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THE NON-SOLVABILITY BY RADICALS OF GENERIC
3-CONNECTED PLANAR LAMAN GRAPHS

J. C. OWEN AND S. C. POWER

Abstract. We show that planar embeddable 3-connected Laman graphs are
generically non-soluble. A Laman graph represents a configuration of points on
the Euclidean plane with just enough distance specifications between them to
ensure rigidity. Formally, a Laman graph is a maximally independent graph,
that is, one that satisfies the vertex-edge count 2v − 3 = e together with
a corresponding inequality for each subgraph. The following main theorem
of the paper resolves a conjecture of Owen (1991) in the planar case. Let
G be a maximally independent 3-connected planar graph, with more than 3
vertices, together with a realisable assignment of generic distances for the edges
which includes a normalised unit length (base) edge. Then, for any solution
configuration for these distances on a plane, with the base edge vertices placed
at rational points, not all coordinates of the vertices lie in a radical extension
of the distance field.

1. Introduction

A fundamental problem in Computer Aided Design (CAD) is the formulation of
effective algebraic algorithms or numerical approximation schemes which solve for
the location of points on a plane, given a set of relative distances between them.
For CAD applications the relevant class of configurations are those for which the
distances are just sufficient to ensure that the points are located rigidly with respect
to one another. It is a well-known result of Laman [10] that the graphs underlying
generically rigid configurations (frameworks) have a simple combinatorial descrip-
tion. In our terminology they are the so-called maximally independent graphs, that
is, those satisfying the vertex-edge count 2v − 3 = e together with a corresponding
inequality for each subgraph.

A number of algebraic and numerical methods have been proposed for solving
these plane configurations (Owen [12], Bouma et al. [2], Light and Gossard [11]),
and these have been successfully implemented in CAD programs. Algebraic and
combinatorial algorithms for graphs are particularly desirable for their speed and
robustness and the resulting dramatic efficiency gains. For instances of this see,
for example, the quadratic extension algorithm of [12], the graph decomposition
algorithm of Hopcroft and Tarjan [9], or the combinatorial approach to protein
molecule flexibility in Jacobs et al. [5].
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Current algebraic methods for solving Laman graphs assemble the solution for
complete configurations from the solutions of rigid subcomponents. By introducing
a limited coupling between rigid subgraphs in the form of virtual edges, we have
shown [12] that the solutions for any Laman graph can be constructed from the
successive combination of solutions to certain basic subgraphs (see section 3 below).
The recombination consists of matching the basic subgraphs at appropriate pairs of
vertices and requires only the solution of linear equations. The basic rigid subgraphs
consist of triangles of edges (some edges may be virtual) which are readily solved
using quadratic equations, and graphs which are vertex 3-connected [17]. In this
way the problem of solving general configurations reduces to the problem of solving
configurations which are represented by 3-connected graphs. Determination of 3-
connectivity can be effected rapidly with order O(v + e). (See [9].)

We have previously suggested that with generic distance values a subcompo-
nent which is represented by a 3-connected graph cannot be solved by quadratic
equations (Owen [12]). Configurations that can be solved in this way are also
known as “ruler and compass constructible”, and Gao and Chou [6] have given
a procedure for determining in principle if any given configuration is ruler and
compass constructible. However their analysis is based on the detail of derived
elimination equations, and they do not address the problem of generic solubility or
non-solubility for general classes of graphs.

Despite the importance of algebraic solubility, the intractability or otherwise of
generic 3-connected configurations has not been put on a firm theoretical basis, and
in the present paper we begin such a project.

The solution configurations that we consider are comprised of points in the plane
with a number of specified distances between them. With the natural correspon-
dence of points to vertices and constraint pairs to edges, each constraint system has
an associated abstract graph. It is the nature of the abstract graph that is signifi-
cant for the solubility of the constraint system, and we shall be concerned with the
situation where the abstract graph is a planar graph in the usual graph-theoretic
sense; it can be drawn with edges realised by curves in the plane with no crossings.

We show that a planar 3-connected maximally independent graph with generic
distances is not only not solvable by quadratic extensions but is not soluble by
radical extensions, that is, by means of the extraction of roots of arbitrary order
together with the basic arithmetical operations. In fact our methods make use of
some intricate planar graph theory leading to an edge contraction reduction scheme
which is also of independent interest. The main theorem of the paper can be stated
as follows.

Theorem 1.1. Let G be a maximally independent 3-connected planar graph, with
more than 3 vertices, together with a realisable assignment of generic distances
for the edges which includes a normalised unit length (base) edge. Then, for any
solution configuration for these distances on a plane, with the base edge vertices
placed at rational points, not all coordinates of the vertices lie in a radical extension
of the field of rational numbers.

It follows in particular that the current algebraic schemes already solve all of the
generic configurations with a planar graph that can be solved by radical extensions!
Also, we conjecture that planarity is not necessary for this conclusion.

Although our initial focus on planar graphs was made in order to identify a class
of graphs for which we could complete a proof, we have subsequently found that
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Figure 1. The doublet and K33.

planar Laman graphs are of specific interest in robotics problems, and so even this
partial proof has some merit. See [15], [16] and [7].

Recall that a celebrated and fundamental achievement of classical Galois theory
is that a polynomial of degree 5 or more, with rational coefficients, is not gener-
ally soluble by radical extensions over Q. For a generic version of this, one can
assert that a generic monic polynomial of degree r ≥ 5 is not soluble by radical
extensions of the base field Q({d}), where {d} = {d1, ..., dr−1} are the generic (al-
gebraically independent) coefficients. In this case, with coefficient field understood,
the polynomial is said to be, simply, non-soluble. These facts suggest that if one is
presented, as we are here, with N polynomial equations in N unknowns, with no
apparent step-by-step solution scheme involving at most degree 4 polynomials, then
solutions will not lie in radical extensions of the coefficient field. On the other hand,
possibly working against this intuition is the fact that our constraint equations are
all of quadratic type, in four variables, with a single generic constant term, and
the variables of the equations reflect a (planar) graph structure which may possess
an intrinsic reduction scheme. However our result shows that in fact there can
be no grounds for a solution scheme by radical extraction which embraces more
than the known quadratically soluble graphs. To paraphrase Theorem 1.1, planar
embeddable 3-connected Laman graphs are generically non-soluble.

Let us now outline the structure of the proof, the entirety of which is lengthy and
eclectic, making use of graph theory, elimination theory for the ideals of complex
affine varieties, Galois theory for specialised coefficient fields, and a brute force
demonstration of the non-solubility of a vertex minimal 3-connected maximally
independent planar graph. We refer to this graph, indicated in Figure 1, as the
doublet.

The fact that the generic doublet graph is not soluble by radicals is obtained in
Section 8 by first obtaining an explicit doublet with integral lengths which is not
soluble. Here the Galois groups of univariate polynomials in the elimination ideals
for the constraint equations are computed with some computer algebra assistance.
Generic non-solubility then follows from our Galois group specialisation theorem.

The strategy of the proof is to show that if there exists a graph G which is
maximally independent, planar, 3-connected and radically soluble, then there is
a smaller such graph with fewer vertices. By the minimality of the doublet this
implies that the doublet is radically soluble, which gives the desired contradiction.

There are two aspects to the reduction step. The first of these is purely graph
theoretic and is dealt with in the extensive analysis of Section 4. The main theorem
there shows that a 3-connected planar maximally independent graph G has either
an edge e in a triangle of edges which can be contracted to give a smaller such



2272 J. C. OWEN AND S. C. POWER

graph G/e, or has a maximally independent subgraph which can be replaced by a
triangle to produce a smaller such graph, say H. The second aspect is to connect
the solubility of the (finite) variety of solutions for the distance specified graph G,
with generic distances, to that of the varieties of the resulting smaller graphs. In
the latter case we can simply compare generic constraint equations (see Proposition
8.1) to deduce that

generic G radical ⇒ generic H radical.

However the former case of edge contraction is much more subtle. We approach
this by noting first that the complex variety V (G/e) of solutions for the generic
contracted graph is identifiable with the variety of solutions for G with partially
specialised distances, with the contracted edge distance de specialised to 0 and the
two other edges of the contracted triangle specified as being equal. This gives the
easy implication

specialised G radical ⇒ generic G/e radical.

However we now need the final step, that is, the implication

generic G radical ⇒ specialised G radical.

To obtain this we carefully consider the polynomials which are the generators of
the single variable elimination ideals associated with the constraint equations. We
relate these generators to the corresponding polynomials for the ideals of the spe-
cialised equations. In fact we relate the solubility of these polynomials through a
two-step process for the double specialisation. This is effected in Sections 5, 6. The
proof of the final step is then completed by means of another application of the
Galois group specialisation theorem, Theorem 7.2. This theorem asserts, roughly
speaking, that the Galois group of a polynomial p is a subgroup of the Galois group
of a polynomial P when p derives from P by partial specialisation of coefficients.
We were unable to find a reference for this seemingly classical assertion.

Let us highlight two very important ideas which run through the proof of the
reduction step for edge contractions (Theorem 6.1).

The first of these is that we must restrict our attention to graphs whose constraint
equations, both generic and specialised, have finitely many complex solutions. This
form of rigidity for complex variables is zero dimensionality, and its significance
is explained fully in the next section. It guarantees that univariate elimination
ideals for the constraint equations are generated by univariate polynomials. Un-
fortunately, to maintain zero dimensionality our contraction scheme to the doublet
must operate entirely in the framework of maximally independent graphs, and it is
this that necessitates the extended graph theory of Section 4.

The second important idea is that the constraint equations happen to be of
parametric type. As is well known this means that various associated complex
affine varieties are irreducible, and in particular (Theorem 2.8) this is so for the
so-called big variety in which the coordinates of vertices and the distances of edges
are viewed as complex variables. With irreducibility present we can arrange the
univariate generators of single variable elimination ideals to be irreducible over the
appropriate field (Theorem 5.2), and so either all roots of the generator are radical
or none are. Now it is the case that not every root of the generator need derive
from a solution of the constraint equations. Thus the fact that either all roots or
no roots are radical allows us to compare the solubility or otherwise of G and G/e
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by examining the solubility or otherwise of these univariate generators (Theorem
5.3).

Finally, we remark that the assumption that graphs have a planar embedding is
used to guarantee that there is a reduction scheme to a minimal graph based on
contracting edges. We expect that there are more general reduction schemes which
terminate in either the doublet or the non-planar graph K33. Also we are able
to show that K33 is generically non-soluble, and this gives further support to our
conjecture that general 3-connected maximally independent graphs are non-soluble.

The results of this article were announced at the Fourth International Workshop
on Automated Deduction in Geometry in September 2002 [13]. We thank Walter
Whiteley for helpful discussions and for directing our attention to the paper of
Asimov and Roth [1], and we thank the referee for some helpful clarifications.

2. Constraint equations and algebraic varieties

We begin by formulating the main problem which is to determine the complex
algebraic variety arising from the solutions to the constraint equations of a distance
specified graph.

Let G = (V, E) be a graph with vertex set V and edge set E. We are concerned
with the problem of determining coordinates (xv, yv) for each vertex v so that for
some preassigned distances for the edges e in E, we have solutions to the set of
equations

fe = 0, e ∈ E,

where, for the edge e = (vw),

fe = (xv − xw)2 + (yv − yw)2 − de.

The distances de are taken to be non-negative real numbers, representing the square
of the edge lengths of realised graphs.

It is convenient to refer to the set {fe} as a set of (unnormalised) constraint
equations for the graph. Although in practice one is interested primarily in the real
solutions in R2 for the vertices, which in turn account for the Euclidean realisations
of the distance specified graph, it is essential to our approach that we consider all
complex solutions. One reason for this is that solutions always exist and we can
employ the elimination theory for complex algebraic varieties.

Bearing in mind the multiplicity of solutions associated with Euclidean isome-
tries we assume that for some base edge b = (vw) in E we have db = 1 and the
specification (xv, yv) = (0, 0), (xw, yw) = (1, 0). This gives rise to a set of normalised
constraint equations {fe}. If, in addition, the distances are algebraically indepen-
dent, then we say that {fe} is a set of generic constraint equations for G. We shall
generally assume that distance sets and sets of constraint equations are normalised.

Let (G, {de}) be a graph with normalised distance specification, with n vertices,
and let xi, yi, 1 ≤ i ≤ n − 2, be the coordinate variables for the non-base ver-
tices. We write V ({fe}) for the complex affine variety in C2n−4 determined by the
corresponding set of constraint equations {fe}.

Definition 2.1. The distance specified graph (G, {de}) is said to be zero dimen-
sional if the complex algebraic variety V ({fe}) is zero dimensional, that is, V ({fe})
is a finite non-empty set.
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There is a connection between our general formalism and that of the theory of
rigid frameworks, and in particular the notion of an independent graph is taken
from this context.

Definition 2.2. Let G be a graph with vG vertices and eG edges. Then G is said to
be independent if for every vertex induced subgraph H, we have 2vH −eH ≥ 3. The
graph G is said to be maximally independent if it is independent and in addition
2vG − eG = 3.

The graphs for which generic distances give zero-dimensional varieties admit a
simple combinatorial description, namely they are precisely the maximally inde-
pendent graphs. Such graphs are also known colloquially as Laman graphs since
this equivalence follows readily from a celebrated theorem of Laman on the char-
acterisation of rigid frameworks. In fact we shall only need one direction, proved
in Theorem 2.4, namely that maximally independent graphs with generic distances
are zero dimensional.

Let us indicate more fully the nature and significance of zero dimensionality.
In the theory of bar-joint structures [19] a configuration is called generic if the

coordinates of the points are algebraically independent and real. This implies that
the distances are also algebraically independent and real. The usual definitions of
rigidity (no continuous path of motion) and infinitesimal rigidity (maximal rank
Jacobean) refer to the properties of a single point in the real variety defined by
the constraint equations. By contrast our definition of zero dimensionality refers
to all the zeros of the variety and admits complex values for the coordinates. It
is well known that for generic Laman graphs rigidity and infinitesimal rigidity are
equivalent [1], and we show in Theorem 2.4 that these imply zero dimensionality.

For non-generic distances however, zero dimensionality is a stronger requirement
than (real) rigidity. To appreciate this consider the maximally independent graph
in Figure 2 which we view as a graph with normalised generic distances {de}. In
particular these distances admit real solutions such as the one realised by Figure
2. The two arrowed edges suggest a specialisation of {de} to a new distance set
{d′e} for the same graph in which the arrowed edges have length zero and two pairs
of edges are of equal length. If the points of the variety are required to be real,
then the specialisation of both of the arrowed distances to be zero implies that the
coordinates of their end points are exactly the same. The real zeros of this semi-
generic configuration thus correspond exactly with the zeros of the generic doublet
(which is rigid at all of its zeros by Laman’s theorem). However if the coordinates
of the points can be complex, then the degeneracy of the arrowed edge in the centre
of the graph requires only that its end points have (x1 − x2)2 + (y1 − y2)2 = 0,
which implies only that (x1 − x2) = ±i(y1 − y2). In particular the tail vertex
(x1, y1) of this arrowed edge can be placed in complex coordinates to realise its
remaining constraint. (The end points of the arrowed edge at the lower left are in
fact constrained to be identical because the zero length edge is in a triangle of edges.)
Plainly the doublet graph becomes flexible in real coordinates when the distance
constraint at the centre is removed. For these configurations of the vertices we can
choose (x1, y1) in complex coordinates to realise the remaining constraint for the
original distanced graph. In this way it follows that its variety is one dimensional.
In fact the specialised equations determine a complex one-dimensional variety in
C12 which meets the real subset R12 in a finite set.
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Figure 2. Specialisation of a quadratically soluble graph onto a doublet.

The graph in Figure 2 is not 3-connected, since there is a vertex of degree 2. In
fact it is quadratically soluble in the sense expressed in Theorem 3.2. However the
contracted graph (the doublet) is 3-connected and not quadratically soluble, as we
will show in a subsequent section.

These observations show that in any reduction scheme for the proof involving
edge contractions and their resulting non-generic distance sets it is necessary to
work with the zero-dimensional settings rather than with rigidity in the usual sense.
See [1] and [20] for various discussions of rigidity for frameworks.

The following general theorem will be used in the proof of Theorem 2.4. By a
specialisation of the distance set {de} in Cn (generally an algebraically independent
set) we mean a set {d′e} in which some or all of the de have been replaced by rational
numbers.

Theorem 2.3. Let V be a complex affine variety in Cn defined by polynomial
equations of the form

fi = hi({xj}) − di = 0, 1 ≤ i ≤ n,

where {hi} are polynomials with rational coefficients in the complex variables {xj} =
{x1, ..., xn}, and where {di} is a set of constants in C. If J is the n × n matrix
J = (Jij) = (dfi/dxj) and det(J) is not identically zero as a polynomial in {xj},
then

(1) The coordinates {xj} of any zero of V are algebraically independent as a set
if and only if the constants {di} are algebraically independent as a set.

(2) If {di} are algebraically independent, then dim(V ) = 0.

Proof. Suppose that {di} are algebraically dependent; then there is some polyno-
mial p in n variables with p(d1, . . . , dn) = 0. Define the polynomial q by q({xj}) =
p(h1({xj}), . . . , hn({xj})). Then q is not the zero polynomial because det(dhi/dxj)
is not zero, and so q has a point where it evaluates non-zero. On the other hand it
is clear that q vanishes at any zero of V .

Conversely, suppose that {xj} are algebraically dependent. Then there is some
polynomial q in n variables with q({xj}) = 0. Consider the ideal

I = 〈f({di}, {xj}), q({xj})〉
and its variety W in C2n (where we abuse notation with d1, . . . , dn variables). This
variety has dimension n − 1 because it is isomorphic to V (〈q({xj})〉) in Cn under
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the isomorphism ({di}, {xj}) → {xj}. On the other hand if the elimination ideal
I∩C[{di}] is empty, then it follows from the closure theorem (see Theorem 5.1) that
W has dimension at least n. This proves the existence of a non-zero polynomial
p({di}) in I. This polynomial evaluates to zero on the specific distances associated
with the point {xj} since the generators of I vanish on these points.

Any algebraically independent set {xj} defines an algebraically independent set
{di} for which V is not empty. It follows that V is not empty for all algebraically
independent {di} because V is empty only if the ideal of V contains a constant
element of the field Q({di}). Also, any zero of V for algebraically independent {di}
has algebraically independent coordinates {xj}, and so every point of V has det(J)
non-zero. It follows that dim(V ) = 0. �

The next theorem now follows from Laman’s theorem.

Theorem 2.4. Let G be a maximally independent graph with e edges and nor-
malised constraint equations {fi}, and let V be the associated variety in Ce−1 for
algebraically independent {d}. Then dim(V ) = 0.

Proof. The normalised constraint equations have the form required by Theorem 2.3
above while Theorem 6.5 of [9] implies that det(J) is not zero as a polynomial in
{xj}. �

We shall use elimination theory to study the varieties arising from various ideals
generated by the constraint equations. In order to keep track of the nature of
solutions (whether they are radical or not) it will be important, as we have intimated
in the Introduction, to identify generators of one variable elimination ideals which
are irreducible polynomials. Theorem 2.8 below will be needed to achieve this.

Definition 2.5. Let I be an ideal in the polynomial ring k[x1, ..., xm] over a field
k. Then I is prime if whenever fg is in I, then either f is in I or g is in I.

Proposition 2.6. If I is a prime ideal in k[x1, ..., xm] and if {xi1 , ..., xit
} is a

subset of {xi}, then the elimination ideal

I ∩ k[xi1 , ..., xit
]

is also a prime ideal.

We now make a simple but important observation. The constraint equations for
a graph are a parametric set when viewed as equations in the vertex coordinate
variables and the distances. Indeed they are parametric in the vertex coordinate
variables. From this it follows that various associated complex algebraic varieties
are irreducible. For a discussion of such irreducibility see [4]. Thus we have the
following general theorem which in turn gives the irreducibility of what we call the
big variety Vb.

Theorem 2.7. Let x = {x1, . . . , xm}, d = {d1, . . . , dr} be indeterminates defining
the polynomial ring Q[x, d]. Let fi(x, d) be polynomials of the form hi(x) − di, 1 ≤
i ≤ r, and let I be the ideal of polynomials in Q[x, d] which vanish on the variety
determined by {fi : 1 ≤ i ≤ r}. Then I is a prime ideal.

Theorem 2.8. Let G be a maximally independent graph with n vertices and let {f}
be the normalised constraint equations for G for the distance set {de} = {d1, ..., dr}
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(where r = |E(G)|−1). Let Vb ⊆ C2n−4+r be the complex affine variety determined
by {f} as polynomial functions belonging to

Q[d1, ..., dr, x1, ..., xn−2, y1, ..., yn−2].

Then Vb is irreducible.

3. Connectedness and quadratic solvability

The most tractable Laman graphs from the perspective of solvability are those
which we term quadratically solvable. These are graphs whose zeros can be obtained
by the successive solving of a sequence of quadratic equations where the coefficients
in an equation may depend on the solution to preceding equations in the sequence.
In this section we describe an (infinite) class of graphs which are quadratically
solvable. Our conjecture that a generic 3-connected graph is not quadratically
soluble implies that this class exhausts all such graphs.

Definition 3.1. Let G be a maximally independent graph and let V be the variety
defined by the constraint equations with generic normalised distances {de}.

(i) The graph G is said to be (generically) quadratically soluble (or simply QS)
if there is a Galois extension of the base field Q({de}) with degree 2n for some n
which contains every coordinate of every point of V

(ii) The graph G is said to be soluble by radicals (or RS), or, simply, soluble, if
every such coordinate lies in a radical extension of the base field.

One could equally well define what it means for a specific distance-specified
graph to be QS or RS. For example it would be of interest to know if particular
graphs with integral distances are soluble. Such problems lead rapidly into arith-
metical problems associated with multi-variable diophantine analysis and, with the
exception of some considerations of integral doublets, we shall not address such
non-generic issues.

The field Q({de}) is the field of fractions of polynomials in the distances. An
irreducible quadratic polynomial over this base field determines a field extension of
degree 2, and so a sequence of n irreducible quadratic polynomials, with coefficients
in the new fields, give rise to a final field extension of degree 2n. (In fact any Galois
field extension of this degree arises in this way.) It follows that if a maximally
independent planar graph G is constructed through a sequence of triangles joined
at common edges, then G is QS. However, as is evident from Figure 3, not all QS
graphs are triangulated in this way.

Recall that a graph G is n-connected if there does not exist a separation set with
n − 1 vertices. Thus the doublet is 3-connected, while the graph of Figure 3 is 2-
connected. The following sufficient condition for quadratic solubility was obtained
by Owen [12].

Theorem 3.2. A Laman graph is (generically) QS if it admits a reduction to tri-
angle graphs by a process of repeated separation at two-point separation pairs. If the
separation pair is joined by an edge, then this edge is duplicated into each separation
component. Otherwise, a new virtual edge is added between the separation pair in
all but one of the separation components (the non-rigid ones).

In the statement of this theorem, a triangle graph is the complete graph with
three vertices and three edges. Each edge may be either an edge of the original
graph or a virtual edge deriving from a previous separation. It is straightforward to
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Figure 3. A QS graph and its reduction to triangles.

show that after the addition of the virtual edges following a separation each of the
components is again a Laman graph with fewer vertices than the original. Clearly
this separation procedure terminates when a component graph is either a triangle
graph or is a 3-connected Laman graph.

If the procedure terminates in only triangle graphs, then a zero for the composite
graph is obtained by solving for the triangles in the reverse order to which they
were created. It is clear that there are at least two triangle graphs consisting
of original edges (they arise from the final separation) which can be solved by
quadratic equations. The triangles are positioned together sequentially (using rigid
body motion which involves only linear equations) in the reverse order to which
they were created. The distance value to be used for any virtual edge arising in the
reverse order solving can be measured from points already computed since at least
one of the components created at the separation pair corresponding to the virtual
edge did not have a virtual edge added, and the solving order can be arranged so
that this component is computed first.

Note that the graph in Figure 3 can be reduced to a collection of triangles in
the manner of Theorem 3.2. The central triangle arises from new virtual edges
and numbers represent a possible solving sequence. Graphs which are not algo-
rithmically reducible in this way of necessity gives rise to a Laman graph which
is 3-connected. Thus the main theorem of the present paper provides a converse
to Owen’s theorem in the case of graphs with a planar embedding; algorithmic
reducibility of a planar CAD graph is a necessary condition to be (generically) QS
or RS.

An alternative non-recursive way to express a necessary and sufficient condition
for quadratic solvability is obtained by introducing the notion of a rigidly induced
graph as follows.

Definition 3.3. A graph R is a rigidly induced graph of G if the vertices of R
are a subset of the vertices of G and every edge (xy) of R corresponds either to
an edge of G or to a maximally independent subgraph Gxy of G which contains
the vertices x and y. Moreover the vertex sets V (Gxy)\{x, y} are required to be
pairwise disjoint.

Now the absence of certain rigidly induced graphs provides a sufficient condition
for a graph to be quadratically (and thus radically) solvable, and our conjecture
following Theorem 1.1 asserts that this condition is also necessary.



THE NON-SOLVABILITY OF GENERIC 3-CONNECTED GRAPHS 2279

Theorem 3.4. (i) A generic Laman graph is QS (and thus RS) if it has no rigidly
induced graph that is 3-connected and maximally independent.

Furthermore, the following two assertions are equivalent:
(ii) A generic Laman graph is QS (respectively RS) only if it has no rigidly

induced graph that is 3-connected and maximally independent.
(iii) Every generic 3-connected Laman graph is not QS (not RS).

Proof. (i) We claim that every graph R which occurs in the recursive algorithm
of Theorem 3.2 is a maximally independent, rigidly induced graph of G. Suppose
that after a number of separations every graph R is a rigidly induced graph of G
and suppose that R separates at the vertex pair x, y into components Ri. If (xy)
is an edge of G, then each Ri is also a maximally independent, rigidly induced
graph of G. Otherwise some component Rj is maximally independent, and all
of the other components are maximally independent after the addition of a new
virtual edge (xy) which can be associated with the component Rj . All of the
Ri\{xy} are disjoint and remain disjoint when the subgraphs corresponding to all
of their existing virtual edges are included. Thus all the Ri plus new virtual edges
are maximally independent, rigidly induced graphs of G, and the claim follows by
induction.

If G has no 3-connected, maximally independent, rigidly induced graphs, then
none of the graphs in Theorem 3.2 can be 3-connected, so the algorithm terminates
on triangle graphs and G is QS.

(iii) implies (ii). If G has a generic, maximally independent subgraph Gxy, then
by Theorem 2.3 the distance |x − y| is generic over Q, and so to any maximally
independent, 3-connected rigidly induced graph of G there corresponds a similar
3-connected maximally independent graph with generic edges which is certainly QS
(RS) if G is QS (RS). This contradicts (iii).

(ii) implies (iii) is trivial because every graph induces itself as a rigidly induced
graph. �

4. 3-connected maximally independent graphs

We now embark on a graph-theoretic analysis of maximally independent, 3-
connected, planar graphs. We shall prove the following main graph reduction the-
orem.

Theorem 4.1. Let G be a 3-connected, maximally independent, planar graph with
|G| > 6. Then G has either

(i) an edge which can be contracted to give a 3-connected, maximally indepen-
dent planar graph with |G| − 1 vertices, or

(ii) a proper vertex-induced subgraph with three vertices of attachment which is
maximally independent.

We begin by stating some definitions and properties from graph theory.
The order of a graph G, denoted |G|, is the number of vertices in G. The degree

of a vertex v in G, denoted deg(v), is the number of edges of G which are incident
to v or equivalently the number of neighbours of v in G. An edge joining vertices
x and y is denoted by (xy).

It is assumed throughout this section that all graphs G have |G| ≥ 2, and if H
is described as a subgraph of G, then also |H| ≥ 2, unless it is explicitly stated
otherwise. A vertex-induced subgraph H of G has the additional property that if
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vertices x and y are in H and the edge (xy) is in G, then the edge (xy) is also in
H.

Let H be a graph or a subgraph with v vertices and e edges. Define the freedom
number of H, written free(H), to be 2v − e − 3. A graph G is independent if
all its subgraphs H have the property free(H) ≥ 0. The graph G is maximally
independent if it is independent and free(G) = 0.

The graph G\e is the graph G with the edge e deleted. If G is independent, then
G\e is also independent and free(G\e) = free(G) + 1.

The graph G/e is the graph obtained from G by contracting the edge e. This
means that if the edge e joins vertices x and y, then G/e is obtained from G by
deleting the edge e, merging the vertices x and y, and reducing any resulting double
edges to single edges. Any such double edge must derive from a 3-cycle in G that
contains the contracted edge e. Thus |G/e| = |G| − 1 and if the edge e is in a total
of c 3-cycles of G, then free(G/e) = free(G) + c − 1.

An edge e in an independent graph G is said to be contractible if G/e is indepen-
dent and free(G/e) = free(G). A necessary condition for e to be contractible is
thus that it is in exactly one 3-cycle of G. However, this condition is not sufficient
as we show in Lemma 4.5 below.

If H is a vertex-induced subgraph of G, then G\H is the subgraph of G induced
by the vertices of G that are not in H. Here |G\H| < 2 is not excluded. Thus
|G| = |H| + |G\H|. The vertices of H that have neighbours in G\H are the
vertices of attachment of H in G. A vertex-induced subgraph H with v vertices of
attachment is described as proper if |H| > v. An internal vertex of H is a vertex of
H that is not a vertex of attachment. An internal edge of H is an edge that joins
to at least one internal vertex.

All vertices v of a 3-connected graph G with |G| > 3 have deg(v) ≥ 3. The 3-
cycle is the only 3-connected graph with |G| < 4. If G is 3-connected and |G| > 3,
then any pair of vertices in G are joined by at least 3 paths which are internally
disjoint. We call such paths independent.

We shall say that a graph is planar if it has a planar embedding. A planar
embedding of a 2-connected graph G, |G| > 2, divides the plane into disjoint regions
called faces. One of these faces includes the points at infinity. Each face is bounded
by a cycle of edges in G.

There are certain subgraphs whose occurrence is enough to ensure that the graph
resulting from an edge contraction is definitely not 3-connected. The simplest of
these consists of a 3-cycle connected into the remaining graph by exactly three
edges as shown in Figure 4. We call this subgraph the limpet.

If a graph G contains a limpet, then G also contains a subgraph H with three
vertices of attachment in G, where H is the subgraph induced by all vertices of G
that are not in the 3-cycle of the limpet. Clearly, |H| = |G|−3 and H has 6 less edges
than G, so if G is maximally independent, then H is also maximally independent.
If G = 6, then G is the doublet. If |G| > 6, then H is a proper vertex-induced
subgraph of G with 3 vertices of attachment that is maximally independent.

The blocking role of the limpet should be clear by observing that attaching the
limpet by two vertices of attachment to any contractible edge in a 3-connected
graph and assigning the third vertex of attachment to any other vertex gives a
3-connected graph for which the result of contracting that same edge is definitely
not 3-connected. This is shown in Figure 5. By adding limpets into a graph in this
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Figure 4. The limpet subgraph.

Figure 5. Adding a limpet subgraph to an edge contraction.

way it is easy to generate graphs, all of whose contractible edges produce graphs
that are not 3-connected. Case (ii) of Theorem 4.1 is needed to deal with limpets.

We are now in a position to prove the main theorem of this section using the
sequence of lemmas proved below. To give some motivation to these lemmas we
begin with the proof of the main theorem.
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Proof of Theorem 4.1. Suppose that G has no proper vertex-induced subgraph with
three vertices of attachment that is maximally independent.

Assume for the sake of a proof by contradiction that G contains no edge e such
that G/e is 3-connected and maximally independent.

G is not the doublet because |G| > 6, and G has no limpets because it is maxi-
mally independent and has no proper vertex-induced subgraph which is maximally
independent with three vertices of attachment.

By Lemma 4.7, G has no degree-3 vertex on a 3-cycle.
By Corollary 4.12, G contains an edge e joining vertices x and y such that G/e

is maximally independent. Then G/e is not 3-connected, by the assumption, and
by Lemma 4.17, G has a 3-vertex separation set (x, y, w) for some w, and this set
separates G into 2 proper components H1 and H2. Let H = H1 if |H1| < |H2|,
otherwise H = H2. Now chose e in G which gives a minimal value for |H|.

By Lemmas 4.17 and 4.16 , the subgraph H contains an edge k which is internal
to H and which is contractible as an edge in G. Thus G/k is not 3-connected
by the assumption. By Lemma 4.18, k generates a 3-vertex separation set which
has one proper component properly contained in H. This contradicts the minimal
condition on |H| and completes the proof. �

This proof requires a number of lemmas which deal with the effect of an edge
contraction on both maximal independence and 3-connectivity. The apparent com-
plexity of the proof, including the lemmas, is a result of the need to find edge
contractions which maintain both of these properties simultaneously.

The first three lemmas give some useful properties of maximally independent
graphs and subgraphs.

Lemma 4.2. Let H1 and H2 be maximally independent subgraphs of an independent
graph G with |H1 ∩ H2| ≥ 2. Then H1 ∪ H2 and H1 ∩ H2 are both maximally
independent.

Proof. H1∪H2 and H1∩H2 are both subgraphs of G so they are both independent.
Let H1, H2, H1 ∪H2 and H1 ∩H2 have v1, v2, vu, vi and e1, e2, eu, ei vertices and
edges respectively. We have

2v1 − e1 − 3 = 0, 2v2 − e2 − 3 = 0, vu = v1 + v2 − vi, eu = e1 + e2 − ei.

Thus free(H1 ∪ H2) = 2vu − eu − 3 = 3 − 2vi + ei = − free(H1 ∩ H2).
Since both H1∪H2 and H1∩H2 are independent they both have freedom numbers

greater than or equal to zero and thus equal to zero. �

Lemma 4.3. Let G be a maximally independent graph. Then G is 2-connected.

Proof. Suppose to the contrary. Then there exist vertex-induced subgraphs H1 and
H2 such that G = H1 ∪ H2 and |H1 ∩ H2| = 1. Using the same notation as for
Lemma 4.2 we have

free(G) = 2vu − eu − 3 ≥ 2(v1 + v2 − 1) − e1 − e2 − 3 = 1,

which contradicts the fact that G is maximally independent. �

Lemma 4.4. Let G be a maximally independent graph. Then for any edge e the
contraction G/e has at most one separation vertex.
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Proof. Suppose the edge e joins vertices (x, y) in G which become the vertex w
in G/e. Then any separation vertex of G/e which is different from w is also a
separation vertex of G contrary to Lemma 4.3. �

The next lemma gives a useful criterion for an edge to be contractible.

Lemma 4.5. Let G be an independent graph. An edge e = (xy) of G is contractible
if and only if

(i) e is on exactly one 3-cycle (x, y, z) of G, and
(ii) there is no maximally independent subgraph R of G, |R| ≥ 3, such that x

and y are in R and z is not in R.

Condition (i) can be replaced with the weaker condition

(i′) e is on one or more 3-cycles of G.

Proof. By definition e is contractible if and only if free(G/e) = free(G) and G/e
is independent. We show that the first of these conditions is equivalent to (i) and
the second equivalent to (ii).

If e is on c 3-cycles, then free(G/e) = free(G)+c+1−2, so free(G/e) = free(G)
if and only if c = 1.

Now suppose (i) is true and (ii) is false. Then there is a maximally independent
subgraph R of G such that x,y are in R and z is not in R. We have free(R) = 0
and R contains e, but not z. Thus free(R/e) = −1 (because R contains no 3-cycle
containing e), so G/e is not independent.

Conversely, suppose G/e is not independent. Then G/e contains a subgraph, say
R/e, with free(R/e) = −1 (since contracting an edge reduces free(H) by at most
1 for any subgraph H of G). R/e must contain the edge e (or R/e would also be
a subgraph of G), so R/e does indeed derive from a subgraph R in G following
contraction of e. Thus R contains vertices x and y and free(R) = 0. The vertex z
cannot be in R because this would give free(R/e) = 0.

Clearly (i) implies (i′). Also (i′) and (ii) imply (i) because if e is on two or more
3-cycles, then one of these contains a vertex w different from z and the 3-cycle
(w, x, y) gives a subgraph R which violates (ii). �

The next lemma is standard graph theory [3] and describes what happens if the
result of an edge contraction in a 3-connected graph is not 3-connected.

Lemma 4.6. Let G be a 3-connected graph. For any edge e joining vertices x and
y, either G/e is 3-connected or G has a 3-vertex separation set consisting of x, y
and another vertex w of G.

Proof. Let v be the vertex in G/e that results from contracting e and identifying
x and y in G. If G/e is not 3-connected, then it contains a separation pair (a, w)
and a = v because G is 3-connected. Thus (v, w) separates G/e for some w, and
(x, y, w) separates G. �

The next lemma identifies a class of 3-connected independent graphs that always
have a contractible edge whose contraction gives a 3-connected graph. These are
graphs that contain a 3-cycle with one or two vertices with degree 3. Eliminating
these graphs is helpful because the remaining graphs with a 3-cycle either contain
a limpet or have all vertices on the 3-cycle with at least two additional neighbours.
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Figure 6. G/(xy) is 2-connected. The separation set (x, y, w) in
G gives two separation components.

Lemma 4.7. Let G be a 3-connected, independent graph with no contractible edges
whose contraction gives a 3-connected graph. Then any 3-cycle in G either has all
its vertices with degree 3 or none of its vertices with degree 3.

Proof. Suppose that G contains a 3-cycle (x, y, z) with deg(x) = 3. Let the third
neighbour of x be t. We will show that deg(y) = deg(z) = 3.

We claim that both (xy) and (xz) are contractible.
Suppose that neither (xy) nor (xz) is contractible. By Lemma 4.5 there is a

maximally independent subgraph Rxy containing (xy) and not containing z with
|Rxy| ≥ 3, and a maximally independent subgraph Rxz containing (xz) and not
containing y with |Rxz| ≥ 3. By Lemma 4.3 the vertex x has at least two neigh-
bours in Rxywhich must be y and t, and at least two neighbours in Rxz which
must be z and t. Thus Rxy ∩ Rxz contains the vertices x and t, so Rxy ∪ Rxz is
maximally independent by Lemma 4.2. Then the subgraph Rxy ∪ Rxz + (yz) has
freedom number −1 (since (yz) is in neither Rxy nor Rxz) which contradicts the
independence of G.

Now suppose that (xy) is contractible and that (xz) is not. Then G/(xy) is not
3-connected, so there exists a separation set (x, y, w) of G. Since G is 3-connected
each separation component contains a vertex connected to x, so there are just two
separation components Cz containing z and Ct containing t, and w is distinct from
t and z. This is shown in Figure 6. Then all paths from x to z in G include the
edge (xz) or include the vertex y or include both the vertices t and w. If (xz) is
not contractible there exists maximally independent Rxz which includes x and z
but not y. But then all paths from x to z in Rxz/(xz) include both t and w, so t
and w are two separation vertices for Rxz/(xz) which contradicts Lemma 4.4.

We can now suppose that both (xy) and (xz) are contractible and neither G/(xy)
nor G/(xz) is 3-connected. Then G has a separation set (x, y, w) with a component
Ct which contains the vertex t and not the vertex z. G also has a separation set
(x, z, w′) with a component C ′

t which contains the vertex t and not the vertex y.
Since t and y are in different components of the separation set (x, z, w′), all paths

from t to y contain either x, z or w′. The vertex set (x, y, w) also separates G and
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Figure 7. If (x, z, w′) is also a separation set of G, then w′ is in
Ct and w′ is the only neighbour of y in Ct.
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Figure 8. Demonstration that (y, z) is a separation pair of G if
the contractions of both (x, y) and (x, z) are not 3-connected.

one component Ct contains t (and not z), so there is a path from t to y which lies
inside Ct. Neither z nor x is inside Ct, so w′ is in Ct and w′ separates y from t
inside Ct. Since G is 3-connected this implies that the vertex y is connected by the
single edge (yw′) to w′ in Ct. Similarly w is in C ′

t and the vertex z is connected by
the single edge (zw) to w in C ′

t. This is shown in Figure 7 and Figure 8.
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Suppose that y has a neighbour v in addition to x, z and w′. Then v is not
in Ct and v is not in C ′

t, because y is not in C ′
t, and v and y are both distinct

from (x, z, w′). Since t is in Ct all paths from v to t include one on the separation
set (x, y, w) before any other vertices of Ct. The vertex x is connected only to z
outside Ct, so a path including x includes z. The vertex w is separated from v by
the separation set (x, z, w′), and of these vertices only z is outside Ct, so a path
including w includes z. Then all paths from v to t include either y or z, which
contradicts the fact that G is 3-connected.

We conclude that deg(y) = 3 and similarly deg(z) = 3. �

The remaining lemmas make use of planarity in order to simplify certain decom-
positions and to ensure a supply of contractible edges. The first of these lemmas
makes use of the Kuratowski theorem [3] to simplify the number of separation
components if the result of contracting an edge is not 3-connected.

Lemma 4.8. Let G be a 3-connected, planar graph with a 3-vertex separation set.
Then this separation set divides G into exactly 2 proper components.

Proof. The separation set divides G into at least 2 proper components by definition.
Suppose for a contradiction that there are 3 or more proper separation components.
Then we can identify 3 vertices w1, w2, and w3, each internal to a different sepa-
ration component. Let the separation set be the vertices v1, v2 and v3. There are
paths connecting each of the wi to each of the vj. By Menger’s theorem, the 3 paths
from a wi to each of the three vj can be selected to be internally disjoint because
G is 3-connected and the paths from different wi to any vj are internally disjoint
because they are in different separation components. Thus G contains K(3, 3) as a
topological minor contrary to Kuratowski’s theorem. �

The next two lemmas lead to Corollary 4.12 that states that every maximally
independent, planar graph has at least 3 contractible edges. Lemma 4.11 is stronger
than is required for this corollary, but the greater detail will be useful subsequently.

Lemma 4.9. Let G, |G| > 2, be a 2-connected planar graph with freedom number
f . Then every planar embedding of G has the property

2(f − 1) =
∑

i

(ni(i − 4))

where the embedding has ni faces with i edges.

Proof. It is a standard result of graph theory [3] that every planar embedding of
a 2-connected graph divides the plane into disjoint faces with each edge in exactly
two faces. Let G have n vertices and e edges and let the planar embedding have F
faces. From Euler’s relation F +n = e+2 and from the definition, f = 2n− e− 3,
so f = e − 2F + 1. By definition F =

∑
i(ni). Each edge is in 2 faces of the

planar embedding so 2e =
∑

i(i(ni)), and the result follows by substituting into
f = e − 2F + 1. �

Corollary 4.10. A maximally independent, planar graph G, |G| > 2, contains at
least one 3-cycle.

Proof. A maximally independent graph has f = 0 and is 2-connected by Lemma
4.3. Thus in Lemma 4.9 n3 ≥ 2, and the boundary of one of these faces is a 3-cycle
of G. �
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Lemma 4.11. Let G be an independent, planar graph which contains a 3-cycle
(x, y, z), and let (i, j, k) be any permutation of (x, y, z).

(i) There exists a maximally independent subgraph Rij of G with i and j in Rij

and k not in Rij, such that Rij contains an edge eij which is contractible
in G, and

(ii) Rij ∩ Rjk = j.

Proof. Define the Rij as follows: If the edge (ij) is contractible, then Rij = (ij).
Otherwise, by Lemma 4.5 let Rij be a maximally independent subgraph containing
i and j but not k with |Rij | ≥ 3. Additionally take Rij to be a maximal subgraph
with these properties (maximal in the sense that there is no subgraph F with these
properties and H ⊆ F ).

With this definition it is clear that j is in Rij ∩ Rjk. If |Rij ∩ Rjk| ≥ 2, then
free(Rij ∪ Rjk) = 0 by Lemma 4.2. The vertices i and k are in Rij ∪ Rjk but
the edge (ik) is not in Rij ∪ Rjk, so the subgraph Rij ∪ Rjk + (ik) of G would
have freedom number −1 which contradicts the fact that G is independent. Thus
|Rij ∩ Rjk| = 1 and Rij ∩ Rjk = j.

It remains to show that each Rij contains a contractible edge which we do by
induction. This is true for |G| = 3. Assume it is true for |G| = N .

Since every maximally independent planar graph contains a 3-cycle (Corollary
4.10), it follows from the hypotheses that every maximally independent, planar
graph R with 3 ≤ |R| ≤ N has at least 3 contractible edges. Thus if (ij) is not
contractible, then each Rij contains at least 3 edges which are contractible as edges
in Rij and one of these, say edge eij , is different from (ij).

We claim that each eij is also contractible as an edge in G. Otherwise there exists
a maximally independent subgraph H in G, not contained in Rij but also containing
eij . In fact H ∩ Rij = eij , because otherwise H ∩ Rij would be a maximally
independent subgraph of Rij (by Lemma 4.2), containing eij with |H ∩ Rij | ≥ 3,
which contradicts the contractibility of eij in Rij . Now H ∪ Rij is also maximally
independent by Lemma 4.2 and |H∪Rij | > |Rij |, which contradicts the maximality
of Rij unless k is in H ∪Rij . Suppose k is in |H ∪Rij |. Then the independence of
the subgraph H ∪Rij + (ik) + (jk) in G requires (ik) and (jk) in H (since k is not
in Rij). But i and j are in Rij and H ∩ Rij = eij , which would require eij = (ij),
contrary to the assumption that eij and the edge (ij) are distinct. �
Corollary 4.12. Every maximally independent, planar graph G has at least 3
contractible edges.

Proof. This was proved in Lemma 4.11. �
The next lemma guarantees the existence of a contractible edge in certain sub-

graphs of an independent, planar graph.

Lemma 4.13. Let H be a subgraph with 3 vertices of attachment in an independent,
planar graph G. If H contains a 3-cycle with at least one vertex internal to H, then
H has an internal edge that is contractible as an edge of G.

Proof. Let the 3-cycle be (x, y, z) with internal vertex x. By Lemma 4.11 there
exist maximally independent subgraphs Rxy and Rxz containing (xy) and (xz)
respectively, and each of these contains a contractible edge.

We claim that either Rxy or Rxz have all their edges internal to H. Otherwise
both Rxy and Rxz each contain at least two vertices of connection, since if say Rxy
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contains no vertex of connection it is internal to H, and if it contains one vertex of
connection, then either all its edges are internal to H or Rxy contains a vertex of
G/H. Then the vertex of connection would be a separating vertex for Rxy, which
contradicts Lemma 4.3. But if Rxy and Rxz each contain at least two out of the
three vertices of connection, then one of these vertices must be in both Rxy and
Rxz and thus equal to the vertex x since Rxy ∩ Rxz = x. This contradicts the
requirement that x is internal to H. �

The next sequence of lemmas has implications for 3-connected maximally inde-
pendent planar graphs for which the contraction of any contractible edge gives a
graph which is not 3-connected. We have already shown that such a graph has a
3-vertex separation set with exactly two components. The critical case for the proof
of Theorem 4.1 is when each component has freedom number 1. The difficulty is
to show that each of these components contains a 3-cycle so that a reduction ar-
gument can be applied to the smaller of the two components. Lemma 4.9 alone is
not sufficient because substituting f = 1 into this lemma leaves the possibility that
all faces have exactly 4 edges. We exclude this possibility by showing that at least
one face has at least 5 edges.

Lemma 4.14. Let G be a 3-connected graph and let H be a proper vertex-induced
subgraph of G with 3 vertices of attachment. If each vertex of attachment has at
least 2 neighbours in H, then H is 2-connected.

Proof. Suppose to the contrary that H has a separation vertex w. All three vertices
of attachment cannot be in the same separation component of w because G is 2-
connected. Thus there is a separation component for w which contains exactly one
vertex of attachment, say v1, and this component must be just the edge (wv1) or
else (w, v1) would be a separation pair for G. This contradicts the requirement that
v1 has at least 2 neighbours in H. �
Lemma 4.15. Let G be a 3-connected planar graph, let H be a proper vertex-
induced subgraph of G with 3 vertices of attachment and let each vertex of attach-
ment have at least 2 neighbours in H. Then a planar embedding of G implies a
planar embedding of H, and this embedding of H has the three vertices of attach-
ment in one face boundary.

Proof. G has a planar embedding, and deleting G/H plus any edges connected to
G/H gives a planar embedding of H. By Lemma 4.14 H is 2-connected, so the
planar embedding of H divides the plane into disjoint faces.

The three vertices of attachment of H in G are a separation set for G. We claim
that all vertices of G/H lie in the same face with respect to the embedding of
H. By Lemma 4.8 the 3-vertex separation set divides G into exactly 2 separation
components. Thus every pair of vertices in G/H is joined together by a path in
G/H. All vertices of G/H are therefore embedded in the same face of the embedding
of H, because otherwise these paths would cross a face boundary of the embedding
of H, and these face boundaries lie in H. There is a vertex of G/H adjacent to
each of the three separation vertices, so the three separation vertices lie on this face
boundary. �
Lemma 4.16. Let G be a 3-connected, independent, planar graph, let H be a
proper vertex-induced subgraph of G with 3 vertices of attachment (v1, v2 and v3)
and let each vertex of attachment have at least 2 neighbours in H. If H has freedom
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number 1 and if H contains at most one of the edges (v1v2), (v2v3) or (v3v1), then
H contains an edge adjacent to an interior vertex of H that is contractible as an
edge of G.

Proof. A planar embedding of G gives a planar embedding of H. By Lemma 4.14
H is 2-connected, and by Lemma 4.15 one of the face boundaries contains v1, v2

and v3. Since H contains at most one of the edges (v1v2), (v2v3) or (v3v1) this face
boundary has at least 5 edges, so by Lemma 4.9 with f = 1 the embedding of H
has at least one face with 3 edges and so H contains a 3-cycle. Since H has at most
one of the edges (v1v2), (v2v3) or (v3v1), H has a 3-cycle with an interior vertex,
and by Lemma 4.13 H contains an edge adjacent to an interior vertex of H that is
contractible as an edge of G. �

Lemma 4.17. Let G be a 3-connected, maximally independent planar graph that
contains no maximally independent vertex-induced subgraph with 3 vertices of at-
tachment and which has no degree-3 vertex on a 3-cycle. For any contractible edge
e joining vertices x and y, either G/e is 3-connected or G has a 3-vertex separation
set consisting of x, y and another vertex w of G with the following properties:

1. G does not contain edges (xw) or (yw).
2. The separation set divides G into exactly 2 proper components such that each

proper component plus the edge (xy) has freedom number 1.
3. w has at least 2 neighbours in each of the two proper components.

Proof. Suppose G/e is not 3-connected. By Lemmas 4.6 and 4.8 G has a 3-vertex
separation set (x, y, w) which separates G into exactly 2 proper components, C1

and C2. Let H1 = C1 + (xy) + (xw)′ + (yw)′ and H2 = C2 + (xy) + (xw)′ + (yw)′

, where (xw)′ = (xw) only if the edge (xw) is in G and similarly for (yw)′. Let G,
H1 and H2 have v, v1, v2 and e, e1, e2 edges and vertices, respectively. Let d = 0, 1
or 2 if none, one or both of (xw) and (yw) is in G and let H1 and H2 have freedom
numbers f1 and f2. We have

v = v1 + v2 − 3, e = e1 + e2 − 1 − d, 2v − e − 3 = 0,

f1 = 2v1 − e1 − 3, f2 = 2v2 − e2 − 3.

Thus 2(v1 + v2 − 3) − (e1 + e2 − 1 − d) − 3 = 0, and so f1 + f2 = 2 − d.
By hypothesis neither H1 nor H2 is maximally independent, so f1 > 0 and

f2 > 0. This requires f1 = 1, f2 = 1 and d = 0.
Suppose a component, say C1, has only vertex a adjacent to w. Then H1 −w −

(aw) has freedom number 0 and 3 vertices of attachment in G. H1 − w − (aw)
is not the 3-cycle because w would be a degree-3 vertex on a 3-cycle contrary to
hypothesis, so H1 − w − (aw) is a proper maximally independent vertex-induced
subgraph of G, contrary to hypothesis. �

The final lemma allows us to conclude that under certain conditions one of the
separation components that can result from contracting an edge in a subgraph must
lie entirely within that subgraph.

Lemma 4.18. Let G be a 3-connected graph, let H be a proper vertex-induced
subgraph of G with 3 vertices of attachment v1, v2 and v3 such that G has the edge
(v1v2) and does not have the edge (v2v3) or the edge (v1v3) and let v3 have at least
2 neighbours in the subgraph induced by the vertices of G\H + v1 + v2 + v3. Then
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G

C x

H
x

y

v2 v3

v1

Figure 9. The subgraph H with 3 vertices of connection in G.
There are two different placings for an interior edge e = (x, y)
with x interior.

for any interior edge e of H either G/e is 3-connected or one of the separation
components of G/e is properly contained in H.

Proof. Let the edge e join vertices x and y with vertex x interior to H. Suppose
G\e is not 3-connected. By Lemma 4.6 G has a 3-vertex separation set (x, y, w).
See Figure 9.

We claim that w is in H. Suppose to the contrary that w is in G\H. Since v1

and v2 are adjacent they are internal vertices of only one component, so there is
another component C that has either none of v1, v2 or v3 as an internal vertex or
contains v3 and not v1 and v2 as internal vertex. If C contains none of v1, v2 or
v3, then there is a path in C from w in G\H to x in H that avoids all vertices
of attachment, contrary to the definition of vertices of attachment. Suppose C
contains v3 as an internal vertex and not v1 or v2. The vertex v3 has at least 2
neighbours in G\H (because it has at least 2 neighbours in G\H + v1 + v2 + v3

and G does not contain (v1v3) or (v2v3)), so there is a vertex u in G\H that is a
neighbour of v3 and is different from w. See Figure 10. Thus u is in (G\H)∩C and
is different from v1, v2, x, y and w. One of the vertices v1 or v2, say v1, is not x or
y and is thus in G\C. Now all paths from u to v1 include one of w, x or y before
any vertices in G\C. All paths in C from u to x or y contain v3, and thus all paths
from u to v1 contain v3 or w, contradicting the fact that G is 3-connected.

Now x, y and w are in H, and one vertex of attachment, say v1, is different from
x, y and w. All vertices in G\H are connected on paths excluding x, y and w, so
one separation component contains at least G\H + v1 as internal vertices and so
the other component is properly contained in H. �
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C

H

C, H

x

y

G

v1

v2

w v3

Figure 10. The hypothetical structure of the separation compo-
nent C if ω is in G\H. The vertex y may be identical to v1 or
v2.

5. Elimination ideals and specialisation

In the present section we obtain irreducibility and divisibility properties for gen-
erators of univariate elimination ideals and their specialisations. These properties
play a prominent role in the heart of our proof of the reduction step in that they
connect the radical solvability of generic equations with the radical solvability of
the specialised equations.

Let f1, . . . , fr be polynomials in the complex variables {x1, . . . , xn} which deter-
mine the complex algebraic variety V = V (f1, . . . , fr) in Cn. For 1 ≤ t < n the
elimination ideal

It = 〈f1, . . . , fr〉 ∩ C[x1, . . . , xt]
determines a variety V (It) in Ct. Plainly V (It) contains πt(V ), the projection of
V onto the subspace Ct. The following fundamental closure theorem may be found
in [4].

Theorem 5.1. The variety V (It) is the Zariski closure of πt(V ), that is, the small-
est affine variety containing πt(V ).

Let {d} = {d1, . . . , dr} be complex numbers forming an algebrically independent
set with field extension Q({d}).

Theorem 5.2. Let {f} be a set of polynomials in Q[d1, . . . , dr][{x}] which generates
an ideal I in C[{x}] whose complex variety V (I) has dimension zero. Then each
elimination ideal

Ixi
= I ∩ C[xi],
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for i = 1, . . . , n, is generated by a polynomial gi with coefficients in Q[d1, . . . , dr]
and deg(gi) > 0. If, in addition, the set {f} generates a prime ideal in the polyno-
mial ring Q[d1, . . . , dr, x1, . . . , xn], then each gi may be chosen to be irreducible in
Q[d1, . . . , dr, xi].

Proof. Let Î denote the ideal in Q({di})[x1, . . . , xn] generated by {f} with elimi-
nation ideals

(Î)xi
= Î ∩ Q({d})[xi].

Plainly, with the given inclusion Q({d}) ⊆ C we have Î ⊆ I, and I is the ideal in
C[x1, . . . , xn] generated by Î.

Since (Î)xi
is an ideal in Q({d})[xi] it is generated by a single polynomial gi,

which is unique up to a non-zero multiplier in Q({d}). Since V (I) is nonempty gi

is not a non-zero constant, and so if deg(gi) = 0, then gi = 0, and (Î)xi
= {0}.

However, in this case we deduce that Ixi
= {0}. This follows, for example, from

the fact that a basis for Ixi
may be derived from the generators of I by algebraic

operations and so lie in (Î)xi
. (Consider a Groebner basis construction for example.)

It now follows that V (Ixi
) = C, and the closure theorem implies that the projection

πxi
(V ) of V (I) onto Cxi

is infinite and hence that V (I) is infinite, contrary to
hypothesis. Thus deg(gi) > 0.

The coefficients of gi are in Q({d}) and so are ratios of polynomials in Q[{d}].
Thus we may replace gi by p(d1, ..., dr)gi for some polynomial p to obtain the de-
sired generator with polynomial coefficients. We may also arrange that the highest
common factor of the coefficients of gi is 1.

We claim that the generator gi, when viewed as an element of the ring
Q[{d}, {xi}], is also a generator for the polynomial ring elimination ideal

Jxi
= J ∩ Q[{d}, xi],

where J is the ideal in Q[{d}, {x}] generated by {f}.
Considering a Groebner basis construction of gi, one sees that there is a non-zero

polynomial r(d1, ..., dr) such that r(d1, ..., dr)gi lies in Jxi
. Since, by the hypotheses,

the ideal J is prime, so too is Jxi
, and so one of the factors belongs to Jxi

. However,
if r(d1, ..., dr) belongs to Jxi

, then it belongs to (Î)xi
. This is impossible since (Î)xi

is generated by gi, which has positive degree in xi. Hence gi is in Jxi
. Now take

any h in Jxi
. Then h is also in (Î)xi

, and so h = qgi with q in Q({d})[xi]. Clearing
the denominators of the coefficients of q gives the factorization r(d1, ..., dr)h =
(r(d1, ..., dr)q)gi, where r(d1, ..., dr) is in Q[{d}] and r(d1, ..., dr)q is in Q[{d}][xi].
Since the coefficients of gi have no common factor, it follows that r(d1, ..., dr) divides
every coefficient of r(d1, ..., dr)q, which proves that q lies in Q[{d}][xi]. This shows
that gi generates Jxi

in Q[{d}][xi]. Since Jxi
is prime this in turn entails that the

generator gi is irreducible in Q[{d}, xi]. �

We now show that in the case r = 1 the specialised generator g(d′, xi) is non-zero
and divisible by the generator gi(xi) of the elimination ideal of the specialised ideal.
As we note below, such divisibility may fail for a double specialisation!

For later convenience the role of Q in the theorem above is played below by
E ⊆ C, a finite transcendental field extension of Q. (It is trivial to generalise the
theorem above with Q replaced by E.) Specialisation occurs for the single variable d

associated with the transcendental extension E(d). For an ideal Î in E[d][x1, ..., xn]
we shall write (Î)′ for the specialisation of Î resulting from the substitution d → d′.
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Theorem 5.3. Let {f} be a set of polynomials in E[d][x1, . . . , xn] which generate
an ideal Î in E(d)[x1, . . . , xn] and an ideal I in C[x1, . . . , xn] whose complex variety
V (I) has dimension zero. Let d′ ∈ Q be a specialisation of d giving rise to the set
{f ′} in E[x1, . . . , xn] with an ideal I ′ whose complex variety also has dimension
zero.

Let g(d, x1) in E[d][x1] and g′(x1) in E[x1] be generators for the elimination
ideals Ix1 and (I ′)x1 , respectively, as provided by the previous theorem. Finally,
assume that the ideal in E[d, x1, . . . , xn] generated by {f} is prime. Then

(i) the specialisation ((Î)x1)
′ of (Î)x1 is contained in ((Î)′)x1 ,

(ii) the degree of g(d′, x1) is greater than zero, and
(iii) g′(x1) divides g(d′, x1).

Proof. We have

((Î)x1)
′ = {p(d′, x1) : p ∈ Î ∩ E(d)[x1]}.

But if p(d, x1) ∈ Î, then p(d′, x1) ∈ (Î)′ and so ((Î)x1)
′ ⊆ ((Î)′)x1 . Thus if g(d′, x1)

is not the zero polynomial, then g′(x1) divides g(d′, x1) and deg(g(d′, x1)) > 0.
Let J be the ideal in E[d, x1, ..., xn] generated by {f} and let Jd,x1 be the elimi-

nation ideal J ∩E[d, x1]. Then Jd,x1 has generator g1(d, x1) where this polynomial
is the generator of (Î)x1 in E(d)[x1] provided by the previous theorem. By this
theorem we may assume that g1(d, x1) is irreducible in E[d, x1]. In this case it is
not possible to have g1(d′, x1) = 0 for all x1, for otherwise g1 would have a proper
factor (d − d′). �

It is instructive to note that Theorem 5.3 is not valid without the assumption
that the big ideal is prime. Consider the equation set

(dx − 1)p(x) = 0, d(dx − 1) = 0,

where p(x) is a polynomial in one variable x over Q and d is a single parameter.
For generic d the ideal I = 〈(dx − 1)p(x), d(dx − 1)〉 in Q[x] is the principal ideal
〈dx − 1〉, V (I) is the singleton {1/d} and dim(V (I)) = 0. For the specialisation
d = 0 the ideal for the specialised equations is I ′ = 〈p(x)〉 and V (I ′) is the finite set
of zeros of p and so is also zero dimensional. However, it is not possible to choose
a generator for I ′ which divides a non-zero generator of I, and so the conclusion of
Theorem 5.3 cannot hold for this equation set.

Note also that in this example we may choose p(x) to be a polynomial which is
not soluble over Q, so that while the generic variety V (I) is radical the variety for
the specialised equations is not radical.

It is also instructive to note that Theorem 5.3 is not valid for the specialisation
of more than one parameter. For example, let

f1 = x1(1 − x1x2) − d1, f2 = x2(1 − x1x2) − d2, f3 = x3(1 − x1x2) − d3.

For the double specialisation d1 = d2 = 0, V (I ′) is the single point x1 = 0, x2 =
0, x3 = d3 and

g1(d1, d2, x1) = d2x
3
1 − d1x1 + d2

1

which becomes zero on this specialisation.
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6. The reduction step

Equipped with the elimination theory of the last section we are now able to prove
the reduction step stated in the Introduction.

Let G be a maximally independent graph with n vertices and r + 1 edges and
suppose that G has an edge contraction to a maximally independent graph G/e. We
label the vertices so that e is the edge (vn−1vn−2), e is in the 3-cycle (vn, vn−1, vn−2)
and we regard (vn−1vn) as the base edge. Furthermore, we normalise the constraint
equations {fe} so that the coordinates for the base vertices are (xn−1, yn−1) =
(0, 0), (xn, yn) = (1, 0). Let us label edges so that the contractible edge e is the rth
edge, with the associated (squared) distance dr, and the edge (vn−2vn) has distance
dr−1. Finally let f1, ..., fr be a listing of the normalised constraint equations for G
compatible with this notation.

Now consider a set of normalised constraint equations for the contracted graph
G/e. We lose two edges from G (edge r − 1 and edge r), and we can take the
normalised constraint equations for G/e to be the equations f1, . . . , fr−2 with the
substitution xn−2 = 0, yn−2 = 0.

First consider the non-base distances on G/e, namely {d} = {d1, . . . , dr−2},
to be a generic set of real numbers. Since the contracted graph is maximally
independent, the solutions (for x1, . . . , xn−3, y1, . . . , yn−3) form a zero-dimensional
variety, V (0, 0) say. (The choice of notation will become clear shortly.) Clearly this
is essentially the variety of the constraint equations {f1, . . . , fr} for the distance set

{d1, . . . , dr−3, dr−2, 1, 0}
for G resulting from the double specialisation dr−1 = 1, dr = 0. Thus, in order
to establish the reduction step it will be sufficient to show that if G is generically
radical, then the variety arising from the semi-generic double specialisation is also
a radical variety. This requires some care, in view of the failure of a double special-
isation variant of the Theorem 5.3. We shall break the double specialisation into
two steps. Also, instead of specialising the generic edge lengths dr, dr−1 we choose
to start afresh and specialise the given coordinates xn−2, yn−2. This results in a
simpler comparison of varieties.

In fact we can prove the reduction step for general non-planar graphs.

Theorem 6.1. Let G be a maximally independent graph which has an edge con-
traction to a maximally independent graph G/e. If G is radically soluble, then the
graph G/e is also radically soluble.

Proof. Consider the set of distances {d} = {d1, . . . , dr−2} and the constraint equa-
tions {f1, . . . , fr−2} in the variables x1, . . . xn−3, y1, . . . , yn−3, which arise when the
pair (xn−2, yn−2) takes three possible pairs of values, namely (X, Y ), (X, 0) and
(0, 0), where X, Y are generic values in the coefficient field. Denote the three cor-
responding “big” varieties, where {d} is a set of variables, by Vb(X, Y )), Vb(X, 0)
and Vb(0, 0). For generic values of {d} let the corresponding “small” varieties be
V (X, Y )), V (X, 0) and V (0, 0). Also we write Ib(X, Y ), I(X, Y ), etc., for the six
corresponding ideals.

We have the following:
1. The varieties Vb(X, Y ), Vb(X, 0) and Vb(0, 0) are irreducible. This follows

from the fact that the equations are parametric in the variables. See Theorem 2.8.
2. The variety V (0, 0) is zero dimensional by Theorem 2.4 because it is the

variety of the maximally independent generic graph G/e. The varieties V (X, 0)
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and V (X, Y ) also have the form required for Theorem 2.3. The determinant of
the Jacobian matrix for V (0, 0) is obtained from the corresponding determinants
for V (X, 0) and V (X, Y ) by substituting X = 0 and Y = 0, and thus neither of
the determinants of the Jacobian matrices for V (X, 0) and V (X, Y ) are identically
zero. Then V (X, 0) and V (X, Y ) are zero dimensional by Theorem 2.3.

We may now apply the specialisation theorem of Section 5 two times, once for
the specialisation (X, 0) → (0, 0) and once for the specialisation (X, Y ) → (X, 0).

Suppose then, that V (0, 0) is non-radical. In fact assume that there is a point of
this variety with coordinate xi not in a radical extension of Q({d}). Since Vb(0, 0) is
irreducible and V (0, 0) is zero dimensional, it follows from Theorem 5.2 that there
exists a univariate polynomial g(xi) in Q[{d}][xi] which generates the elimination
ideal I(0, 0)xi

. By the closure theorem, Theorem 5.1, πxi
(V (0, 0)) is precisely the

variety of the elimination ideal for xi, and this is precisely the set of zeros of gi.
By the non-radical hypothesis there exists an xi such that gi has some of its roots
non-radical (over Q({d})). By irreducibility, all the roots are non-radical.

Likewise, V (X, 0) is zero dimensional and there exists a polynomial g(xi, X),
with positive degree in xi, which generates I(X, 0)xi

. Moreover, since Vb(X, 0) is
irreducible we may choose g so that g(xi, X) is not divisible by X and hence g(xi, 0)
is not identically zero. But g(xi, 0) is in I(0, 0)xi, and by Theorem 5.3 g(xi) divides
g(xi, 0). Thus g(xi, 0) has a non-radical root, g(xi, 0) is non-radical and V (X, 0) is
non-radical.

Repeating this argument for V (X, 0) and V (X, Y ) shows that V (X, Y ) is non-
radical over Q({d}). Thus V is non-radical over Q({d}, X, Y ). However, by triangle
geometry X and Y are radical functions of dr−1 and dr. Thus V is non-radical over
Q(d1, ..., dr). �

Remark. One needs to take care with simultaneous specialisation. If we do both
specialisations together on V (X, Y ) we might have

g(xi, X, Y ) = Xp(xi, X, Y ) + Y q(xi, X, Y ),

where, for example, Y does not divide p and so g(xi, 0, 0) = 0, which gives no
information on divisibility. In fact we have not excluded this possibility by doing
the specialisations one at a time. However we have shown that if this does occur,
then p and q both have factors which are non-radical. This is sufficient to deduce
that g(xi, X, Y ) is non-radical, even if it is zero on the double specialisation.

7. Galois group under specialisation

We now obtain a theorem concerning the Galois groups of polynomials whose
coefficients contain indeterminates which may be specialised. This theorem plays
a role in the proof of the fact that if the graph G is soluble by radicals for generic
dimensions, then it is also soluble by radicals for certain specialised dimensions.
In the proof we make use of the identification of the Galois group of p as the set
of permutations in an index set associated with a certain irreducible factor of a
multi-variable polynomial constructed from p. This identification is well known
and given in Stewart [14].

Let d = {d1, . . . , dn} be algebraically independent variables with the rational
field extension Q(d) and let d′ = {d′1, . . . , d′n} be an n-tuple of rationals, viewed as
a specialisation of d.
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Theorem 7.1. Let p ∈ Q[d][t] be an irreducible monic polynomial with Galois
group Gal(p) when viewed as a polynomial in Q(d)[t]. Let d′ ∈ Qn be a specialisation
of d and let p′ be the associated specialisation of p with Galois group Gal(p′) over
Q. Then Gal(p′) is a subgroup of Gal(p). In particular if p is a radical polynomial,
then so too is p′.

We are not aware of a published proof of this general specialisation theorem, but
we have discovered that the elementary case when the specialised polynomial has
distinct roots can be found in Van Der Waerden [18] (Section 61). The proof there
is similar to the first part of our proof below.

Proof. Consider the irreducible polynomial

p(t) = tm + bm−1(d)tm−1 + . . . + b0(d)

with coefficients bi(d) in Q[d]. Let α1, . . . , αm be the roots of p(t) in some splitting
field, let {x1, . . . , xm} be indeterminates and let

β = α1x1 + . . . + αmxm.

Let Sm be the symmetric group and define the Q-polynomial of p to be

Q(t, x1, . . . , xm) =
∏

σ∈Sm

(t − σ(β)) ,

where σ(β) = α1xσ(1) + . . . + αmxσ(m). On expanding the product it can be seen
that the coefficient of a monomial tkx1

i1x2
i2 . . . xm

im is a symmetric polynomial in
the roots αi. It follows that these coefficients are polynomials in bm−1(d), . . . , b0(d).
(See [14].) Thus the polynomial Q belongs to Q[d][t, x].

Let Q = Q1Q2 . . . Qr, where each Qi is irreducible in Q[d][t, x] and where Q1

contains the factor (t−β). Since the roots of an irreducible polynomial are distinct
so too are the expressions σ(β), and it follows that the polynomial Q1 is well defined.

We have
Q1 =

∏

σ∈S

(t − σ(β))

for some index set S. This index set is a subgroup of Sm which is identifiable
with the Galois group of p. It coincides with the group of permutations σ of the
variables x1, . . . , xm for which σ(Q1) = Q1. In fact each Qi has the form τ (Q1)
for some permutation τ , and from this it follows that if σ(Qi) = Qi for some i,
then this holds true for all i and σ is in the Galois group. (For any permutation
σ and polynomial P in Q[d][t, x] the polynomial σ(P ) is defined by permuting the
indeterminates x1, . . . , xm.) Note that in fact the Galois group identification holds
whenever p has distinct roots.

Now consider the specialisation Q′ of the polynomial Q in Q[d][t, x] upon re-
placing d by d′. Since the coefficients of Q are polynomials in bm−1(d), . . . , b0(d),
it is easy to see that Q′ coincides with the Q-polynomial for p′. Thus

Q′ =
∏

σ∈Sm

(t − σ(β′)) ,

where β′ = α′
1x1 + . . .+α′

mxm and α′
1, . . . , α

′
m are the roots of the specialisation p′

in some order. (Despite the notation we do not imply that there is a link between
α′

i and αi.)
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Now consider both the specialisation of the factorisation, namely

Q′ = Q′
1Q

′
2 . . . Q′

r,

and the irreducible factorisation of Q′ in Q[t, x], say

Q′ = P1P2 . . . Ps.

Let us first assume that the roots α′
i are distinct. Then, since each Pi is neces-

sarily a product of some of the linear factors t− σ(β′), there is a unique factor, P1

say, divisible by t − β′. Once again the Galois group Gal(p′) is identifiable with a
subgroup T of Sm, where T is the index set such that

P1 =
∏

σ∈T

(t − σ(β′)).

Moreover, if σ ∈ Gal(p′), then σ(Pi) = Pi for each i, and in particular σ(Q′
1) = Q′

1

since Q′
i is a product of such factors. But if σ(Q′

i) = Q′
i, then σ(Qi) = Qi, by

the distinctness of the roots, and so σ ∈ Gal(p). The resulting inclusion T ⊆ S
identifies Gal(p′) as a subgroup of Gal(p).

We need a considerable refinement of this argument in the general case for which
we have p′ = hn1

1 hn2
2 . . . h

nq
q , where the hi are distinct irreducible polynomials. Once

more we can form the Q-polynomial for p′,

Q′ =
∏

σ∈Sm

(t − σ(β′)) ,

which has an irreducible factor, Q′
∗ say, with

Q′
∗ =

∏

σ∈R

(t − σ(β′)) .

Because of root repetition the index set R is not uniquely associated with the
factor Q′

∗, and so we now give a more specific definition of Q′
∗. Let Q̂1(X1, . . . , Xs)

be the leading irreducible factor of the Q-polynomial (Q̂ say) for the polynomial
h1h2 . . . hq (with variables Xi to avoid ambiguity). Since the roots of this product
are distinct, it follows from the first part of the proof that the index set for Q̂1

gives an identification of Gal(h1h2 . . . hq) as a subgroup of Sk for some k. We now
define Q′

∗ by
Q′

∗(x1, . . . , xm) = Q̂1(X1, . . . , Xs),
where each Xi is the sum over ni of the indeterminates xj corresponding to each of
the repeated roots of p′. Since Q̂1 is irreducible over Q[d][t, X] it follows that Q′

∗ is
irreducible over Q[d][t, x]. Also Q′

∗ does divide Q′ since it is a product of some of
the linear factors of Q′. In this way we have arranged that the index set R for Q′

∗
is a subgroup of Sm. Also R is isomorphic to Gal(h1h2 . . . hq) = Gal(p′).

The irreducible factor Q′
∗ divides some factor Q′

i of Q′. At this point we have
identified Gal(p′) with R, a subgroup of Sm, but we are still at liberty to relabel
the roots α1, . . . , αm in order to re-identify Gal(p) with a new subgroup of Sm.
We choose to rearrange these roots so that the factors Qi, and hence the Q′

i, are
permuted so that Q′

∗ divides Q′
1. With these identifications it follows that the index

set R is identified as a subgroup of S and hence that

Gal(p′) = R ⊆ S = Gal(p),

as desired.
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The last assertion of the theorem follows from the fact that a subgroup of a
soluble group is soluble. (See [14].) �

The non-monic case of the last theorem can be deduced with the following change
of variables argument.

Suppose that p is an irreducible polynomial in Q[d][t] with non-zero specialisation
p′. Choose a rational number a so that p′(a) �= 0, and hence p(a) �= 0. Define the
irreducible polynomial

q(z) = tnp(t−1 + a)
1

p(a)
.

Then q is monic with well-defined specialisation

q′(t) = tnp′(t−1 + a)
1

p′(a)
.

The splitting fields of p and q are isomorphic, as are those of p′ and q′, and so it
follows from the theorem above that Gal(p′) is a subgroup of Gal(p).

It is clear that the arguments above extend verbatim to the specialisation of
algebraic independents over any field of characteristic zero, and we shall need results
in this setting. Let E be such a field and let {d} be a set of algebraically independent
variables over E with rational field extension E(d).

Theorem 7.2. Let p ∈ E[d][t] be an irreducible polynomial with Galois group Gal(p)
when viewed as a polynomial in E(d)[t]. Let d′ ∈ En be a specialisation of d and
let p′ be the associated specialisation of p with Galois group Gal(p′) over E. If p′ is
non-constant, then Gal(p′) is a subgroup of Gal(p). In particular if p is a radical
polynomial, then so too is p′.

8. Planar 3-connected Laman graphs are non-soluble

We are now able to prove the main theorem stated in the Introduction.
Suppose, by way of contradiction, that there exists a maximally independent

3-connected planar graph which is soluble. Let G be such a graph with the fewest
number of vertices. We show that G is the doublet graph and that the doublet
graph is not soluble by radicals. This contradiction completes the proof.

By the reduction step, Theorem 6.1, the vertex minimal graph G has no edge
contraction to a 3-connected maximally independent planar graph. It thus follows
from the main reduction theorem for such graphs, Theorem 4.1, that either |G| = 6,
and G is the doublet (since G is planar), or that G has a proper vertex induced
maximally independent subgraph with three vertices of attachment. However min-
imality rules out the latter possibility because the next proposition shows that such
a proper subgraph admits substitution by a smaller graph, namely a triangle, and
the resulting graph is soluble if G is soluble.

Proposition 8.1. Let G be a 3-connected, maximally independent graph and let H
be a maximally independent subgraph of G with 3 vertices of attachment v1, v2 and
v3. Let G′ be the graph which is obtained from G by deleting all the internal vertices
of H and all the edges of H and adding the edges (v1v2), (v2v3), (v3v1). Then G′

has the properties:
(i) G′ is 3-connected.
(ii) G′ is maximally independent.
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(iii) If the distances of the constraint equations defined by G are algebraically
independent, then any solution of the constraint equations, when restricted to the
vertices of G′, is a solution of the constraint equations for G′ for suitably chosen
algebraically independent distances of G′.

Proof. We prove that G′ is 3-connected by showing that every pair of vertices in G′

are joined by three independent paths. For any pair of vertices in G′ we generate
three independent paths as follows. Select the corresponding pair of vertices in G.
Since G is 3-connected, they are joined by three independent paths. Then each of
the paths in G corresponds to a path in G′ which consists of the corresponding path
segments in G\H plus possibly a single edge (vivj) or a pair of edges (vivk)(vkvj)
which replace any path segment in the interior of H which enters at vertex vi,
possibly includes vertex vk, and leaves H at vj . Each of these paths in G′ consists
of a subset of the vertices of the corresponding path in G, and it follows that paths
which are independent in G are also independent in G′.

If H1 and H2 are any two edge disjoint subgraphs in G, then it follows easily
from the definition of free(H) that

free(H1 ∪ H2) = free(H1) + free(H2) + 3 − 2|H1 ∩ H2|.

This gives immediately that free(G′) = 0. If G′ is not independent, then there is
a subgraph R of G′ with free(R) < 0 and there is an edge (v1v2), say, which is in
R but not in G. If v3 is not in R, then (R\(v1v2)) ∪ H is in G and

free((R\(v1v2)) ∪ H) < 0

which contradicts the independence of G. If v3 is in R, then

(R{(v1v2), (v2v3), (v1v3)}) ∪ H

is in G and free((R{(v1v2), (v2v3), (v1v3)}) ∪ H) < 0 which contradicts the inde-
pendence of G.

Theorem 2.3 implies that for algebracially independent distances {di}, any zero
of the variety of G has coordinates {xj} which are algebraically independent. This
zero of the variety of G gives a zero of the variety of G′ (with the same {xj} where
they occur and with the same {di} where they occur and d12, d23 and d13 computed
from dij = (xi − xj)2 + (yi − yj)2), and this zero therefore has coordinates which
are algebraically independent. It follows from Theorem 2.3 that the distances of G′

are algebraically independent. �

We now show that the doublet is a non-soluble CAD graph.

Let v1 = (0, 0), v2 = (1, 0) be the vertices of the base edge. Introduce the
coordinates (xi, yi) for the remaining vertices vi, 3 ≤ i ≤ 6, and the distances
dj , 2 ≤ j ≤ 9, for the non-base edges. The indexing scheme is illustrated in Figure
11.
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Figure 11. Coordinatisation of the doublet.

The resulting polynomials {f} for the normalised constraint equations take the
form

x2
4 + y2

4 − d2
9

x2
5 + y2

5 − d2
8

(x3 − 1)2 + y2
3 − d2

2

(x6 − 1)2 + y2
6 − d2

7

(x3 − x4)2 + (y3 − y4)2 − d2
3

(x4 − x5)2 + (y4 − y5)2 − d2
4

(x5 − x6)2 + (y5 − y6)2 − d2
5

(x6 − x3)2 + (y6 − y3)2 − d2
6.

For each choice of real algebraically independent squared distances d2
2, . . . , d

2
9,

these equations determine a zero-dimensional complex affine variety V ({f}) in C8.
In order to prove that the zeros of the equation set are non-radical for generic

{d2}, it would be sufficient to obtain a generator (or any element) of the elimination
ideal for some variable (x3 say) over the field Q({d2}) where the {d2} are generic
parameters and to show that all of its zeros are non-radical. However Maple is
unable to complete such a calculation, and it is necessary to use some integer
values for the {d} and to appeal to the specialisation Theorem 7.1. Note that the
use of this theorem requires us to know that the specialised polynomial does indeed
arise by specialising a corresponding polynomial in the generic elimination ideal. It
is for this reason that we use resultants to perform the elimination explicitly.

Note that the fifth equation, and its three successors, admit the squared form

(d2
3 − (x3 − x4)2 + y2

3 + y2
4)2 − 4y2

3 y2
4 = 0,

which in turn yields an equation in x3 and x4 alone on substituting for y2
3 and y2

4

from the first four equations. In this way we obtain a system {g} = {g1, g2, g3, g4}
of four quartic equations in x3, x4, x5, x6 and the squared distances. It follows that
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the projection π (V ({f}) for the variables x3, x4, x5, x6 is a subset of the variety
V ({g}) in C4.

To see that the doublet graph is (generically) non-soluble we show that first there
is a specialised integral doublet which has non-radical solutions. This is achieved by
a Maple calculation of successive resultants of the associated specialised constraint
equations {g′}:

h′
1 = Res(g′1, g′2, x4),

h′
2 = Res(g′3, g

′
2, x6),

h′
3 = Res(h′

1, h
′
2, x5).

This results in an integral univariate polynomial h′
3(x3) which lies in the ideals

I({f ′}) and I({g′}). The polynomial h′
3 is of degree 28 which factors as the product

of a degree 12 and a degree 16 polynomial (the degree 16 polynomial does not
contribute to zeros of the variety, but this does not affect the argument). Maple
is unable to compute the Galois group of either of these polynomials. However
for our well-chosen distance values (determined by judicious trial and error) the
polynomial factors as a product of four irreducible polynomials of degrees 6, 6, 8,
8. The Galois groups of these polynomial factors are computed in the Appendix,
and each is a full symmetric group. It follows that h′

3 and V ({f ′}) are not radical
over Q.

Theorem 8.2. There exists an integral lengthed doublet graph which is not soluble
by radicals.

Proof. With the labelling order above consider the unsquared distances 1, 5, 15,
10, 16, 8, 5, 13, 13. (The two triangles in this integral doublet are isosceles, with
sides 10, 13, 13 and 8, 5, 5.) By the Appendix h′

3 is a non-radical polynomial. �

We now use the Galois group specialisation theorem to show that the doublet
graph is generically non-soluble. Since the generic polynomial h3 is not computable
by Maple, we examine the resultant calculation more closely to see that h′

3 is the
specialisation of the corresponding resultant polynomial h3 for the generic equation
set.

Lemma 8.3. Let f1, f2 be polynomials in {x}, {d} viewed as polynomials in {x}
with coefficients in E({d}). Let {d′} be a specialisation resulting in specialisations
f ′
1, f

′
2 such that deg(fi, x1) = deg(f ′

i , x1) for i = 1, 2. Then the specialisation of
Res(f1, f2, x) is equal to Res(f ′

1, f
′
2, x).

Proof. Immediate on examination of the definition of the resultant as a Sylvester
determinant. �

For our polynomial equations {g} Maple is able to compute the generic polyno-
mials h1 and h2 and verify that if h1 = Res(g1, g2, x4), h2 = Res(g3, g4, x6), then

deg(h1, x4) = deg(h′
1, x4) = deg(h2, x6) = deg(h′

2, x6) = 4.

Although the polynomial h3 is not readily computable, the lemma shows that
h′

3 is the specialisation of h3.

Theorem 8.4. The doublet graph is non-soluble.
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Proof. By Theorem 8.2 and its proof h′
3 is a non-radical polynomial, and in fact

all the zeros of its irreducible factors are non-radical over Q. By the Galois group
specialisation theorem it follows that h3 must be non-radical over Q({d}), and the
theorem follows. �

Appendix

The polynomial h′
3 and its factors are computed by the following Maple code:

d2:= 13; d3:= 15; d4:= 8; d5:= 16;
d6:= 10; d7:= 13; d8:= 5; d9:= 5;
yy4:=d9^2-x4^2; yy5:=d8^2-x5^2;
yy3:=d2^2-(x3-1)^2; yy6:=d7^2-(x6-1)^2;
A:= (d3^2- (x3^2+x4^2 - 2*x3*x4 + yy3 + yy4))^2 -4*yy3*yy4;
B:= (d4^2- (x4^2+x5^2 - 2*x4*x5 + yy4 + yy5) )^2-4*yy4*yy5;
C:= (d5^2- (x5^2+x6^2 - 2*x5*x6 + yy5 + yy6) )^2-4*yy5*yy6;
E:= (d6^2- (x6^2+x3^2 - 2*x6*x3 + yy6 + yy3) )^2-4*yy6*yy3;
eqns:={A=0,B=0,C=0,E=0}; expand(eqns);
X:=resultant(A,B,x4): Y:=resultant(C,E,x6):
Z:=resultant(X,Y,x5):
factor(Z):

The irreducible factors are the following four integral polynomials, and (according
to Maple) each is non-soluble over Q.

731161600000x8
3 − 2884724544000x7

3 − 254604702168560x6
3+

929745074065696x5
3 + 29180343859430360x4

3 − 104245652941659832x3
3−

1119855862049129679x2
3 + 4022769219537416744x3 + 1620713038685642896,

731161600000x8
3 − 5275493184000x7

3 − 202247115019760x6
3+

1002422141698336x5
3 + 16575444136627160x4

3 − 46366435207277752x3
3−

299095702632348879x2
3 + 813935120915198504x3 + 13663404945744016,

753831936x6
3 − 84641660928x5

3 − 4996031627504x4
3+

486105086115256x3
3 + 36795384322988721x2

3 + 920226256962743080x3+
10127898920872530064,

2747437056x6
3 + 143122194432x5

3 − 17613405584624x4
3 − 615688594921544x3

3+
69050497529701041x2

3 − 776224290995754200x3 + 1152246393155768464.
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