriter and a television monitor in
their office (which they use in combination as an interactive
termin~l), and a nearby remote job entry/exit terminal. A number
of different graphics output uevices are also available, some more
recently acquircu, some have heen around a while; among these is
an upgraded nn80 with color, grey level and raster capabilities.
Figure 1 shows the different graphics choices available to a code
running in one of our network "host" computers, a CDC 7600.

When raster devices were acquired, programs were written
which scan converted previously made DD80 files [3] [4]. The FR80
was made to simulate the DD80 and accepted nD80 tapes. We did not
have the capahility to use features of the FR80 which were not
compatahle with the DD80; these included a larger address space,
control over intensity, spot size, character size, character
rotation and arc drawing. Also a number of routines similar to
the DD80 routines but different, had come about to produce
plotting tapes for CalComp and Gerber plotters [5] [6]; these
forced users desiring a choice of outputs to include repetitious
coding for each plotting package.

TV80 D[VELOPED

Therefore to satisfy the users requirement of easily using
different devices in a like manner, and to more fully utilize the
capabilities of the devices, we produced a totally new set of
device-independent routines, called TV80 [7]. These routines
could easily be integrated into existing codes because TV80 would
contain a subset of routines which were identical in name and
arpument list to the old routines. TV80 would also serve as a
fo~ndation for higher level graphics packages being developed
simultaneously [8] [9]. In general, TV80 routines are not only as
fast as the routines they are intended to replace but also they
are easy to maintain and modify and can be expanded to control
additional devices. TV80 consists of (1) device-independent
routines that define display windows, establish mappings, draw
lines, characters and points, and (2) software processors for
different graphics output devices and data formats. TV80 can also
be used to make a general-purpose picture description file.

- 162 -

HOW TV80 WORKS

Figures 2 and 3 s how the relationship of TV80 to the usc r t s
code and graphics devices. ~ processor is initialized when a call
is made from the user's program to a special "IDtI routine.
e. g. DD80ID. (The inclusion of this call in a program causes the
entire DD80 processor to be loaded with the user's code from a
graphics Li b r a rv .) I f the initialization process for this device
was successful. the processor sets its status to "active" and
stores pointers to itself in the jump table used by TVSWCH, a
routine in TV80. Initialization for an offline device includes
creating output files and constructing an identification page
which contains the time, date, machine, security labeling and
Jistribution of hardcopy or film. Online devices arc reserved by
the In routine for the current user hy sending a request to either
a remote system or the host operating system. For c l.a s s i f ie d
data, a procedure is followed whereby the system verifies that the
user is at a certain monitor by having the user type in a code
which has been displayed on the monitor. Processors also create
temporary working files. Error recovery techniques are used
depending on the output device selected.

Except for initialization, release, and special device or
data base features, the running of the separate processors is
controlled by the routine TVSWCII. The value of a specified task
identification number is used by TVSWCH as an index into a jump
tahle which locates those portions of each processor which handle
the designated task. Tasks currently being used are: position,
draw points, draw lines between pairs of points, draw lines
connecting points, draw characters, output picture or buffer, and
advance frame. Most of these tasks have their counterparts in the
device-independent section of TV80. Individual processors are
called in turn to handle the task and when finished to return
control to TVSWCII. Those processors not currently "active" are
skipped. No intermediate data hase is constructed. Integer
arrays of coordinate values arc passed in common hlocks. The
arrays have already been scaled and clirped by TVHO's
device-independent routines. Character strines and information
about size, orientation and intensity arc also passed in common
blocks.

While a code is running, a call to GSTAT, a
device-independent routine in TV80, may change the status of a
particular processor from active to inactive or disconnected; or
from inactive to active or disconnected. Once disconnected, a
processor can only be activated again by a call to its
initialization routine. Disconnection severs all program ties
with that processor's device and/or data files. At tha~ time
files may he given to the operating system for late~ p10ttlng or
printing. Inactive status is useful when you wlsh only to
temporarily turn off output to some processor.

- 163 -

Although almost any numher of device processors may be active
at a time, users are generally limited in that the choice of where
pictures are to be displayed or printed must be made before the
picture is generated. An exception is a hardcopy feature which
will send a television bit buffer after it has been viewed to a
raster printer. We are currently working on a processor to make a
general-purpose picture description file. This will make possible
the saving of a device-independent representation for later use by
either movie or text eoitors, at which time the decision may be
made to obtain hardcopy from some device.

TV80 is flexible because program coordinate data may be
floating-point variables in a program-defined coordinate system or
t hey may be integers on an imaginary square display recognizable
by TV80. In the latter case, all clipping and transformation
operations arc bypassed when the data is sent to the processors.
The program may turn clipping on or off. Although each processor
has its own buffers, these can be reassigned hy the user's
program. Depending upon the program, more than one processor may
l)c made to usc the same buffer; or huffers may be dynamically
allocated and c1eallocateu. A program can increase the size of a
processor's data file when necessary.

Conclusion: A situation existed where we found we had many
different types of graphics devices supported by different
software. To better utilize what we had, we developed a package
of routines similar to those already in use wi th the, flexibili ty
of having independent software processors. We are continuing our
Hork on TV80.

REFERENCES

[1] Cecil, A. and ;'Yichael, G. nDSO
Lawrence Livermore Laboratory, Rept.

Programmer's !'-lanual,
N 2.S-002 (1964).

[2] Ford, .J. ann Welsh, H. CRT Plotting Routines in Use at
LRL-Livermore, Lawrence Livermore Laboratory, UCRL-14427-T
(1965) •

[3] Keller, P. nnTV-to selectively scan frames of DDSO files
via Tt,mS, Lawr-ence Livermore Laboratory, nr-412 (1971).

[4] Storch, 'L and Fuss, D. New Routines PCNTLR and DCNTLR on
G-nachine for Quick Hardcopy of Printer and nnso Files,
Lawrence Livermore Lahoratory, Octopus Communique-60S
(1~)7 :;) •

[S] Mi chnc l , C., Van licwc kc r , II. and l lun t , C. Tlsc of Cu lComp
Plotters, Lawr cn cc l.t ve r mo r-c l.a ho r a t o ry , lJCHL-14834
(P)(1()) •

- 164 -

[6] Schwarz, p. /\ New Cr:rhcr Package for the 6600, Lawrence
Livcrmore Lahoratory (1970).

[7] Storch,~. TVSO: Device-Independent Graphics Routines for
the CDC 7600 Computer. Lawrence Livermore Laboratory,
Working Papcr llCIR-748 (1974).

[8] Ar chu l o t a , ~1. l l i dclc n Surface Processing, Lawre n cc
Li v c rmo r c l.nho r a t o r y , UCln-jOOS7 (1973).

[9] Archuleta, ~l. Interactive Surface Plotting. Lawrence
Livermore Laboratory, UCI1)-30058 (1973).

- 165 -

~---- other Host Computers

PDP/11 IS 1---111-----1

PDP/B's

PDP/B'a
PDP/11

Fig. 1. Graphics devices available to user's code.

- 166 -

User

Userfs Coder---------....,--------..,...---------r-------'
I Mathematical I Routines to I Conmand I Library I
t model of problem I manipulate : Interpreter I routines It l_~a~~~_L J ~

f-"
0'1
~

To initialize To initialize
DD80 processor other

processors

Gluinge
device
status

I GSTAT I
i

ITV~..roH I

'l'V8o
--,

I
DDBo

processor

r
I I

,

L ~ ~~~o~~~__ __~

'---------_--.~ -""
to graphics devices

Fig. 2. Relationship of rvaO to the user1s code and graphics devices.

User's Code

....,
<,

<,
<,

<,
<,

...................
<,

IoSTAT I ITVSWCHl

DDBoID

Connect to DD80 or Disconnect nD80 or Task routines
create output files give files to system t----.

for later prooessing

I + I
I/O routines

Fig. 3. The nD80 processor.

- 168 -

GRAIL - A Graphical Device-Independent

Picture Description System

J. A. Brookil18

Jo'ebruary 0, 1974

Introduction

The absence of a definitive, accepted standard for graphical data structures im­

poses severe restrictions and penalties on installationsYbich deal in any s~b­

stantial way with data which represents pictures, and with programs to generate

these picture-defining data.

A restrdction appears when the installation considers upgrading existing graphical

output facilities. Consider the case of an installation with a heavy investment

in application software vhich generates graphical data to be realized on an exist-

ing plotter or Computer Output Microfilm (COM) device. When the capacity of this

eXisting equipment becomes exceeded by the workload (e1tber through increased york.~

load or decree.sed capacity caused by equipment deterioration), the installation is

restricted (by reprogramming costs) to consider only those vendors vbich offer, at

a minimum, graphical subroutines with calling sequences essentially identical to

those which are available for the obsolete equipment. Ideally, the picture describ­

ing code generated by the existing programs should also be compatible (upvar4 at least)

vith that of the never device. The minimum requirement above 18 generall.y satisfied

by the same vendor (which is to sa;;y a giYen vendor will most likely supply compatible

subroutines for his entire product line). The ideal 1s almost never satisfied. The

consequence of this restriction is that those who have invested in a large body 01'

graphical-oriented code are prevented from any meaningful compe\it1ve bidding pro­

cedure and so must either make a sole-source procurement or commit themselves to a

reprogr~~ng effort, the cost of which obliterates any differences in prices quoted

ror competitive equipment.

- 169 -

A penalty is imposed on an installation which is unable to service its graphical

n~~dl; by only one type of device. An exs.mple of this i9 the insUUl.atlon Which

rcqld reu GOM equipment. for high volume arcnt val output, a tUlb precision auto_tic

dr-aft.Lng machine for quality engineering drawings, a taat iucre_uta! plotter for

general utility graphics, and a low-precision, "quick-look" device such as an

electrostatic printer/plotter. Of course, an inst&llat1on with 8uch a beaY1 re­

quirement for graphical output will probab4 have cooe1dered interact1ve graphics,

and these vill typ1cal.ly also have varieties of subrou'tllle call iDS .eq\MtDc:es ad

iuternal picture-description codes.

What penalties are imposed on an installation with 8uch a veal.th ot graphics devices?

No vendor today markets a Bet of devices to till all. the needs of this loatallation.

(Vendors may, of courae, subcontract to original equipment manufacturer. ror some

devices, but this really does not solve the prob1.elll., &8 v1llbe seen). The result

of this situatiOIl is that the installation DlWIt be content tosuf'ter one of the

following s1tuatlons:

1. (More likely). The installation is forced to clut1ier its 8ubroutine

libraries with a different set or routines tor every ditferent device

it installs. In turn, the custoMrs of the installations are forced to

learn a different set of conventions ad calli. sequences for every

device they use.

2.. (Less likely). 'The instal.latiun undertakes to Blintain subroutines for

all devices which are installed, which subroutines appear the ...e for

all devices. When new devices are installed, a Dew subrout.ine set Vill

be provided.

Unfortunately, both s I tuations have rather obvious defects, as well as advantage••

'l'hp advantage of the first is, of course, that it minimizes local maintenancej one

- 170 -

simply installs the vendors' software packages and g1ves the users the vendors'

manuals. lJisadvantages: A plethora. of subrout1ues of a1a1lar function occ\lPyiog

library apace , a group of users who can never ~aber Ybetber to use XCPLOl' or

SYMBOL to draw character data on the COM (and if SYMBOL, which calJ.lng sequence is

correct)" and of course, all those routines with the local IIIIOd1fication to identify

the output as belonging to individual customers must be maintained..

The second alternative affords the users an apparently compatible set of subroutines

at a cost of a heavy maintenance load for the installation. '!'be compatibilit;y 1s

only apparent, however, since the subroutine set lmplellented for a lt8" x 96" natbecl

drafting machine will rarely be very meaning.ful when implemented for an Uti in­

cremental plotter. (For example, how does one interpret an 11" move on the pen on

the plotter as a 48" move on the drafting machine? Is a 48" move on the drafting

machine to be interpreted as an 11" move on the plotter?)

A disadvantage of both conditions is that the selection of graphical output device

must be done prior to the time the graphics program. 1s executed. In the first

case, selection is done at the time the program. is written while in the second case

selections may be deferred to load time. In neither case, though, can selections

of device be made dependent upon conditions which arise during program execution.

Another disadvantage of both s Ltuations is the lack of control on user' programs.

This disadvantage is particularly evident during debugging When ~1ne8 of "semi­

infinite" length often appear along with 3800 coincidental points, and cl::aracter

strings which wrap around the scope 228 tim.es (III forgot the number of characters

should be an integer, not a real~")

- 171 -

'I'h l s paper wt 11 propf):;~ rio noLut.Lon to the graphics prol.lem which Yiil ofter the

rollovln~ ad VfUltugel; :

1. 11 Bubroutine library which 19 identical for all device8 and

sui table for implementation ::)0 a variety of cOlllputers.

2. A ~icture-description code waich is suitable for realization

on any graphical output device.

3. Maximum ease of conversions to neY graphics devices, either

add-on or replacement.

4. Selection of device at any stage: before, (luring or after

program execution.

5. "Entry-level" programmer knowledge at a minimum, but highly

sophisticated techniques available.

6. Abundant error diagnostic features to facilitate program

debugging.

The GRAIL System at KAPL

GRAIL is the collective term which is used to describe the conventions for des­

cribing pictures, subroutines which implement these conventions, and post-processor

programs which transform GRAIL picture description files into device-dependent

picture description filea. We shall discuss the conventions uaed to describe

pictures 1n GRAIL, and show bow these conventions contribute to realizing GHAIL

design objectives.

The elementary building block in GRAIL is the~ of tvel.ve bits length. The basic

structural untt in GRAIL picture description is the instruction segment, which

consists of two or more contiguous bytes. The first byte defines the type of

instruction segment, and determines the syntax of the remainder of the segment.

- 172 -

"Structural entities which can be included in instruction segments are parameters,

values and characters. Parameters are one byte long, and g1ve environmental and

parametic information such as required security markings, line flavor (80~id, dotted,

etc.) and character encoding mode (display code, ASCII, et.c.). Values on the other

band are numbers and represent coordinates on the display surface. There is one

distinguishing feature of values: they may (but need not.) be comprised of more

than one byte. This enables a high degree ot coordinate precision to be attained

where necessary v1thout the requirement that all coordinates be specified with the

higher precision. An instruction segment 1s defined to specify the number of byteo

in a value. Value strings are formed by concatenating more than one value, and are

terminated by a value of 71178 (with don't care values used as required to pad the

terminating value to the required precision).

Cbaract.ers occupy one byte each, and may be concatenated to form character strings.

A character string is defined as a contiguous set of non-null characters, termin­

ated by a null character. (A null cb&racter is a character with byte value 00°
8

.)

The graphic associated with character encoding is determined by a, parameter. Graphics

so specified are independent of device, and if not specified otherv16e, are defaulted.

to the normal character set of the computer on which the GRAlL ri~e is generated.

The overall structure of a GRAIL file consists of a set of initializing parameter

segments, followed by the main body of the file: the picture description, which

consists of one or more frames. Initializing parameters include, for example, the

identification of the computer on which the file is generated, the identitr of the

user who is running the job, the date and time the job is run, the frame size and

the precision of values. The order of these parameters is important, being used

by the realization routines to identify the GRAlL file aa such, and 80 no initial-

ization parameters are written on the GRAIL file until the user performs the first

- 173 -

non-parametric picture-describing subroutine call.. TbJs enables him to specify

any non-default parameter settings in any order be chooses.

GRAIL subroutines include capabilities for generating l..he usual graphical primi-

t1ves of move, draw, dray symbol, draY broken line polygon, etc. Tbese are des­

cribed in Appendix A: GRAlL System Description. It may be worthwhile to note that

some options are available in GRAIL which are not found 1n the usual run-of-the­

mill graphical subroutine library. Among these are variety ot cbaracter-drav1118

parameters such as roman or italic (slanted) font, aepect.ratio and inter-character

spacing. Line drawing options include line ":flavor" (solid, dashed, dotted and

end-point). The selection of data representations for line drawing includes .ector

mode (X1,YLX2,Y2, ••• ,XnYn)) incremental mode (Xo'Yo' DXl , DYl , ••• ,D~,lJYn)' and auto­

incremental mode (Xo,DXo'Yo,Y1," .,Yn) . Values may- be scaled or unsealed far all

coordinate representations.

Realization programs are programs which read GRAIL picture 4eecription files and

generate files which can dr1ve particular devices. At KAPL realization routines

are availab1e for CalComp 565 and 763 incremental p1otters, a CDC 280 Computer

Output Microfilm unit and a Versatec Matrix llOOA electrostatic printer-plotter.

As a parenthetical note, the KA.PL computer systems are linked together in various

ways. In particular, as seen in Figure 1, K.APL graphics devices are driven directly

or indirectly by both COC 6&>0's and by the PDP-IO. (The 7600 can dr1ve only the

off-line CalComp through magnetic tape). Acoordingly, Jobs ~ecutlng on any computer

in the network are given access to any graphics device in the shop. For example,

execution of the control card,

GRAVER.

on the 7600 will cause a GRAIL file to be forwarded to the PDP-10 and plotted on

the Versatec plotter.

- 174 -

FIGURE 1

KAPL Computer Network and Graphics Devices

CalCoatp 763
Plotter

CDC
6600(A)

Vector General
3D2 Graphics

System

DEC
PDP-10(D)

versate:-l
Matrix ll~~

~

- 175 -

CDC
7600(C)

- - - - -.
I,

. ----- - _"41 _

: CalComp 565 :
:P1otter (R.I.P.)I

~ - _ -.
---~

In the nature of a conversion note, GRAlL went into production in July of 1973,

a.t the time our Versatec plotter was installed. The facts that (e.) GRAIL vas

the only language by which the Versatec could he used, and (b) turnaround on

the Versatec from all four computers "WaS almost instantaneous, gave KAPL users

strong motivation for using GRAlL subroutines.

GRAIL Features which Contribute to Design Objectives

Given this brief introduction to GRAIL, what features 1n GRAIL contribute to the

realization of GRAIL design objectives? First of all, deVice independence Ls

yielded by three primary nttributes of GRAD..: (1) the inclusion ~D all GRAll

files of "environmental data" which provide realization routines with information

about the intention of the programmer as he was writing his picture descriptions.

(2) The ability to specify multiple precision val.ues as coordinates enable GRAIL

files to be realized on any device, while precision is maintained for the most

exacting dev.cce on which the file will be realized. Thus, for example, i1' one

is creating high precision engineering drawings, he can debug his program. using

low-precision, quick look devices such as the Versatec plotter. Then, without

changing his program (and in fact, vithout regeneratln,g the GRAIL file) plot it

on an automatic drafting machine which recognizes GRA.n. files. (3) The last

primary attribute of GRAIL Which contributes to device independence 18 the accept­

ance by GRAIL realization programs of instruction segments which have no meaning

for the device on which the picture is being realized. For example, an instruction

segment exists t.o specify intensity of displayed information. If this segment IB

encountered by the CalComp realization routine, it 1s simply ignored, since there

is only one intensity for CalComp lines: On.

- 176 -

Machine independence is obtained by the use of a standard unit of 1nf'or-.tlon:

the 12-bit byte, and by the definition of" a uniform set of graphics associated

with internal character codes. The sele::tlon of 12 bits per byte was III8de be­

cause 12 divides both 60 (the CDC word length) and 36 (the PDP-10 :word length)

evenl.y. Additional.ly, the expression of up to 4000 UD1't8 u a value can represent

up to 40 inches while maintaining 0.01 inch prec18100.

Our third objective of ease of use is served by severa:L tea'tUl"es 11l GRAIL.

Probably the most important of these is the inclusion o~ -.u.'t1tude. ot clef"ault

options. These defaults enable the prosruaer to avoid the ted10us task 01"

specifying everything about his picture before he drays it. For exutple, the

engineer who wants nothing more than to draw a graph of a sUiple function can do

this by calling six subroutines: two for x- and y- scaling, two tor x- and y­

axes, one to draw the function which bas been generated by his prosrua and stored

in an array, and last, an end-of-frame subroutine. Since be d1d not elect to

override default options he will generate an eleven-inch square graph, V1th 0.21

inch character heights, 7:6 character aspect ratios, 80l1d l1ne .ode, etc. The

I1 pr i ce of adDI1ssion" to GRAIL in terms of knovled&e i8, then, small. Sbou1.d the

engineer later decide to plot other curves , or 81ve labels to bis graph, or in

other ~s improve 1t (in wbat is called the CreepiDg &1epnce SY'na.ro.e) .be can

do so, simply by reading more sections of tbe manual.

Another facet of the GRAlL implementation 1s that error conditions are, for the

most part, handled with grace and forgiveness. A labeled coaaon block is used

to convey error conditiona to programs calling GRAD... subroutines. When an error

condition is noted by a GRAIL subroutine (such as a coordinate value which exceefln

the frame boundary) a number is placed in one variable of this cOJJllOOn block and

- 177 -

the other variable if, incremented by one. Careful progr...ers rJJay declare this

common block 5.0 their programs and test these variablea to determine if so_thing

went awry in their GRAIL subroutine caJ.ls. Alternat1ve~ the progralDlRr II&f

call a Bubroutine which causes full d.Lagnoatdc print-outs when errol'S occur. In

any case, if errors in specifications or coordinates do occur, the erroneous

value is ignored and the default value used instead.

Interactive Use of GRAIL

At the present tlm~ we are formalizing the plan for exteD41Dg GRAIL tor inter­

active \Joe. "'his plan 18 b83ed on fl. number of premises:

1. 'The main applica.tion programs at KAPL are modular in nature; SOIDe

modules process input, some do one kind of calculations, some do

other kinds of calculations. Still others generate pictures based

on input data or on computational results.

2. The computational modules use SUbstantial &mOunts of 6600 and 7600

computer time1 and can not be pract1cal.ly performed OD the PDP-10,

to which the Vector General graphics system 18 attached.

3. Interactive Gr-aphl cs at KAPL will be used for the creation and modi­

fication of comp1ex geometrical constructions composed of a varlab~e

initial library of simple shapes, any meMber of which -.y be trans­

lated, rotated, scaled and/or reflected, aDd added to the construction.

Intermediate constructs may be added to the basic library, and any

member of the library may be changed at any time, causing all instances

of that member in the constructlon to a&SUIIIIe the changes of the library

figure.

- 178 -

'L 'l'he deuc r t pt.Ion of interactive graphic. in (j) aboVe 18 .u.rtlclentl.l'

oro8.d and general that an interact1ve paclta&e which perfol"lDlJ thoee

functions for one application can perform. those t"uDctloDB for .!:!.l

application.

With these premises in mind, we are building an applicat.ion-independent inter­

act!ve gra.phics package for our network which shares the vorkload as appropriate

amo~the various members of the network, and vb1ch uses GRAIL tiles (Vith

enhancements as described below) as the cOlllllOn picture and description media.

The implementation plan we have devised will be to impose an Interactive Module

into a.pplication progr8JDfl' &n they preoently exist. jo'lgure 2 illustrat.eD fl (JtJ()O

or "{Goo non-Tnt.eruc t.Lve , fI,rH.pblc-orl"lll.ed application, vlth ••veral cOIIIpututl.Ol1l.d

modules, each followed by graphical modules. The graphical. modules generate

GRAIL files which may be the results of the preceding calculation or geometrical

representation of input. At Job termination the GRAIL tiles, in a non:--interactive

environment., nil typica.l.ly be plotted or microfilmed.

Figure 3, shows the imposition of our interactive module which 1s entered just

after the last graphical module has completed. This module Yi11 be responsible

for getting the GRAIL files previously generated to the PDP-10 aDd avaitins the

resul.ts of whatever modification is performed by the user OIl tbe Vector General

terminal.. The response from the PDP-10 vill be either a reVision of the input

to the problem or a. termination signal. If a revision 18 received, the problem

input is modified accordingly and the problem is re-entered at the begiDD.1ng.

If' a termination Is received by the interact1ve module, the last revision ot input

is saved and the program exits.

- 179 -

FIGURE 2---
Typical Graphic-Oriented Application Prggram

CBegin)--~I ~~~:. I
-~-

Computation
No. 1

Graph Results
of

Computation 1

Computation
No. 2

I

Gr aPh Results

ofD+.i nn ~I
L~

:J.-

Computation
No. liN"

Graph Results
of

Computation "N't----+:H

- 180 -

End

Graphic-Oriented Application with Interactive Module

Begin Prop-eSB
Input

Computation I
No. 1

Graph Results!
of I

Computation

Computation
No. 2

Computation
No. "Nil

Graph Hesults
of

Computa"tion "N'J
~.~

- 181 -

Interactive
Module

On the PUP-lV, a. program 1.3 executing which implements interactive interpretation

of GRAIL files by means or the Vector General graphics system. The user will be

able to select any frames in the GRAIL files for display, and one or more for

lDodiflcatiOll. He will be able to perform the kinds of construction described.

in (3) above using a standard set of display input cOlDlD8l1ds, and thereby modi.t)

the geometric model used as input to the CDC application program. Graphs of

results generated by computational modules vill be displayable to assist him in

making decisions about the modification he makes.

GRAIL extenuiono for interactive graphica, then, will consist or (a) the enrich­

ment of utructures expr-ea s LbLe in GHAIL file, including graphica.l subrout.Lnjng,

and (b) the ability to declare variables for use as coordinates, scale factors,

and transformation arrays, and the assignment of descriptive strings to these

variables.

Finally, the presently available mechanisms for intercomputer file transfer will

be used to establish and maintain communication between graphic application

programs on the CDC computers and the interactive driver program on the PDP-Iv.

- 182 -

Systems Programming Languages and Graphics Terminals,l

Thomas Stuart
Courant Institute of Mathematical Sciences

New York University

Abstract

Faced with the design of an interactive graphics system, many researchers

with widely differing applications have settled on a random access CRT display

attached to a miniprocessor. In most cases this small computer is in turn linked

to a larger time-shared facility, and it is the software implications of this

overall hardware design with which this paper is concerned.

Such a setup is usually arrived at by a compromise between an estimate of

required computational power and the reality of financial resources. The inser­

tion of the small computer between the display device and the applications

oriented large computer causes difficulties in three main areas:

(1) Decreased utility services, compilers, and other system software where

it's needed.

(2) A more complex design for the graphics software, due both to an added communica­

tions channel and the division of labor between computers.

(3) A degradation of response time when interaction between display and applica­

tion programs is necessary.

It is asserted here that the use of a systems programming language will aid

in tackling each of these problems. With respect to the first, system software,

one has an obvious application of the earliest arguments for a systems language.

The extension of these arguments to the second difficulty, the design and im­

plementation of a graphics system, receives major attention. Though a choice

of programming languages would usually have no clear, direct effect on the third

problem, response time, it does have an indirect influence since the response

can never be completely independent of communications software. The disadvantages

of a systems language are not to be ignored either. Finally, the use of a

specific language, LITTLE, is described briefly.

- 183 -

Introduction

As with any new item of hardware, the development of graphics terminals

brought a host of problems. Among the various types of terminals, one that

has found a wider audience is the progranuned beam CRT driven by a computer of

re lative ly 1imited resources. Usually these resources are too limited for a

complete resolution of the specific applications problem and, hence, a more

versatile computer is used to handle the larger computational tasks.

At the outset, the advantages of such a design were not readily apparent. 2

Given a number of applications with varying graphical demands and varying computation­

al requirements it was difficult for designers to choose an optimal system even

when the system was to be used for a single application and its needs were well

defined beforehand. The earliest solutions took one of two forms: if the com­

putational tasks were large, plug the CRT into the large computer; if not, get

a mini to drive the display. Neither solution was very practical with most

problems.

When the memory and I/O facilities of a large computer are employed La drIvc

the display directly the volume of data transmitted to maintain the tmage re­

presented a serious drain on, and waste of, the resources available, degrading

production in a time sharing system. On the other hand, if the driver is a more

or less independent processor with a small memory set by a program in the main

memory only as needed, the degradation this time occurs at the terminal, which

has real time requirements undreamt of at IBM, CDC, or elsewhere. So long as

an image is just being regenerated, the main processor need contribute little

time or space to graphics, but whenever the picture changes in some manner not

handled by the hardware of the CRT controller, then, within milliseconds, a

generally large program must be in central memory and executing. The percentage

of the time which must be devoted to this program of course depends on the appli­

cation, but many problems will vary during the course of a job from a fraction

of 1 per cent all the way up to 100 per cent. No time-sharing system which allowed

this would be time-shared any longer. Essentially, the only types of interactive

graphic display that can profitably be driven by a time-shared computer (with or

without an intermediary processor) are displays of a relatively static nature,

- 184 -

alphanumeric displays, storage tubes, point plotters, etc., and we are not

concerned with their special problems here. Whether a design lacking degrada­

tion on either end might be implemented is problematical, for such a facility

would be a costly feature.

The other solution, driving the display from a stand alone minicomputer,

was simply inadequate for the computational necessities of most problems, if

not initially, then as additional projects were attempted. Expanding applica­

tions can outstrip attempts to upgrade performance of the minicomputer with

great speed. However, this approach did possess the advantage of adaptability

in some cases, for, if a large computer was near enough for a low cost, high

volume transmission line, then the computational portion of the graphics problem

could be undertaken, and all one had to face was reprogramming the system to

reflect the minicomputer's shifted status - from central processor to intelligent

terminal. The choice of this latter system, while it may in some cases involve

substantial effort to convert, was eventually advantageous for its users, for

the choice of a larger computer as driver has led to, or will lead to, the

junking of both software and hardware.

The decision to employ this type of interactive graphics terminal - CRT

attached to minicomputer attached to main computer - is not an easy one, since

response time between applications program and display is degraded, and since

it can only be more difficult to develop software, but it is a choice that ex­

perience forces, because there is no avoiding the need for the computational

power of a large computer, and there are no projects that justify a dedicated

mammoth and the concomitant waste. Once that basic choice is made there are

still many questions to be answered concerning hardware characteristics of the

display, the minicomputer, and the peripherals. Answers are impossible to

generalize and will often depend more directly upon the specific application and

financial backing. In any case, though these considerations are very important,

the remainder of this paper is concerned with the other half of a system design,

software.

- 185 -

Software

Software difficulties increase enormously with this terminal design. First,

and most obvious, it is because there are two computers instead of one to program.

Communication between them is always a non-trivial problem, especially when

entering a time-shared community with some real time desires. The software

interface between the graphics routines on the mini and graphic processing in

the main computer is only one of the added interfaces, There are now applica­

tion routines both on the time-shared computer and at the terminal, each re­

quiring interfaces with the graphic routines where one sufficed earlier.

Perhaps not so obvious is another effect of the two computer choice, an

immediate repercussion being that every time a new routine is written there

is a choice to be made: where will it run? The answer to this question is in

many cases neither apparent nor trivial. Factors influencing the choice will

include -

(1) The memory available at the terminal, both in core and in storage devices,

(2) The access time of these devices,

(3) The speed of the link (or links) to the main computer,

(4) The priority this particular task would be accorded in the main computer

at this time,

(5) The frequency of performance of the task for each application, and

(6) The volume of data to be processed during a particular job.

Whereas the first three of these factors tend not to change frequently and do

absolutely determine the location of many routines, the latter three are time

dependent variables and merit more attention. Of course, we always wish to

carry out a process on the minicomputer when possible. Whether or not it is

feasible depends not only on the hardware available, but the run-time environment,

The fourth, fifth and sixth factors constitute that environment.

The priority of a task coupled with the time of day can sometimes determine

the optimum location for executing a routine. Especially would this be true

for processes requiring a few seconds on a mini and an order of magnitude less

in the time-shared facility. In peak use hours, the mini is still a preferable

location, whereas at night it never would be,

- 186 -

The f i f t.h [actor, frequency o I task performance, bec omcs important as a

determinant only when high. For an infrequently performed task the location

is relatively unimportant when a choice is available. When the speed considera­

tions point to the main computer as the prime site, then it still may be

desirable to have a back-up routine for avoiding down time impediments. But

when the frequency is high, speed assumes large importance and we have a boosting

of the importance of the priority factor just cited.

The last effect, the volume of data, is the most unpredictable in its

importance. It is here that many graphics applications will envelop a range

of specific jobs that include some production runs requiring a large computer

and some that do not. An ad hoc dec Ls Lon is usually made to program for the

worst case, a decision which is often forced by the difficulty of 're prcg.narrsnf.ng ,

Specific cases which will be affected by one or more of these factors are,

it should be emphasized, quite dependent on the hardware. That is, the affected

routines will change from one system to another, but so long as a graphics

project embraces a large number of tasks, there will be many falling in the

range of interest.

Now that some of the complexities of the programming have been established,

it may be reasonable to summarize, to characterize the problem.

First, the problem is many faceted. It embraces transformation and manipula­

tion routines, access of various utility functions on both computers, an executive,

probably some data analysis routines, more than likely a complex data structure.

Second, the program r-cqu i ro s a f orma l structure for Lnt cr f ac Lng itFl

divisions and also because it 18 to be wrllten hy more lhan one perHon.

Third, there is a high emphasis on the speed of execution, both because

there are some real time criteria, and because it is designed for continuous

or frequent production.

Fourth, it is likely to change frequently with changing needs, priorities,

applications, and hardware.

- 187 -

Fifth, since it not only serves as a service program for large applications,

but also carries out simple d.is pl ay problems as a stand along package, it must

be supremely easy to use.

Sixth, some of the routines or tasks are to be written for two machines to

be s L advantage,

In many interactive graphics projects a seventh characteristic would also

be important, hardware independence, This takes either of two forms, an ex­

tension of the sixth characteristic to the whole of the graphics program because

the package is to execute on two, different minicomputers, or, alternatively,

some routines are to produce images on two, different display devices,

Then, it is appropriate to ask, what is the vehicle through which this

problem is to be implemented, how shall it be progrannned, in other words , which

language'!

Language

The above summary of the problem is a re-statement in specific graphics

terms of the definition of a system problem given in the recent review article,

"Systems Progrannning Languages".3 Obviously, then, we have a system problem

for which systems programming languages were developed, Obviously, then, we

should use a systems language. Or perhaps not,

There are several very good reasons why a systems language should not be

used, First, it doesn't exist, Though this is not likely the case in most

large, time-shared systems, it is very frequently the case for many mini­

computers, If it doesn't exist, then its creation is generally beyond the

resources of a graphics project. Another reason is that it just isn't fast

enough, Even though systems languages are designed for efficiency, they simply

cannot match a routine coded in an assembly language. A systems language is

also often machine dependent where there may be strong reasons to lean in the

opposite direction, writing in FORTRAN, for instance. Then, too, FORTRAN has an

audience in the applications field where there may well be need to interact with

- 188 -

and modify the graphics program itself. There are many other reasons for the
4

persistence of FORTRAN in the graphics field, but as Newman and Sproull state

in an introduction to a discussion of the language in their text, Principles of

Interactive Computer Graphics, "one language which has been used time and again

as a graphics system basis is FORTRAN. If it were not for this, there would be

little need to mention FORTRAN at all, for its performance in meeting our

criteria is abysmal", The discuss ion that follows the quote is recommended

reading.

My own list of most negative attributes in its use in graphics include slow

speed, poor character handling, no macros, no bit or field operators, and an

extremely poor base upon which to build a graphic language. None the less, being

dissatisfied with FORTRAN is still insufficient incentive if no alternative is

readily available, and some of the deficiencies pointed out in the aforementioned

review
2

are serious. Some systems languages are no faster than FORTRAN; some are

quite complicated to learn; most are very machine dependent. It is understandable

that many will rely on the assembly language for the most crucial speed, bit

and field needs, and just put up with FORTRAN's other attributes,

However, I was luckier, At the Courant Institute, Jacob Schwartz began

development of a language called LITTLE in 1968. 5 The two basic goals of this

language are machine independence and efficiency.6 G The l.ITTLE compiler aids the

first goal by expressing programs as 'machine' language for an 'unknown m:lchine',

unknown, that is, at the time of program construction, with characteristics such

as the word size considered a compile time parameter. The machine dependent section

of LITTLE is a routine that maps the 'unknown machine' language onto the real

machine, but this task is not at all extraordinary for any new machine, because

the LITTLE compiler is written entirely in LITTLE. The approach bears some

similarity to the 'abstract' machine of the STAGE2 system,7 with the practical

difference of less independence and more efficiency. Thus far, the second goal,

efficiency, has only been measured on the CDC 6600 and is excellent. Efficiency

results on the IBM 360 are expected shortly,

The structure of LITTLE includes MACROS, the usual arithmetic, logical and

relational operations, bit and field ope r a t or s , a single da t a type - UH' bit s t r i ng

- 189 -

"

tile common IF .•. TIIEN... ELSE, DO, UNTIL, and WHILE cona t ruc t Lons , conditional

and unc ond Lt Loua l t r an s I e r s , local and global variables and a general program

structure reminiscent of FORTRAN, In essence, if one took FORTRAN and added

most of the options a systems programmer would want, one would have LITTLE.

From my own standpoint this s t r vc t ur e has the additional advantages of making

a link to existing FORTRAN routines e.rs y , encouraging easy use to present FORTRAN ­

only programmers, and providing a vastly improved base for a graphics language,

Currently it is not a trivial exercise to write a machine block, with an

e s t Irnat e of [our months of intensive work for a Honeywell Series 16 minicomputer,

but this will decrease with the future expression of the 'unknown machine' in a

formal language,

- 190 -

Acknowledgement

Jacob Schwartz, David Shields, and Edith Deak were all very patient

and very helpful in introducing me to LITTLE. Elias Guth aided on the other

end, getting the first code for the Series 16 machines out.

References

1. This work has been supported by PHS grant number NS-I0072. General support

by the AEC Computing and Applied Math Center under contract AT(11-l)3077

is also gratefully acknowledged.

2. Foley, J.D., "An Approach to the Optimum Design of Computer Graphics Systems",

Comm, ACM, 14, 380 (1971).

3. Bergeron, R.D., Gannon, J.D., Schecter, D,P., Tampa, F.W., and Van Dam, A.,

"Systems Progranuning Languages" in Advances in Computers, 11, Academic,

New York (1972), p. 177.

4. Newman, W.M. and Sproull, R.F., Principles of Interactive Computer Graphics,

McGraw-Hill, New York (1973) p. 362.

5. Cocke, J. and Schwartz, J., Programming Languages ~ their Compilers, Courant

Institute of Mathematical Sciences, New York University (1970).

6. Shields, D., "Guide to the LITTLE Language", LITTLE Newsletter No. 33, Courant

Institute, New York University (1974).

7. Poole, P.C. and Waite, W.M., "Portability and Adaptability" in Advanced

Course ~ Software Engineering, Springer-Verlag, Berlin (1973).

- 191 -

UNIVERSITY OF CALIFORNIA

Lawrence Berkeley Laboratory
Berkeley, California

AEC Contract No. ·W-740S-eng-48

A BARELY INTELLIGENT TE~1INAL

Harvard H. Holmes

March 1974

- 192 -

A BARELY HITELLIGENT TERMINAL

H. H. HoIrne s
Lawrence Berkeley Laboratory

University of California
Berkeley, California 92720

ABSTRACT

A system for effective use of an intelligent terminal for graphics
applications is described. It provides extensions to the basic hardware
capabilities such as display subroutines and display scaling, and light
pen tracking and inking. It supports a variety of local manipulations on
display files which have been supplied by a host.

An interrogation facility allows the host to send a list of questions
together with the ranges of acceptible answers to the terminal. Thereafter,
a single command will invoke an interrogation of the user. Each answer, in
turn, is checked for validity and is transmitted to the host only upon
completion of correct input. Menus are used when the user must chooGe cne
of several alternatives. Each choice of an item may lead to a subsequent
menu. These selections are accumulated and the host is interrupted only
when the entire sequence is complete.

The editing operations allow changes to be made in the local display
image, with or without sending these changes to the host. These operations
are sufficient to allow a complete drawing to be constructed locally, with­
out using the host at all. Our applications include ordinary graphs,
symbolic modeling , and a drafting application.

The terminal hardware is a DEC GT40 display: a CPU, 8K of 16 bit
memory, a display processor, and a communication line to the host. The
local data structures comprise a display list, menus, and directories,
supported by a simple brute-force memory allocation scheme.

Our goals for this terminal system are to provide fast response for
display rnanipulation8 and edjting. In addition, we antjcipate a substantial
reduction in r.ompu t.i ng Lone on the hos t for those app.lLca t ion.: primarily
f nvol ving ediVill!' of'di;;pJny;;. A p.ub::tr.wtial r educ t i.on l n «ommunlca.t i on
bandw i dt.h n.a kc.: rC'ITIoL(: u.io l'c~.".L;.i.ule, f'f!" a. t experimental :3i t.e a v j a the
ARPA net.

- 193 -

J. I NTI{OI JlJCT ION

One of the problems faced by graphics programmers today is how

best to usc the intelligent terminals which are being produced in ever

increasing numbers. At large installations there is an enormous

investmellt ill existing hardware and software. One cannot just convert

overnight to one of the new devices, but rather it must be integrated

into the existing systems. And yet one cannot afford to overlook the

possibilities offered by a new device.

We will describe the general tradeoffs involved in the selection

and use of a graphics terminal and then we will describe the particular

facilities which we plan to offer with our terminal, followed by a rough

sketch of the projected implementation and some applications.

II. BANDWIDTH VERSUS INTELLIGENCE

The primary tradeoffs involved in choosing a graphics terminal can

be characterized in terms of bandwidth and intelligence. These are

two relatively independent variahles which arc easily understood. The

selection of a bandwidth and intelligence will determine the computing

load on the host and the applications served. Referring to Figure 1,

we have arbitrarily chosen some benchmark tasks which are appropriate for

a graphics terminal. These tasks are to display, edit or view in motion

either simple or complex pictures. The response time for each of these

tasks is considered to be 30 seconds for a display, I second ·for an

edited display and 1/30 second for the display of each frame of a moving

- 194 -

display. A simple picture has 1,000 vectors and a complex picture

has 10,000 vectors.

We have selected several milestones in our search for a definition

of i.nrc l I i gcnce , Milestone a comprises no inte11 i gence , for exampl e a

storage tube display or a television monitor. The cost per terminal

is about $5,000. ~1ilestone 1 adds refresh memory, a display processor

and a cpu. Current systems, such as the DEC GT40 and the IMLAC PDS-4

are in the range of $15,000. These systems are intelligent terminals,

able to alter a picture from coded commands and to search a simple data

structure. Milestone 2 adds a disk, more memory and more processor

and/or cpu power. These systems cost about $50,000. Depending on the

application they may either be very intelligent terminals or a minimal

satellite processor. Examples are the DEC GT44 and the IB~t 1130 with a

disk and 2250 display. These systems support a high level language and

have enough power for continuous alteration of displays (animation) and

for searching complicated data structures (disk resident). ~1ilestone 3,

in the range of $150,000, adds enough computing power to generate all

the parameters for simple motion, or put another way, to simulate simple

dynamic systems in real time. Large mini and midi computer systems fall

into this category.

Bandwidth is the data transmission speed of the host to terminal

connection. The cost of bandwidth is proportional to the rate and the

distance involved. Telephone lines cover the range from 100 baud to

10 kilobaud. Acoustic couplers can be used at up to 300 baud, thus giving

true portability. The ARPANET, using special lines, achieves 50 kilobaud.

Computer I/O channels achieve bandlvidths of 10 megabaud or more, but a

channel connection usually requires that the equipment be in the same

- 195 -

room.

Our ch~rt is constructed by assigning a bandwidth to each type of

graphics activity: motion, ed:iting or display of simple or complex

pictures. Starting at the left of the chart we extend each activity

to Milestone 1. After some reflection, we estimate the bandwidth

reduction made possible by this much intelligence. To edit a simple

picture, for example, we can keep the display in the terminal and

transmit only change information. We estimate that this allows a

bandwidth reduction of 30 to 1. Complex pictures cannot be so well

structured in th~ limited memory of the terminal so we estimate a band­

width reduction of 10 to 1 for editing complex pictures. The rest of

the chart is constructed in a similar fashion. We then review the chart

and make revisions as necessary to eliminate inconsistencies or clashes

with common sense or experience.

We can now consider the computing costs of using the host. These

costs include both the monetary costs and the costs in user frustration

caused by poor response time. We have divided the hosts into two kinds:

cheap and expensive. If we assume that the cost of the host is directly

proportional to the bandwidth required, then we obtain the lines of constant

cost as shown in Figure 2. We have also drawn lines of optimum cost

effectiveness for the two types of hosts. If these lines are overlaid on

Figure 1, they suggest what we all knew: as hosts become more expensive,

the optimum tradeoff moves toward the more expensive terminal. Cheap,

responsive hosts can make effective use of less expensive terminals.

Unfortuna tel y, the addition of several terminals wi 11 oft en cause the has t

to saturate, changing it from a cheap host to an expensive host. This is

- 196 -

an obvious reflection of the fixed capacity of the host. If a terminal

is connected to a host, it would be wise to expect to process the extra

workload in the terminal itself unless the host is suitably upgraded.

I I I. SOFTWARE SUPPORT

The introduction of terminals at our installation is providing an

incentive to re-examine the software situation with a view to providing

graphics wherever we now provide a teletype. We will not replace all

our teletypes, of course, but we will provide enough graphics terminals

so that they will be available to whoever needs them. While we have had

CRT consoles for as long as we have had teletypes, they have not been as

well received. The reason is that while the teletypes have gone out to

the users'work area, the CRT consoles have remained isolated both

physically and in terms of programming expertese. Now with the opportunity

of providing graphics in the users' work area, we must also make the graphics

terminal as easy to program as the teletype.

The first step in this direction has been the establishment of a

standard device-independent interface at the FORTRAN subroutine level.

We are now in the process of writing device drivers for each type of hardware

to interface at this level. Each device driver can clear the screen,

plot a sequence of lines, or plot a sequence of characters beginning at

a specific point. Drivers for interactive terminals can also read user

defined coordinates from a cursor or a tracking cross. This interface

allows the user to specify his graphics devicehen the program is loaded.

He may also control two or more devices. The second step in developing

- 197 -

graphics is to modify the several high level graphics languages at our

ins t all at ion to conform to th iss tandard interface.

We will also develop some high level routines of our own : a menu

routinc, a qucstionaire routine and a modeling-edit routine. We will

implement th csc on our intelligent t ermi.nal as part of the c apab i Li t i cs

of the terminal itself. \lie feel that the implementation within the

terminal will be easier and will provide much faster response while

reducing the computing load on the host. This immediate response will

make it much easier for the novice to learn to use this facility, since

the results of each action will be instantly apparent. Frustration for

the novice and expert alike will be reduced, since they no longer must

wait for a response from the host. The menu facility will allow the

host to define a tree structure of labeled nodes and send it to the

terminal. When the menu is invoked via a short command from the host

or internally wi t h i n t hc terminal, the top of the tree is d i sp l aycd (IS

a menu of Light pen sensitive items, either text or symbols; when an

item is selected the branches below that node are displayed until a terminal

item is selected. The entire path through the tree is then communicated

to the host. In this way the user can rapidly select the items which lead

him through a complicated command structure while the interaction with

the host can he reduced to a few I/O requests.

Figure 3 is a sample menu. When the menu is invoked only the first

two lines arc shown; after choosing "output", the types of output are

shown. After the type of output is selected, the user must confirm his

selection. Until the selection is confirmed, the user may change his mind

either by starting over at the top or by backing up onc level at a time.

- 198 -

The qucstionairc is similar in spirit to the menu. It is a

common facility in programs and it is implemented in the terminal to

provide fast response and reduce the computational load on the host.

The user is directed to a page of questions and as he answers, each

answer is checked for validity. Default values may be provided and

any value may be modified until confirmation.

The final and most extensive facility provided in the terminal is

the modeling-edit facility which allows the host to send a picture to

the terminal for modification by the user. Picture elements are grouped

into subpictures.and each subpicture may be included in any other sub­

picture. Any subpicture may be edited by the user; he may add or delete

lines, alphanumerics and subpictures. Each change in the picture is

sent to the host as it is made, so that when computation is desired, there

is no time lost in sending the drawing back to the host. A simple

application of this system is for layout of text, drawings, and other

documentation. The host may supply some paragraphs of text and some

drawings. If each item is a subpicture, then the text and drawings may

be moved about on the screen until the proper composition is achieved.

This especially suitable for preparing charts, tables and graphs for

publication. The editing facility can achieve a pleasing layout far

more easily and cheaply than multiple batch runs using trial and error.

The greatest gains can be made in the area of modeling. A typical

sequence of the terminal would have the host initialize the terminal with

symbols for electronics: resistors, transistors, etc. The user would

connect these symbols to form a circuit and the circuit would be analyzed

by the host. If the terminal had enough memory, the circuit could remain

- 199 -

in the memory ready for immediate editing as soon as the previous results

had been viewed. Several response curves could also be accumulated for

comparison by over l ay i ng one on another. Programs for such analysis

of symho I i c d r awings are already avai lab l e , but the d i ffi cu l ties of

using current terminals have prevented their widespread usc.

IV. ILARDWARE

Our terminal is a DEC GT40 having 8k of 16 bit memory, a PDP-II/OS

CPU, a display processor, and a 2400 baud corrununication line to a

CDC 6600. The CPU has six general purpose registers and a hardware stack.

Interrupts are handled using an interrupt vector for each device and

four priority levels are available. Each I/O device is assigned a pseudo­

memory address and all of the CPU instructions may be used to manipulate

data at the device address. The display processor includes a vector

generator, a character generator and logic for direct memory access. A

light pen is also part of the display processor. Light pen and other

display processor - CPU interactions are handled with interrupts. The

hardware does not provide a display subroutine jump so this is simulated

as follows: (1) The display processor executes a stop and interrupt

instruction fo l l owcd by an address, (2) the interrupted CPU finds the

address by reading the display program counter and (3) the CPU stacks

the address and starts the display processor at the new address. If the

new address is zero, then step 2 is reversed and the display processor is

returned to a prior picture using the address from the stack.

The host is a CDC 6600 with 128k of 60 bit memory and the usual

complement of I/O devices. All teletypes and the GT40 as well interface

- 200 -

through a PDP-8 which handles buffering and local control of the teletype

lines. The PDP-8 is line oriented and will only pass information on to

the host when a complete line has been received. Characters may be

automatically converted from ASCII to the 6600 internal character code

or they may be passed in image mode allowing every possible 8 bit

character to be sent.

V. IMPLEMENTATION

The terminal program is implemented using the display file as the

primary data structure. This file is continuously executed by the display

processor so that each change in the data structure is immediately reflected

on the screen. ~1emory is allocated in fixed sized blocks (usually 16 or 32

words) using a bit map to find unused blocks. As each block is filled

with display code, the bit map is examined to see if the next block is

free; if so, then the display code is continued into the next block. If

not, the bit map is then searched for any empty block and a display jump

is inserted from the old block to the new block. The bit map allows most

blocks to be sequentially allocated and this avoids the overhead of a

display jump most of the time. With 32 word blocks, the entire bit map

for 8k words requires only a 16 word table, so the overhead required to

find new blocks is very small.

The display file proper is organized into a master display list, a

directory, and all the subpictures. A subpicture is displayed by putting

a display subroutine jump for it into the master display list. The

directory contains the names and the first addresses of all the sub­

pictures. It also contains a response code which indicates what is to

- 201 -

he done when a light pcn hit occurs on this subpicture. This response

code jdentifjes each item as a menu, a qucstionaire, an ordinary

subpictllrc, or an internal clement. This mechanism allows menus and

questionaircs to be stored as ordinary display elements, while providing

proper response to these items. This scheme also allows the terminal to

utilize menus and questionaires in its internal operation. The edit

commands use this menu facility, for example.

Each subpicture is ordinarily closed, that is, it is defined entirely

with relative beam positioning and the last operation returns the beam to

its original position. This convention allows a subpicture to be modified

subsequent to its inclusion in another picture without disturbing the location

of items in the picture.

The terminal software has four discernable levels: memory management,

display cede generation, command interpretor, and interrupt routines.

Every action by the user produces an interrupt which is put into a FIFO

queue. As time permits, the command interpretor or the display code

generation routines remove these actions and process them. The command

interpretor uses the current state and a table to decide which of the code

generator routines to call. The code generators ultimately call the memory

management routines to alter the data structure.

A typical interaction would begin with the terminal initialized to

display a menu. The user points to an item on the menu; after several

hits, the interrupt routines put this action on the queue. The command

interpretor removes the action, finds the response code and activates the

proper routine. This routine may remove the menu and display another

menu. The user may now ask to crase a line. The command interpretor sets

the proper state and then waits for a light pen hit on a line. When the

- 202 -

hit occurs" the address of the line is passed to the proper code generation

routine. This routine will remove the intensity bit from the line. It

then must remove the line from the data structure if possible. It will

search forward and backward to see if the line is surrounded by invisible

lines. If so, these are combined and the deleted words filled with

display no-operations. If an entire block of 32 words has been deleted in

this manner, the block then must be de-linked and returned to the pool of

available memory. The routine then returns to the command interpretor.

This system is implemented in assembly language using a cross

assembler runnin& on the host. The host also has available a text

editor and a loader which operates over the communications line.

Program development proceeds by typing in the new code to be added

to the existing program. The code is then assembled and loaded into

the terminal over the communication line. This usually takes less than

one minute. The code is tested and any revisions can be made and

immediately tested again. At the conclusion of the session the new source

replaces the old one on the permanent file system. This is a great

improvement over most minicomputer facilities; the line printers, magnetic

tape drives, and 'other peripherals of the host are also immediately

available.

IV. CONCLUSION

This system will enable an evaluation of the menu, the questionaire

and the model editing facilities. If they are satisfactory, then they

can be implemented for the PP (peripheral processor) driven CRT consoles

- 203 -

with H minimum of trial and error. This ability to proceed without trial

and errol' i:-; very important since the CDC 6600 operating system is not

protected against errors in PP routines.

We feel that this system will go far toward enhancing graphical

communication with the user. Our goal is for the user to regard these

facilities with the same confidence that he has for the teletype and the

text editor.

ACKNOWLEDGEMENT

Worked performed under the auspices of the U.S. Atomic Energy Commission.

REFEJU;NCES

1. Holmes, Harvard., and Austin, Donald M., tlPicasso: A General Graphics
Modeling Program", A01 SIGPLAN: Symposium on Two-Dimensional
Man-Machine Communication, Los Alamos, New Mexico, Vol. 7, No. 10,
October, 1972.

2. Newman, William M., and Sproull, Robert F., Principles of Interactive
Computer Graphics, McGraw-Hill, 1973.

3. van Dam, Andries, and Stabler, George M., "Intelligent Satellites for
Interactive Graphics," NCC, 42, 1973, pp. 229-238.

- 204 -

Complex ~totion

Simple Motion

Edit
Complex~\

\,
I

t
n
I

1M

10M ~ -:~ --..

lOOK

10K

1K

Edit

D!s"pl~y
Complex

Display
Simple

,
\
r

-, I
\ ,

\4
t

"----- ----~

"\
I
I

I
I

100

$5,000 $15,000 $50,000 $150,000 $500,000 $1,500,000

INTELLIGENCE

Figure 1. Bandwidth - Intelligence Tradeoffs for

Selected Graphics Tasks

- 205 -

10M

Expensive
Host - $15,000

1K

100

Cheap Host - $150,000
Hi

,..-
/'

/'
/'

/
/'

lOOK
,-

,-
/'

~ Host
I=Q

$150,000
::r::
~ 10K /'

~ .H

~c:eap~
~
I=Q

Host - $15,000

$5,000 $15,000, $50,000 $150,000 $500,000 $1,500,000

INTELLIGENCE

Figure 2. Lines of Constant Total Cost
(Terminal Plus Computing) and
Lines of Cost Effectiveness

- 206 -

SELECT NEXT COMMAND

INPUT OUTPUT COMPUTATION

SELECT OUTPUT TYPE

HISTOGRAM

SCATTER PLOT

PERSPECTIVE

TIME SLICE

Figure 3. A Sample Menu

4Number of Magnets (0 to 8)? _

Type of Magnet (Bending or Quadrapole)? _! _

Number of iterations (1 to IOO)? 1 0

CONFIRM (Y or N)

Figure 4. Sample Questionaire

- 207 -

INTERRUPT ROUTINES

ACTION QUEUE

COMMAND
INTERPRETOR

CODE
GENERATORS

MEMORY
MANAGEMENT

MEMORY

Figure 7. Terminal Program Structure

- 210 -

Sandia Interactive Graphics System - SIGS

R. Young

Abstract

A generalized interactive computer graphics system has
been released for production use at Sandia Laboratories.
The system utilizes five remote PDP-9 computers and
Vector General 3D2 displays interfaced to a central
CDc-660o computer. The hardware configuration and basic
system operating software are first described. The orga­
nization of the display file and its generation via
FORTRAN callable display generation routines (DGR's) at
the 6600 are then discussed. The manipulation of the
display file and control of the graphics job via PDP-9
FORTRAN callable display manipulation routines (DMR's)
and utility routines are described. A typical job run
from the PDP-9 to the CDc-660o is then prcesented. Current
and future application programs using SIGS are then listed.

- 211 -

SANDIA INTERACTIVE GRAPHICS SYSTEM-SIGS

R. Young

Introduction

The Sandia Interactive Graphics System is the culmination of

testing and evaluation of several graphics systems. The first

graphics system implemented was a stand-alone DEC PDP7 computer

with a 340 raster scan type CRT. Usage of this stand-alone system

provided our graphics group with several basic facts regarding

a general interactive graphics system. First such a system must

be extremely generalized, flexible, and machine independent as

possible to be of any extensive use for a production graphics

system at Sandia. It must be fairly easy to learn and use for

any level of application. The system must also be able to pro­

vide any application with sufficient computing speed, versatility,

core memory, and mass storage in addition to a graphics display

with comparable features.

The necessary computing power can be obtained by interfacing

the graphics display directly or indirectly to a large computer.

The direct interface method usually is an involved system programming

task requiring a long design-to-implementation period, assuming

the computer systems group will allow the modifications to be

made to the operation system. In addition, the large computer

will have the extra task of spending a large amount of time servicing

the display generated interrupts and any "bookkeeping" required

in the display file. Many installations have therefore taken

the indirect approach by interfacing the graphics display to a

smaller computer which is then interfaced to the large scale

computer.

In this method, the small computer will service the display

interrupts and provide the necessary "bookkeeping" for the display

file while the large ?omputer handles the computation tasks, gener­

ates the display file, and transmitts it to the small computer.

This type of interface was the next type of graphics system

implemented at Sandia. The previous stand-alone PDP7/340 system

- 212 -

was interfaced to a UNIVAC 1108 running under the EXEC 2 and later

EXEC 8 system. A group of display generation subroutines was

written for the 1108 and display manipulation routines for the

PDP7. Our graphics system now had the necessary large scale

computing power but was severely restricted by the slow raster

scan speed, display work area, and lack of hardware features of

the DEC 340 CRT.

A new graphics system was therefore planned using a UNIVAC

1108 interfaced to a DEC PDP9 with a LUNDY 32 display system. The

LUNDY display generation routines were already coded for the 1108

when a management decision substituted a CDC 6600 for the large

scale computer. Since the LUNDY display generation routines were

coded in FORTRAN, it was an easy task to convert the routines

to run on a CDC 6600. Unfortunately, the LUNDY display system

failed to meet the acceptance tests. After evaluating the

available displays on the market, a Vector General 3D2 display

system was selected as a replacement for the LUNDY. Happily all

four Vector General display systems were accepted and are currently

in use. The fifth display will be interfaced to another PDP9

when the funds are available.

Hardware

The present interactive graphics system in use at Sandia

utilizes a CDC 6600 as the central computer with four remotes

using DEC PDP9 computers interfaced to Vector General 3D2 display

systems. The central computer complex consists of a CDC 6600

main frame with 13lK 60 bit words of central memory, 12 tape drives,

4 line printers, card reader, card punch, large system/scratch

disk with 131 million character capacity, large user disk packs

with 107 million character capacity, extended core storage of

500K word core, and 6674 data set controller which can handle

up to four Bell 301B data sets.

The basic configuration for each of the four remotes consists

of a DEC PDP9 computer with 16K 18 bit words of core memory, EAE,

memory protect, 2 DEC tape transports, paper tape reader and punch,

- 213 -

card reader, KSR 33 teletype, magnetic disk memory with two

platters giving 524K words of storage memory, four data channels,

direct memory access mUltiplexer (allows up to four devices to

use the DMA channel simultaneously), interface to a 301B data

set, and a Vector General 3D2 display. All of the Vector General

displays are equipped with an alpha-numeric keyboard, light pen

with 3 microsecond response time, character generator, display

hardware subroutining, 21 inch high speed CRT with 10 mil spot

size, picture label scaling, intensity modulation, phosphor

protect, and a PDP9 interface via the DMA multiplexer. Two of the

displays also feature the control dials and data tablet options.

The communication between the central computer and the remote

computer is made via Bell 301B modems on telpak lines providing

a serial transfer rate of 40.8K baud with full duplex capability

for each remote. The central computer is interfaced to the four

301B's using a CDC 6674 data set controller. The remote computer

is attached to its 301B using a DEC DPOIBJ interface which

accesses memory through one of the four available data channels.

Systems Software

CDC's scope version 3.3 with Sandia modifications is the

current operation system for all jobs run on the 6600. CDC's

interactive graphics system (IGS) provides the software inter­

face to scope. All 6600 user graphics jobs run under CDC's

FORTRAN extended compiler. At the remote PDP9, a special

Sandia coded executive device handler (DPB) interfaces with IGS.

DPB handles all code translation, format conversion, communica­

tion synchronization, input-output file transmission, data

transmission, and all display file transmission. In reality,

DPB makes responses to all IGS status requests and issues direc­

tives to IGS which resemble a CDC 1700 computer, the computer

normally used with the IGS system.

DPB also generates a software cyclic error code to comply

with the hardware cyclic error code produced and checked by the

6674.

- 214 -

A Sandia coded device handler (VGl.) services all Vector General

display interrupts, can start and stop the display, and returns

information to the user which allows the display file to be modified

and manipUlated. Compilation of all user code to be executed at

the remote PDP9 is done via DEC's FORTRAN IV compiler running

under DEC's V5A resident keyboard monitor disk system. The display

file is allocated the remaining PDP9 memory after the user's PDP9

program, necessary device handlers, display manipulation routines,

and library routines have been loaded.

Genera] Overview

The Sandia interactive graphics system can be thought un being

divided into three major components: The CDC 6600 computer, The

Vector General Display, and the PDP9 Computer.

The CDC 6600 is used to do calculations and to generate all

of the Vector General Display commands via Fortran callable display

generation routines (DGR's). The 6600 is used for the "Heavy

Computation" ~ld picture preparation. As the display commands are

generated, they are transmitted to the allocated PDP9 display file

memory via the IGS-DPB communications network. The Vector General

display is started when the user 6600 program indicates that the

display file is complete.

The PDP9 program is used to control the operation of the 6600

program and to manipulate the diuplay f11e after it has been nent

from the 6600. It Is possible for the display fl1e to be altered

and redisplayed locally, or the 6600 will recompute an entire new

display file with new parameters on command of the PDP9 program.

It is improtant to note that the PDP9 program is in command. It

should call in appropriate 6600 action when necessary and deal with

the resulting display file, manipulating it where required. Data

arrays may also be sent back and forth between the PDP9 and the

6600. This capability facilitates transferring new parameters to

the 6600 which may be used in recreating the display file.

- 215 -

Display File The display file can be thought of

as having a structure similar to that of a Fortran program. It

is divided into four general areas: the Main Display Routine,

the Vector General Stack, the Display Subroutine, and the DISTAB

(Display File Description Table).

The Main Display Routine area is similar to a Fortran main

program. In it, there may be statement numbers (called NAMES or

TAGS) which can be used to point to any part of the display file

(except the Vector General STACK area). Statement numbers can be

used in a manner similar to a Fortran statement number in a GO TO

statement.

NAME and TAG statement numbers can also be used to define

display subroutines. NAMES and TAGS defined in this way are similar

to defining a Fortran subroutine in that the NAME or TAG statement

number corresponds to the Fortran subroutine name. A display sub­

routine must be written (defined) before it can be called. All

defined display subroutines reside in the Display SUbroutine area

of the display file. Subroutine nesting is also allowed in the

display file; however, the innermost level subroutine must be de­

fined before it can be called by an outer level subroutine.

Each level of subroutine nesting requires a PDP9 word of memory

in the Vector General STACK area of the display file. The STACK

is used by the Vector General subroutine hardware to save the return

address for each level of subroutine nesting. If subroutine nest­

ing goes to 10 levels,then 10 words of PDP9 memory are needed for

the STACK area. Subroutines are important in the display file

for the same reason that the subroutine concept is useful in Fortran

code. The subroutine allows repetitive use of code without the

actual duplication of the display instructions. This is extremely

useful in conserving core on the PDP9.

The DISTAB(Display File Description Table) is used by the

Display Manipulation Routines (DMR's) to find any statement number

NAME or TAG in the Main Display Routine or the Display Subroutine

areas of the display file.

- 216 -

,

The total display file sent from the 6600 1s arranged in PDP9

core as follows:

System Routines

Main Display
Routine

Vector General
Stack

Unused Core

Display
Subroutines

DISTAB
C

°R
E User's PDP9 Program

i
L

°
W

E

R

Statement numbers are divided into two basic classes, NAMES

and TAGS. The basic differences between a NAME statement number

and a TAG statement number are: A NAME statement number can be

returned while retrieving light pen hit information, while a TAG

statement number cannot; and the range of values for a NAME is

1~NAME~255 as compared with a range for a TAG of 1~TAG~32767.
. There are four routines which the user's 6600 program can

use to deal with subroutine setups and calls:

CALL DTAG(ISTNO,ISUB) Define a tag.
CALL DNAME(ISTNO,ISUB) Define a name.
CALL DEND(ISTNO) Define the end of a subroutine.
CALL DCALL(ISTNO) Generate a subroutine call.

where ISTNO = a unique statement number: 1 to 255 for a NAME and 1

to 32767 for a TAG.
ISUB=l if this NAME or TAG is a pointer only; ISUB=2 if this

NAME or TAG defines a subroutine. NAME and TAG statement numbers

are useful in two basic ways: They can be used as pointers to any

- 217 -

portion of the display file (except the STACK) or to define display

subroutines.

Each call to DTAG or DNAME makes an entry into the DISTAB.

Each entry contains the statement number [NAME or TAG, with a flag

indicating whether the NAME or TAG is a pointer (ISUB=l) or a sub­
routine definition (ISUB=2)] and a display instruction which points

to the display code following the CALL to DTAG or DNAME. If the
statement number is a NAME, then an additional entry is made in

the DISTAB. This entry will alldw the NAME value to be available

to the user when retrieving light pen hit information.

If the user calls DTAG or DNAME with ISUB=2 (the statement

number defines a display sUbroutine) then the display instruction

in the DISTAB will point to the first word of the display subroutine.

A call to DEND must then be made to finish defining the display

sUbroutine. (This is similar to the Fortran END statement) and

must be made before another call to DTAG or DNAME with ISUB=2>.

For ISUB=I, no call to DEND is necessary.

If a subroutine is defined using a NAME statement number,

then that NAME value is only in effect to the end of the subroutine.

One might well wonder why a TAG not pointing to a subroutine would

ever be useful. Suppose that the user generates five pictures on

the 6600 side but wishes to have only four of these displayed on

the CRT. If a statement number (ISTNO) has been placed before the

call which generated the picture he doesn't wish to view, then it

is possible in the PDP9 program to cause that part of the display

file to be "turned off." Without an ISTNO, there is no reference

point to allow us to get at that portion of the display file from

the PDP9 program. One's first inclination is to place ISTNO's

all through the code. But note that ISTNO's require storage

and should only be used where really necessary.

Suppose we have some code which draws a picture. Let's set

this up as a subroutine using TAG 100:

CALL DTAG(100,2)

(code to draw the picture)

CALL DEND(lOO)

CALL DCALL(lOO)

- 218 -

Note several things in this example. First, the code between

DTAG and DEND does not place instructions in the "main display"

routine, but into the display subroutine area.

This section of our program merely sets up the procedures for

a subroutine in the display file. The actual display file

commands will only be executed when a call to DCALL is issued.

The CALL DCALL(lOO) may be issued whenever required. However,

we cannot CALL DCALL(lOO) until after the DEND statement defining

that subroutine. Once set up, the subroutine may be DCALLed as

often as necessary.

The display file structure looks very much like a Fortran

program. The statement numbers allow the programmer to ref­

erence specific areas of the display file. Also, subroutine

calls help prevent duplication of code in the display file.

Enough TAGS should be used to supply necessary flexibility at the

PDP9 but no so many that core is unnecessarily wasted.

Display Generation Routines - DGR's

'I'ho r-o are three general Lc vc J.n of r-ou t rnc n available to the

graphics user under SIGS. 'I'he low level (system level) routines will

give the user complete control and responsibility over his graphics

display. Users are discouraged from using the low level routines

whenever possible since they require a much better understanding of

the Vector General and its display instruction set. The intermediate

level routines should be used as they provide the user with

considerable flexibility, but avoid the necessity of doing highly

detailed graphics programming. The high level routines give much

user convenience and maximum output with minimum programming with

a sacrifice on flexibility. Only the intermediate level DGR's will

be described here.

Two initializing routines must be called before any of the dis­

play code generating DaR' 8 can be called. 'I'he first (CALL DINrr(3Wri;'f

or3HRUN)) one gets the PDP9 display file boundaries from the PDP9.

If DINIT is called with 3HRUN, the system will know that a display

file or listings are to be sent to the PDP9. If DINIT is called

with 3HTST, a debug run on the 6600 is assumed. For this case, no

- 219 -

communication8 link between the 6600 and a display 1s established.

DINIT must be called before calling any other graphics routine. Also,

only one call to DINIT with the argument 3HRUN is permitted in any

one 6600 program. The second routine which must be called (call

DISIZ(NAMES,ITAGS,ISUBS,ISTACK)) controls the size of the DISTAB

and the minimum size of the Vector General display stack. All

remaining PDP9 core is given to the display file.

For the intermediate level DGR's, all arrays of coordinate

values must be in rasters (from -2048 to 2047). There are three

routines available which convert user coordinates within specified

boundaries to scaled integer raster values. The first (DBOUND)

specifies the maximum and minimum user values which can be used in

the two conversion routines. The first conversion routine (DFTOI)

takes a floating point value and converts it to a scaled integer

raster value (between -2048 and 2047). The second conversion routine

does the reverse. Since these two routines use and produce absolute

values only, two similar routines are provided to convert floating

point values to scaled relative values.

Intermediate level DGR's have been written to allow use of

most of the Vector General features. There are routines which posi­

tion the beam invisibly for two dimensional relative or absolute

Vect~rs, and also for three dimensional relative and absolute

Vectors. The circle-arc routines can draw a circle or arc leaving

the beam at the end of the circle or arc or at the center of the

circle or arc. A multitude of Vector drawing routines provide the

capability of drawing Vectors in two or three dimensions, as

relative, absolute, incremental, and auto-increment in X, Y, or

Z. A character routine allows the entire 192 character set to be

used in the four available character sizes. A tracking cross

routine used with the DTRACK DMR routine at the PDP9 allows any item

to be moved with the light pen until any key on the display keyboard

is pressed. A group of load register type routines allows selective

blinking, light pen enabling-disabling, and modification of the

- 220 -

coordinate scale, picture scale, X, Y, Z offsets, intensity offset,

intensity scale, potation coefficients, and temporary general

registers. Of course, all of these routines can be used with the

statement number and subroutine defining DMR's (DNAME, DTAG, DCALL,

and DEND). Another group of DMR's provide for the swapping of

designated arrays between the 6600 and the PDP9. Presently up to

eight arrays can be swapped with a maximum size of 93 PDP9 words for

each array. The size limitation is caused by the size of the communi­

cation buffers used in IGS and DPB. Real, integer, double precision

(PDP9 only), and data (no conversion) types can be swapped.

Display Manipulation Routines-DMR's

The PDP9 display manipulation routines allow the user to inter­

act with the display file in a variety of ways. The light pen

routines permit identification and selection of items in the dis­

play file by name register or temporary general register values.

The name values are defined at the 6600 via the DNAME routine while

the TGR values are defined by the DLDLPNO routine •. Any display

keyboard value can be obtained by use of the DKEYBD routine. Often

a user will generate more information in the display file than he

desires to see simultaneously on the display. The DBREAK and DLINK

routines have been written to provide the user with an easy method

to selecti vely "turn on" and" turn off" portions of the display

file. Both routines will work on any portion of the display file

which have been identified by statement number names or tags.

The DCHANG routine allows a character string (which has been

identified by a statement number name or tag) displayed on the CRT

to be changed using the display keyboard. If the character string

happens to be numeric it may be desirable to convert it from

ASCII to a fixed or floating point PDP9 number for future computation.

Conversions are ~ccomplished using the DFNUM and DINUM routines.

Many times it is useful to be able to directly set or retrieve

the contents of one or a consecutive string of the Vector General

display controller registers. To set a display controller register

or string of registers, the DSETR routine can be used. To retrieve

a register or string of registers, the DLISTR routine should be-

used. The first register must be identified by a name or tag

- 221 -

statement number.

In order to simplify the format problems which can arise by

using such routines as DLISTR and DSETR, two conversion routines

are available. DVGTOg converts a display controller register to

a signed integer PDP9 value. The D9TOVG routine performs the reverse

operation. (applies only to registers 8 to 13, 17, 19 to 31, and

70 to 79).
The DROT routine is available which can change the rotation

coefficients of any portion of the display which was first identi­

fied at the 6600 by a name or tag statement number and followed by a

call to the 6600 DROT routine.

If light pen trackinp is necessary, then the PDP9 DTRACK

routine can be used in conjunction with the 6600 DCROSS routine.

DCROSS generates a subroutine defined tracking cross with a user

specified name statement number. The tracking cross is turned off

via a call to the 6600 DBREAK routine. The call to DTRACK at the

PDP9 attaches the tracking cross to any user item defined by

another statement number name or tag. Tracking continues until

any key is depressed on the display keyboard.

For the graphics systems which have the control dials option,

a DIALS routine returns the value of any designated control DIAL

to the user in VG format. For systems also equipped with the

optional data tablet, the X and Y coordinate values for the loca­

tion of the stylus plus its vertical location above the data tablet

can be obtained via the DTABLT routine.

The PDP9 DMR's also provide the swapping of designated arrays to and

from the 6600. The DESIG routine is used by both the 6600 and the

PDP9 to specify which arrays are to be swapped. Their size,

dimensionality, and type. -Each time DESIG is called in both computers,

a correspondence is established between the arrays designated in

the two computers. The calls should agree in number, order, array

type, dimensionality, and array size. In order to store any array

from either computer {all arrays are stored on disk at the 6600

using CDC's data manager), the DSTOR routine is used. when it is

necessary to retrieve an array from either computer which has been

"DSTORED", then the DFETCH routine may be used.

- 222 -

..

Job Flow and Control

The CDC 6600 operating system program management is based on

the use of "control points tl as a method of handling the allocation

of resources to each user program. There are seven control points

available to the system. The control points on the 6600 used for

interactive graphics are used in the following way .

Control Point

1

2

3
4

5
6

7

JANUS (input/output)

Export High Speed (graphics communication)

IGS (graphics execution)

BATCH

BATCH (execution of BATCH jobs)

BATCH

BATCH

Every job (graphics and non-graphics) is loaded from the input queue

into central memory at a BATCH control point. The order of loading

from the input queue into central memory at a control point is

determined by job priority and job size. Sufficient information is

retained by the operation system for jobs executing at each control

point in order to allow the system to timeshare the use of central

memory, roll jobs to and from disk, provide I/O (read tapes, Print,

etc.), and other necessary tasks.

Before running an interactive job, the user will usually read

in his PDP9 and 6600 programs using the card reader via PIP and

store each program as a file on the disk. The PDP9 program is then

compiled and the object O/P is stored as another file on the disk.

At this point, the user can make any DAT slot assignments for any

device handler (Dectape, Disk, Line Printer) needed for his graphics

run. The PDP9 is then loaded and execution begins.

Following are the chronological events in the life of an

interactive job.

1. The PDP9 program calls DSTART which establishes hardware

and software communications with the 6600. DSTART puts

out two messages via the PDP9 teletype. "Line Active"

- 223 -

indicates the PDP9 has received a hardware response from

the 6600; "6600 Active" indicates the PDP9 has received a

software response from the 6600.

2. The PDP9 program then calls DJOB which sends the 6600 program

to the 6600. At this point the PDP9 program usually

needs a display file from the 6600 before it can continue.

The program can wait via a Fortran loop, or it can go to

"Sleep" via a call to DSLEEP and wait for the 6600 to

respond.

3. The 6600 job is placed in the input queue, and at this time

the job name is printed on the PDP9 teletype.

4. Execution begins. (The job is assigned a BATCH control point.)

5. BATCH execution finishes.

6. The job is swapped to the graphics control point, IGS.

IGS operates as a very high priority BATCH job along

with the normal 6600 work load. Under IGS, the individual

graphics jobs are timeshared independently from the rest

of the BATCH work load. At this time, a short listing

is produced consisting of a banner page and dayfile and

is placed in the output queue. A message is printed

at the PDP9 teletype saying that the job is in the IGS

queue.

7. Interactive execution begins. The 6600 program performs

the necessary computations and creates a display file.

When the 6600 ~rogram has completed its appointed tank

and is ready to give control back to the PDP9 program, the

user can call DWAKE. DWAKE indicates to the PDP9 that

the 6600 program portion currently in execution has finished

and the 6600 has rolled out the job. The display is

started if the 6600 has (RE) generated a part of the

display file. 'I'he PDP9 program can now continue execution.

When the PDP9 program has completed its current tasks, it

can call its version of DWAKE (the PDP9 version of DWAKE

does not halt execution or initiate a wait loop) and then

- 224 -

do a Fortran loop or call DSLEEP. The 6600 program is then

rolled back into core and execution continues. This ex­

change of control between the 6600 and the PDP9 may con­

tinue for as many cycles as is necessary to complete the

graphics job.

8. Interactive execution finishes. The 6600 program usually

terminates the job upon command from the PDP9 through a

parameter sent via a swap array.

9. The listing is placed in the output queue.

10. At the first opportunity, export will take the listing out

of the output queue and try to send it to the PDP9.

The following details will be helpful in understanding the

events and are keyed to the events they describe:

1. Once communication is established, it will be broken if:

a. The 6600 goes down.

b. The line to the 6600 fails.

c. The PDP9 stops (failure, program error, stop statement,

program stop key, etc.)

2-3. The job does not enter the input queue until it all arrives

at the 6600. If communication is broken before the job

goes into the input queue, the 6600 throws away the

information received up to that point and forgets all

about the PDP9.

3-4. Operator intervention is often necessary to get to step 4
in a reasonable length of time. It is often expedient

to call the operators on the "hot line" and call attention

to the fact that the job is in the input queue.

4-5. Control cards down to and including the card containing the

file name speci~ied on the overlay (0,0, FNAM) card

(example: FNAM) are executed at the BATCH control point.

3-6. If communication is broken at this time, execution will

proceed until call DINIT (3HRUN) is executed at the

graphics control point and will hang, waiting for the PDP9

to become available again.

- 225 -

7. This is the first opportunity to generate a display file

and put a picture on the display.

7-9. If communications is broken at this time, the job will

abort and the chain of events will stop at 9, at least

temporarily.

9-10. If there is a listing in the output queue that came from

a PDP9 that is in communication, event 10 will occur

unless a call to DSPDIR has been made to stop it. If

someone leaves a listing in the output queue as a result

of breaking communications at the wrong time (as above),

the listing will be sent back at the first opportunity,

even though the opportunity is hours later, and the current

graphics user is another person.

It is often very useful to know how far along the 6600 has

progressed on a job, or to send some special directive to the

6600. A special routine, DSPDIR, has been created for this

purpose. DSPDIR can be used to:

1. End communication (this will also cause the 6600 job to

be killed).

2. Search the input and output queues and divert any jobs

or listings from that PDP9 which sent the directive.

A diverted listing is printed at the 6600.

3. Print out on the PDP9 teletype the current status of your

job on the 6600. This is useful when one is waiting around

for the 6600 to do something.

4. If a listing (not a display file) is currently coming

across from the 6600, stop it. The listing is rewound

and placed back in the output queue. No more listings

will be sent during this communications session.

Another routine which is convenient to use in conjunction with

DSPDIR is DSWICH. This routine returns a value set in the PDP9

accumulator switches 1 through 17 at the instant that accumulator

switch 0 is flipped from off to on. Use of these two routines to

control PDP9 and 6600 control is much better than reading characters

from the PDP9 teletype since the Fortran formatting package occupies

- 226 -

much core and should be avoided where possible. A typical PDP9
program could look as follows:

C GET AN ENTRY FROM THE ACCUMULATOR SWITCHES

CALL DSWITCH(I)

I = I + I

C CHECK FOR A BAD SWITCH SETTING

IF«I.LT.L. OR (I.GT.5» GO TO 4

C BRANCH TO SWITCH SETTING

GO TO (5,6, 7 , 8 , 9) ,I

C END COMMUNICATIONS AND TERMINATE JOB

5 CALL DSPDIR(O)

GO TO 4

C SEND 6600 LISTING TO THE 6600 PRINTER

6 CALL DSPDIR(I)

GO TO 4

C PRINT THE JOB STATUS ON THE PDP9 TELETYPE

7 CALL DSPDIR(2)

GO TO 4

C STOP A 6600 LISTING FROM COMING ACROSS

8 CALL DSPDIR93)

GO TO 4

C CONTINUE THE PDP9 JOB

4 CONTINUE

Current and Future Applications
DAVINCI (anonym for deleting, adding, verifying, and inte­

grating network circuit images) is an interactive graphics

program that allows the user to edit precision art work data.

In addition to several manipulation capabilities it has
window and pattern capabilities. The input to DAVINCI is a

deck of Gerber plotter instructions that are translated into

a data base used by the graphics system to produce a display

- 227 -

of the circuit geometry. The output is a Gerber plot tape.

DAVINCI is a production program being used by precision graphics

personnel. It takes about one day to train these people to use

DAVINCI. In the past~ if a printed circuit needed more than

15% revision the board was redigitized. With DAVINCI this is

not done. Lead time is reduced on the average from several days
to several hours.

Much of the 6600 computer time at Sandia is devoted to

the solution of complex hydrocode problems. Hopefully, a consider­

able savings in computer time can be realized by graphically
monitoring the development of hydrocode problem solution. Mesh

elements, for example, can be monitored and altered before a

degenerate solutions results. The time saving here is to be

realized by stopping the execution of obviously degenerate

runs and changing parameters in real time on other runs to obtain

a successful solution. Since these programs use a rather large

amount of computer time (several hours is typical) and core

(large is on the order of 300000 octal words of central memory)~

even a small percentage reduction in time would be significant.

Graphic hydrocide applications are presently in the development

stage.
A typical data reduction process at Sandia requires several

distinct reduction programs to convert raw measured quantities

to final results which can be interpreted in a more meaningful

way. The total data reduction process usually requires several

days and often many partial reruns to complete. A graphics data

reduction process is in the development stage which will reduce

both turn-around time and reruns. The general steps in the process

will be as follows:

1. Digitize or reformat and edit raw data from telemetry
systems, PCM systems, or tracking systems, etc.

2. Examine the edited data via the Vector General CRT to
select parameters for the next processing step.

3. Perform the ~elected operation on the data such as

filtering~ integration, or generalized mathematical

transformations.

- 228 -

4. Plot or display the data derived from the preceeding

step to verify proper parameter selection.

5. Repeat the two previous steps, if necessary, until

satisfactory results are obtained.

6. If parameters were properly chosen, then the next

process step is considered and parameters are selected

for that step.

This interactive, iterative process is continued until the de­

sired reduction step has been completed. From one to twenty

steps may be required.

GAIN (graphic and for investigating networks) is used as a

front «n d for s c op t r-o a clr-c u.t t analysis p r ogr-am w::t.dcly un od f n

this country. GAIN provIdes the c1rcult designer with a capa­

bility to interactively define circuit topology on the display

screen and specify parameters to control the execution of

sceptre. At the conclusion of the interactive session, GAIN

generates the appropriate input data stream to allow sceptre

to analyze the circuit which was defined. GAIN is designed to

eliminate, as much as possible) computer-and-man time wasted

because of incorrect sceptre input data.

The Nielsen/Air Force Flight Dynamics Laboratory computer

program, SOURCE, has been recently adapted to interactive

graphics. The new program displays graphical output created
J;,

by program source which computes source and sink distributions

to model axisymmetric bodies in subsonic compressible flow. Per­

mits the user to rapidly to see both the desired shape and the

resultant shape and change the input data interactively. The

time required to generate an acceptable source-sink distribution

for a body has been compressed from approximately two weeks to

approximately one hour. This system has been used to develop

a model for the fuselage of the F-4D aircraft and will soon be

used to develop a model of the body of the SLA B57 Tiger prototype

weapon. These models will be used to theoretically analyze the

store separation of the B57 Tiger from the 4F4D aircraft prior to

the full scale drop test program.

- 229 -

RLOCUS is a computer program used by the Exploratory

Measurements Division. This application is similar to

the program "SOURCE" in that the user can modify para­

meters for his 6600 program at the display. The graph

that is returned to the display after each 6600 run

indicates to him the proper parameter choices for the

next run. It is not unusual for him to execute 40 to 50

times in a one hour session reducing the solution time

from 2 or 3 weeks to 1 hour.

- 230 -

APPENDIX A

6600 Display Generation Routines - DGRts

Initialization

DINIT(3H RUN)

DISIZ(NAMES,ITAGS,ISUBS,ISTACK)

Conversion

DBOUND(AMIN,AMAX)

DFTOI(F,I)

DFTOIR{F,I)

DITOF(I,F)

DITOFR(I,F)

Positioning

DMBA2{IX,IY)

DMBA 3 (I X, I Y, I Z)

DMBR2(IX,IY,IZ)

DMBR3(IX,IY,IZ)

Circle Arc

DARC (N MI TRAD, IANGL, NDEGS)

DARCCTR(lVM,IRAD,IANGL,NDEGS)

Vector

DVAAX2 (I VM, INC, IA2 , NMP'rS)

DVAAXJ(IVM,INC,IA2,IAJ,NMPTS)

DVAAY2(IVM,INC,IAl,NMPTS)

DVAAY3(IVM,INC,IAl,IAJ,NMPTS)

- 231 -

DVAAZ2 (I VM, INC, IAI, NMPTS)

DVAAZJ(IVM,INC,IAl,IA2,NMPTS)

DVA2(IVM,IAl,IA2,NMPTS)

DVAJ(IVM,IAl,IA2,IA3,NMPTS)

DVECT(IVT,IVM,IAl,IA2,IAJ,NMPTS,ID)

DVIAX2(IVM,INC,IA2,NMPTS)

DVIAY2(IVM,INC,IAl,NMPTS)

DVI2(IVM,IAl,IA2,NMPTS)

DVI3(IVM,IAl,IA2,IAJ.NMPTS)

DVRAX2(IVM,INC,IA2,NMPTS)

DVRAX3(IVM,INC,IA2,IA3,NMPTS)

DVRAY2(IVM,INC,IAl,NMPTS)

DVRAY3(IVM,INC,IAl,IA),NMPTS)

DVRAZ2(IVM,INC,IAl,NMPTS)

DVRAZ3(IVM,INC,IAl,IA2,NMPTS)

DVR2(IVM,IAl,IA2,NMPTS)

DVR3(IVM,IAl,IA2,IAJ,NMPTS)

Statement Number and Subroutine

DCSIZ(NDIST,NDISP)

DFSIZ (NWORIlS)

DNAME(ISTNO,ISUB)

DTAG(ISTNO,ISUB)

DCALL(ISTNO)

DEND(ISTNO)

DBREAK (ISTNO)

DLINK(ISTNOl,ISTN02)

DTRUNK(ISTNO)

- 232 -

DJUMP

Character

DCHAR(IHV,ISIZ,ICARA,NCHR)

DISVAL(IHV,ISIZ,VALUE,FRMT)

Load Register

DBLINK(I)

DCOSCL(FNUM)

DLDLPNO(LPNO)

DLPON

DLPOF

DOFSET(IX,IY,IZ)

DPICSCL(INUM)

DSET2D (INUM)

DSET3D(INUM)

DROT(ALPHA,BETA,GAM~~)

Array Swapping

DESIG(ARRAY,ITYPE,Il.I2,I3)

DFETCH(ARRAY)

DSTAT(NSTAT)

DSTOR(ARRAY)

Tracking

DCROSS(ISTN01) used with DMR DTRACK

Communication

DWAKE(I)

- 233 -

APPENDIX B

PDP9 Display Manipulation Routines - DMR's

Initialization

DSTART(ISO,ICI,FILEC,ILO,FILEL)

DJOB

Conversion

DFNUM(IARAY,FLT)

DINUM (IARAY , INT)

DVGT09(IVG,IPDP9)

D9TOVR(IPDP9,IVG)

DCNVRT(IPDP9,XVALUE)

Statement Number and Subroutine

DCHANG(ISTNO,IARAY)

DLISTR(ISTNO,IREGNO,IARAY)

DSETR(ISTNO,IREG,IARAY)

DMOVE(ISTNO,IX,IY,IZ)

DROT(ISTNO,ALPAH,BETA,GAMMA)

DTRACK(ISTNOl,ISTN02,IXEND,IYEND) used with 6600 OCROSS

DBREAK (ISTNO)

DLINK(ISTNOl,ISTN02)

DRCHAR(ISTNO,IPDP9)

Display Interaction

DFO

DIALS(IREGNO,IVALUE)

DTABLT(IX,IY,ILOC)

DKEYBD (IVALUE)

- 234 -

DLPREG (IVAL)

DLPHIT (IVAL)

Array Swapping

DFSIG(ARRAY)

DFETCH(ARRAY)

DSTAT(NSTAT)

DSTOR(ARRAY)

Communications

DWAKE

DSLEEP

DSPDIR(N)

- 235 -

UNIVERSITY OF CALIFORNIA

Lawrence Berkeley Laboratory
Berkeley, California

AEC Contract No. W-740S-eng-48

CONFERENCE PROGRAMS WITH INTERACTIVE GRAPHICS

Donald M. Austin

March 1974

- 236 -

Conference Programs with Interactive Graphics

Donald M. Austin
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

ABSTRACT

Multi-user conference programs provide interaction between users at
remote terminals through the mechanism of a time-sharing or multiprogrammed
host computer system. Extension of the conference program idea to include
terminals with graphic input and output capability will provide a more
natural medium of interaction and information exchange for a large class of
problems.

The major problems to be solved in developing this type of network
graphics facility are the interfacing to a variety of graphics terminals
through a device-independent graphics system, providing reasonable data
transmission rates necessary for interactive graphics, and the design of
a suitable man-machine interface language to handle a variety of problem
areas. Operating system requirements for both shared-program and shared­
file conference systems are investigated, and the implementation of such
a system based on the BKY 6000 operating system at LBL is explored.

- 237 -

I . INTRODUCTION

COlI f l' t'l'lIce pro/'. raJII~; nrc i nt c rac t i vc p ro gr ams wh i ch allow s cvc r.r I

us cr s to i nt t- r ac t with each other through the mechanism of a time-sharing

or multiprogranuned host computer operating system. Representative

examples are the single-host ~10TIF program on Dartmouth University's

DTSS [1] and the FORUM program of Institute for the Future which runs on

the ARPANET system under TENEX [2]. These programs provide textual

communication between participants with the additional advantage of

having computational and data base facilities of computer systems as

an integral part of the activity. On a network of multiprogrammed

system with remote terminals, users may interact with each other and

a data base in a real-time environment or on a delayed basis via a

storage file mechanism.

Graphics is a natural extension to text based conference programs.

The availabi l i ty of graphics terminals has reached the state that this

extension is both practical and useful for problems in wh i ch communication

by pictures is the natural method. Interactive graphics applications

cover most areas of problem solving, but the programs are usually written

for specific systems and a relatively small number of these satisfy both

criteria of extensibility and transportability.

The major problems to be solved in developing this type of network

graphics facility are the interfacing to a variety of graphics terminals,

providing reasonable data transmission rates necessary for interactive

graphics, and the design of a suitable man-machine interface language to

handle a variety of problem areas.

- 238 -

I I. APPLICATIONS FOR INTJ:J~ACTIVE CONFERENCE GRAPHICS

Some more or less specific examples of interactive conference

graphics programs will help define the problems associated with

implementation of such a system. Applications may be separated into

two rather broad categories which characterize the nature of the

inter~ctive graphics - display with commentary and game situations.

A. Display with Commentary

Perhaps the simplest applications of interactive conference graphics

are the analysis programs which display a picture (graph, set of data,

schematic, flow chart, etc.) and allow the users to select features of

interest and comment on them. A further extension of this category includes

features such as windowing, zooming, overlaying plots and guiding the

analysis by command menus and parameter setting. Many existing interactive

a1'p11 cat ions c oul d he ext ended to pcrmi t easy and natural communication

of ideas between remote users. Conference manipulation of graphical

data bases, such as urban planning, transportation network design, or

architectural design, is an area which overlaps this category and the

game situation area.

B. Game Situations

This category includes programs in which input from more than one

user is required. Obvious game situations are those usually associated

with the term, such as chess, economic modeling games and other decision­

testing applications. A broader definition encompasses teacher-student

and question-answer applications in a graphics based problem area.

- 239 -

III. DEVICE-INDEPENDENT GRAPHICS SYSTEMS

A. Types of Terminals

In order to be very useful, conference graphics programs require

that the host computer be able to communicate with a variety of interactive

graphics terminals and hard-copy devices. These terminals can be classified

as follo\lls:*

1. "Dumb" terminals, which perform i/o only.

2. "Semi-intelligent" terminals, which have a limited instruction

set display processor and local memory.

3. "Intell igent" terminal s, which have central processors as wel l

as display processors and local memory.

For the first class, the host computer must speak to the terminal

in its language. There is no sub-picture capability and each change

in the display must be done in the host computer. An example of this

type is the Tektronix 4012.

The semi-intelligent terminal has a limited subpicture capability

and at least a "s~art address" operation code, so that portions of a display

can be changed selectively without re-transmitting the entire picture.

Translation of the graphics data into display commands must still be done

by the host computer.

The intelligent terminal has a fairly powerfUl computer and is

capable of performing many graphics operations locally, including

translation of graphics data into display commands, simple transformation

*cf. Ref. 3 for a review of terminal classifications

- 240 -

of subpictures and editing.

In a conference system utilizing a variety of terminals, most

operations will be reduced to the lowest common denominator, for if

each user is to have an identical display all operations on the graphics

data structure necessary to generate a new display must be done by the

host for the lesser endowed terminals. However, a reduction in data

transmission can still be realized by utilizing the full power of each

type of terminal in the conference. For example, suppose a zoom operation

is called for. For "dumb" terminals, the appropriate transformation of

the data structure, translation into terminal display commands and the

transmission of the new picture to the terminal must be carried out by

the host. For the intelligent terminal, however, only a simple para­

metrized zoom command need be transmitted and all the other operations

can be carried out locally.

Graphics input devices available fall into three categories:

1. Character input devices, usually a keyboard with 6, .7, 8 or 12

bit character codes.

2. Numerical input devices, such as potentiometers, or function

keyboards.

3. Two-dimensional input devices, such as light pens, joy-sticks,

mice, tracking balls, data tablets, thumb wheel cursors.

(There exist some three-dimensional input devices, such as the

Lincoln Wand and 3-D joy sticks, which form a fourth category,

but these are usually too exotic to be useful with 2-D terminals.)

- 241 -

B. Requirements for Device-Independent Graphics Systems

Given the above constraints it is evident that applications programs

for conference graphics should be based upon a device-independent graphics

system. Such a system consists of general high level routines for creating

displays such as grid, smoothed curves, etc., plus some low level routines

for translating a graphics data structure into terminal-specific display

instructions. Ideally, the system should meet the following requirements:

1. Allow full use of available hardware features, such as

character generators with variable sizes, fonts and orientations,

and vector generators with variable line widths and intensities.

2. Allow for support of several devices simultaneously, including

hard-copy devices operating in parallel with the various types

of terminals.

3. Allow for high level graphics operations such as picture sub­

routining and incremental display modification.

4. Allow modular selection of high level routines and have small

memory requirements for low level routines.

S. Allow for the various categories of input devices.

A common implementation of a device-independent graphics system employs

a high level intermediate display language with a set of graphics commands

in either a fixed-length format, such as

or a string format, such as

~R~~JOP CODEGEJ~~ BREAKI

- 242 -

Translation uf the intermediate display file into device specific

commands can be done as a separate job step or in line by specifying at

load time the proper library of low level subroutines. Through picture

subroutining, a mixture of the two methods can be used.

The study by the Network Graphics Group for the ARPA computer network

covers most aspects of device-independent graphics protocol [4]. The

protocol proposed by this group is to be implemented at various levels of

sophistication, and provides features for interfacing with all types of

terminals.

- 243 -

IV. OPERATING SYSTEM REQUIREMENTS

In order to implement conference programs on a host computer system,

the operating system must contain certain features. Two possible conference

systems will be discussed - the shared-program system and the shared-file

system. The applications possible with these two systems share consider­

able overlap (the shared-file system has more general possibilities), but

operating system requirements differ considerably for the two.

A. The Shared-Program System

For a single ~et of related applications, particularly in game

situations, the most efficient method of conferencing is the shared-program

system. In this system, multiple terminals are connected to a single job

running at a single control point (thus a single user operating system

is even suitable if one has the resources to tie up a host computer with

interactive jobs). Features required of the host operating system are:

1. Multiple-terminal interface.

2. Multiple-terminal connection to a single job.

3. An interrupt or polling capability which allows the host

computer to service anyone of the connected terminals with

reasonable r~sponse time (including log on and log off).

4. For interactive graphics programs, a device-independent graphics

system and an appropriate set of interpretors.

The third requirement is perhaps the most troublesome. The concept is

simple enough - it requires that the program be informed by the terminal

handler whenever any terminal logs on or off the conference program.

- 244 -

In addition, it requires that the program be able to post reads to all

connected terminals and be activated (rolled into central memory) when any

input is forthcoming.

Typically such a program would consist of an applications module,

a high level graphics module, an executive module and a set of interpretor

modules, as depicted in Figure 1. The applications module operates on some

data base to produce interesting data, which is fed to the graphics module

for creation of a display file. The executive module directs input to the

interpretors for translation and transmission to the terminals. Terminal

response is fed bqck to the executive for further action.

B. The Shared-File System

The shared-file system is somewhat ITIOre general than the shared-program

system in that communication is between separate jobs, each of which may

include different applications programs and data bases. Features required

of the host operating system are:

1. Multiple-terminal interface.

2. A multiprograrnmed or time-sharing system.

3. Special file types accessible by more than one program simultaneously.

4. An interrupt or polling facility which allows a host program to

service any of the conferee's with reasonable response time

(including log on and log off).

This system is the basis of the conference systems mentioned in the

Introduction (DTSS [1] and FORID1 [2]) and seems to suit a wider variety

of operating systems than the shared-program, system.

A schematic of this system is depicted in Figure 2. The executive

module reads the input files from the terminals and creates a glohal

- 245 -

VI. A PROPOSED U1PLHIENTATION

The computer center at LBL offers the following facilities relevant

to interactive conferencing:

1. Interconnected CDC 7600, 6600 and 6400 with over a billion (60 bit

words) of on line m~ss storage.

2. A terminal handler system being expand~d to 256 terminals with

data rates up to 9600 bps.

3. A variety of interactive terminals, including Tektronix 40l2's,

DEC GT40's, CDC 250 VISTA consoles, plus several hardcopy devices.

4. ARPANET connection (soon).

The BKY operating system currently allows an implementation of a shared­

file system through a facility called "shadowed" COMfl.lON files. This

facility allows a job to capture a COMfl.10N file created (and temporarily

released) by another job, obtain read-only access (i.e., SHADOW the file)

and return it to the system. The originating job then recaptures the file

by the Cm.~lON operation and retains write access. Anything wrI tten on the

file can be immediately read from the shadowed file. Thus in Figure 2, the

executive program shadows all the input files for the connected terminals,

and all the terminal programs shadow the global display file simultaneously.

Polling is accomplished by periodically reading the system File Name Table

into executive program memory space and checking a list of prespecified

file names for users logging on or off the conference. By maintaining an

updated list of file pointers, the programs can determine when new input

is available on a given file.

- 248 -

On the BKY 6000 system, interactive jobs are automatically rolled out

of memory after a period of inactivity. Thus, while the terminal programs

can be rolled in on demand, the exeuctive program, which is not connected

to a terminal, mllst execute a recall loop in order to relinquish the central

processor to other jobs. This becomes unnecessarily expensive for long

periods of inactivity. One solution, albeit a rather clumsy one, is to

have a chairperson terminal connected to the executive program. It is then

the chair's responsibility to insure that response time is maintained at a

reasonable level. A much more elegant solution is to provide a peripheral

processor CPP) program which resides in one of the 20 ppt s attached to the

6600. This PP program can perform the polling function by "waking up"

the executive program when new input is forthcoming. Going one step further,

the same PP program is capable of doing direct memory-to-memory block

transfers, eliminating the need for auxilliary storage files (at least for

input from the terminals, which tends to be smaller than the global display

file) .

The shared-program system has already been implemented for the primitive

Berkeley Remote Facility, and a new system under development for the implement­

ation of the ARPANET connection at LBL.

- 249 -

VII. CONCLUSIONS

Conference programs with interactive graphics on a variety of terminals

offer a useful method of communication between users at remote sites. The

problems involved have for the most part been solved in one way or another,

and all that remains is fitting the pieces together into a coherent system.

The shared-program system allows several terminals to connect to a single

job, offering features usually associated with conference or game situations,

where all users are interacting with the same data base. The addition of

graphics broadens the applications possible with this system to include many

problem areas not feasible with text-only systems.

The shared-file system connects several interactive jobs and thus provides

several host-sized computer facilities to the conferees. This system is in

fact a natural extension of computer networks and is considerably more general

than the single-host, shared-program concept, since only the graphics and

file transfer protocols need be specified. Program languages, analysis programs

and data bases available to the users can be as varied as required for a

particular application.

ACKNOWLEDGEMENT

Work performed under the auspices of the U. S. Atomic Energy Commission.

- 250 -

FIGURE 1.

APPLICATIONS

~ODUlE

DIAGRA~ OF THE SHARED-PROGRA~ ENVIRON~ENT

GRAPHICS

fltODUlE

EXECUTIVE

r10DULE

TVPE 1 TEAI'IINlll

INTEAPllETOA
o o

TVPE 2 TEAl'llNill

INTERPRETOR

- 251 -

fIGURE l. DIAGRA~ OF THE SHARED-FILE ENVIRONMENT

EXECUTIVE

PROGRA~

TERMINAL

PROGRA~
~

o 0

- 252 -

o

TER~lNAL N

PROGRAM

IlFMOr

FIGURE 3. DIAGRAM OF THE DEMOCRATIC ENVIRONMENT

TERMINAL 2

TERMINAL '3

PROGRAM

~ 253 -

HI:FJ~I{ENCES

1. McGrcachic, J. S., MUltiple Terminals Under User Program Control in
a Time-Sharing Environment, Comm. ACM 16, 10 (Oct. 1973), 587-590.

2. Amara, R. and Vallee, J., FOR~t: A COmputer-Based System to Support
Interaction Among People, Institute for the Future, Hen10 Park,
Calif. 94025.

3. van Dam, A., Intelligent Satellites for Interactive Graphics, Proceedings
of AFIPS, 42 (June, 1973) 229-238.

4. Michener, J. and Sproul, B., Proposed Network Graphics Protocol,
Network Graphics Group Note No. S, NIC No. 19933, ARPA Net~ork

Information Center, Stanford Research Institute, Menlo Park, Calif.
(Oct. 1973).

- 254 -

GRAPHICS ApPLICATIONS FOR FINITE

ELEMENT CODE PROCESSING

v. K. Gabrielson
Sandia Laboratories

Livermore, California

- 255 -

ABSTRACT

This paper describes the application of interactive graphics to mesh

generation and to output display processing of finite element codes.

INTRODUCTION

An interactive graphics terminal has been used for a number of finite

elment applications for several years. For mesh generation, it has been used

primarily to verify mesh designs, reducing the time required to create a

desired mesh. In evaluating and processing output data, the terminal has

been used to scan the large amount of data finite element codes produce,

permitting detailed study (in given regions of the structure) of any of the

stress and strain vectors produced by the code. Displacement plots of the

node points can be constructed for the best visual presentation.

Currently, two types of terminals exist at SLL (Sandia Laboratories,

Livermore), an interactive terminal which requires a dedicated control point

and memory on the CDC 6600, and two DVST (Direct View Storage Tube) displays,

which are used with the CDC 6600 Intercom system.

Since both systems are competing with the CDC 6600 batch processing, the

emphasis is on small memory requirements for these interactive graphics

applications, effective data handling procedures internal to the code, and

adapting the structural codes to interface with the graphics.

- 256 -

Mesh Generation

The use of mesh generation programs as separate input processors is quite

common for finite element codes. In general, they are coded for specific

finite element codes; any generalities usually result from effort spent by

the programmer to make them adaptable to more than one application. The FEMESH

code has been used in this capacity for several years at SLL. The code is

designed primarily for finite element codes in which the node points are mapped

onto the (i,j) unit grid. The code described here for the DVST terminals was

an adaptation of this code.

Features of the FEMESH code which make it attractive for terminal applications

are: small memory size, mesh can be designed in sections, a simple meshing

algorithm, small input data set, and few limitations on size of completed mesh.

Features of the DVST terminal for which the code was designed include:

keyboard input, a display tube of 1024-760 rasters, tracking cross, and a heat

sensitive printer for recording data displayed on the screen. The CDC Intercom

software is used, and the system shares a CDC 6600 Intercom control point which

competes with normal batch processing and other Intercom users. Applications

programs are written in Fortran using system subroutines for the tracking cross,

displaying text, and constructing line vectors. A DVST is a write-only display

(the display can be refreshed only by erasing the total screen), which restricts

interactive capability. The use of the Intercom system allows the user to

communicate directly with the SCOPE operating system on the CDC 6600, permitting

the use of UPDATE and file processing programs from the terminal. In addition,

the Intercom text EDITOR program can be used. The Intercom system restricts

- 257 -

programs to less than 600008 words of memory, and neither ECS (Extended Core

Storage) nor tape storage can be used.

The mesh code used at the terminal has the following capabilities: input

data can be entered at the terminal or accessed from a permanent disk file;

a graphical display of the current data set can be generated; the entire data

set or any part of it can be listed on the display with the graphics display;

editing of the data set can be done by inserting, deleting, and changing data

records; the tracking cross can be used to extract coordinates of data points;

and areas of the display can be enlarged, using a "zooming ll option. The current

input data set is always stored, to ease recovery from errors and to allow the

job to be performed at discrete times. The node point data set of the completed

mesh design can be processed for several finite element codes.

The following gives a brief description of the meshing procedure used in

the code. The structure to be meshed is represented as a body of revolution

and may be divided into two-dimensional regions of cOlTInon materials. Each

region (PART) is treated independently of others in the code, and is defined as

four sides consisting of point sets representing line and arc segments. Each

region is then subdivided into an (M x N) array of quadrilateral elements which

produce the mesh.

Finite element codes require each element to be defined by its four node

points. The node points on the boundaries of the region are computed from the

data sets defining the sides. The (M-l) x (N-1) set of node points internal to

the region are computed as follows. For a given internal point (x,y)m,n such

as illustrated in Figure 1, the x coordinate is computed as

- 258 -

where

m=2~ ... ,M; n :::: 2 ~ .•. ~ N.

A similar equation applies to Ym,n' The Ki'S are weights whose numeric values

are determined as a ratio of the node points' relative location (m,n) from each

of the region's sides to the smallest subdivision of the given node row or

column. For equally spaced nodes, this reduces to

K, = l/(n-l)

K3 :::: l/(N+l-n)

K2 = l/{M+l-m)

K4 = 1/ (m-l) .

For rectangular regions this produces a proper orthogonal mesh. For more

general regions, adjustments to the K's are made by weighting functions Wi

which are applied to the respective Ki and apply over all node points internal

to a region.

For further enhancement of the mesh in given regions, the subdivisions

along any of the given surfaces can be proportioned. Appropriate adjustments

are made to the K's for such definitions, resulting in the same proportioned

relationships for the internal mesh points in the region.

The following example illustrates the use of the mesh code with the DVST

terminal. The boundary data sets of Figure 2 were input at the terminal, and

a display verifying the data is shown in Figure 3. The SCAN option is used to

list the data and insert data specifying the number of subdivisions in each region.

Data is again listed on the display for verification. If errors are noted the

data is edited; if correct, the mesh is constructed on the display as shown in

Figure 4. Adjustments to the mesh are made by using the WEIGHT and RATIO options

- 259 -

by inserting their specifications in the data set using the editing procedure.

The user may iterate in this sequence until satisfied. If desired, the editing

procedure allows him to add new regions and change boundary data sets of

previously defined regions. (Also, interactive features such as the tracking

cross and windowing as illustrated in Figure 5 can be used.) To use this data

in the finite element codes, the regions are mapped onto an (i,j) unit grid.

This option is available using a mapping procedure fer locating each given

region on the (i,j) grid. Displays of these results are constructed on the

terminal for verification and illustrated by Figure 6. After the mapping is

verified, the data can be processed for a given finite element code application.

The feasibility of using a DVST type terminal for mesh generation has been

shown. The program has the features of being small in memory size, with small

input data set, and it can be applied to complex structures due to region

definitions. Few limitations are imposed on the size of the problem since the

code does not require two-dimensional arrays. The code was used effectively for

the problem illustrated which created proper meshes for an ablation calculation

and stress analysis of anosetip of an aerodynamic test vehicle.

Output Processing Using an Interactive Terminal

An interactive graphics terminal has been used for processing output data

files for the SASL code for several years. The output file of this finite

element code for linear elastic axisymmetric stress analysis included the

boundary data set, the (~,z) coordinates of the node points, the geometry data

required for each element, the displacement of each node point, and the stress

and strain functional values for each element. The code uses the Q4 integration

- 260 -

element, which computes the displacements at the four node points and computes

stresses and strains at the integration point within the element. The code

can be used for applications having nonlinear material properties; this involves

an iteration process in which an output data set can be generated for iteration.

The output file for each data set includes displacements for each node point

and 22 stress and strain vectors at each integration point.

The program for processing this data at an interactive terminal provides

the capability for the analyst to display the mesh, access any of the data

sets in the file, and construct displacement plots of the node points as functions

of the boundary data set, magnification factors, and regions of the structure

such as shown in Figure 7. For any given data set, any of the 22 stress or

strain vectors can be accessed and displayed as contour plots over the two­

dimensional space describing the structure. The analyst can select contour

levels, and contours over regions of the structure can be displayed in detail

using windowing techniques. Several options are available for contour display

as shown in Figures 8-10.

Features of the interactive terminal for which the code was designed are

a CRT (Cathode Ray Tube) display of 1024 x 1024 rasters, 12 function interrupt

switches, and a typewriter keyboard. The program, processed by the CDC 6600,

is written in Fortran, with subroutine calls to graphics system programs which

produce necessary code for the 8192-word memory of the terminal controller used

for generating the display on the CRT. The terminal requires a dedicated

control point and sufficient memory to process the program on the CDC 6600.

- 261 -

This direct coupling with the CDC 6600 has the advantage of high-speed

processing, allowing extensive calculations to be made between interactions.

Having access to large data stores and ECS makes it attractive for output

processing applications. The unit is also directly tied to a CRT plotter used

with the CDC 6600, and film records can be made of any display at the terminal.

The disadvantages of direct coupling are that it increases the cost of

processing, and that the system in its present status cannot be expanded.

Although no restriction of program size is required, practical processing

requires codes to be under 500008 words of central memory and 2000008 words

of ECS.

The implementation of the output processor for the SASL code to be

applicable to any size problem required special efforts in coding. Since

only one function value existed for each element, knowledge of the element's

neighbors was required for contour plotting. Therefore, contour plots were

designed using the (i,j) unit grid as the basis of the contour map_

Figure 11 illustrates the problem, in which the XiS imply node points

and O's, integration points. The contour area is noted by the dotted line,

and is divided into four triangles ;n which the functional values can be

determined at each vertex. The use of triangles for contour plotting

simplifies the 10g;c, since a contour line can only intersect two of the

sides.

- 262 -

Since the maximum (i,j) varies greatly between problems, a form of dynamic

dimensioning was used which changes all arrays to desired dimensions prior to

compiling. ECS was used effectively for storing the node points associated

with each element, and data for contouring was stored as a function of the j

lines of the i,j grid. Storage required for 1000 element data sets is around

500008 words; 3000 element data sets required 750008 words. (Less than 1000008
words of ECS is used for any size problem.) The code has been used effectively

for processing this type of data at SLL, and it is the primary means of

evaluating output from this particular code.

The structure of the output data file is as follows:

(a) file containing all parameters of the data set,

(b) a load set file for restarting purposes,

- 263 -

(c) a data record for each element containing all coordinates, displacements,

stress and strains for data set one, and

(d) a data record for each element containing data for data set two, etc.

The graphics code written to process this data has the same capabilities

as noted before for contour plotting, mesh display, and displacements. The

basic difference between the two applications is that sufficient data exists

within each element providing the means to treat each element independently

for contour plotting. For this application, the basic contour element of

Figure 10 is used on the Q8 element. In this case, the functional values and

coordinates must be determined at the node points of the element by fitting a

function over the two-dimensional space by a least squares procedure. This

capability eliminates the need for the (i,j) unit grid required in the SASL

applications.

ECS is used more effectively since all element data can be stored for a

given data set. This increases the speed of contour processing and the code

can process any size problem without change in dimensions. The code currently

requires about 500008 words. The ECS required is a function of the problem

size and type of element used. The use of ECS is a tradeoff with central memory

requirements and speed of data transfer. The code is programmed such that the

random access feature of ECS is not required and data could be processed from

sequential disk storage.

Since contours are computed independently over each element, the function

is averaged at the node points to obtain a continuous contour such as shown in

Figures 13 and 14. A contour can be obtained that is not averaged which can

result in a very discontinuous function at the element boundaries such as shown

- 264 -

in Figure 15. This display aids in determining the quality of the integration

option used, coarseness of the mesh, and the type of methods used to evaluate

the function at the node points. In addition, contours can be constructed on

displaced meshes such as shown in Figure 16, which illustrates a problem of

large distortion. To improve the accuracy of the contour function over the

element, a refinement of the triangle evaluation has been implemented permitting

8- and l6-triangle options to be used. The triangle option used is a function

of the integration option and coarseness of the mesh.

Several of these options have been experimental since the code is in the

development stage. The only means to evaluate many of these options is by

graphical display. The use of the interactive terminal provides a convenient

means to do this quickly, and in the detail necessary for proper comparisons.

Conclusion

The use of interactive terminals for the applications shown has been con­

sidered quite valuable at SLL. The relatively high cost of processing pays off

in the ability to reduce time to analyze data, check validity of solutions, and

produce quality graphical outputs that emphasize special aspects of the problem.

The reduction of time was clearly shown in the mesh application for the

nosetip analysis. The time span for the analyst to construct a mesh using the

DVST program obtaining a usable data set for the structural analysis program was

about three hours. The same reconstruction was required on another code for

which the DVST application was not available. The procedure required processing

a large code for mesh generation and verifying the results from the film records.

The span of time resulted in over two days to complete the task.

- 265 -

A similar type reduction of time can be obtained with evaluating output

data files from finite element codes. The amount of calculations required

to produce the plots is large but when processed by the CDC 6600, no serious

problem with speed is encountered. About two to three seconds of central

processing time is required to produce the contour plots shown. The elapsed

real time to display this data at the terminal is normally between five to

ten seconds, which results in no appreciable wait time for the analyst.

The experience gained by having the power of the CDC 6600 available pro­

vided the ability to learn techniques on file structure and reducing memory

size. The current programs will continually be improved for new applications

and equipment as it becomes available. The programs should be adaptable to

interactive systems which use POP-type computers for processing terminal

requests but use the CDC 6600-type computer for computation and file storage.

- 266 -

List of Figures

Fig. - Representative region and mesh definitions

Fig. 2 - Input data set

Fig. 3 - Display of input data set

Fig. 4 - Display of mesh using equal subdivisions

Fig. 5 - Illustration of a windowing of Figure 4

Fig. 6 - (i,j) line display of completed node point data set

Fig. 7 - Example of displaced mesh option with SASL data

Fig. 8 - Example of CONTURS over large complex problem with SASL data

Fig. 9 - Example of CONTURS using divisor option with SASL data

Fig. 10 - Example of contour identification option with SASL data

Fig. 11 - Details of SASL contour requirements

Fig. 12 - 08 element with nine integration points

Fig. 13 - Display example of contour option using GNATS data

Fig. 14 - Windowed display of Figure 13 with divisor option

Fig. 15 - Example of contour result when function is not averaged at node point

Fig. 16 - Example of contours on problem having large deflection

- 267 -

Side 2

Side 1 (x,y)~:I.
I

x - denotes node points
o - denotes element

Fig. 1 - Representative region and mesh definitions

Fig. 2 - Input data set

PART 1 1 1
SIDE 1 1 2 2.18 0.0 1.25 0.0
SIDE 1 2 2 1.25 0.0 0.0 0.0
ARC 1 3 3 1. 25 0.0 1.25 180.0 96.0
SIDE 1 3 2 1.12 1. 24 2.0 1. 34
SIDE 1 4 2 2.0 1. 34 2.0 0.92
ARC 1 4 3 2.18 0.92 0.18 180.0 270.0
SIDE 1 4 2 2.18 0.75 2. 18 0.0

PART 2 1 1
SIDE 2 1 2 3.0 0.0 2.18 0.0
SIDE 2 3 2 2.18 0.75 3.0 0.75

PART 3 1 1
SIDE 3 1 2 3.0 0.75 2.18 0.75
ARC 3 2 3 2.18 0.92 0.18 270.0 180.0
SIDE 3 2 1 2.0 1.0
SIDE 3 3 2 2.0 1.0 3.0 1.1
SIDE 3 4 2 3.0 1.1 3.0 0.75

PART 4 1 1
SIDE 4 1 2 3.0 1.1 2.0 1.0
SIDE 4 3 2 2.0 1. 34 3.0 1.44
END

- 268 -

R

1

4

2

2.

3

3

Fig. 3 - Display of input data set

Fig. 4 - Display of rne sh using equal subdivisions

- 269 -

I
1

1

I
•4,
~

•

Fig. 5 - Illustration of a Windowing of Figure 4

-
FI~ 6 - (i,j) line disPlay of con~/eted node Point data set

- 270 _

I

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

Fig. 7 - [xulllple of displaced mesh option with SASL data

"U II

'lit,,\!

-'II"".'11
'IUtll.......
'ftU".....,,,........
·flU II
.u'u.......
.,.....
·"t.u
'IU' .,

.",.. U
• 1

., h

""11',..... "
","'h
,HtI",".. ,.
",.ltrt
'''''11 II
.....,. II....., ..
•... 1111

"'''''

Fig. 8 - Example of r.ONTlIRS ovpr large r.omr1ex prohlpm with SASl clntn

- 271 -

Fig.

· --- '
9 E -- -xamp1e of CON--~-----TURS usi .. --ng dlV1SO --r option with SASL .data

L

L
I

Fig. 10 - Example of ronto-~----ur ident if' .------lcatlon .optlon with SASL data

- 272 -

~-- - - '1'-- _. - -y-- - - - -
"I t I ,

I • I

I --1'---- - - ~._-
,.-- - ..

I I, I

I
,

I

~ -- I I -- ~- -- -- - - -4-- -

"'------.,.
I ... "," I
1 ... ,,;' l
I ,............ I

I,.,'" .'" I

~------~

BASIC CONTOUR ELEMENT
4 TRIANGLES

SASL CONTOUR AREA

Fig. 11 - Details of SASL contour requirements

e

o

o

Q8 ELEMENT

,
o

o

BASIC CONTOUR ELEMENT
16 TRIANGLES

Fig. 12 - Q8 element with nine integration points

- 273 -

_, •.. ' .u" '.,. ~ .",-, t ••

vrctcIII III ... , ..tlSlIl 116(.' .I"n," 'It.'1

'-

'-

'>11

till

.-U
Uh

'Ill
nl.

'"I un

j I
'.n' • ••J,......

Fig. 13 - Display example of contour option using GNATS data

'..I'

'..It

Z -.'

':-0

::: ~
If'" 1

::: ~.',.,.,.,
::~ ~
::::
',JI'I.,lIff
'f"".'",
hII'I
• '1

··u:~ :
"I=U;
·· .. a =
·'IIB;
··un I...." :·,uu,
·tlU;
..... =..... ;.......
·flU;.........
.""1 •
·tlill
"'Ut .•
I.U1U

I I
··:n .~. "'[S.. •••....r.' .,. ',"
"-us'.·t .o.:,:~, ~t",rUl IOl.l,tT!ePl

S(~. .. ~ ...~ P'"ll"(trlll

I I I I
I •.t,'.'t._ nrPal".

Fig. 14 - Windowed display of, Figure 13 with divisor option

- 274 -

-..,or ., .• lU· • 'Ill 10". ,

'Il

'w.

z-

1&

I I I • I I I , I I I , ,

<.,,,,. ,I ~,. " I.H,. UI' •• ,",<4
J I.~ I I

"

Fig. 15 - Example of contour result when function is not averaged at node point

.... ,dt •••• • ... • •• •
..,crOI nlkCio "lItrlUG Slur 1I..~,r· JU,'.... ""....,

$'''' ., .. to , ~
••,. I ·IU .
••'Ii/ .

"'1111 1.'""
,.'fIli 'DIU 0

._--- .._...._- -

Fig. 16 - Example of contours on problem having large deflection

- 275 -

Ber.tram Bussell

The Inverse Window:

A Solution to Non-Rectangular

Windowing in Interactive Graphics

1. WINDOWING

The operation of windowing in the field of interactive graphics

has been widely explored [1, 2, 3, 4, 5]. Various hardware and

software techniques for a range of windowing capabilities (some­

times referred to as scaling, zooming, or scissoring) have been

studied; both two-rl i mens LonaL and three-dimensional wi.ndowi.nq

capabilities have been derived. The purpose of a windm"ing proce­

dure is to crea·te a subset of real-world data which is of interest

to the user and which he desires to display on .a graphics terminal

CRT; in this manner, a windowing procedure is essentially a t1filter tl
,

removing from the real-world data set all data outside the area

of interest of the user. Windowing does not reduce or enlarge the

size of the picture on the CRT. Subsequent processing operations

affect the size and orientation of the image on the CRT, while

the windowing operation merely isolates the subset of real-world

data that is of interest to the user.

The real-world area lying inside the window is defined by

some window boundary. The boundary can be an arbitrary closed

curve, possibly created by freehand sketching with a light pen or

tablet. This general window boundary offers the most flexibility

to the operator, since he is free to place the boundary in the

real-world independently of geometric constraints which other

techniques require. However, subsequent processing of this window

boundary (to determine which real-world data is inside and which

duta is outside the window) is difficult due to the need for

*This research was supported by the U.s. Atomic Energy Commission,
contract No. AT(ll-l) Gen 10, Project 14 and is a portion of the
research contained in [6, 7].

- 276 -

explicit s p ec i f i cac.ion of the boundary value at every resolvable

point touched by it. Certain approximations to a continuous curve,

such as replacement of the curve with a polygon, or approximation

of the area bounded by the curve with contiguous rectangular windows,

as discussed below, can simplify windowing calculations. No

significant work utilizing an arbitrary boundary window has ap­

peared in the literature to date.

A more formal way in which the window boundary can be speci­

fied is by a functional description. Functional specification is

useful where the window area naturally fills a simple mathematical­

ly described curve (e.g. a circle or an ellipse), as might be the

case for real-world data associated with optical scanning or proces­

sing. Functional specification can be thought of as a parametric

version of an arbitrary boundary, with the advantage that coordi-

n.i t.c s along the boundary may be calculated.

A third type of window boundary specification is the use of

an n-sided polygon. A general polygon is the most flexible,

although an orthogonal polygon, one whose sides are parallel to

the real-world data axes, offers reduced processing requirements.

I~o general purpose wi.ndow i.nq procedures have been developed for

the polygon boundary. The general polygon is a useful approxima­

tion to the arbitrary or functional boundary; the approximation

C':<11 be made a s accurate as necessary by increasing the number of

sides on the polygon. The orthogonal polygon is a special case

of the general polygon, but the loss in generality is offset by

the decreased processing requirements. The inverse window,

described in section 2 below, uses an orthogonal polygon boundary.

Finally, the most commonly used type of window boundary speci­

fication is a rectangle, whose sides are parallel to the axes of

t.ne r-ea L-wor Ld coordinate system (a rotated rectangle becomes a

special case of the polygon). This type of window forms the basis

for most of the other window processing procedures. For example,

,

- 277 -

in the case of the arbitrary window boundary, contiguous rectangu­

lar w i.ndo....te could be concatenated to approximate the area bounded

by the continuous curve, as an approximation to that region. Each

elementary component, or rectangular window, is relatively easy to

process. In general, the accuracy of the approximation is inverse­

ly proportional to the size of the rectangular window and therefor

also proportional to the windowing time.

A single circumscribing rectangle is often a practical alter­

native to the continuous boundary, and in any case forms the basis

for the multiple contiguous windows and the inverse window process.

Ne define, then, as the first graphical element, the display 'window.

The display window is some rectangular area, wh9lly contained with­

in the real-world, which precisely circumscrib~s the graphic data

of interest for display on the graphics terminal. The boundaries

of this window are specified by the two X coordinates XO, XM, and

the two Y.coordinates, YO, and YH. These four coordinates are

expressed in real-world dimensions.

An important consideration is the relationship of the window

boundary values to the real-world coordinate system dimensions and

values. Since the window boundaries are expressed in real-world

coordinates, it is actually unnecessary to know the units or dimen­

sions of the real-world data. In the process of extracting the

real-world data which lies within the window, various arithmetic

operations are performed on the ratios of the window boundary

values to the real-world values. Hence, as long as all coordinates

are expressed in identical units, there is no inherent requirement

in the display system that data be expressed in any particular units.

Let us examine further the elementary aspects of windowing.

Figure 1 illustrates what we call a basic window component, a line

connecting two real-world points PI and P2. In the illustrated

case, the line connecting these two points intersects the display

window boundary at a point Piz. since only the data within the

- 278 -

Real-World

Display \l1indow

Figure 1 Basic Window Component

- 279 -

wi ndow is to be displayed, the graphics terminal should never

lH~·"~d to "see" the Lin e scqment from PI to Pi2. The determination

of \-lindo~'1 boundary po i n t c (Wnp1r:), like l'i2' is the purpose of a

wLnd ow i.nq a Lqorl t.hm , The coordi.nates of WBP's must be determined

to specify the visible segment to the graphics terminal.

The determination of window boundary points is not equivalent

to so-called "edge violation detection" contained in some graphics

terminals. Edge detection implies that all of the display data

is being sent to the graphics terminal vector generator for pro­

cessing, and that an error or attention condition arises when

some element of this data attempts to generate a line which would

falloff the physical boundaries of the CRT.

The process described here is much more flexible and more

important to real-world data processing. In the first place, we

are concerned with a virtual edge, the boundary of the display

window, rather than a physical edge, such as the hardware limit

of the CRT deflection system. Secondly, a system of this design

will be processing large amounts of data; it might be normal for
I

the display window to contain a small percentage of the total real-

world data and we would like to reject unnecessary processing of

data outside the display window; hence, we have a greater problem

than just detecting boundary crossings. Simple edge detection

schemes will not work in this environment.

Several more complex cases exist in windowing. Consider the

line segments shown in Figure 2. The line from PI to P2 crosses

the window in two places; hence there are two WBP:s for this line

and the line from Pi2 - P12 is displayed on the CRT. Another im­

portant case arises when the segment just considered continues

to P S * Of the two initial lines P l - P 2 and P 2 - P S' we are

interested in viewing only the two segments Pi2 - Pi2 and P~5 - Ps ·

- 280 -

p

Figure 2 More Complex Window Components

- 281 -

I~ is common in many graphics terminals to specify only the nex~

sequential endpoint of a line segment, and as a result the original

real-world data is usually similarly structured, showing two line

segments, one stretching from PI and P2' and the second from P2 to Ps .

However, the windowing operation will produce three segments: The

visible segment from Pi2 to P12, the invisible segment from P12 to

Pi5' and the visible segment from Pis to Ps"

Another important case is also illustrated. Line segment

P3 - P 4 lies entirely outside of the window. No sophisticated tech­

niques are required here to de·termine window bo.undary points. Ho~.,,-

ever, in the many application areas where data "is distributed uniform-

ly over the real-world, the majority of the real-world data will

probably fall outside of any particular display window. This condition

implies that segment P3 - P
4

will be the most frequently arising

window component" Any algorithm for windowing must dispose of this

component with minimum overhead.

The fourth type of line segment is one wholly contained within

the window, such as P6 - P7" These four line segment cases exhaust

all possible cases which a windowing algorithm must consider.

Table 1 summarizes these cases.

Case

1

2

3

4

End Point 1 End Point 2 WBPI
--,-

Inside Window Outside/On Window TBD

Inside Window Inside Nindow None

Outside/On Outside/On t'1indow None
Nindow

Outside/On Outside/On Nindow TBD
lVindovl

(TBD = To Be Determined)

None

None

None

TBD

..
Table 1 Windowing Cases

- 282 -

A possible fifth case, that of both end-points outside the window

Hith the resulting line segment crossing the window boundary at

a single point (which must, therefore, be one of the four corners) ,

is handled as a degenerate form of Case 4; that is, WBP l = WBP
2

.

Finally, the case of functionally specified graphical informa­

tion which crosses the window boundary needs some consideration.

This type of data, exemplified by the character string in Figure 2,

is usually drawn on the CRT with the use of a special hardware

generator. This generator normally has a rigid format; for example,

it cannot draw an arbitrary portion of a character. Therefore,

windowing this type of data involves determining the set of characters

inside the window, the set outside the window, and the character,

if any, which is on and clipped by the window boundary. Those

characters outside the window are clearly discarded, but further

consideration must be given to the character which lies on the

boundary •. Several al ternatives exist. One is to delete

t.h i s character, or the string containing it, al together; however,

if two contiguous windows share this same character, and each

deletes the character, then the composite window will have lost

some information without the knowledge of the user.

Another approach is to invoke a line-segment replacement pro­

cedure to draw on the CRT only the portion of the character within

the window; in this manner, two contiguous wi.ndows would each

display their portion of the character, and the composite would

have no information loss. However, this scheme requires that a

software subroutine be present to effectively simulate the hard\1are

function generator; this is costly of time and high-speed memory,

and a large data table is usually required to define the allowable

character set.

~ third alternativ2 is to adopt the operating procedure that

o char.acter is displayed only if it falls entirely inside one or

more wi ndows , The special function generator can now be used to

- 283 -

create the character; however, for this convenience, a more

global test must be made to determine if the windrn1 edge that

intersects the churacter is an edge common with another window,

and then if the character is contained entirely within the conti­

guous r.,'l indows .

Each of these schemes, and indeed the entire process of

piecing together contiguous rectangles, has the disadvantage that

the final display list is fragmented and not easily related to the

original real-world data set; in addition, certain functionally

generated items may be lost (or expensively retained). A novel

approach to this contiguous window problem is presented by the

inverse window. The inverse window is defined; to be some rectangu­

lar area in the real-world inside of which data is to be discarded,

rather than preserved. When used in conjunction with a normal

circumscribing rectangular window, inverse windows permit a

polygonat-shaped area of the real-world to be displayed without

the problems of special functionally-generated data outlined above.

Consider Figure 3, in which it is desired to display the data

contained within a continuous window boundary within the real-world.

The first process is to develop the circumscribing rectangular

window, as illustrated. The data within this window is extracted

from the real~world data set, and is used to form a sub-real-world

\1ithin which further windowing operations will occur.

The continuous boundary is then approximated, to any desired

level of accuracy, by orthogonal line segments forming a closed

orthogonal polygon. The corner points of this polygon define the

coordinates of a series of inverse rectangular windows, indicated

by shaded areas in Figure 3, in which the data from the subreal­

world is to be removed and discarded; the remaining data repre­

sents, to a close level of approximation, the data from the original

real-world which is contained within the continuous boundary.

1~c line and function data within the polygonal boundary is preserved

- 284 -

Continuous Window

Circumscribing

Rectangular

Window

Real-vlorld

Orthogonal Polygon

Inverse Rectangular Windows

Figure 3 Inverse Nindmvs

~ 2H5 -

in data structure; that is, a single straight line in the real­

world is still a single line in the display list, rather than the

several lines which would have been generated by the use of

contiguous rectangles.

A factor which makes the inverse window approach even more

suitable for approximating continuous or polygonal window boun­

daries is the ease with which the conventional rectangular window

algorithm can be modified to process the "inverted" case. This

technique is explored in section 2.

2. THE INVERSE WINDOW l6]

The concept of inverse windows is illustrated in Figure 4.

First, the entire real-world data set is passed through the normal

windowing operation to derive a subreal-world data set; this first

windowing 'operation is identical to the normal rectangular window

d~scribed in the previous section. In the case of inverse window

processing, this first rectangular window is referred to as the

circumscribin9 rectangular window. It is this circumscribing

rectangle' which is depicted in Figure 4.

Within the circumscribing rectangle is some orthogonal poly-

gon whose sides are either horizontal or vertical. By definition,

the orthogonal polygon which defines the area of data to be pre­

served is exactly circumscribed by the circumscribing rectangular

window. Therefore, the orthogonal polygon will have one of its

sides co-linear with each of the four sides of the circumscribing

rectangle. ~1e can then derive a set of inverse rectangular windows,

the set {Ri \ ' which covers the area within the circumscribing rectan­

gular window containing data to be discarded (shown as the shaded

area in Figure 4).

The inverse window processor can be treated simply as another

type of windowing processor, substitutable for the common rectangular

window processor. This relationship is illustrated in Figure 5,

..

- 286 -

Sub­

Real­

World

------~)l-XH

Circumscribing

/

Rectangular

'''lndml

xo ~~-------- Normalized Coordinates

0.0

YO,o.o

YH,l.O

()
Q?ZZZ)

Display

=: Discard

Figure 4 Inverse Window Set

- 287 -

Single

Rectangular

WINDON

Inverse Window

Processor'"""-..

{

Circumscribing

WINDotv

It
.,.

~ Sub-

Inverse
Real-
World

~lINDOW List

;

Real-Horld

VIEWPORT

Figure 5 Inverse Window Processor Module

- 288 -

where the single rectangular window processor is sho\vn as an

alternative to the inverse window processor. within the inverse

window processor, there are several sequences of operations.

First the circumscribing window must be determined. This isolates

the subreal-world data set and is passed on to the viewport proces­

sor. Next, the set of inverse windows which exactly covers the

urea of data to be discarded must be derived (that is, the set {R i }

in Figure 4 must be found). Finally, the data within each rectangular

inverse window must be determined and discarded, leaving in the

end only the data within the polygonal window for display on the

CRT.

'rhe boundary for the orthogonal polygon may be determined in

one of several ways. It might be specified by interactive input,

wherein a light pen or tablet is used to specify 'the set of points P.
1

which define the polygon; an input verification program would be

used to guarantee that all input segments are either horizontal

or vertical, and that the set is closed.

The boundary for the orthogonal polygon may be·specified by

a) interactive input

b) the graphic system or user program

c} approximation to a more general window boundary.

To derive the set of rectangles {Ri} which covers the area

of data to be discarded requires a preprocessing of the List of

points which defines the boundary polygon. This preprocessing

insures that the list of boundary points is ordered; e.g. ordered

in a clock\vise fashion, with the first point representing one of

the points on the circumscribing rectangle (such as point PI in

Figure 4). In addition, the list must be closed, so that the last

in the list is identically equal to the first entry. Finally, no

two sides of the polygon are permitted to intersect (that is,

- 289 -

only a single, connected area within the polygon is treated here).

Proceeding clockwise around the polygon, it is then possible

to determine which quadrants of the coordinate system (centered

at each successive point of the polygon boundary) are inside or

outside the area in which data is to be preserved. Using this in­

formation, it is possible to derive a procedure for "",alking"

around the polygon boundary to determine, at each point in the

boundary data list, the appropriate inverse window(s). As each

rectangle is tentatively determined, a check must be made to de­

termine hmv far that rectangle can extend before intruding into

the area which is to be preserved. For example, the rectangle R
S

in Figure 4 must be constrained so that it does not extend into

the display area bounded by the points P9' P I O' P I I , and P 12-

It is possible, of course, to overlap the inverse windows when

necessary_,

Once the set of inverse windows has been determined for the

given polygon, the actual inverse windowing operation can begin.

As the first step, the data within the circumscribing rectangle

is extracted from the real-world and forms a data set termed the

subreal-world. The data within this subreal-world is maintained

entirely in normalized coordinates, since that data set is just

the output of a normal rectangular window processor.

The actual process of inverse windowing is easily implemented

with slight modification to the windowing tools generally present.

In each data case, the inverse window performs the dual of the

operation performed by the normal window processo~_ Because of

this dual characteristic, only slight modifications of the soft­

ware and hardware algorithms which implement the normal rectangular

window processor arc required. These modifications consist of

accepting line segments instead of discarding them (and vice-versa) ,

and by-passing the scaling operation at the output of the window

processor when the processor is in the inverse mode. By not scaling

- 290 -

the output, the output data is preserved in the same coordinate

system as the input data; since this data is already the normalized

data set from the circumscribing window, the final output set

after i iterations (one for each R.) through the inverse window
1

processor will also be in the same normalized coordinate system,

as required for subsequent viewport processing.

Timing comparisons were made between clipping with hardware

and a software clipping divider on a 360/91 [7]. The cases listed

refer to those in Table 1. All times are in milliseconds.

Time ems)

Ha r dwar e Software Softl,lare Time
Case Remarks

Normal Inverse Hardware Tlrne

I non-orthogonal .01675 1.04 1.01 60

1 prthogonal .01675 1.02 1.01 61

2 [trivial acceptance .0075 .098 .09 13

3 non-trivial .00325 .15 .15 46
rejection

3 trivial rejection .00075 .090 .093 120

4 non orthogonal .01675 2.03 1.96 121

4 orthogonal .01675 1.98 1.96 118

Table 2

These results indicate that the hardware algorithm is

approximately two orders of magnitude faster than the software

i8plementation provided here.

/I,n .i 11u~~ t r a t i.on of the effect and operation of the inverse

',/i llt/O'tJ procc:;:; i s Ll Lus t.r a t ed in Fiqure 6 [7). Here, the real-world

(1,11,-. i:~ l't'rq-(':,enLud by a ncur o l network in Figure 6a. The super-

- 291 -

(a)

(c)

(b)

(d)

Figure 6 Inverse l'7indowing Example

- 292 -

P030d n()n-rcctangular window ~nd circumscribing rectangle is shown

in Figure 6b. Figure 6c shows the clipping outside of the rectangle.

The complete windowed display is shown in Figure Gd. Under soft­

ware implementation, CPU time for this example was under 500 milli­

seconds. It is reasonable to assume that the hardware implementation

would be two orders of magnitude faster.

Inverse windowing represents a significantly new technique

for determining the contents of non-rectangular windows. The

<lltcrnate technique of using contiguous rectangles within the area

to be preserved is much less desirable because it ,generates a

longer display list containing segmented real-world vectors.

Another alternate technique wh i.ch should be mentioned is a "p u r e"

computation of the intersection between a line segment and the

polygon (or continuous) boundary. This is clearly a costly, "hidden­

line" processing procedure, and does not make use of existing hard­

ware or sof'tware which is necessary and available for the normal

\vindow operation. The author has been informed [8] of another

proposed procedure which permits convex polygonal windows. In

this procedure the data is rotated until sides of the window are

parallel to one of the screen's coordinate axes. The clipping

procedure is then applied to a half-space. One rotation and clip

for each polygonal side finally removes all extraneous vectors. No

results or reports of this procedure have been seen. Although novel,

this windowing technique is not as versatile as that described here,

','It lere convex! ty of the po Ly q on is not at issue.

- 293 -

REFERENCES

1. Coggan, B. B., "The Design ofa Graphic Display System,"
UCLA Department of Engineering Report 67-36, August 1967.

2. Sproull, R.F., and Sutherland, I. E., riA Clipping Divider,"
Proceedings of the FJCC, 1968.

3. Sutherland, I.E., "Sketchpad, a Han-Machine Graphical Communi­
Cation System," Lincoln Laboratory Report 296, HIT, January 1963.

4. Thornhill, D. E., et al., "An Integrated Hardware-Software
System for Computer Graphics in Time-Sharing," Report Number
ESL-R-356, MIT Electronic Systems Laboratory, December 1968.

5. Newman, W. H. and Sproull, R. F., Principles of Interactive
Gr~~, HcGraw Hill Book Company, New YOFk, 1973.

6. Toxin, II., "Interactive Graphics in the Computer Aided
Design of Digital Systems," Ph.D. Dissertation, UCLA, Dec. 1970.

7. Buchness, R., "Non-rectangular Windowing Using Interactive
Graphics," M.S. Thesis, UCLA, Dec. 1973.

8. Private Communication from W.M. Newroan.

- 294 -

APPLICATIONS OF COMPUTER -GENERATED PmS~TIVE PLOTS*

by

Melvin L. Prueitt

Los Alamos Scientific Laboratory
of

The University of California
Los Alamos, New Mexico 87544

*This work was performed under the auspices of the U.S. Atomic Energy Commission

Key Words and Phrases: Perspective Plots, Hidden-line Removal,
Computer Graphics.

- 295 -

APPLICATIONS CJF COMPUTER-GEtfERATED PERS~IVE PImS

By

Melvin L. Prueitt

INTRODUCTION

The most important characteristic of the modern computer is its

ability to handle large quantities of numbers quickly. But this very

feature poses a problem to slow-witted man. No one can assimilate the

vast volume of information which the computer can generate. The problem

is compounded by the fact that coming generations of computers will be

even faster.

One solution, which is largely used today} is to selectively print

out only the most important items of information. Even then the quantity

of data printed is often far too large, and much of it is never read.

Furthermore, the quality of the output is usually not such that it is

readily assimilated by the analyst. That is I human beings were not de­

signed by nature to perceive relationships among numbers in a printed

table.

But the visual system ~ designed to translate line drawings into

subjective "reality." The mental hardware almost instantly translates

a curved line on a two-dimensional surface into a form which allows the

observer to perceive relationships among various points of the curve.

It is true that some precision is lost in going from a table of numbers

to a plot of the same numbers, but roughly two orders of magnitude more

information is presented to an observer by a curved line than by a

single number.

Even two-dimensional curves are often insufficient to represent the

- 296 -

large amount of data that needs to be displayed. Two orders of magni­

tude more information than the simple curve may be presented (with some­

what less precision) by a perspective projection of a three-dimensional

surface. The visual portion of the human brain incorporates the neces­

sary hardware to reconstruct a three-dimensional surface from a two­

dim~nsional perspective drawing.

This visual hardware is more adept at interpreting perspective plots

than isometric plots. Figure 1 compares an isometric plot (a) with a

perspective plot (b). The isometric plot is a representation of the

well known "optical illusion stairwq.1t In a.ttempting to reconstruct

the figure, the brain finds that it is ambiguous. The logic circuits

of the brain then presents to the consciousness an inverted view of the

stairway. Not finding that view superior to the first one, it switches

back. Figure l(b) is much more satisfying to the human optical system.

It doesn't have to work so hard in interpreting the geometry.

In cases where one is not troubled by the ambiguity of an isometric

plot, proper interpretation may still be difficult. Objects in the back­

ground appear too large in relation to features in the foreground. The

effect is familiar to anyone who uses a telescope or binoculars. Greater

magnification in a telescope implies closer approach to an isometric

image.

Since the computer can produce a perspective plot just as easily as

an isometric plot, it is recommended that the former be used.

A desirable feature of perspective plots is the removal of hidden

lines. Figure 2 illustrates the confusion that can arise when hidden

lines are not removed. With all lines present, the picture takes on the

characteristics of an X-ray photograph. By removing the hidden lines,

- 297 -

the figure gives the appearance of an opaque surface. Some information

is lost, but comprehension is gained. Hidden portions of the surface

may be studied by having the computer rotate the surface.

APPLICATIONS

The principal value of perspective plots arises from the fact that

man can quickly evaluate the shape of a surface. He can see trends and

relationships that might be difficult or impossible to perceive in a set

of numbers. The following examples are offered to inspire greater use

of perspective plots as computer output.

At the Clinton P. Anderson Meson Physics Facility at the Los Alamos

Scientific Laboratory a magnetic field was generated in the pa.th of the

accelerator beam. The question arose: How good was the magnetic field '1

About 25,000 measurements were made at various points in the field vol­

ume to determine the characteristics of the field. But what can one see

from 25,000 numbers? The problem was resolved when Professor Gordon Lind

from Utah state University (who was Visiting at Los Alamos) fed the num­

bers into a computer and used our PICTURE program to plot them. Figure 3

shows one component of the magnetic field over the area of a "slice" taken

through the field volume. This makes an interesting plot, giving the

"sbape" of the magnetic field. But the surprising features of the plot

were the unsuspected striations running across the field. Without the

plot, the striations prObably would have gone undetected until some seri­

ous anomaly occurred in later operation. The eye picks it out immediately

in the plot.

Dr. Marvin Mueller of LASL used PICTURE to plot calculated laser

absorption On a material as a function of angle of incidence (left to

- 298 -

.J

"

right in Figure 4) and depth of penertration (front to back). He could

not only see the over all absorption characteristics at a g1ance, but

he observed, for the first time, ripples along the ridge which denoted

interference phenomena.

Sometimes one is fooled by examining isolated values in a two­

dimensional array of numbers. Dr. Robert Rowell of the University of

Massachusetts sent me some computer-generated data on Mie scattering to

be plotted. He also sent a sketch, shown in Figure 5(a) to give a rough

idea of the way the final plot should look. After examining the sketch,

I assumed that the surface would gradually change from a flat shape to

an undulating shape from front to back -- that there would be valleys

running from front to back. I was surprised when I saw the computer plot

of the data (Figure 5(b)).

Figure 6 is a plot of CN cross-sections as a function of photon

frequency and temperature made by Dr. Athel Merta and Horman Magee of

LASL. The data for the plot were generated as part of their work in

determining cross-sections in stellar atmospheres. Such plots are use­

ful not only for st.udy of the physical behavior of matter and energy, but

they are valuable tools of communications for describing results to

colleagues.

Figure 7 also exemplifies the pedagogical value of perspective plots.

Dr. Paul Stein of LASL worked with three chemical equations for gases

which were recognized to be conic equations. Dr. Carson Mark worked out

the geometrical interpretation and showed that they could be represented

by cones with parallel axes. The simultaneous solution of these equations

represented the chemical eqUilibrium of the chemical solution. The ques­

tion arose: Did the set of simultaneous equations have a solution? That

- 299 -

question could be answered by examining the corresponding cones. That

is, do three cones whose axes are parallel intersect in a point? It was

not immediately obvious to many people that the cones do intersect in a

point. With a plot, Dr. Stein could point out to others how they inter­

sect. Then it became obvious.

This figure also shows how the computer can be used to generate

patterns on the surface. Patterns can be used to identify various parts

of the surface when a color plotter is not available.

Stanley Marsh of LASL wanted to know the shape of fragments of

material as they traveled away from the center of an explosion. He took

a high speed radiograph of such particles and scanned the negatives with

a densitometer. The resulting numbers were fed to a computer and plotted.

Figure 8 is actually a plot which shows the thickness of a particle mov­

ing at 20,000 kilometers/hour. This provides some idea of the shape of

the particle.

Professor Gordon Lind made same plots of the nuclear spectra for

several isotopes. In Figure 9 the energy increases to the right. From

foreground to background, each row of three lines represents a different

isotopes. The physicist can use such plots to study the relationships

among energy levels in different nuclei.

Some people use perspective plots to detect errors in large com­

puter programs. Dr. Don Baker and Lawry Mann plotted SOme 6000 values

of computer calculations from a large plasma program. It is rather dif­

ficult to scan 6000 numbers for each of several variables and for each

of many time-cycles to detect misbehavior in the computation. In Figure

10, the "canyons" around the periphery of the plot were irmned1ately spot­

ted to be improper calculation rather than real physical phenomena.

- 300 -

If

Often One single point on a plot projects far above the others, signify­

ing an error. One point would be very difficult to find in 6000 mnnbers.

Mathematicians find perspective plots useful for displaying functions

of two variables. Figure 11 shows a step function and its two-dimensional

Fourier Transform calculated by Dr. James Breedlove and George Wecksung

of E G &G. Figure 12 represents the summation of several bivariate nor­

mal distribution functions.

Geologists would find perspective plots useful for displaying under­

ground formations. Figure 13 is a simulation of the earth's surface a­

bove and a geological layer below. Besides the use of such plots for his

own study, the geologist could use them as audiovisual aids in describing

his conclusions to colleagues.

Perspective plots provide a more familiar rendering of terrain than

topographical maps. Figure 14 is a topographical map of the ocean floor

of the Bering Sea. Daniel J. Brown of NORFISH at the University of Wash­

ington produced the plot of Figure 15 which shows the same region of the

ocean floor in perspective.

Daniel Brown also sent me the plots shown in Figure 16 depicting

mountain terrain and the location of a planned highway.

Besides the foregoing examples of applications which involve data

as a function of two variables, perspective plots may also be made of

data which are normally considered to be functions of one variable by

utilizing another variable such as time. For example, if one has a shock

wave data relating relating pressure with distance along a shock tUbe,

time may be chosen as a second variable and the perspective plot would

provide the history of the pressure waves on one plot.

If one has a function of three variables, such as a magnetic field

- 301 -

1n space, a "slice" may be taken and the magnetic field intensity would

represent the height of the plot while the two space coordinates would

be represented by the base dimensions of the plot (see Figure 3). Then

if the slice is moved through the field in the direction normal to 1ts

surface, a movie of the perspective plots could be made giving the mag­

netic field strength throughout the space. Alternatively one might want

to plot the shape of a surface which bas a constant magnetic field.

CONCLUSION

Computing power is largely wasted when the output consists of printed

numbers. In order to make better use of our computers, a concerted effort

should be made to force the computer to communicate to us in terms which

we naturally understand: pictures . With graphical output, the investiga­

tor gets at the solutions faster and understands them more clearly. Per­

spective plots are presently the best way to communicate large amounts of

information to man from the computer.

- 302 -

•

~_._--_._----,--, ___-._---
Figure 1. (a) Isometric projection of optical illusion stairway •

- 303 -

Figure 1. (b) Perspective projection of stairw8y.

- 304 -

5~ Mie of 3

(J ~;

00

310

[) .

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

the

'~~318,·~

shown

Picture Processing Techniques Data

[-10 D.
W. B. 4

In the traditional mode of operation, the electron microprobe res

data by scanning an electron beam across a sample in television fashion.

The X-rays emi tted by the sampt e are counted and di spl eyed 1I 0n-·' ine il to

give a picture that qualitatively describes the distribution of chemical

elements over the sample surface. Data obtained in this way is very noisy~

and has little quantitative use.

We have devised a new techniquEs whereby data is acquired digitally

at a lattice of ints on the sample. The data is converted iloff-line ll to

picture form using a CalComp microfilm plotter. res ting picture is

less sy than those obtained in the tradi onal mode. Moreover, the

data can be anal quant ita t i , and standard cture processing

techniques can be used to reduce blur or to smooth out noisy data.

- 321 ~

ABSTRACT

Us ng cs

8441

y occurs that an anal c fit of nV'~6~'~mental discrete

is desired. s may be to de a program with an cient means

of finding data values, or to ate the data, or to estimate deriva-

yes of the data, ile numerous least squares ng nes exist~

it is still impossible to guarantee that the fit have the ective

this.

li and most users are e to explain what mean

We describe two programs in use for 1ast two years allow the

user to interacti vary the of the fit and obtain fits

with the desired properties. Both programs use pol 0.1 splines (piecewise

ynomi s) of arb; order to fi t the The first program allows

the user to speci knot locations (the ace where successive ais

meet)~ observe the t, then t ng or

second allows the user to also constrain the fit to possess fied

ues or va ve values at ar nts or to be or

derivatives bounded) at speci eo nts.

The discussion will include ementation methods and

- .322 -

