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Nuclear fission produces multiple prompt neutrons and gammas at each fission event. The resulting daughter nuclei continue to emit delayed 
radiation as neutrons boil off, beta decay occurs, etc. All of the radiations are causally connected, and therefore correlated. The correlations are 
generally positive, but when different decay channels compete, so that some radiations tend to exclude others, negative correlations could also 
be observed. A similar problem of reduced complexity is that of cascades radiation, whereby a simple radioactive decay produces two or more 
correlated gamma rays at each decay. Covariance is the usual means for measuring correlation, and techniques of covariance mapping may be 
useful to produce distinct signatures of special nuclear materials (SNM). A covariance measurement can also be used to filter data streams because 
uncorrelated signals are largely rejected. The technique is generally more effective than a coincidence measurement. In this poster, we concentrate 
on cascades and the covariance filtering problem.

Abstract

Develop and implement covariance techniques to enhance signal-to-noise ratios of nuclear radiation data•	
Model a covariance measurement of gamma cascades as a first step towards fission modeling•	
Model covariance measurements of correlated radiations emanating from nuclear fission (spontaneous and stimulated)•	
Attempt to implement covariance signatures as a means of identifying SNM•	

These goals are pertinent to the NA-22 portfolios “Detecting SNM Movement / Radiation Sensing” (NN2001-03) and “Signatures and Observables” 
(NN2001-09).

Goals and Relevance to NA-22

Deliverables
FY 2009

Annotated bibliography•	
Covariance model of nuclear cascades and validation•	
Preliminary covariance model of spontaneous fission•	

FY 2010
Refined model of spontaneous fission and validation•	
Preliminary covariance model of stimulated fission•	

FY 2011
Validation of covariance model for active neutron interrogation•	
Covariance signatures of SNM via active neutron interrogation•	

A covariance technique was used in 1956 [1], and again in 1980 [2,3], to measure lifetimes of intermediate states of nuclear cascades. For some 
reason, the technique did not catch on, presumably because of computational limitations of contemporarily existing hardware.

In the early 1990s, covariance mapping [4] gained popularity in the atomic physics community. These applications illustrated that “hidden” 
information can be extracted from spectra.

In the late 1990s, a similar technique of higher order statistical signatures for fissile materials began at Oak Ridge National Laboratory [5]. The 
high multiplicity of particles emitted from the fission process readily suggests that covariance techniques might be invaluable.

Present-day computational capabilities now make real-time software implementations of covariance measurements viable, and the techniques 
can be used for filtering and “fingerprinting.” Used in conjunction with other techniques, such as Kalman filtering and Wald’s sequential testing, 
significant enhancements of existing radiation detectors become possible without additional hardware.

Some Background

1.	
from the probability distribution: r is the correlation coefficient, the σ’s are variances

2.	
estimate from the sample: brackets mean expectation value,  is the coincidence term

The term  is the statistic measured in coincidence experiments.

Combining 1 and 2 and solving for the coincidence yields:

The coincidence term contains contributions from noise and accidentals. 
Therefore, coincidence is not a direct measure of correlation.

Covariance is a direct measure of correlation!

Covariance is a Measure of Correlation

Let X = A + B, and Y = A + C, where A, B, and C are random variables governed by Poisson distributions. One way of writing the joint probability 
distribution function for X and Y is:

Covariance for a Poisson Probability Distribution
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This result is true even if B and C are not Poissonian. In general, the covariance is the variance of A

where it is understood that X
k
 = k, etc. The expectation values are:

And the covariance is

Combined Probability Distributions
The initial radioactive decay is Poissonian, •	 f(n), but the gamma releases and their detections involve other distributions.
Both gammas have energy distributions: •	 g(E)
The gammas have exponential time distributions: •	 h(t)
The gammas are usually geometrically correlated: •	 w(θ)
The detectors have solid angle and energy efficiencies: •	 e(E,Ω)

The Poisson distribution for the decay is most important for considerations of the covariance measurement, and the other distributions are either 
integrated, or are sampled, over a small region. Those other distributions can, however, complicate the problem.

A BX λ λ= + A CY λ λ= + ( )1A A A B A C B CXY λ λ λ λ λ λ λ λ= + + + +
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Precision and Scaling Behavior of Covariance
The covariance of the compound Poisson process is the variance of the underlying common variable. We can estimate its precision.

A maximum likelihood argument for its estimation: 

And adding in the detection efficiencies: 

Obviously, high detection efficiencies and large samples are desirable.

Monte Carlo Simulations
To start, we have written a simple Monte Carlo program to model the cascades problem. It makes use of F8 tallies from MCNP5 as discrete 
probability distributions for detector response functions.

PoliMi [6] (an MCNP4c derivative) will be used for some of the later work.

Ultimately, we intend to use GEANT4 [7] to do the fission simulations.

The following results were obtained with our Monte Carlo program for cascades.

Monte Carlo Simulations of Data Filtering

The 60Co gammas are correlated, thus they can 
be separated from the rest of the spectra. Note 
that the sum peak at 2.5 MeV is suppressed.

The spectrum has been covariance-filtered to 
extract the two lines from 60Co.

Multidimensional covariance maps should allow such techniques as pattern matching, principle component analysis, etc., to exploit data to iden-
tify sources. False color-coded covariance maps offer an intuitive presentation for 2-dimensional tables, but the inclusion of extra dimensions 
(e.g., energy-energy-temporal) presents a real challenge for data interpretation. Dimensional reduction, or projection, will probably be required 
for decision making to become reliable and efficient. Bayesian prediction methods should play a key role.

Covariance Maps as Fingerprints?

Data for Validation
Data with preserved correlations are somewhat rare, but we have found a couple candidates. The utilization of other people’s data, however, is 
challenging. The data sets are archived in non-standard binary formats, so special software needs to be written to extract the data. Documentation 
of the measurements is often lacking.

An interesting data set from the early 1990s called BIGOH has calibration spectra with correlated gammas, and the data set contains spectra from 
significant quantities of SNM in real-world scenarios.

ORNL has a significant quantity of potentially useful data, but a certain effort will be required to locate the data and its accompanying documentation 
for the experimental conditions. These data, of course, are in non-standard binary formats.
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Probabilities for Data Acquired in Time Slices
(such as data acquired from oscilloscope traces)

γ1 and γ2 in the same time slice:

γ1 is uniformly distributed → p1 = dt/δt

γ2 is exponentially distributed → p2 = λe–λ(t' – t) dt'

γ1 and γ2 in different time slices:

γ1 is uniformly distributed → p1 = dt/δt

γ2 is exponentially distributed → p2 = λe–λ(t' – t) dt'

The second time slice begins at t2.
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Conclusions
Monte Carlo simulations suggest that covariance techniques can be used to filter nuclear data streams to extract correlated gamma peaks. The 
enhancement of signal-to-noise can be a few orders of magnitude, depending upon other characteristics in the spectra. The precision of a covariance 
measurement scales in the manner of Poisson counting statistics. Certain systematics often found in average spectra, such as gamma sum peaks, 
are largely suppressed.

Another covariance application under investigation is the use of generalized covariance maps as signatures of correlated features of fission emissions. 
The energy, temporal, and spatial correlations should provide distinct multi-dimensional “fingerprints” that can be used for positive identification 
(maybe even quantification) of SNM. Multidimensional fingerprints will require some sort of semantic reduction to be useful.
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