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Abstract.  Methane mixing ratios measured at a tall-tower are compared to model 

predictions to estimate surface emissions of CH4 in Central California for October-

December 2007 using an inverse technique. Predicted CH4 mixing ratios are calculated 

based on spatially resolved a priori CH4 emissions and simulated atmospheric 

trajectories. The atmospheric trajectories, along with surface footprints, are computed 

using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted 

Lagrangian Transport (STILT) model.  An uncertainty analysis is performed to provide 

quantitative uncertainties in estimated CH4 emissions. Three inverse model estimates of 

CH4 emissions are reported.  First, linear regressions of modeled and measured CH4 

mixing ratios obtain slopes of 0.73 ± 0.11 and 1.09 ± 0.14 using California specific and 

Edgar 3.2 emission maps respectively, suggesting that actual CH4 emissions were about 

37 ± 21% higher than California specific inventory estimates. Second, a Bayesian 

“source” analysis suggests that livestock emissions are 63 ± 22% higher than the a priori 

estimates.  Third, a Bayesian “region” analysis is carried out for CH4 emissions from 13 

sub-regions, which shows that inventory CH4 emissions from the Central Valley are 

underestimated and uncertainties in CH4 emissions are reduced for sub-regions near the 

tower site, yielding best estimates of flux from those regions consistent with “source” 

analysis results. The uncertainty reductions for regions near the tower indicate that a 

regional network of measurements will be necessary to provide accurate estimates of 

surface CH4 emissions for multiple regions.
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1. Introduction 

Changes in atmospheric methane play an essential role in Earth’s climate. CH4 is now 

associated with a direct radiative forcing of ~ 0.48 2−Wm  (IPCC, 2007) and an indirect 

radiative forcing of ~0.13 2−Wm  [Lelieveld et al., 1998], which accounts for about ½ of 

the non-CO2 radiative forcing (0.98 W m-2 in 2004) [Hofman et al., 2006] and about ¼ of 5 

the total radiative forcing (2.64 W m-2 from IPCC 2007) from all greenhouse gases 

(GHGs).  It has been argued that reducing anthropogenic emissions of methane may be 

an important component of an initial strategy for avoiding the most severe impacts of 

global warming [Hansen et al., 1998; Hansen, 2004; Shindell et al., 2005]. In particular, 

reduction of anthropogenic methane emissions may be possible (e.g., improving CH4 10 

recovery from landfills and waste treatment, reducing industrial emissions, and 

improving agricultural practices) [Harriss, 1994]. In view of methane’s role in the 

climate system, increased attention has been brought recently to assessing CH4 sources 

[Gimson and Uliasz, 2003; Miller et al., 2003; Houweling et al., 2006; Kort et al., 2008]. 

In California, total GHG emissions in 2004 were approximately 480 MMT CO2 15 

equivalent, with CH4 contributing approximately 6 % [CARB, 2007]. Now that 

California has passed Assembly Bill 32, which requires that greenhouse gases emissions 

be reduced to 1990 levels by 2020, careful accounting of current CH4 emissions and of 

their future reductions is essential. Unfortunately, current inventory and model-based 

estimates of CH4 emissions are uncertain because many of the factors controlling 20 

emissions are poorly quantified. Atmospheric measurements and inverse modeling may 

provide an independent method to quantify local to regional CH4 emissions from 

California. 
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Atmospheric inverse methods to estimate the surface CH4 fluxes from in-situ and 

remotely sensed CH4 mixing ratio measurements and modeled wind fields have been 25 

widely applied at both global and regional scales [Hein et al., 1997; Houweling et al., 

1999; Vermeulen et al., 1999; Bergamaschi et al., 2000; Dentener et al., 2003; Gimson 

and Uliasz, 2003; Manning et al., 2003; Mikaloff Fletcher et al., 2004a, b; Bergamaschi 

et al., 2005; Chen and Prinn, 2006, Bergamaschi et al., 2007; Kort et al., 2008]. In 

general, the components of atmospheric inverse emission estimates are CH4 mixing ratio 30 

measurements, an atmospheric transport model (including chemistry for global 

simulations), in some cases a priori estimates for CH4 emissions and sinks or their 

correlation structure, and a statistical technique to minimize differences between 

measured and predicted CH4 mixing ratios. To estimate CH4 emissions and their 

associated uncertainties, errors from each of these components should be accounted for 35 

and formally propagated through the inversion process.  

In this study, we employ an approach originally developed to estimate regional CO2 

emissions [Gerbig et al., 2003 a,b] that combines calculation of surface footprints [Lin et 

al., 2004] with procedures to estimate transport model uncertainty [Lin and Gerbig, 

2005] using the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Of 40 

particular relevance to our work, Kort et al. (2008) recently used observations of CH4 and 

N2O from an airborne platform in combination with STILT to infer CH4 and N2O 

emissions from the continental interior of North America in May-June 2003. Our study 

also uses STILT, but applies it to a smaller model domain at finer spatial and temporal 

resolutions, taking advantage of unique computational benefits offered by the Lagrangian 45 

approach.  
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To address the problem of estimating CH4 emissions from different sources in Central 

California, we conducted coordinated CH4 measurements and modeling as part of the 

California Greenhouse Gases Emission Measurement (CALGEM) project. Section 2 

describes the methods for the measurements of CH4 mixing ratios, profiler-based 50 

estimates of wind fields and boundary layer heights, spatially resolved a priori CH4 

emission maps, meteorological transport fields and resulting surface footprints, an 

analysis of measurement and model errors, and the Bayesian inverse model used to 

estimate CH4 emissions.  Section 3 describes the results of the measurements, bias 

corrections and error estimates, and the best estimates of CH4 surface emissions implied 55 

by the measurements. Section 4 discusses the estimates of CH4 emissions in the context 

of current inventories, examines the spatial region in which the tower measurements 

effectively constrain CH4 emissions, and concludes with initial recommendations for 

additional measurement sites to constrain other important emission regions in California. 

2. Data and Methods 60 

2.1 CH4 Measurements 

The CH4 measurements were made at 91 and 483 m on a tall-tower near Walnut 

Grove, CA (WGC, 121.49 °W, 38.27°N, 0 m above sea level), beginning in September 

2007. The measurements were made using a sampling and analysis system combining 

pumps, air driers, and three gas analyzers. Briefly, air samples are drawn continuously 65 

from the different heights on the tower, are partially dried by a condensing system that 

lowers water vapor to a 5 °C dew point, are sequentially applied on a 5 minute interval to 

a temperature stabilized membrane drier (Purmapure Inc.) which dries air to a -33 °C dew 

point, and then are supplied to the gas analyzers.  The first 4.5 minutes of each 
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measurement interval are used to allow equilibration of the gas concentrations and 70 

instrument response, while the last 30 seconds is used as the measurement interval.  In 

particular, CH4 is measured using a cavity ring-down spectrometer (Picarro EnviroSense 

3000i) with an accuracy and precision of approximately 0.3 ppb in the 30 second 

averaging interval.  To quantify and correct instrument drifts, the offset is measured and 

corrected every ½ hour using a reference gas, while the gain (and linearity) is checked 75 

and corrected every 6 hours using 4 NOAA gas primary standards. In addition, flask 

samples were collected twice daily (1000 and 2200 hr GMT) from a separate sample line 

at the 91 m level and analyzed at NOAA-ESRL. To provide additional quality assurance, 

the in-situ CH4 measurements were compared with the flask measurements. This 

redundancy allows the detection of small (~ ppb) sampling errors.  In general, the 80 

difference between in-situ and flask analyses was consistent with the precision of the in-

situ instrument. During some periods, particularly during late night and early morning, 

variability in CH4 mixing ratios was larger.  For these periods, the difference between 

flask the in-situ CH4 measurements was generally consistent with the standard deviation 

of the in-situ CH4 measurements averaged over a 30 minute window centered on the flask 85 

sample. 

Fig. 1 shows 3-hour averages of measured CH4 mixing ratios at 91 m (black) and 483 

m (red) in October 2007. Diurnal cycles due to changing boundary layer height are 

apparent in the data. The daily maximum CH4 mixing ratio measured at 91 m often 

occurs when the minimum is obtained at 483 m. This would be expected to occur in cases 90 

when the boundary layer lies between 91 and 483 m, trapping surface emissions within a 

shallow layer that is measured by 91 m sample height, while the 483 m sample height 
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observes comparatively decoupled background air. In the following work, we will use the 

daily minimum CH4 measurements at 483 m to provide a check on the CH4 background 

analysis. Moreover, we limited the inverse model study to only include measurements 95 

collected during well-mixed periods. Henceforth, we define the well-mixed periods by 

using the criteria that the difference of measurements at 91 m and 483 m are less than 100 

ppb, as shown by the black points in Fig. 1. This criteria will also be evaluated in the 

following analysis.   

2.2 Wind Profiler Measurements 100 

To quantify uncertainties in modeled atmospheric transport, hourly boundary layer 

heights and vertical profiles of winds were obtained from a radar wind profiler (RWP) 

operated by the Sacramento Metropolitan Air Quality Management District. The profiler 

is located (38.30°N, 121.42°W) within 8 km of the tower used for the CH4 

measurements. Given the level terrain of the Sacramento delta region, we expect that 105 

errors in modeled winds and PBL heights for the region surrounding the tower can be 

accurately assessed by comparing the wind profiler measurements with corresponding 

meteorological simulations for profiler (winds) and tower (PBL) locations. The RWP 

acquires data in two different settings, high-resolution and low-resolution mode with 

vertical resolutions of 60 m and 105 m respectively. Boundary layer heights were 110 

estimated from sub-hourly RWP vertical velocity and returned signal strength (signal-to-

noise ratio) data using objective algorithms and qualitative analysis following techniques 

found in Wyngaard and LeMone [1980], Bianco and Wilczak [2002], and Bianco et al. 

[2008].  In the used configuration, the RWP can detect boundary layer heights from about 

150 m to 4000 m with an accuracy of ± 200 m [Dye et al., 1995].  115 
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2.3 The a priori CH4 Emissions 

We used two methods to estimate CH4 emissions.  As a base-case, we used the North 

American maps of total anthropogenic CH4 from the EDGAR 3.2 model with 1 x 1 

degree spatial resolution [Olivier et al., 2005]. To provide finer spatial resolution inside 

California, we also estimated California CH4 emissions separately for six sources sectors: 120 

landfills (LF), livestock (LS), natural gas production and use (NG), petroleum refining 

(PL), crop agriculture (CP), and wetlands (WL). CH4 emissions from landfills were 

estimated by the California Air Resources board (Hunsaker, private communication) 

using IPCC methods [IPCC, 2006], which is driven by landfill specific waste application 

statistics from the CA Waste Management Board (e.g., Carr, 2004) and site-specific 125 

estimates of CH4 recovery.  CH4 from livestock was estimated using United States 

Department of Agriculture (USDA) county level animal stocking densities [Census, 

2002] and animal specific emission factors for dairy and beef cattle separately [Franco, 

2002]. CH4 from natural gas production and use and from petroleum refining activities 

were estimated as the difference of total minus reactive hydrocarbon (typically between 130 

0.2-0.4 of the total) emissions estimated from the California Air Resources Board 

(CARB) emission criteria pollutant emission inventory for those source sectors 

(http://www.arb.ca.gov/app/emsinv/fcemssumcat2006.php). CH4 emissions from crop 

agriculture were assumed to follow emissions from the DNDC model for an average 

climate year with high irrigation as described by Salas et al. [2006].  CH4 emissions from 135 

wetlands were assumed to follow the National Aeronautics and Space Administration 

Carnegie-Ames-Stanford Approach (NASA-CASA) estimates from Potter et al. [2006].  

Although some of these sources are expected to vary on a seasonal basis, we calculated 
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mean emissions and did not attempt to resolve temporal variations over the relatively 

short period of this three months study.  Maps of the a priori CH4 emissions are shown in 140 

Figs 2a-f for these six California-specific source sectors. For comparison, Fig. 2g shows 

total EDGAR 3.2 emissions for the Western United States, while Fig. 2h shows the sum 

of the California-specific CH4 emissions. Last, Fig. 2i shows a set of California sub-

regions that roughly correspond to air basins that are nearby or distant from the 

measurement locations and will be used in following analysis. Table 1 summarizes the 145 

CH4 emissions from different California-specific sources in the 13 sub-regions.  CH4 

emissions are scaled to equivalent CO2 forcing using a global warming potential of 25 

(gCO2eq gCH4
-1) [IPCC, 2007].  The total of the California-specific emissions is similar to 

total CH4 emissions (~ 31 MMT CO2eq ) reported by the California Air Resource Board 

[CARB, 2007], but is approximately half the total emissions from California pixels in the 150 

Edgar 3.2 inventory. Inspection of the Edgar 3.2 emissions shows that the largest sources 

are from natural gas (22.5 MMT CO2eq) and landfills (19.3 MMT CO2eq), suggesting very 

different assumptions about emissions from these sources. To assign an uncertainty to the 

a priori emissions, we follow previous work on uncertainty analysis [USEPA, 2004; 

Farrell, 2005] and assign a 30% uncertainty to each of emissions sources. We consider 155 

the uncertainties in US total CH4 emissions only a rough estimate to the uncertainties for 

sub-regions of California (and over the time period of this study) because the 30% 

estimate was derived for more aggregated emissions over annual cycles and the entire 

continental US.  

2.4 WRF-STILT Model 160 
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As mentioned in the Introduction, the work presented in this paper employs the 

STILT model, run in the time-reversed (receptor-oriented) mode, as the atmospheric 

transport model. STILT is a Lagrangian Particle Dispersion Model (LPDM) that has been 

specifically developed and applied to regional simulations and inverse flux estimates for 

CO2, other greenhouse gases, and CO. Its detailed description is provided elsewhere [Lin 165 

et al., 2003, 2004; Gerbig et al., 2003a; Matross et al., 2006; Kort et al., 2008; Miller et 

al., 2008] and, consequently, only the most pertinent features will be summarized here. 

As in all LPDMs, transport in STILT includes both advective and turbulent components, 

with turbulence being responsible for the dispersion of particles. In this application, given 

input meteorological data, the STILT model transports ensembles of 100 particles (air 170 

parcels) backwards in time 5 days for a receptor point (WGC site here). We calculate the 

response of the target gas concentration at the receptor point to surface sources 

(“footprint”), in units of ppb/(nmol m-2 s-1). The footprint, which represents the adjoint of 

the transport field, is calculated by counting the number of particles in a surface-

influenced region (defined as ½ of the estimated PBL height in the STILT model, for 175 

example see Gerbig et al., 2003a; Kort et al., 2008) and the time spent in the region (for 

details, see Lin et al., 2003). When multiplied by the a priori field of surface flux, the 

footprint gives the associated contribution to the mixing ratio measured at the receptor, 

hence the footprints can be used to estimate parameters of the source functions and their 

respective uncertainties. 180 

We calculate the footprints relating surface fluxes to measured CH4 mixing ratios 

using the meteorological output from a customized version of the Weather Research and 

Forecasting model [Skamarock et al., 2005] to drive STILT. This combined model will 
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henceforth be referred to as WRF-STILT. Specifically, the WRF model version 2.2 has 

been modified to output time-averaged (hourly in this study) values of the mass-coupled 185 

velocities, which significantly improve mass conservation in STILT (compared with the 

instantaneous advective velocities), as well as convective mass fluxes that are used 

directly in the STILT calculations. The main physical options are set as following: (a) 

Radiation: RRTM scheme [Mlawer et al., 1997] for the longwave and Goddard scheme 

[Chou and Suarez, 1994] for the shortwave; (b) Planetary Boundary Layer: Yonsei 190 

University (YSU) scheme coupled with the NOAH land surface model and the MM5 

similarity theory based surface layer scheme. (c) Microphysics: Purdue Lin scheme [Lin 

et al., 1983; Chen and Sun, 2002] (d) Convection: Grell-Devenyi ensemble mass flux 

scheme [Grell and Devenyi, 2002].  The initial and boundary meteorology conditions for 

WRF are provided by the North American Regional Reanalysis (NARR, Mesinger et al., 195 

2006). A one-way nesting WRF running with 3 nest levels is used for the meteorology 

simulations around the WGC tower location, which is shown in Fig. 3 (Domain 1: -

149.16° < lon< –102.21°, 17.82° < lat < 50.53° on a 40 km grid; Domain 2: -123.53° < 

lon < -120.66°, 36.76° < lat < 38.94° on a 8 km grid; Domain 3: -121.71° < lon < -

121.23°, 38.09° < lat < 38.45° on a 1.6 km grid). The vertical resolution is taken from the 200 

input meteorology from NARR with 30 layers. Each day was simulated separately using 

30-hour run (including 6 hours from the previous day for spin-up) with hourly output. 

Growth in transport model errors were minimized by nudging the forecast fields to the 

gridded NARR analysis fields every 3 hours.  

2.5 WRF-STILT Transport Errors 205 
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As a first approximation to evaluate the transport errors in the WRF-STILT 

predictions of surface influence footprints, we compared the modeled estimates of WRF 

winds and WRF-STILT boundary layer heights (Zi) with corresponding profiler 

measurements of wind velocity and Zi. Errors in modeled winds are estimated by 

comparing WRF predictions with profiler measurements of the u and v wind components 210 

at a height of 137m, close to the height of the air sampling. Using data from the October 

to December 2007, the root mean square (RMS) errors in horizontal winds at 137 m are 

2.21 ( uσ ) and 2.86 m s-1 ( vσ ) for the u and v directions respectively. Some of this 

difference can be attributed to the fact that profiler winds are measured at a single site 

while the WRF winds are the averages over a grid of 1.6 x 1.6 km. We note that the RMS 215 

error decreased by approximately a factor of 2 between 137 m and 1000 m above the 

ground, though the decrease was non-linear with most of the decrease occurring between 

137 and about 500 m. Henceforth, we assume errors in u and v are constant with height 

and randomly distributed with an RMS magnitude of 3.6 m s-1, which is obtained as 

22
vuV σσσ += . 220 

Measured and predicted daytime boundary layer heights in October through 

December 2007 are shown in Fig. 4.  Profiler data were selected to match the time of the 

WRF-predictions to within 1 hour.  In addition, the WRF-STILT simulations impose a 

lower limit value of 215 m on Zi, while the radar profiler has a minimum detection height 

of 120 m.  To avoid biasing the comparison and make sure CH4 well mixed from surface 225 

till heights above 483 m, we included WRF-STILT predictions of Zi greater than 215 m 

in the analysis. The resulting best fit geometric linear regression of WRF-STILT on radar 

profiler PBL heights yields a slope of 1.25±0.10 and intercept of -138±70 m. Based on 
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this result, we obtain a scale factor of 1/1.25 which is then applied to Zi when calculating 

footprints using STILT. This result is similar to that found in Lin et al. [2003], where 230 

STILT predictions of Zi were about 1.09 higher than Zi measurements at a site in 

Wisconsin. After scaling STILT Zi by a factor of 1/1.25, the RMS residual error between 

scaled WRF-STILT and profiler Zi is reduced by a factor of 1.5 to ~ 200 m, roughly 

consistent with the estimated error in the profiler measurements.  In the following work 

we calculate particle trajectories and resulting footprints using the scaled 235 

parameterization of PBL height. It is possible that an additional error in the effective 

wind field may be introduced by the Zi scaling for particles near the top of the boundary 

layer if there is significant wind shear at that altitude but expect that this is small 

compared to the first order errors already identified for winds and PBL heights. 

2.6 Footprints and Predicted CH4 Signals 240 

Particle trajectories were calculated using STILT driven by the WRF winds.  One 

hundred particles are released every 3 hours (from UTC hour 00) at the WGC tower and 

transported backward in time 5 days to insure a majority of the particles reach positions 

representative of the marine boundary layer.  Footprints are then calculated from the 

particle trajectories as in Lin et al. [2004]. The time-averaged footprint is shown in Fig. 5 245 

for the period between October and December in 2007. The high footprint values within 

approximately the Central California area near the tower site indicate that CH4 signals 

measured at 91 m and 483 m at WGC will be strongly influenced by the California 

emissions. 
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Predicted local CH4 signals ),( rrl tXC  (index ‘l’ denote local and ‘r’ denote receptor) 250 

from land surface emissions are calculated using the product of the footprint maps and 

the a priori emission maps, as 

Cl (X r ,tr ) = f (
i, j ,m

∑ X r ,tr xi,y j ,tm) ⋅ F(xi,y j )      (1) 

, where rX  and rt  are receptor (WGC tower) location and time, f (X r ,tr X,tm)  is the 

footprint and F(xi,y j ) is the surface emission map at location ),( ji yx  and time mt .  The 255 

total CH4 mixing ratio at the receptor can be expressed as 

),(),(),( rrBGrrlrr tXCtXCtXC +=                           (2) 

, where ),( rrBG tXC  is the upstream CH4 background mixing ratios.  

2.7 Inversion Technique 

The posterior CH4 emissions were estimated by optimizing scaling factors for the a 260 

priori CH4 emissions to provide a best fit between measured and predicted CH4 mixing 

ratios. This was done in two ways: 1) as a standard least square optimization of an overall 

scaling factor for all land surface emissions and 2) in a Bayesian approach that scales 

each source type or sub-region separately and incorporates individual estimates for the 

uncertainties in different a priori emissions. 265 

Combining Eq. (1) and (2), the difference between measured and predicted 

background CH4 relates to the surface emission flux as 

FfCC BG =− ,         (3) 

wheref  is footprints, F  is surface CH4 emission, C  and BGC  is CH4 mixing ratios from 

tower measurements and background calculations, respectively. Assuming mixing ratio 270 
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measurements from local sources as BGCCy −= . Following Gerbig et al. [2003a], we 

introduce a model parameter or a state vector of scaling factors,λ , for the surface 

flux, )(λF . The inversion adjusts the model parameters λ  such that the modeled changes 

in CH4 concentrations are optimally consistent (in standard least square sense) with the 

observed values.  In the study of surface CH4 emissions from different sources (“source 275 

analysis” hereafter), λ  represents the scaling factor for different sources; in the study of 

surface CH4 emissions from different regions (“region analysis” hereafter), λ  represents 

the scaling factor for different areas. For both the “source analysis” and “region analysis” 

study, )(λF  is linearly dependent on λ : 

λφλ =)(F          (4) 280 

where φ   is the a priori emissions for different sources or regions in this study. 

Using the same method as Lin et al. [2004], the analytical solutions to Eqs (3) and (4) are 

111

1111
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where φfK = , 
ε

S  is measurement error covariance matrix priorλ and λ̂  are the a priori 

and a posteriori vectors, and 
prior

S and  
λ

Ŝ are the a priori and a posteriori error matrices 285 

forλ . Corresponding to our initial estimate of 30% uncertainty in the CH4 emission 

maps, the initial value of 
prior

S  is 0.09. Note that the measurements and a priori emission 

error matrices are diagonal, equivalent to assuming that the prior errors are uncorrelated. 

The measured and predicted CH4 signals are computed and compared on a 3 hour 

interval.  290 
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2.8 Error Covariance Matrix 

The equivalent “measurement” error covariance matrix εS  is formed as the sum of 

different components  

S
ε
= S

part
+ S

aggr
+ S

TransWND
+ S

TransPBL
+ S

bkgd
+ S

eddy
+ S

ocean
    (6) 

Here, as in Lin et al. [2004], the contribution of instrumentation error in the CH4 295 

measurements is assumed to be random, uncorrelated, and negligible in magnitude 

relative to the other sources of error, and hence not considered further in the inverse 

model estimates. We consider each of the terms in Eq. (6) below. 

The particle number error (partS ) is due to the finite number of released particles at 

the receptor location. It can be estimated by comparing the simulated signals from the 300 

STILT running with release of 1000 particles and those from the STILT running with 

release of 100 particles. Using the WRF simulated meteorology in October 2007 and the 

total a priori emission map, we found that the standard error is about 3 ppb, indicating ~ 

5% particle number error. This value is less than ~13% particle number error for CO2 

indicated by Gerbig et al. [2003a]. Considering the ~ 5% error determined by us here and 305 

~13% error determined by Gerbig et al. for signals in the mixed-layer, partS  for 100 

particles is assumed as 10% in this study. For all of the following error analyses, we used 

1000 particles in order to minimize the effect of particle number error. 

The “aggregation error” (aggrS ) arises from aggregating heterogeneous fluxes within a 

grid cell into a single average flux [Kaminski et al., 2001]. Gerbig et al. [2003b] 310 

demonstrated that a rough estimate of the aggregation error can be derived from the 

observed “representation error”, which is derived from the difference between a point 
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observation and a value averaged over a specific grid size [Gerbig et al., 2003a].  

Without multiple observation stations over a specific grid, we try to estimate the 

aggregation error based on the a priori CH4 emissions. Although we do not have high-315 

resolution emission maps for all of the CH4 sources, we estimate aggregation error using 

landfill emissions, which are fully resolved. Here, the aggregation error is estimated by 

comparing the un-aggregated landfill signal from to the landfill signal estimated after 

averaging emissions over each county (the maximum aggregation used for the other 

sources).  The average aggregation error, estimated as the RMS difference between the 320 

un-aggregated and aggregated signals, is 11% of the mean landfill signal. 

The transport error (
TransPBLTransWNDTrans

SSS += ) denotes the errors in modeling 

transport, which can be caused by the uncertainties in wind speeds and directions, and the 

uncertainties in PBL heights. Following Lin and Gerbig [2005], the transport error due to 

winds 
TransWND

S  is calculated as the RMS difference between signals predicted from 325 

simulations with and without input of an additional stochastic component of wind error 

Vσ  (3.6 m/s; Section 2.5) in STILT. The resulting RMS signal is equivalent to 8% of the 

average predicted CH4 signal. This estimate of uncertainty assumes that the wind error at 

the radar profiler location can be used to represent the wind error within the modeling 

domain. While we have not evaluated the wind errors for other locations, we note that the 330 

3.6 m/s wind error used here is comparable to the mean wind error of 3.08 m/s, 

determined from radiosonde observations over the coterminous U.S. between 0 and 3 km 

in altitude [Lin and Gerbig, 2005].    
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Uncertainty due to errors in modeled PBL heights 
TransPBL

S  is estimated by 

propagating the residual error Zi into the predicted CH4 signals. Here, we use the estimate 335 

of residual error in Zi determined from the comparison between predicted WRF-STILT 

PBL height and PBL height measured with the wind profiler. The sensitivity of CH4 

signal to Zi is expressed as a first order perturbation in C as 

γ =
dC

dZi
            (7) 

where γ is estimated by calculating STILT footprints and then variations in C for small 340 

perturbations in Zi. The error due to error in Zi can then be estimated as 

StransPBL =
∆C

<C >
=
γ •∆Zi

<C >
          (8) 

where Zi∆ is the residual error in WRF-STILT Zi, and <C> is the mean total CH4 signal. 

Note that this error is calculated for well-mixed conditions. Using Eqs. (7) and (8), the 

estimated transport error due to PBL uncertainties is 22% of the mean signal. 345 

The background error (
bkgd

S ) is due to the uncertainty in estimating the background 

contribution to the CH4 measurements at WGC 91 m.  For this study, we estimate the 

upstream background CH4 mixing ratio using the final latitude of each particle as a 

lookup into the latitudinally averaged marine boundary layer (MBL) CH4 for October-

December, 2007 (NOAA Globalview CH4). Only time points (> 95% of the total) for 350 

which more than 80% of the particles reached longitudes 1.5 degrees from the coast were 

included in the study.  We expect that the NOAA MBL average will be a reasonable 

approximation for the CH4 background because it is heavily weighted to the Pacific and 

the typical CH4 gradients between Pacific and Atlantic are less than 10 ppb. We 
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evaluated the error in CH4 background using the daily minimum CH4 mixing ratio 355 

measured at 483 m. The reason that the daily minimum CH4 mixing ratio at 483m often 

reflects that of background air is because the 483m sample height decouples from the 

surface at night (when 91 m < Zi < 483 m) as indicated in Fig. 1. A comparison of the 

CH4 mixing ratios determined from the NOAA MBL average and WGC 483m minimum 

estimates is shown as a function of time in Fig 6. Fig 6 (b) shows that there is no 360 

systematic bias, although the minimum CH4 mixing ratio at 483 m is occasionally 

enhanced relative to the NOAA MBL average, likely due to local CH4 contributions. We 

estimate the error due to CH4 background as the RMS difference in Fig 6 (b), which is 

15% of the mean background-subtracted measurements at 91 m.  

The eddy flux error ( eddyS ) specifies the fluctuations in CH4 mixing ratios due to 365 

contributions from turbulent eddies. Gerbig et al. [2003a] observed it is ~ 0.2 ppm for 

CO2. For CH4 studied here, a value of 1% is assumed.  The error due to omitting ocean 

emissions (
ocean

S ) is assumed to be negligible.  To evaluate this assumption, we 

calculated the expected CH4 signal from the Coal Point field near Santa Barbara, the 

largest known coastal natural gas field near California [Mau et al., 2007], and found the 370 

signals to be less than 1 ppb. 

In order to combine the above errors from different sources, we need to know their 

correlations, which are unfortunately unknown. Assuming the errors from different 

sources are independent, the above errors are combined in quadrature to yield a total 

expected model-prediction mismatch error of 32%.  375 

3. Results 

3.1 CH4 Mixing Ratios 
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Predicted CH4 signals and background-subtracted measurements at 91 m are shown in 

Fig. 7. As described in sections 2.1 and 2.8, data are selected to only include times with 

well-mixed conditions and when background CH4 can be reliably, which are shown as 380 

black points in Fig. 7. Diurnal cycles due to changing boundary layer height and synoptic 

variations due to frontal passages are apparent in the data. The data gap in early-mid 

December resulted from a leak in the sampling system that was diagnosed and repaired. 

The measured and predicted CH4 mixing ratios show similar temporal variations, 

indicating partial success of the model. However, the predicted signals do not always 385 

capture the large CH4 measurements, indicating some combination of errors in the a 

priori emission model (e.g., spatial pattern or limited resolution) and atmospheric 

transport (e.g, wind fields, boundary layer height).  

3.2 Inferred Surface Emissions 

We compare the tower measurements and WRF-STILT simulations at WGC site 390 

during winter (October-December) 2007. Three analyses are reported here: 1) a linear 

analysis for total CH4 emissions; 2) a “source analysis” for the six CH4 source sectors; 

and 3) a “region analysis” for thirteen regions in CA. For the linear analysis, we employ a 

Chi-square linear regression analysis by assuming equal relative errors of 32% in both 

variables.  For the “source analysis” and “region analysis”, the Bayesian analysis from 395 

Eqs. (7) and (8) is applied. Note that the “region analysis” used the same a priori spatial 

distributions of CH4 emissions as the “source analysis”, and same total effective 

measurement errors of 32% are used in the following analyses. 
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3.2.1 Linear Regression Analysis  

Results of the regression analyses using California specific emission applied to the 400 

October through December 2007 period are shown in Figs. 8a and 8b. Without Zi scaling 

(Fig. 8a), the best-fit slope between predicted and measured CH4 mixing ratios is 0.46 ± 

0.07. After applying the Zi scaling to WRF-STILT (Fig. 8b), the slope between predicted 

and measured CH4 is 0.73 ± 0.11. The change in slope between Fig. 8a and Fig. 8b 

demonstrates that scaling the PBL heights affects the predicted CH4 signals, and any 405 

residual uncertainty in PBL height should be considered as a source of uncertainty in the 

Bayesian analyses that follow.  After the Zi scaling, the slope obtained in Fig. 8b suggests 

that the actual emissions are higher than inventory estimates by a factor of 1.37 ± 0.21.  

We note that the normalized Chi-square value for Fig. 8b is 1.17, suggesting that the 

estimated errors do not completely explain the residual variance in the differences 410 

between the predictions and measurements. CH4 signals based on Edgar 3.2 emissions are 

also simulated and compared with the tower measurements in Fig. 8c, yielding a slope of 

1.09 ± 0.14.  This slope is roughly consistent (p > 0.1 in a t test) with the slope (0.92 ± 

0.03) obtained by Kort et al. [2008] in their comparison of measured and predicted CH4 

signals using Edgar 3.2. However, the slopes obtained with the California specific (Fig. 415 

8b) and Edgar (Fig. 8c) emissions are significantly different (p < 0.01), as might be 

expected given the large difference in the a priori emissions shown in Table 1. For the 

central California region, the total emission estimated by Edgar 3.2 is about 75% more 

than that estimated from California specific sources, which is roughly consistent with the 

difference (~ 50%) of fitting slopes between Fig. 8b and Fig. 8c.  420 
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To evaluate the effect of the well-mixed data selection criteria, we also examined the 

slopes obtained with a more stringent requirement that the difference between CH4 

mixing ratio measured at 91 m and 483 m is less than 50 ppb.  This subset of data are 

shown as triangles in Fig. 8. Using the selection criteria of 50 ppb in Fig. 8) obtains a 

slope of 0.86 ± 0.17, which is quite consistent with that obtained using the selection 425 

criteria of 100 ppb.  The following analyses include data based on the 100 ppb selection 

criteria. 

3.2.2 Bayesian Analysis 
 

The Bayesian “source” inverse analysis was carried out for the six source sectors for 430 

October through December 2007. As shown in Fig. 9 (a), the a posteriori scaling factors 

for the crop agriculture (CP), landfill (LF), wetland (WL), petroleum (PL), and natural 

gas (NG) are not significantly different from unity (at 95 % confidence). The scaling 

factor for livestock is 1.63 ± 0.22, suggesting the emissions from livestock are 

significantly (95% confidence) larger than the a priori inventory estimates. The Bayesian 435 

“region” inverse analysis of emissions from the 13 California regions is shown in Fig. 

9(b).  The a posteriori uncertainties are noticeably reduced relative to the a priori 

uncertainties only for regions 6, 7, and 8, which have a strong influence on the CH4 

measurements either because the land surrounds the tower site (regions 6 and 8) or has a 

tele-connection through the prevailing wind (region 7).  The a posteriori scaling factor 440 

for region 6 is 1.08 ± 0.06, indicating that the posterior emissions agree well with the a 

priori inventory estimates.  Posterior scaling factors for region 7 and 8 are 1.55 ± 0.17 

and 1.37 ± 0.15 respectively, indicating that the a posteriori emissions are greater than 

the a priori estimates for these two regions.   
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After applying the scaling factors obtained from Bayesian analyses, the posterior 445 

predicted CH4 mixing ratios are compared with measurements in Fig. 10. Fig. 10a shows 

the comparison for results from the ‘source analysis’ with measurements. Compared to 

Figure 8b (before inverse optimization), the fitting slope is closer to unity, and the 

normalized Chi-square value is slightly reduced from 1.17 to 1.11.  This suggests that the 

inverse optimization has slightly improved the agreement between the measured and 450 

predicted CH4 signals but that on order 10% of the variance remains unexplained.  It is 

possible that the apparent underestimation of the errors may be due to positive correlation 

between the error sources that we assumed independent.  Similar results are obtained for 

the region analysis, as shown in Fig. 10b. In both cases, the slopes after optimization are 

still slightly less than unity, likely because of the weight on the a priori scaling factors.  455 

We note that relaxing the a priori uncertainties on the scaling factors from 30% to 50%, 

allows the optimization to adjust the posterior scaling factors further from their a priori 

values. 

4. Discussion and Conclusions 
 460 

Here we discuss the impact of error in PBL height on uncertainty in estimated CH4 

emissions, the implications of our results on estimated CH4 emissions from Central 

California, and conclude with recommendations for additional measurement sites that 

would help quantify CH4 emissions from more regions in California.  

First, the results of this work highlight the need for careful estimation and 465 

minimization of errors in the transport model. Our work is really only a first step in this 

regard because we have only evaluated wind and PBL height errors for one site, albeit at 

the location where the CH4 measurements were made. The comparison between the radar 
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profiler measurements and WRF-STILT predictions of PBL height show a systematic 

overestimation in the WRF-STILT predictions, while the sensitivity test shows that 470 

predicted CH4 emission estimates are sensitive to PBL height.  The error in WRF-STILT 

predictions of PBL height may be a result of imperfect land surface parameterization in 

WRF that does not account for a suppression of PBL height in the Central Valley. 

Possible causes for overestimation of PBL height include the Pacific low over 

California’s interior and low ratios of sensible to latent heat (Bowen ratios) driven by 475 

agricultural irrigation as shown in recent model studies of California [Kueppers et al., 

2007; Lobel and Bonfils, 2008]. Because of the limited amount of PBL height data, the 

present work should be considered a first step toward a more comprehensive analysis 

employing profiler data from additional profiler sites and over longer periods.  We expect 

that this effort will substantially improve the fidelity of the WRF-STILT PBL predictions 480 

and hence accuracy of GHG emission inversions. 

Second, the linear regression estimates suggest that October-December CH4 

emissions from Central California are estimated to be 37 ± 21 % higher than the annually 

averaged California specific a priori inventories.  Examining the source sector results, the 

increase in overall emissions is largely due to the 63 ± 22 (1 σ) % increase in estimated 485 

emissions from livestock. State-wide a priori livestock emission are 9.7 MMT CO2eq (see 

Table 1), which includes 5.6 MMT CO2eq from dairies and 4.1 MMT CO2eq from other 

cattle. Scaling the a priori CH4 emissions from dairies suggests that actual dairy 

emissions are 9.1 ± 1.3 MMT CO2eq. This result is nominally consistent with or slightly 

less than the results of a recent study by Salas et al. [2008], which estimated total CH4 490 

emissions from dairies in CA to be approximately 9.8 MMT CO2eq. We note that the 
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source sector and regional analyses are consistent with each other in that CH4 emission 

from region 8, which is dominated by livestock, shows a large and statistically significant 

increase relative to the a priori inventory. Some other sources also showed smaller but 

not significant differences from inventory estimates. For example, inferred CH4 emissions 495 

from crop agriculture are smaller than the annually averaged inventory, consistent to the 

expectation of higher CH4 emissions from the north-central Valley during the summer 

due to flooded rice agriculture [Salas et al., 2006]. Finally, the “region” analysis shows 

that emissions from regions 6, 7 and 8 are constrained by the measurements.  This is 

because they either surround the tower (i.e., regions 6 and 8) or have a strong influence 500 

on air reaching the tower through prevailing winds from the Bay Area to the Sacramento 

Valley (i.e., region 7). This observation provides an insight into the spatial domain that 

can be effectively investigated with the tower measurements and suggests that a network 

of towers would be required to accurately constrain the multiple regions and air basins in 

California.  In principle, measurements from multiple towers would also be combined in 505 

a larger inverse analysis to provide more stringent constraints on emissions from regions 

that influence several towers. We consider a model-based design of a dedicated tower 

network to be a natural extension of the work described here. 
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Figure Captions 

 

Figure 1. CH4 mixing ratios measured at 91 m (black) and 483 m (red) at the WGC 

tower. Only data (black points) obtained during well-mixed periods (defined as when the 

difference between measurements at 91 m and 483 m are less than 100 ppb) are used in 

this study. 
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Figure 2. The a priori emission maps and regions in California. a-f) are the CA-specific 

surface CH4 emissions from different sources; g) is anthropogenic surface CH4 emissions 

from Edgar 3.2; h) is the sum of maps a-f) specific to California; and i) is an illustration 

of the 13 California sub-regions considered in the region analysis. The tower location is 

marked with a ‘x’. 
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Figure 3. Map grids showing the three model domains used in the meteorological 

predictions, and WGC tower location “X” (-121.49, 38.26) of the measurements.   
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Figure 4. Comparison of well-mixed daytime PBL heights between radar profiler 

measurements and WRF-STILT simulations in October through December 2007.   



  

 41  

41

 

Figure 5. Averaged footprints for mixing ratio measurements made at the tower location 

‘X’ (-121.49, 38.26).  
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Figure 6. Time series of background CH4 mixing ratios, calculated from the NOAA 

global latitudinal average marine boundary layer (red) and the daily minimum measured 

at 483 m (black) a), and the difference of these signals b).  
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Figure 7. Background subtracted CH4 measurements (black line) and predictions (red 

line) from 91 m as a function of time (top), and their difference (bottom) for well mixed 

conditions (black points). 
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Figure 8. Predicted versus measured CH4 obtained (a) using California specific 

emissions without Zi correction, (b) with Zi correction, and (c) using Edgar 3.2 emissions 

with Zi correction. The symbols indicate well-mixed periods when the difference between 

CH4 mixing ratios measured at 91 and 483 m are less than 100 ppb (open circles) and less 

than 50 ppb (triangles), respectively.  
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Figure 9. Inversion estimates for the “source” sector analysis (a) and “region” analysis 

(b).  A priori and posterior scaling factors for the six source sectors and 13 source regions 

are shown with corresponding 68% confidence level uncertainties. 
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Figure 10. Comparison of CH4 mixing ratios between measurements and predictions 

modified using posterior scaling factors obtained from the “source” analysis (a) and 

“region” analysis (b). 
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Tables 

Table 1.  A priori CH4 emissions (MMT CO2eq) from 6 different sources and 13 

California regions shown in Figure 2i. 

CH4   
(MMT CO2eq) 

CP LF LS NG PL WL CA.spec Edgar3.2 

Region 01 0.04 0.02 0.04 0.00 0.02 0.06 0.18 0.92 
Region 02 0.01 0.04 0.15 0.00 0.10 0.02 0.29 1.09 
Region 03 0.01 0.05 0.20 0.01 0.20 0.02 0.45 1.74 
Region 04 0.04 0.10 0.18 0.00 0.17 0.05 0.48 1.56 
Region 05 0.05 0.02 0.39 0.00 0.11 0.07 0.57 1.76 
Region 06 0.02 0.40 0.51 0.36 0.62 0.04 1.81 4.30 
Region 07 0.01 0.74 0.31 0.67 1.50 0.02 3.25 5.95 
Region 08 0.01 0.27 2.06 0.01 0.32 0.02 2.32 3.73 
Region 09 0.02 0.26 0.24 0.13 0.37 0.02 0.96 3.48 
Region 10 0.11 3.75 1.68 0.88 3.62 0.17 10.21 25.14 
Region 11 0.02 0.13 0.19 0.01 0.10 0.02 0.47 1.09 
Region 12 0.06 0.31 3.65 0.31 0.73 0.10 5.16 7.95 
Region 13 0.01 0.06 0.06 0.19 0.19 0.02 0.53 1.07 
Whole CA 0.42 6.15 9.66 2.57 8.03 0.63 27.46 59.78 
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