Atmospheric | nver se Estimates of M ethane Emissions from Central
California

Chuanfeng Zhdp Arlyn E. Andrew$, Laura Bianct®, Janusz EluszkiewiézAdam
Hirsch®°, Clinton MacDonal8 Thomas Nehrkorlh Marc L. Fischer

'Environmental Energy Technology Division, Lawrence Berkeley National Lab,
Berkeley, CA, USA

’Earth System Research Laboratory, NOAA, Boulder, CO, USA

3Atmospheric and Environmental Research, Inc., Lexington, MA, USA

“Sonoma Technology, Inc., Petaluma, CA, USA

®Cooperative Institute for Research in Environmental Sciences, University of
Colorado, Boulder, CO, USA



Abstract. Methane mixing ratios measured at a tall-tower are compared to model
predictions to estimate surface emissions of @HCentral California for October-
December 2007 using an inverse technique. Predictqdr@thg ratios are calculated
based on spatially resolvedoriori CH, emissions and simulated atmospheric
trajectories. The atmospheric trajectories, along with surfacprfotst, are computed
using the Weather Research and Forecast (WRF) coupled to the StochasticvEiresl
Lagrangian Transport (STILT) model. An uncertainty analysis is performedvapr
guantitative uncertainties in estimated £&thissions. Three inverse model estimates of
CH, emissions are reported. First, linear regressions of modeled and measyred CH
mixing ratios obtain slopes of 0.73 + 0.11 and ®@14 using California specific and
Edgar 3.2 emission maps respectively, suggesting that actyamibkions were about
37 £ 21% higher than California specific inventory estimates. Second, a Bayesia
“source” analysis suggests that livestock emissions are 63 + 22% higher thaprithre
estimates. Third, a Bayesian “region” analysis is carried out fge@ktsions from 13
sub-regions, which shows that inventory [&thissions from the Central Valley are
underestimated and uncertainties ins@&rhissions are reduced for sub-regions near the
tower site, yielding best estimates of flux from those regions consisitbritsaurce”
analysis results. The uncertainty reductions for regions near the toweterttiaba
regional network of measurements will be necessary to provide accuratatestof

surface CH emissions for multiple regions.
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1. Introduction
Changes in atmospheric methane play an essential role in Earth’sci®kiis now
associated with a direct radiative forcing of ~ OWB1> (IPCC, 2007) and an indirect

radiative forcing of ~0.13vm™ [Lelieveld et al. 1998], which accounts for about ¥ of
the non-CQ radiative forcing (0.98 W ihin 2004) Hofman et al.2006] and about ¥4 of
the total radiative forcing (2.64 W fifrom IPCC 2007) from all greenhouse gases
(GHGSs). It has been argued that reducing anthropogenic emissions of metlydre ma
an important component of an initial strategy for avoiding the most severe iropacts
global warming Hansen et a).1998;Hansen 2004;Shindell et al.2005]. In particular,
reduction of anthropogenic methane emissions may be possible (e.g., improying CH
recovery from landfills and waste treatment, reducing industrial emissinds
improving agricultural practicesHarriss, 1994].In view of methane’s role in the
climate system, increased attention has been brought recently to as€¢tssogirces
[Gimson and Uliag22003;Miller et al., 2003;Houweling et al.2006;Kort et al, 2008].

In California, total GHG emissions in 2004 were approximately 480 MM% CO
equivalent, with ChH contributing approximately 6 % [CARB, 2007]. Now that
California has passed Assembly Bill 32, which requires that greenhouse éssores
be reduced to 1990 levels by 2020, careful accounting of currep¢@idsions and of
their future reductions is essential. Unfortunately, current inventory and rasked

estimates of Cliemissions are uncertain because many of the factors controlling

emissions are poorly quantified. Atmospheric measurements and inverse modeling may

provide an independent method to quantify local to regionaleédhissions from

California.
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Atmospheric inverse methods to estimate the surfacgflGkes from in-situ and
remotely sensed CHnixing ratio measurements and modeled wind fields have been
widely applied at both global and regional scaldsif et al, 1997;Houweling et al.
1999;Vermeulen et al.1999;Bergamaschi et 412000;Dentener et a).2003;Gimson
and Uliasz 2003;Manninget al., 2003Mikaloff Fletcher et al.2004a, bBergamaschi
et al, 2005;Chen and Prinn2006,Bergamaschi et 312007;Kort et al, 2008]. In
general, the components of atmospheric inverse emission estimates,ane@ig ratio
measurements, an atmospheric transport model (including chemistrgliai gl
simulations), in some casagriori estimates for Cllemissions and sinks or their
correlation structure, and a statistical technique to minimize diffesdoetween
measured and predicted ¢hixing ratios. To estimate Glemissions and their
associated uncertainties, errors from each of these components should be accounted fo
and formally propagated through the inversion process.

In this study, we employ an approach originally developed to estimate regional C
emissions GGerbig et al, 2003 a,b] that combines calculation of surface footprlritst
al., 2004] with procedures to estimate transport model uncertaimyyphdGerbig,

2005] using the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Of
particular relevance to our worKprt et al. (2008) recently used observations of Gidd
N>O from an airborne platform in combination with STILT to infer &Gd NO

emissions from the continental interior of North America in May-June 2003. Our study
also uses STILTbut applies it to a smaller model domain at finer spatial and temporal
resolutions, taking advantage of unique computational benefits offered by thediagran

approach.
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To address the problem of estimating{&hissions from different sources in Central
California, we conducted coordinated £ideasurements and modeling as part of the
California Greenhouse Gases Emission Measurement (CALGEM) projettrSac
describes the methods for the measurements gin@i¥ing ratios, profiler-based
estimates of wind fields and boundary layer heights, spatially resalgadri CH,
emission maps, meteorological transport fields and resulting surface fagtprint
analysis of measurement and model errors, and the Bayesian inverse mode! used t
estimate Chlemissions. Section 3 describes the results of the measurements, bias
corrections and error estimates, and the best estimates,dutfbice emissions implied
by the measurements. Section 4 discusses the estimateg efMddions in the context
of current inventories, examines the spatial region in which the tower meastgeme
effectively constrain ClHemissions, and concludes with initial recommendations for

additional measurement sites to constrain other important emission regionsam{aal
2. Data and Methods

2.1 CH, Measurements

The CH, measurements were made at 91 and 483 m on a tall-tower near Walnut
Grove, CA (WGC, 121.49 °W, 38.27°N, 0 m above sea level), beginning in September
2007. The measurements were made using a sampling and analysis systemngombi
pumps, air driers, and three gas analyzers. Briefly, air samples are cbatinuously
from the different heights on the tower, are partially dried by a condenstensihat
lowers water vapor to a 5 °C dew point, are sequentially applied on a 5 minute irterval t
a temperature stabilized membrane drier (Purmapure Inc.) which driesaai33 °C dew

point, and then are supplied to the gas analyzers. The first 4.5 minutes of each
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measurement interval are used to allow equilibration of the gas concenteattbns
instrument response, while the last 30 seconds is used as the measurement interval
particular, CH is measured using a cavity ring-down spectrometer (Picarro EnviroSense
3000i) with an accuracy and precision of approximately 0.3 ppb in the 30 second
averaging interval. To quantify and correct instrument drifts, the offseeasured and
corrected every ¥ hour using a reference gas, while the gain (and linsachgcked
and corrected every 6 hours using 4 NOAA gas primary standards. In additibn, flas
samples were collected twice daily (1000 and 2200 hr GMT) from a separate sampl
at the 91 m level and analyzed at NOAA-ESRL. To provide additional quality assurance
thein-situ CH; measurements were compared with the flask measurements. This
redundancy allows the detection of small (~ ppb) sampling errors. In general, the
difference between in-situ and flask analyses was consistent withettisign of then-
situinstrument. During some periods, particularly during late night and early morning,
variability in CH, mixing ratios was larger. For these periods, the difference between
flask thein-situ CH, measurements was generally consistent with the standard deviation
of thein-situ CH, measurements averaged over a 30 minute window centered on the flask
sample.

Fig. 1 shows 3-hour averages of measured @king ratios at 91 m (black) and 483
m (red) in October 2007. Diurnal cycles due to changing boundary layer height are

apparent in the data. The daily maximum,Q@hixing ratio measured at 91 m often

occurs when the minimum is obtained at 483 m. This would be expected to occur in cases

when the boundary layer lies between 91 and 483 m, trapping surface emissions within a

shallow layer that is measured by 91 m sample height, while the 483 m sample height



observes comparatively decoupled background air. In the following work, we a/ilhes
daily minimum CH4 measurements at 483 m to provide a check on thbaCkiyround
95 analysis. Moreover, we limited the inverse model study to only include measiiseme
collected during well-mixed periods. Henceforth, we define the well-mixeddseby
using the criteria that the difference of measurements at 91 m and 483 ns #énarek00
ppb, as shown by the black points in Fig. 1. This criteria will also be evaluated in the

following analysis.

100 2.2 Wind Profiler Measurements
To quantify uncertainties in modeled atmospheric transport, hourly boundary layer

heights and vertical profiles of winds were obtained from a radar wind pr@N&P)
operated by the Sacramento Metropolitan Air Quality Management Districprofiker
is located (38.30°N, 121.42°W) within 8 km of the tower used for the CH

105 measurements. Given the level terrain of the Sacramento delta region, wetleape
errors in modeled winds and PBL heights for the region surrounding the tower can be
accurately assessed by comparing the wind profiler measurements wé$pooiding
meteorological simulations for profiler (winds) and tower (PBL) locatidhse. RWP
acquires data in two different settings, high-resolution and low-resolution mdde wit

110 vertical resolutions of 60 m and 105 m respectively. Boundary layer heights were
estimated from sub-hourly RWP vertical velocity and returned sigralgitr (signal-to-
noise ratio) data using objective algorithms and qualitative analysis fiotjaachniques
found inWyngaardandLeMone[1980], BiancoandWilczak[2002], andBianco et al.
[2008]. In the used configuration, the RWP can detect boundary layer heights from about

115 150 m to 4000 m with an accuracy of + 200Dy¢ et al, 1995].
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2.3 Thea priori CH; Emissions

We used two methods to estimate {&hissions. As a base-case, we used the North
American maps of total anthropogenic £ftbm the EDGAR 3.2 model with 1 x 1
degree spatial resolutio®l[ivier et al, 2005]. To provide finer spatial resolution inside
California, we also estimated California £émissions separately for six sources sectors:
landfills (LF), livestock (LS), natural gas production and use (NG), petrolefummge
(PL), crop agriculture (CP), and wetlands (WL). &hissions from landfills were
estimated by the California Air Resources board (Hunsaker, private conatiomjc
using IPCC methods [IPCC, 2006], which is driven by landfill specific waste apphc
statistics from the CA Waste Management Board (Eay;, 2004) and site-specific
estimates of Clirecovery. CHfrom livestock was estimated using United States
Department of Agriculture (USDA) county level animal stocking dendi@ensus
2002] and animal specific emission factors for dairy and beef cattle séypfiFasaco,
2002]. CH, from natural gas production and use and from petroleum refining activities
were estimated as the difference of total minus reactive hydrocaripica(ty between
0.2-0.4 of the total) emissions estimated from the California Air Resources Board
(CARB) emission criteria pollutant emission inventory for those sourcersect
(http://www.arb.ca.gov/app/emsinv/fcemssumcat2006.php).edtissions from crop
agriculture were assumed to follow emissions from the DNDC model for an average
climate year with high irrigation as described3slas et al[2006]. CH, emissions from
wetlands were assumed to follow the National Aeronautics and Space Admanstrat
Carnegie-Ames-Stanford Approach (NASA-CASA) estimates firartter et al.[2006].

Although some of these sources are expected to vary on a seasonal basis, atedalcul
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mean emissions and did not attempt to resolve temporal variations over the yelativel
short period of this three months study. Maps oftpeiori CH, emissions are shown in
Figs 2a-f for these six California-specific source sectors. For casopafFig. 2g shows

total EDGAR 3.2 emissions for the Western United States, while Fig. 2h shows the sum
of the California-specific Cldemissions. Last, Fig. 2i shows a set of California sub-
regions that roughly correspond to air basins that are nearby or distant from the
measurement locations and will be used in following analysis. Table 1 sumnthezes

CH, emissions from different California-specific sources in the 13 sub-regions. CH
emissions are scaled to equivalent,@@cing using a global warming potential of 25
(9COseq gCH, ™) [IPCC, 2007]. The total of the California-specific emissions is similar to
total CH, emissions (~ 31 MMT C&y) reported by the California Air Resource Board
[CARB, 2007], but is approximately half the total emissions from Californidgindhe
Edgar 3.2 inventory. Inspection of the Edgar 3.2 emissions shows that the largest source
are from natural gas (22.5 MMT G&) and landfills (19.3 MMT C&), suggesting very
different assumptions about emissions from these sources. To assign an upcertiaat

a priori emissions, we follow previous work on uncertainty analysis [USEPA, 2004;
Farrell, 2005] and assign a 30% uncertainty to each of emissions sources. We consider
the uncertainties in US total Glemissions only a rough estimate to the uncertainties for
sub-regions of California (and over the time period of this study) because the 30%
estimate was derived for more aggregated emissions over annual oyttes antire

continental US.

2.4 WRF-STILT Model
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As mentioned in the Introduction, the work presented in this paper employs the
STILT model, run in the time-reversed (receptor-oriented) mode, as the atmosphe
transport model. STILT is a Lagrangian Particle Dispersion Model (LPib&t)has been
specifically developed and applied to regional simulations and inverse fluxatssifor
CO,, other greenhouse gases, and CO. Its detailed description is provided elskimhere [
et al, 2003, 2004¢Gerbig et al, 2003a;Matross et al.2006;Kort et al, 2008;Miller et
al., 2008] and, consequently, only the most pertinent features will be summarized here.
As in all LPDMs, transport in STILT includes both advective and turbulent components,
with turbulence being responsible for the dispersion of particles. In this dpplicgiven
input meteorological data, the STILT model transports ensembles of 100 p4dicles
parcels) backwards in time 5 days for a receptor point (WGC site here) |MWkaizathe
response of the target gas concentration at the receptor point to surface sources
(“footprint”), in units of ppb/(nmol iF s*). The footprint, which represents the adjoint of
the transport field, is calculated by counting the number of particles in aesurfa
influenced region (defined as ¥ of the estimated PBL height in the STILT model, for
example se&erbig et al, 2003aKort et al, 2008) and the time spent in the region (for
details, sed.in et al, 2003). When multiplied by the priori field of surface flux, the
footprint gives the associated contribution to the mixing ratio measured atepéorec
hence the footprints can be used to estimate parameters of the source functibas and t
respective uncertainties.

We calculate the footprints relating surface fluxes to measurgdrthg ratios
using the meteorological output from a customized version of the WeatherdResedr

Forecasting modeBkamarock et gl2005] to drive STILT. This combined model will

10
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henceforth be referred to as WRF-STILT. Specifically, the WRF modebve?s? has

185 been modified to output time-averaged (hourly in this study) values of the massecoupl
velocities, which significantly improve mass conservation in STILT (conapaith the
instantaneous advective velocities), as well as convective mass flukerethaed
directly in the STILT calculations. The main physical options are set asviot: (a)
Radiation: RRTM schemélawer et al, 1997] for the longwave and Goddard scheme

190 [Chou and SuareA994] for the shortwave; (b) Planetary Boundary Layer: Yonsei
University (YSU) scheme coupled with the NOAH land surface model and the MM5
similarity theory based surface layer scheme. (c) MicrophysicduBuin schemel]in
et al, 1983;Chen and Sur002] (d) Convection: Grell-Devenyi ensemble mass flux
scheme Grell and Devenyi2002]. The initial and boundary meteorology conditions for

195 WRF are provided by the North American Regional Reanalysis (NAM&Ringer et al.
2006). A one-way nesting WRF running with 3 nest levels is used for the meteorology
simulations around the WGC tower location, which is shown in Fig. 3 (Domain 1: -
149.16° < lon< -102.21°, 17.82° < lat < 50.53° on a 40 km grid; Domain 2: -123.53° <
lon <-120.66°, 36.76° < lat < 38.94° on a 8 km grid; Domain 3: -121.71° <lon < -

200 121.23°, 38.09° < lat < 38.45° on a 1.6 km grid). The vertical resolution is taken from the
input meteorology from NARR with 30 layers. Each day was simulated separatgy us
30-hour run (including 6 hours from the previous day for spin-up) with hourly output.
Growth in transport model errors were minimized by nudging the foreells fo the

gridded NARR analysis fields every 3 hours.

205 2.5 WRF-STILT Transport Errors

11
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As a first approximation to evaluate the transport errors in the WRF-STILT
predictions of surface influence footprints, we compared the modeled estwhaRF
winds and WRF-STILT boundary layer heighfs) (with corresponding profiler
measurements of wind velocity add Errors in modeled winds are estimated by
210 comparing WRF predictions with profiler measurements of the u and v wind components
at a height of 137m, close to the height of the air sampling. Using data from therOctobe

to December 2007, the root mean square (RMS) errors in horizontal winds at 137 m are
2.21 (o,) and 2.86 m'é(av) for the u and v directions respectively. Some of this

difference can be attributed to the fact that profiler winds are meastuaesingle site

215 while the WRF winds are the averages over a grid of 1.6 x 1.6 km. We note that the RMS
error decreased by approximately a factor of 2 between 137 m and 1000 m above the
ground, though the decrease was non-linear with most of the decrease occtwrgsmnbe
137 and about 500 m. Henceforth, we assume errors in u and v are constant with height

and randomly distributed with an RMS magnitude of 3.6'méich is obtained as

220 o, =4ol+02.

Measured and predicted daytime boundary layer heights in October through
December 2007 are shown in Fig. 4. Profiler data were selected to matchetioé tive
WRF-predictions to within 1 hour. In addition, the WRF-STILT simulations impose a
lower limit value of 215 m oi, while the radar profiler has a minimum detection height

225 of 120 m. To avoid biasing the comparison and make sugen@lmixed from surface
till heights above 483 m, we included WRF-STILT predictionZigfreater than 215 m
in the analysisThe resulting best fit geometric linear regression of WRF-STILT darra

profiler PBL heights yields a slope of 122510 and intercept of -1380 m. Based on

12
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this result, we obtain a scale factor of 1/1.25 which is then appli&ditben calculating
footprints using STILT. This result is similar to that foundLin et al.[2003], where

STILT predictions oZi were about 1.09 higher th@hmeasurements at a site in
Wisconsin. After scaling STILZi by a factor of 1/1.25, the RMS residual error between
scaled WRF-STILT and profileti is reduced by a factor of 1.5 to ~ 200 m, roughly
consistent with the estimated error in the profiler measurements. Inltheifhgl work

we calculate particle trajectories and resulting footprints usingctieds

parameterization of PBL height. It is possible that an additional error effeétive

wind field may be introduced by tlz& scaling for particles near the top of the boundary
layer if there is significant wind shear at that altitude but expect tisastemall

compared to the first order errors already identified for winds and PBL keight

2.6 Footprints and Predicted ¢Hignals

Particle trajectories were calculated using STILT driven by¥id winds. One
hundred patrticles are released every 3 hours (from UTC hour 00) at the WGC tower and
transported backward in time 5 days to insure a majority of the particles re&ampos
representative of the marine boundary layer. Footprints are then calculateaidrom
particle trajectories as inn et al.[2004]. The time-averaged footprint is shown in Fig. 5
for the period between October and December in 2007. The high footprint values within
approximately the Central California area near the tower site indiet€H, signals
measured at 91 m and 483 m at WGC will be strongly influenced by the California

emissions.

13
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250 Predicted local ClisignalsC, (X, ,t,) (index ‘I" denote local and ‘r' denote receptor)

from land surface emissions are calculated using the product of the footprinamaaps

thea priori emission maps, as

C (X, t,)= D F(Xout,

i,j,m

Xi'yj’tm)'F(Xi’yj) (1)

, where X, and t, are receptor (WGC tower) location and tirrfeﬁgr,trmtm) is the
255 footprint andF(x;,y;) is the surface emission map at locatien y;) and timet,,. The

total CH, mixing ratio at the receptor can be expressed as
C(lr!tr):CI (lr’tr)+CBG(£r’tr) (2)

, WwhereCg; (X, ,t,) is the upstream Cibackground mixing ratios.

2.7 Inversion Technique
260 The posteriorCH, emissions were estimated by optimizing scalingpfacfor thea
priori CH4 emissions to provide a best fit between measunddgeedicted Chimixing
ratios. This was done in two ways: 1) as a stanldast square optimization of an overall
scaling factor for all land surface emissions anoh2 Bayesian approach that scales
each source type or sub-region separately andpocates individual estimates for the
265 uncertainties in differerd priori emissions.
Combining Eqg. (1) and (2), the difference betweeaasured and predicted

background CkHirelates to the surface emission flux as

g_ﬁ:iE) (3)

wheref is footprints,F is surface Chlemission,C and% is CH; mixing ratios from

270 tower measurements and background calculationsectgely. Assuming mixing ratio

14
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measurements from local sourcesyas C — Cg; . Following Gerbiget al.[2003a], we
introduce a model parameter or a state vectoralingcfactorsd , for the surface
flux, F (1) . The inversion adjusts the model parametersuch that the modeled changes

in CH, concentrations are optimally consistent (in stathdizast square sense) with the
observed values. In the study of surface, @mMissions from different sources (“source

analysis” hereafter){d represents the scaling factor for different sosiraethe study of
surface CH emissions from different regions (“region analysiereafter),4A represents
the scaling factor for different areas. For both ‘thource analysis” and “region analysis”

study, F(4) is linearly dependent oA :
FA=¢2 4
wherez is thea priori emissions for different sources or regions in shisly.
Using the same method ks et al.[2004], the analytical solutions to Eqs (3) andgqr)

= prior = prior

A=(K'STK)YK 'S Y+S A0)
- - (5)
-

whereK = f¢, S is measurement error covariance matix,, and 1 are thea priori

anda posteriorivectors, ano§prior and S are thea priori anda posteriorierror matrices

for 4. Corresponding to our initial estimate of 30% uteiaty in the CH emission

maps, the initial value °§pnor is 0.09. Note that the measurementsapdori emission

error matrices are diagonal, equivalent to assuitiagthe prior errors are uncorrelated.
The measured and predicted &dthnals are computed and compared on a 3 hour

interval.

15
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2.8 Error Covariance Matrix
The equivalent “measurement” error covariance méfyi is formed as the sum of

different components

C — Q < Q
= §part + §aggr + ‘="TransWND+ =TransPBL + =bkgd + §eddy+ §ocean (6)

Here, as irLin et al.[2004], the contribution of instrumentation ermothe CH,
measurements is assumed to be random, uncorredagaegligible in magnitude
relative to the other sources of error, and heteonsidered further in the inverse
model estimates. We consider each of the terms)irf& below.

The particle number erroiS(,,) is due to the finite number of released partieles

art
the receptor location. It can be estimated by comgdhe simulated signals from the
STILT running with release of 1000 particles andsthfrom the STILT running with
release of 100 particles. Using the WRF simulatetewrology in October 2007 and the
total a priori emission map, we found that the standard errabasit 3 ppb, indicating ~
5% particle number error. This value is less thaB% particle number error for GO
indicated byGerbig et al.[2003a]. Considering the ~ 5% error determinedibyere and

~13% error determined lyerbig et al.for signals in the mixed-layef .. for 100

part
particles is assumed as 10% in this study. Fafdalie following error analyses, we used
1000 patrticles in order to minimize the effect afticle number error.

The “aggregation error"§, ) arises from aggregating heterogeneous fluxesméth
grid cell into a single average fluKaminski et al.2001].Gerbig et al.[2003b]
demonstrated that a rough estimate of the aggoegatror can be derived from the

observed “representation error”, which is derivehf the difference between a point

16
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observation and a value averaged over a speciticsgre [Gerbig et al, 2003a].

Without multiple observation stations over a spedfid, we try to estimate the
aggregation error based on #neriori CH, emissions. Although we do not have high-
resolution emission maps for all of the £sburces, we estimate aggregation error using
landfill emissions, which are fully resolved. Hetlee aggregation error is estimated by
comparing the un-aggregated landfill signal fronthte landfill signal estimated after
averaging emissions over each county (the maxinggregation used for the other
sources). The average aggregation error, estinaatéte RMS difference between the
un-aggregated and aggregated signals, is 11% ofdlaa landfill signal.

The transport error =S +S ) denotes the errors in modeling
=Trans =TransWND = =TransPBL

transport, which can be caused by the uncertaimiesnd speeds and directions, and the
uncertainties in PBL heights. Followihgn andGerbig[2005], the transport error due to

winds S, is calculated as the RMS difference between ssgmaddicted from

ransWND
simulations with and without input of an additios&bchastic component of wind error

o, (3.6 m/s; Section 2.5) in STILT. The resulting RBi§nal is equivalent to 8% of the

average predicted GHsignal. This estimate of uncertainty assumesttigawind error at
the radar profiler location can be used to repretbenwind error within the modeling
domain. While we have not evaluated the wind erfarsther locations, we note that the
3.6 m/s wind error used here is comparable to te@mwind error of 3.08 m/s,
determined from radiosonde observations over tkerconous U.S. between 0 and 3 km

in altitude Lin and Gerbig 2005].

17
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Uncertainty due to errors in modeled PBL heig&j;gmsPBL is estimated by

propagating the residual errdrinto the predicted Ciignals. Here, we use the estimate
of residual error irZi determined from the comparison between predict&FVSTILT

PBL height and PBL height measured with the wirafif@r. The sensitivity of Chl

signal toZi is expressed as a first order perturbatio@ as

_dc

V—E (7)

wherey is estimated by calculating STILT footprints ahdn variations ir€ for small

perturbations irZi. The error due to error iéii can then be estimated as

AC  yeAZi
<C> <C»>

(8)

3ransPBL =

where AZi is the residual error in WRF-STILAZI, and <> is the mean total Cfsignal.
Note that this error is calculated for well-mixezhditions. Using Egs. (7) and (8), the
estimated transport error due to PBL uncertaini@&?% of the mean signal.

The background errorgbkgd) is due to the uncertainty in estimating the backgd

contribution to the Ckimeasurements at WGC 91 m. For this study, we astithe
upstream background GHhixing ratio using the final latitude of each pelg as a

lookup into the latitudinally averaged marine boarydayer (MBL) CH for October-
December, 2007 (NOAA Globalview GH Only time points (> 95% of the total) for
which more than 80% of the patrticles reached |lowigis 1.5 degrees from the coast were
included in the study. We expect that the NOAA M&lerage will be a reasonable
approximation for the ClHoackground because it is heavily weighted to thafle and

the typical CH gradients between Pacific and Atlantic are leas ttD ppb. We

18
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evaluated the error in GHbackground using the daily minimum ¢hhixing ratio
measured at 483 m. The reason that the daily mmiiGtl, mixing ratio at 483m often
reflects that of background air is because the 488mple height decouples from the
surface at night (when 91 mA < 483 m) as indicated in Fig. 1. A comparisonhaf t
CH, mixing ratios determined from the NOAA MBL averaged WGC 483m minimum
estimates is shown as a function of time in Figi§.6 (b) shows that there is no
systematic bias, although the minimum Hixing ratio at 483 m is occasionally
enhanced relative to the NOAA MBL average, likeledo local CH contributions. We
estimate the error due to GHackground as the RMS difference in Fig 6 (b),cluhs
15% of the mean background-subtracted measureraeism.

The eddy flux error §,,,,) specifies the fluctuations in Ghhixing ratios due to

contributions from turbulent eddigSerbig et al.[2003a] observed it is ~ 0.2 ppm for
CQ,. For CH, studied here, a value of 1% is assumed. The du®to omitting ocean

emissions gocean) is assumed to be negligible. To evaluate thssi@aption, we

calculated the expected ¢kignal from the Coal Point field near Santa Baabtre
largest known coastal natural gas field near Galifo[Mau et al.,2007], and found the
signals to be less than 1 ppb.

In order to combine the above errors from differsmirces, we need to know their
correlations, which are unfortunately unknown. Ass\g the errors from different
sources are independent, the above errors are ecin quadrature to yield a total

expected model-prediction mismatch error of 32%.
3. Results

3.1 CH, Mixing Ratios
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Predicted CH signals and background-subtracted measureme@ismtare shown in
Fig. 7. As described in sections 2.1 and 2.8, degaselected to only include times with
well-mixed conditions and when background {dn be reliably, which are shown as
black points in Fig. 7. Diurnal cycles due to chagdoundary layer height and synoptic
variations due to frontal passages are apparehtidata. The data gap in early-mid
December resulted from a leak in the sampling syshkat was diagnosed and repaired.
The measured and predicted JHlixing ratios show similar temporal variations,
indicating partial success of the model. Howeuse, firedicted signals do not always
capture the large CHneasurements, indicating some combination of glirothea
priori emission model (e.g., spatial pattern or limitezbtation) and atmospheric

transport (e.g, wind fields, boundary layer height)

3.2 Inferred Surface Emissions

We compare the tower measurements and WRF-STILUlatrans at WGC site
during winter (October-December) 2007. Three amealyse reported here: 1) a linear
analysis for total Cklemissions; 2) a “source analysis” for the six,GHurce sectors;
and 3) a “region analysis” for thirteen region<CiA. For the linear analysis, we employ a
Chi-square linear regression analysis by assungngleelative errors of 32% in both
variables. For the “source analysis” and “regioalgsis”, the Bayesian analysis from
Egs. (7) and (8) is applied. Note that the “regaoalysis” used the sanaepriori spatial
distributions of CH emissions as the “source analysis”, and samedtitaitive

measurement errors of 32% are used in the followmajyses.
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3.2.1 Linear Regression Analysis

Results of the regression analyses using Calif@péific emission applied to the
October through December 2007 period are showigs Ba and 8b. Withouti scaling
(Fig. 8a), the best-fit slope between predictedraedsured ClHmixing ratios is 0.4&
0.07. After applying th&i scaling to WRF-STILT (Fig. 8b), the slope betweeedicted
and measured CHs 0.73+ 0.11. The change in slope between Fig. 8a andbig.
demonstrates that scaling the PBL heights affbetptedicted Chisignals, and any
residual uncertainty in PBL height should be coasad as a source of uncertainty in the
Bayesian analyses that follow. After thescaling, the slope obtained in Fig. 8b suggests
that the actual emissions are higher than invergstiynates by a factor of 1.370.21.
We note that the normalized Chi-square value fgr &b is 1.17, suggesting that the
estimated errors do not completely explain thedtedivariance in the differences
between the predictions and measurementg.S@jtals based on Edgar 3.2 emissions are
also simulated and compared with the tower measamtsmn Fig. 8c, yielding a slope of
1.09+ 0.14. This slope is roughly consistent (p > 0.4 t test) with the slope (0.92
0.03) obtained b¥ort et al.[2008] in their comparison of measured and predi€H,
signals using Edgar 3.2. However, the slopes obtiavith the California specific (Fig.
8b) and Edgar (Fig. 8c) emissions are significadifferent (p < 0.01), as might be
expected given the large difference in gheriori emissions shown in Table 1. For the
central California region, the total emission estied by Edgar 3.2 is about 75% more
than that estimated from California specific soaraehich is roughly consistent with the

difference (~ 50%) of fitting slopes between Fig.&hd Fig. 8c.
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To evaluate the effect of the well-mixed data dedeccriteria, we also examined the
slopes obtained with a more stringent requirenteattthe difference between ¢H
mixing ratio measured at 91 m and 483 m is less B@appb. This subset of data are
shown as triangles in Fig. 8. Using the selectiateca of 50 ppb in Fig. 8) obtains a
slope of 0.86- 0.17, which is quite consistent with that obtainsthg the selection
criteria of 100 ppb. The following analyses inc@uthta based on the 100 ppb selection
criteria.

3.2.2 Bayesian Analysis

The Bayesian “source” inverse analysis was caoigdor the six source sectors for
October through December 2007. As shown in Fig)9thea posterioriscaling factors
for the crop agriculture (CP), landfill (LF), wetld (WL), petroleum (PL), and natural
gas (NG) are not significantly different from un{t 95 % confidence). The scaling
factor for livestock is 1.63 0.22, suggesting the emissions from livestock are
significantly (95% confidence) larger than theriori inventory estimates. The Bayesian
“region” inverse analysis of emissions from theCdaifornia regions is shown in Fig.
9(b). Thea posterioriuncertainties are noticeably reduced relative éatpriori
uncertainties only for regions 6, 7, and 8, whiaelida strong influence on the €H
measurements either because the land surrounttsabesite (regions 6 and 8) or has a
tele-connection through the prevailing wind (regiyn Thea posterioriscaling factor
for region 6 is 1.0& 0.06, indicating that the posterior emissions agvell with thea
priori inventory estimates. Posterior scaling factorgégion 7 and 8 are 1.550.17
and 1.37 0.15 respectively, indicating that tagosterioriemissions are greater than

thea priori estimates for these two regions.
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After applying the scaling factors obtained fromyBsian analyses, the posterior
predicted CH mixing ratios are compared with measurementsgn . Fig. 10a shows
the comparison for results from the ‘source analygith measurements. Compared to
Figure 8b (before inverse optimization), the figtislope is closer to unity, and the
normalized Chi-square value is slightly reducednfrb17 to 1.11. This suggests that the
inverse optimization has slightly improved the agnent between the measured and
predicted CH signals but that on order 10% of the variance nesnanexplained. It is
possible that the apparent underestimation of tteeseemay be due to positive correlation
between the error sources that we assumed indemen8enilar results are obtained for
the region analysis, as shown in Fig. 10b. In lnabes, the slopes after optimization are
still slightly less than unity, likely because betweight on tha priori scaling factors.

We note that relaxing thee priori uncertainties on the scaling factors from 30%0%5
allows the optimization to adjust the posteriofiscgfactors further from them priori

values.

4. Discussion and Conclusions

Here we discuss the impact of error in PBL heightiocertainty in estimated GH
emissions, the implications of our results on eated CH emissions from Central
California, and conclude with recommendations fildiaonal measurement sites that
would help quantify Cklemissions from more regions in California.

First, the results of this work highlight the ndedcareful estimation and
minimization of errors in the transport model. Guark is really only a first step in this
regard because we have only evaluated wind andHeRjht errors for one site, albeit at

the location where the GHineasurements were made. The comparison betweeadie
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profiler measurements and WRF-STILT prediction®BL height show a systematic
overestimation in the WRF-STILT predictions, whife sensitivity test shows that
predicted CH emission estimates are sensitive to PBL heighie &rror in WRF-STILT
predictions of PBL height may be a result of impetfland surface parameterization in
WRF that does not account for a suppression of RBght in the Central Valley.
Possible causes for overestimation of PBL heigtitiole the Pacific low over
California’s interior and low ratios of sensiblelédent heat (Bowen ratios) driven by
agricultural irrigation as shown in recent modeldses of Californialkueppers et al.
2007;Lobel and Bonfils2008]. Because of the limited amount of PBL heudta, the
present work should be considered a first stepdaanore comprehensive analysis
employing profiler data from additional profiletess and over longer periods. We expect
that this effort will substantially improve the @ity of the WRF-STILT PBL predictions
and hence accuracy of GHG emission inversions.

Second, the linear regression estimates sugge<ditaber-December CH
emissions from Central California are estimateda®7 + 21 % higher than the annually
averaged California specifecpriori inventories. Examining the source sector resthits,
increase in overall emissions is largely due to8Be& 22 (1) % increase in estimated
emissions from livestock. State-widepriori livestock emission are 9.7 MMT GgJ (see
Table 1), which includes 5.6 MMT Gg from dairies and 4.1 MMT C£, from other
cattle. Scaling tha priori CH,; emissions from dairies suggests that actual dairy
emissions are 9.1 + 1.3 MMT G& This result is nominally consistent with or skigh
less than the results of a recent studyshias et al[2008], which estimated total GH

emissions from dairies in CA to be approximate§/BIMT CO,.q We note that the
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source sector and regional analyses are conswigneach other in that GHemission
from region 8, which is dominated by livestock, eisa large and statistically significant
increase relative to treepriori inventory. Some other sources also showed smalter b
not significant differences from inventory estingatBor example, inferred Gldmissions
from crop agriculture are smaller than the annualigraged inventory, consistent to the
expectation of higher CHmissions from the north-central Valley during stenmer

due to flooded rice agricultur&las et al.2006]. Finally, the “region” analysis shows
that emissions from regions 6, 7 and 8 are com&daby the measurements. This is
because they either surround the tower (i.e., resgéoand 8) or have a strong influence
on air reaching the tower through prevailing wifiden the Bay Area to the Sacramento
Valley (i.e., region 7). This observation providesinsight into the spatial domain that
can be effectively investigated with the tower mgasients and suggests that a network
of towers would be required to accurately consttenmultiple regions and air basins in
California. In principle, measurements from mud#ipwers would also be combined in
a larger inverse analysis to provide more stringenstraints on emissions from regions
that influence several towers. We consider a mbdekd design of a dedicated tower

network to be a natural extension of the work dbsedrhere.
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Figure Captions
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Figure 1. CH; mixing ratios measured at 91 m (black) and 483ad)(at the WGC
tower. Only data (black points) obtained duringlvmeixed periods (defined as when the

difference between measurements at 91 m and 488 fass than 100 ppb) are used in

this study.
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from Edgar 3.2; h) is the sum of maps a-f) spectdi€alifornia; and i) is an illustration
of the 13 California sub-regions considered inrgggon analysis. The tower location is

marked with a ‘x'.
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predictions, and WGC tower location “X” (-121.4%®.36) of the measurements.

39

39



2000
|

y =-138.16+/-69.62 + x * (1.25+/-0.1) ’

o o o ’

STILT PBL (m)
500 1000 1500
| |

0
|

0 500 1000 1500 2000
Profiler PBL (m)
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Table 1. A priori CHs emissions (MMT CQ) from 6 different sources and 13

California regions shown in Figure 2i.

CHa CP LF | LS | NG | PL | WL | CAsped Edgar3.
(MMT COse))

Region 01 0.04 | 002 004 003 002 006 018 0.92
Region 02 001 | 004 015 003 010 002 0.29 1.09
Region 03 001 | 00§ 020 001 020 002 045 1.74
Region 04 004 | 010 018 003d 017 005 048 1.56
Region 05 0.05 | 002 039 003 041 007 057 1.76
Region 06 002 | 040 051 036 062 004 181 4.30
Region 07 001 | 074 031 067 150 002 3.25 5.95
Region 08 001 | 027 206 001 032 002 232 3.73
Region 09 002 | 02 024 013 037 002 0096 3.48
Region 10 0.11 | 3.79 168 088 362 017 1021  25.14
Region 11 002 | 013 019 001 010 002 0.47 1.09
Region 12 0.06 | 031 365 03] 073 010 5.16 7.95
Region 13 001 | 00§ 006 019 019 002 053 1.07
Whole CA 0.42 | 6.15] 9.66|] 257] 808 063 2746 59.78
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