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Mimetic finite difference method for the Stokes
problem on polygonal meshes

L. Beirfo da Veiga! V. Gyrya* K. Lipnikov!  G. Manzini®
December 11, 2008

Abstract

Various approaches to extend the finite eleinent methods to non-traditional elements
(pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis
functions for such elements is a challenging task and may require extensive geometry anal-
ysis. The mimetic finite difference (MFD) method has many similarities with low-order
finite element methods. Both methods try to preserve fundamental properties of physical
and mathematical models. The essential difference is that the MFD method uses only the
surface representation of discrete unknowns to build stiffness and mass matrices. Since
no extension inside the mesh element is required, practical implementation of the MFD
method is simple for polygonal meshes that may include degenerate and non-convex el-
ements. In this article, we develop a MFD method for the Stokes problem on arbitrary
polygonal meshes. The method is constructed for tensor coefficients, which will allow to
apply it to the linear elasticity problem. The numerical experiments show the second-order
convergence for the velocity variable and the first-order for the pressure.

1 Introduction

Stokes flow is fluid flow where advective inertial forces are negligibly small compared to viscous
forces. This is a typical situation on a microscale or when the fluid velocity is very small. Stokes
flow is a good and important approximation for a number of physical problems such as sedimen-
tation, modeling of bio-suspensions, construction of efficient fibrous filters and development of
energy efficient micro-fluidic devices (e.g. mixers). Efficient numerical solution of Stokes flow
requires unstructured meshes adapted to geometry and solution as well as accurate discretization
methods capable of treating such meshes, We developed a new mimetic finite difference {MFD)
method that remains accurate on general polygonal meshes that may include non-convex and
degenerate elements.

General polygonal and polyhedral meshes are often used in complex simulations (see e.g.
{18]). In adaptive solution of PDEs on quadrilateral and hexahedral meshes, local refinement
ol the mesh creates degenerate elements that have 180° angles. The termination by thinning
or tapering out of a geological layer is modeled with degenerate hexahedra that have a few
vertices with the same coordinates. Lagrangian meshes may result in non-convex elements. The
MFD method provides accurate discretization of PDEs on meshes with all types of degenerate
elements.
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The MFD methods [28, 10, 12, 11, 8] have many similarities with finite elernent (FE) methods.
Both methods try to preserve fundamental properties of physical and mathematical models such
as conservation laws, solution symmetry and positivity, and the fundamental identities and
theorems of vector and tensor calculus. Various approaches to extend the FE methods to non-
traditional elements (pyramids, polyhedra, etc) have been developed over the last decade (see,
e.g. [20, 24, 25, 30, 31}]). Building of basis functions for such elements is a challenging task and
may require extensive geometry analysis. For instance, an auxiliary simplicial partition is used
in {24]. The MFD methods combine analytical power of FE methods with flexibility provided
by polygonal and polyhedral meshes. Contrary to the FE methods, the MFD methods use
only surface representation of discrete unknowns to build stiffness and mass matrices. Since no
extension inside the mesh element is required, practical implementation of the MFD methods is
simple for polygonal and polyhedral meshes.

The MFD methods have been successfully employed for solving diffusion {8, 11, 22], convection-
diffusion [Manzini], electromagnetics [22] and elasticity (2] problems and for modeling fluid flows
{1, 13, 26]. The original MFD methods were the low-order methods. Miscellaneous approaches
were developed to build higher-order methods [27, 5, 21, 6]. In this article, we build a new MFD
method for the Stokes problem on polygonal meshes. Derivation of the new method is based
on the methodology proposed originally in [12] for diffusion problems. The formulation of the
Stokes problem involves a tensor viscosity coefficient so that the developed method may be also
used to solve a linear elasticity problem in the displacement formulation. Note that a mixed
formulation of the elasticity problem is used in {2].

The developed MFD method is second-order accurate for the fluid velocity and first-order
accurate for the pressure. In fact, we build a family of methods with equivalent properties.
Detailed analysis of this family will the topic for future research.

A posteriori error estimates is an important part in development of MFD methods. A local
error estimator for the diffusion problem is presented, analyzed and tested in [3, 4], while in [14]
a post-processing methodology is introduced. Finally, we mention a few relevant finite volume
discretization methods on polygonal and polyhedral meshes (see [17, 19] and references there in).
Like the MFD method, these methods are build to preserve important properties of continuum
equations.

The paper outline is as follows. In Section 2, we derive the variational form of the Stokes
problem. In Section 3, we derive the new MFD method. In Section 4, we analyze the stability
of the discretization. In Section 5, we illustrate the proposed method with three numerical
experiments.

2 Variational formulation for the Stokes equation

Let Q be a polygonal domain with the Lipschitz continuous boundary. Let us consider an
incompressible Stokes equation

in €, (1)

-2div(wD{(u)) = F-Vp
diviu) = 0

where u is the fluid velocity, p is the pressure, F is a given external force, v is the fourth-order
symmetric positive definite tensor,

Vkinm = Viknm = Vnmkl = Umnkl, (2)
and D(u) is the symmetrized gradient,

2D(u) = Vu + (Vu)?,



We impose the Dirichlet boundary conditions on Ty ¢ 052 and the Neurnann boundary conditions
on I'y = 9O\ Ty, where both Ty and T'; are a finite union of connected components. We obtain

It

u(x) g(x) for x € Ty, 3)
o(u(x), p(x))n(x) = h(x) for x € Ty,

where ¢ is the stress tensor,
o{u,p)=2vD(u)~pl.

Let X = (H'(Q2))?. The admissible class of velocity fields u is defined as
Xe={ue X: ulx)=gx) for xe '} {4)

Note that we do not require functions in X, to be incompressible (incompressibility is enforced
by an additional constraint). We will also need a linear space X of variations in the admissible
class Xg. It is defined by setting g = 0 in (4). Multiplying (1) by v € Xy, integrating by parts
over {} and using the boundary conditions (3), we get

/VD(u):Vvdx~/pdiv(v)dx=/F-vdx+ h-vdx. (5)
Q Q Q

Let us introduce the following notations:

Auv) = / (2vD(u)) : Dv dx, (6)
9
B(p,v) = /S;p div{v) dx, ’ (7
Liv) = /F-vdx+ h-vdx. (8)
Q Ty

Note that the bilinear form A(u, v) is symmetric since Vv can be replaced with D(v). In these
notations, equation (5) takes the following form

A(u,v) = Blp, v) = L{v). 9

Now we multiply the incompressibility equation in (1) by ¢ € L*(Q2) and integrate over the
domain 2 to get a variational formulation: Find a pair (u,p), u € X, and p € L*(Q), such that

{ A, v) — B{p,v) = L{v) Vv € X,

B(g,u) =0 Vg € L2(S). (10)

In the sequel we assume for simplicity that the measure of Iy is positive, in order to have the
uniqueness of the vector variable u. Furthermore note that, in the case I'y = 99, the pressure
variable is defined up to a global constant and the boundary datum must satisfy the consistency
condition [, g n =0, with n the outward unit normal to 9.

3 Discretization on polygons

Let " be a partition of the computational domain € into A(Q*) polygons E. We assume that
this partition is conformal, i.e. intersection of two different elements Ey and E; is either a few
mesh points, or a few mesh edges (two adjacent elements may share more than one edge) or
empty. We allow Q2" to contain non-convex and degenerate elements.

We assume that the coefficient v is a constant tensor inside each mesh element.

The discretization of problem (10) requires to discretize scalar {elements of L?(£2)) and vector
(elements of H'(Q2)) functions, the bilinear forms A(u,v) and B{p, v}, and the linear form £(v).



We begin by introducing degrees of freedom for the functions (details are presented later):

p, s € L32(Q) -3 P.,S Q"

11
u, veHY{(Q) --3 UV eXxh (1)

We also define subsets of X* approximating Xz and Xj to be Xg and X}, respectively. Next,
we discretize the bilinear and linear forms: )

A(u,v) -+ VTAU,
B(p,v) --3 VvIDP, (12)
L(v) --» VT L,

where A is symmetric semi-definite matrix with three null models corresponding to the rigid
body motion. This gives the following algebraic problem: Find U € X g and P € Q" such that

VIAU-VTDP = VTL vV e Xb,
UTDS = 0 VS € Q"

This problem can be written in the following matrix form

B8 23]-[E]) wen e w

In practice, it may be convenient to eliminate degrees of freedom corresponding to the Dirich-
let boundary conditions (see section 3.5). This results in a saddle point problem:

Ay DI [U]_ [ Gu
{ D, 0 || P|T|Gp | (14)
where Ay and Dy are sub-matrices of A and D, respectively. Now the matrix Ay is symmetric

positive definite and a number of iterative solvers can be used to solve the saddle point problem
(14).

3.1 Discretization of scalar and vector functions

Let us consider a sample element E, shown on Fig.1. We denote the number of its vertices by
N(E). Note that the number of its edges is also N(E). Let ng(x) be the external unit normal
vector to the boundary OF at the point x.

For scalar functions (e.g., pressure p), we specify one degree of freedom per element, pg,
for instance, the value of p at the center of mass of E. The local approximation space Qg has
dimension one and isomorphic to the space of constant functions on E. Dimension of the global
space Q" equals to the number of mesh elements, N (2").

Let us specify degrees of freedom for vector functions such as the velocity u. For each vertex
a; of a polygonal element E, we define two degrees of freedom: the value of u at a;, i.e.

(UF, UNT = u(ay), i=1,...,N(E).

For each edge e; of E, we specify one degree of freedom: the average flux through the edge, i.e.
e 1
Uf .= — [ u(s) ngds.
|€,‘| e;

The local approximation space X% on the polygonal element F is uniquely characterized by
3N (E) degrees of freedom. The dimension of the global space X" is twice the number of mesh



Figure 1. Left picture introduces notations used through the paper. Right picture shows the
degrees of freedom for the pressure (red box) and velocity (blue circles and arrows).

vertices plus the number of mesh edges. The dimension of spaces X 5 and X} equals to the
dimension of X" minus twice the number of Dirichlet points and the number of Dirichlet edges.
Let Ug be the restriction of I/ € X" to the element F,

T
Up = (Uf,Uf,Uf, U;,U?,Ug,...,U;:ME),rfgw),q@(m)

Later we show that the space Xg of algebraic vectors of size D(E) = 3N (E) is isomorphic to
a specially designed space Vg of vector functions. In other words, for every U in Xg, there
exists a unique vector function ug in Vg.

3.2 Discretization of A(u, v)

Let us break the bilinear form A(u, v) into smaller pieces:

Alu, v) = Z Ag{ug, vg), (15)

Eett,

which is the standard step in assembling a stiffness matrix. Let Ug, Vg € Xg be vector repre-
sentations of functions ug,ve € Vg. Then,

UL ApVe = Ag(ug, vi) = / 2v D(ug} : D{vg) dx.
E

The goal of this section is to derive formulas for caleulating entries of elemental matrices Ag. So
far, we have followed roughly the finite element path. The next step would require to formulate
basis functions for a polygonal element which is a challenging problem. From this moment and
on, we avoid this problem by using the Pi-compatibility property of functions from Vg. We
write Vg as a direct sum of two linear spaces:

Ve =Ve1$H VE2. (16)

We define Vg, as a space of linear vector functions, Vg1 = (P1(E))?. The dimension of
Ve,1 is siz. The linear part in Vg is necessary to have a second-order convergence method.
The remaining part is defined only partially. The following is the direct consequence of the
integration by parts formula.



3.2,.1 P;-compatibility property

Let u; € Vg1 and v be a constant tensor. Then, the P,-compatibility property states that

/ vD(uy) 1 D(vg) dx = / (vD{uy)-ng) -vgds Yvg € Vg. (17
E AE

This implies that calculation of a part of the stiffness matrix Ag requires to know vg only
on edges of E. It is sufficient to build a convergent scheme. We make two assumptions.

(A1) For any vg € Vg, its normal component vg - ng is quadratic on every edge e; of E. Thus,
it is uniquely determined by the flux V¢ and four degrees of freedom at the vertices a; and

Aj41.

(A2) For any v € Vg, its tangential component is lihear on every edge e; of E. Thus, it is
uniquely determined by four degrees of freedom at the vertices a; and a;4,.

These conditions imply continuity of a discrete velocity function across mesh edges. Using

notation on Fig. 1 and the second condition, we immediately have
ds = [eil Ve yy T ]eii z VY T
vE -t 8-3‘(:‘: ) 'ti+7(a‘+1= )t (18)
ei

where t; is a tangential unit vector to e;.

Let ¢;, i=1,...,D(E) form a basis in Vg. The first six vector functions forming a basis in
Vg1 are

swn=[o] wen=3[ L] awn-[7].

-T

(19)
sen=[5] ewa-3|Y].  ewn=[)]

Note that the first three basis functions span the space of the rigid body motions, while ¢, and
¢ alone span the space of translations. The final restriction on the remaining basis functions
¢, (forming the basis in Vg 2) is

Ap(¢;, ¢;) =0, 1<i<6<j<D(E). (20)

As shown later, this assumption simplifies the structure of the matrix Apg.

3.2.2 Change of basis in Xp

Let transformation matrix T'g act from the basis defined by functions ¢, to the basis defined
by the degrees of freedom (the natural basis in Xg),

Te = {Te:;} Tk,i,; —i-th degree of freedom of ¢;. (21)

The first six column of T are uniquely defined by the choice of the basis functions (19). The
remaining columms Ty, j > 6, are defined using (20) and the Pi-compatibility property. Let
R(¢,), j = 1,2,..,6, indicate the computable vector in R? which represents the right hand side
of (17)

R(‘%)TVE = / (vD(¢;) -ng) ve ds YW € Xp = RPE) (22)
aE
Then, taking up = (’bi and vg = ¢j in (17)? we get

TTAET; = R(9)T,  1<i<6<j<D(E). %)



The first three basis functions ¢, {i = 1,2,3) in Vp correspond to the rigid body motions.
Therefore, R{¢,) = R(¢py) = R{¢3) = 0 and we get only three conditions to define D(E) — 6
basis vectors in Xg. We add three additional conditions

THTy =0 1<i<3<6<j<DE).

Let T;_; be the D(E) % (j — 1 + 1) matrix obtained by selecting the consecutive columns of
TEI
T =[Ti, Tigr s o, Ty,

Using this notation, we may write Ty.p instead of Tg. Hereafter, to simplify notations, we
shall write D instead of D(E). We introduce similar notations for matrices Ry..; formed by

vectors R; = R(¢;), t =1,...,6. Let us define Rp = R, _.g and summarize the above resulis:
Ri_:=0, (24)
ApTi_ = Rg, (25)
T R =T (Ap T ¢ = AL, (26)
T, nAgTi ¢=TI ;Rp=0, (27)
7 T3 =0. (28)

Note that the entries of the symmetric 6 x 6 matrix f\}n} defined in (26) are calculated directly
using the basis functions (19} in formula {17}. Since these basis functions are linear, the in-
tegration is simple. Moreover, (24) implies that the corresponding entries of matrix ALl are

ZEros,

~ 11 g 0
where each block is a 3 x 3 matrix. In a special case when v is a scalar, the matrix SI is
diagonal. In a general case, this matrix is positive definite for any positive definite tensor v.

Observe that the last D — 6 columns of Tg can be chosen to be mutually orthogonal and
can be scaled arbitrarily. It will be convenient to assume that

T _pTr_p = |EIp_s, (30)

where Ip_g represents the identity matrix.
The following results shows that vectors T, 7 =1,...,D, do form a basis in Xg.

Lemma 1. The matriz T € RP*P i3 invertible.

Proof. The proof is by contradiction. Let us assume that TgV = 0. Using (25)-(27), we
easily obtain ~ o
0=RETEV = AF Vi, Va, .., Vo]" = SE Vs Vs, V] (31)

Since SY} is positive definite, the above identity gives Vy = Vs = Vi = 0. Due to the definition
of 11, T2, Ty and the orthogonality relations (28), (30), the columns 7} with 7 =1,2,3,7,8,..,D
are linearly independent. Therefore their linear combination is zero only then the corresponding
weights are zeros. Thus, V = 0. This proves the assertion of the lemma. i

Let us define the representation of matrix Ap in the new basis Ty, ..., Tp:

AE ET%AETE. (32)



The orthogonality (20) and property (26) imply the following 2 x 2 partition of Ag:

Ap= AE 0 (33)
FTl 0 Az | >

The matrix Ai? can be arbitrary positive definite matriz whose eigenvalues are close to the
maximum eigenvalue of A, Various choices of A% define a family of numerical methods
with equivalent approximation properties. In practice, a reasonable choice for A% is the scalar
matrix, R

A% = dpar (V)| E| Ip_s. (34)

This completes construction of the matrix Ag.

Agsumptions Al and A2 give unique description of function vg on every edge of E. Let us
illustrate how to compute the integral over edge ¢; in the right-hand side of (17). Since v is a
constant tensor, u; is a linear vector function, we get that ¢ = 2vD{u,) - n; is a constant vector
function and

/(2uD(u1)-ni)-vEd5 = /(c:-ni)(v'ni)dsjL {e-t;){v-1;) ds

€y €i

1l

"
(e moleal Ve + (e 00180 (v via, v v T

3.2.3 Inexpensive construction of the stiffness matrix Ag

Calculation of the matrix Ag described above involves inversion of the transformation matrix
Tpg. For a quadrilateral element it is a 12 x 12 matrix. In general, complexity of the above
procedure must be compared with the complexity of iterative solvers for the saddle point problem
(14) that can be quite a challenge. However, a slight modification of the above argument gives
a cheaper method for calculating Ag.
Property (26) implies that .
RT (T, 6=SY.

Then, the general form of the matrix Ag is

Ap =Ry (SF)'RL+PUEP, (35)
where P is the orthogonal projector,

-1
P=Ip-T ¢(T0 ¢Ti¢) T,

and Ug is an arbitrary symmetric positive definite matrix. This new matrix A g belongs to the
same family of matrices given by (33) and (32). However, now we need to invert only the 3 x 3
matrix SE and the 6 x 6 matrix T7_gT; _¢.

For a scalar coefficient v, the matrix §151 has a very simple form, f‘lel = v |E|I3. If we choose
Ug to be a scalar matrix, formula (35) is simplified:

v

As =g

R, sR]_;+ 2v|E|P.
The structure of the 6 x 6 matrix T7_;T;_¢ can be further simplified by shifting the Cartesian
coordinate system to the center of mass of £. In this case, vectors Ty and T3 (corresponding
to ¢, and ¢, respectively) become orthogonal to the remaining vectors. After rearranging
columns and rows of Tf_ﬁTl_g, we get a block-diagonal matrix.

Remark 1. 7t is possible to find an explicit form for a particular choice of the basis functions
&, by solving a local problem on E following the path described in [11] for the diffusion problem.
Such calculation of basis functions is expensive and therefore is not practical.



3.3 Discretization of B(p, v)
Similar to the previous section, we break the bilinear form B(p, v) into smaller pieces:
B(p,v)= Y Be(pe, ve).
EeQh

Since the pressure pg is constant on each polygonal element F, using the divergence theorem
we have

Be(pg, vg) = /pEdiv(vE) dx:pg/ div{vg) dx:pE/EvE-ng ds
a

pe Yy /Vs ngds=pg »_ |elV]

e, €0 e €0F

i

This is a sum of the fuxes through the edges of £, which are our degrees of freedom.

3.4 Discretization of L(v)
We rewrite £(v) as follows:
Lv) = Z/F vdx+}:/hvds (36)
Eent &l

The edge integral is discretized by assuming that h(x) is constant on each edge. Let e; be the
i-th edge of polygonal element F and let x; be the mid-point of ;. Then, using notations in
Fig. 1 and assumptions Al and A2, we get

/h-vEds & h(xi)'/vE(ls

e; €4

(h(xz)nz)/ VE Iy dS-F(h(Xi)'ti)/ veg-t; ds (37)
[ €y

(o) - m)leat V2 + (hxs) 020 (V2 1 V2, 12 4 V2T b

The volume integral in (36) is discretized by assuming that F(x) is constant over each element
E. Let xg be the center of mass of E. We define a quadrature rule with the quadrature points
at vertices of £ and positive weights w;, 1 = 1,...,N{E) such that the quadrature is exact for
linear functions. Using this quadrature, we get

N(E)
/ F-vpdxs z wi F(xg) - ve(a;) Z w (VL VHT - Fixg). (38)
E B

We choose the weights w; as the coefficients in a formula that defines the center of mass of
via coordinates of its vertices,

3.5 Boundary conditions

In the variational problem, the Dirichlet type boundary conditions manifest themselves through
the admissible class (4), while the Neumann type boundary conditions only effect the linear
functional £L{v).

The discrete Dirichlet boundary conditions on I'; appear through the definition of the class
X, " and the space X}. That is the values of the degrees of freedom corresponding to the vertices
and edges on the boundary I'; are prescribed. For a boundary vertex a; € I'; we define

(WE,UY)T o= g(a). (39)



For a boundary edge e; € 'y we define

1
Uf = E/ g(s) - ng ds. (40)
i Je,;

Let us denote by Uy and V, the part of I/ and V, respectively, that does not contain the
degrees of freedom specified by the Dirichlet boundary conditions (39}-(40). Substituting (39)-
(40) into (13) and eliminating equations corresponding to the Dirichlet degrees of freedom, we
obtain the linear system (14) for Uy and P.

4 Stability analysis

In this section, we study stability of the MFD discretization, which is important for demon-
strating convergence of the numerical method. The stability analysis of saddle point problems
{9] requires to prove two inequalities. The first inequality is the coercivity of the bilinear form
A with respect to a natural norm in X" (see Theorem 1). The second inequality is the inf-sup
condition {see section 4.2).

4.1 Coercivity of bilinear form A
4.1.1 Natural norm in X}

In order to show the coercivity of the bilinear form .4 we need to define a norm on the space X{.
Since the shape functions ¢, . .., 5y are not know inside the elements we cannot use H'-norm
for the space X[. Our goal is to define an analog of H'-norm that would only use the known
information about the space X§.

Due to (A1) and (A2), for any Vi € Xg, the corresponding vector function vy € Vg is
completely determined on 8 F. Analogous to H'-norm, our norm should depend on the derivative
of the function and scale appropriately under change of coordinates/scaling.

Therefore we can define the following seminorm on Xg:

N(E)

Vil = 3 e | Gavet)as weexe, (41)

where 2 + Is the tangential derivative.

Recall that the basis functions ¢, ¢4, ¢ represent the rigid motions of £ and correspond
to the basis vectors 71,75, 73 € Xg. The natural local seminorm that vanishes on rigid body
motions is

ngm* E = mln EHVE + T 36{]1 YVE € Xg. (42)

In the above definition, we could ignore basis functions ¢, and ¢, as (41), due to differentiation
ignores constant functions.

In the sequel we use {| - || for the standard Euclidean norm on R™. Whenever m is different
from D, we use the lower-case letters v, 1 and w for vectors in R™. We also introduce the
following seminorm:

lell? := Z%, Yy e R™, m> 3.

Finally, we define the broken seminorm on the space X"
IVIEZ =D Vel & (43)
EeQh

This seminorm becomes a norm on the space X#. The goal of the next subsections is to prove
the coercivity of the bilinear form A with respect to the norm ||| - ||\..

10



4.1.2 Mesh regularity assumptions

A few quite general mesh assumptions introduced in [8] are required for analysis. We assume that
there exists a compatible decomposition Sy, of the polygonal mesh €2, into triangles. Moreover,
there exist mesh independent numbers N, € N and p, > 0, such that:

e every polygon E € ), admits a decomposition Sp|g made of less than N, triangles;

o for each triangle T € §),, the ratio of the radius of the inscribed disk to the diameter of T’
is bounded from below by p..

We do not need to build the decomposition 5, explicitly. 1t suffices to know that it does exist.
The consequences of the above mesh assumptions are:

e The number of edges N'(F) of each polygon F is uniformly bounded.
e There exists a constant o, dependent only of N, and p., such that
lei} = o.diam(E) and |E| > o.diam(E)?
for every edge e; of E.

4.1.3 Main result

Hereafter, C, C; and C3 are generic positive constants, possibly different at each occurrence,
independent of the mesh. These constants may depend on the tensor 1 and the shape regularity
parameters N.i, p. and 0., introduced in Section 4.1.2.

Lemma 2. The symmetric 3 x 3 matriz 81}, introduced in (29), satisfies
CuIEN? <oTSHu <Oy B[P vueR. (44)

Proof. The result follows from the definition of S1}, noting that D(¢,), D(¢s), D(¢) are all
constant tensors. With a scaling argument

(SE)i-aij-» = /FUD(@) 1 D(¢;) dx = |E{ (vD(¢;) : D(9;)) 1,7 =4,5,6
and that the fourth order tensor v is positive definite. |

As a consequence of the scaling choice (34) we also have
CilE )* < 2" A < GolE| |l vueRPTS. (45)
By definition, first using (32)-{33) and then (29) we have
VEAEVE =wTApw = uTAlu+ 0 A%y
= (ug, us, us)SH (ug, us, us)” +vT A%y,
From this equality, using Lemma 2 and (45) it immediately follows
CrE| ([lullZ + lel®) < VE AsVie < Ca | B (ull? + {ull®) - (46)
for all Vg € Xg, u € R® and v € BP9 such that
Ve =Tw =Tt + Tr_py . {47)

We can now present the following Lemnma.
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Lemma 3. There exists a positive constant ag, depending only on the tensor v and the geometric
constants in Section 4.1.2, such that

Ag(ve,vE) = VgAEVE > OtE|||VE|||31E YVg € Xg.

Proof. Let Vg € Xg = RP. Since the matrix T is invertible, for each Vg, there exist two
unique vectors u € R® and v € RP~® such that (47) holds.
The triangle inequality gives

Vel g < 2ITi-eull’ & + 2| Tr—pull? £- (48)
By definition of the norm (42) and of the T}, j = 1,2,..,6,
6 6 D d 2
ITeeull e <33T =3 Y S lel [ (5o0) -
j=4 j=4 i=1 €i

Since all the derivatives of the ¢; are bounded by 1, and les|? < C|E|, we get

6 D
ITi—eull? 5 < C Y ui D leil* < CIE |lull?. (49)
j=4

i=1

We now observe that, for all Wg € Xg, the restriction of the associated function wg to the
boundary is a piecewise polynomial function. Therefore an edge-by-edge standard inverse in-
equality gives

N(E)

d
IWellt = 3 leil [ (Zowe(o)Pds < CliwellE o - (50)

i=1

The definition of the degrees of freedom in Section 3.1, combined with (50), easily implies
IWell% < ClIWel]*>  YWg e Xg . (1)
Using (28), (51) and recalling the scaling assumption (30) yields
IT7-p2llZ & < NIT7-pull% < ClT7-pol|* = CI|E| [l2]*. (52)
The result follows combining (48), (49) and (52) with lower bounds in (46):
IVallZ 5 < C1B! (lulf +12)?) < € (" ARu + 2TA%e) = O VEA Ve,
The assertion of the lemma follows with ag = C;. O

The bilinear form Ag(vg, vg) is also h—uniformly continuous with respect to the same norm
[I| - [l]x- This result is shown in Lemma 5 in the Appendix. It does not affect the main results
of this paper and can be skipped. Two global estimates are presented below. We give the proof
only of the first one. The second one is proved in Appendix.

Theorem 1. Let Q" be a connected partition. Then the following holds.
o || I« is a norm on Xp.

e There exist a positive constant o depending only on ag, such that

VIAV > a||V|I2 WV e Xh (53)
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Proof. Throughout the proof we will need the {ollowing definition. For Vg € Xy define
Vg = Vg — T1_a¢, (54)

where ¢ minimizes the seminorm (42) on element E and is different for different elements. Then
it is obvious that ~ }
VEAgVE =VEARVE. (55)

Now we prove that || - ||, is a norm on XJ. Clearly, || - |l is a seminorm. Thus, it only
remains to show that for any V € XP, ||V]ll« = 0 implies that Vg = 0. We will prove this by
contradiction. Suppose V. € X, V 5 0 and ||V||. = 0. Then [|Vel|..g = 0 for all elements
E € Q" Without loss of generality assume that E is the closest element to the boundary for
which Vg # 0 but [[|[Vglll«.5 = 0. Due to {55) this implied that

Ve =Ti-3c (56)
Since E is the closest element to the boundary, it contains as least one edge along which V is

zero. Hence, due to (56) Vg = 0. Contradiction. This proves that ||| - |||« is a norm on X{.
Now we use Lemma 3 to show (53) ‘

N VEALVE i i
VIAV  gear . VEARVg .
5 = — 2mm~—22mma = Q.
v 3 VelE T omeer Vel T peor
Eetth
This proves the theoremn. ]
Theorem 2. Let meas(I'y) > 0. Then it holds
VI <CIn(2+1/h) A(v,v) YV e X" (57)
where C' is independent of k, || |l indicates the mazimum norm on vectors and V is the vector

representation of v.
Note that the logarithmic factor in Theorem 2 is sharp and it is not an over-estimation. Thisg
factor appears essentially because the H! norm in two dimensions does not bound the L™ norm.

4.2 Inf-sup condition

We only show briefly the proof of the following result.

Theorem 3. It exists a positive constant 8 independent of h such that for all S € Q" (and the
associated piecewise constant function s) it exists V € X[ (and the associated piecewise regular
function vy} such that

Bs,v) 2 8( Y [Elsel)®, (VI <1. (58)
EcQy

Proof. Due to the well known infsup condition [9] of the continuous problem we have the
existence of a v € Xy such that

B(s,9) 2 Bllsllrzey = B Y. 1ElIse)?, I[¥llmy <1 (59)
Eetl,
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with # > 0 and independent of s. We then introduce the piecewise linear function v, on the
sub-mesh S, given by the classical Clement interpolant [16] of ¥. It holds

Vel < ClVilm@ £ C . (60)

We then introduce V € X (and the related v) defined on each element E by

(Vixiviy)zvc(ai) i=1,.,N(E),
Ve = K}'/ Fs) neds  i=1,.,N(E). (61)

Due to (61)2 and the definition of B it is easy to check that

B{s,v) = Z sEf’\NI-neds: z 35;/5 div(¥v) dx = B(s,¥) ,

Eefy €4 EeQy,

which together with the first property in (59) immediately implies the first part of (58). The
second bound in (58) follows with a scaling argument and recalling (60). i

5 Numerical experiments

To measure quality of a discrete solution, we define two mesh-dependent L? norms
172 1/2

Eeqh Eeqh

To solve the saddle point problem (14), we use the iterative solvers with block diagonal
preconditioners of the form
Hy, 0
6 M\’

where Hy is a preconditioner for the matrix Ay and My is the diagonal mass matrix with areas
|E| on the diagonal. To achieve a mesh independent convergence of the iterative process, the
matrix Hy must be spectrally equivalent to Ag. We have verified this for small mesh resolutions
and Hy = A;'. However, we have not achieved spectral equivalence with either the algebraic
multigrid {29] or the second-order accurate incomplete LU factorization [23].

5.1 Random quadrilateral meshes

Let © be a unit square and » = 1/2. We impose the Dirichlet boundary conditions on three
sides of the unit square and the Neumann boundary condition of the remaining side. These
conditions are chosen such that the exact solution is

3
u(z,y) = [ 'Zs T_; ] s pla,y) =3zy - .75 (62)

We consider a sequence of randomly perturbed quadrilateral meshes (see Fig.2). A randomly
perturbed mesh is built from a square mesh with mesh size A = 1/n by relocating each interior
mesh node a to a random position inside a square box. The box is centered at a, its sides are
aligned with the coordinate axis, and its size is h/2.

Tle convergence analysis on the sequence of randomly perturbed meshes is the most chal-
lenging test for any discretization method. Figure 3 shows the second-order convergence rate
for the discrete L? norm of the velocity error and the first-order for the discrete L? norm of the
pressure error and the discrete H! norm (43) of the velocity error.

14



Figure 2: A sample 15 x 15 quadrilateral mesh with randomly perturbed vertices and a sample
polygonal mesh.

1”7 S,

\~-H' emoriny
~w-1% grrorinu
[-e-L? errarin p

wo iin 10

Tigure 3: Left picture shows the streamlines for the discrete solution on the finest mesh. Right
picture shows graphs of the mesh-dependent L? and H! norms of errors. The velocity graphs
are marked by diamonds and squares (blue lines) and the pressure graph is marked by circles
(red line).

5.2 Polygonal meshes

Let £ be, again, a unit square and v = 1/2. We consider the Dirichlet boundary value problem

with the exact solution

u(z,y) =™+ [ _11 } ,  play)=0.

Contrary to (62) this solution results in a non-zero right-hand side.

We study convergence of the method on a sequence of polygonal meshes. A polygonal mesh
{see Fig. 2) is built in two steps. First, we generate the Voronoi tessellation for the set of points
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(xi.j: y”) given by

245 = & + 0.1 sin(2w§;) sin(2my), i ..
¥i,j = 13 + 0.1 sin(27€,) sin(2nn;), i=0,...,n,

where & = ih, 1; = jh and h = 1/n. Second, we move each interior mesh node a to the center
of mass of a triangle formed by the centers of three Voronoi cells sharing a.

As shown in Fig. 4, we observe the second-order convergence rate for the discrete L? norm
of the velocity error. Some superconvergence (higher order than 1) is observed for the discrete
H' norm of the velocity error and the discrete L? norm of the pressure error. This reflects the
fact that the sequence of polygonal meshes has been build using the smooth map.

U . - e
0=+ error in u] ~&-H' error in u|
“m-{2 arrorinu i -%-L2grrorinu

o - Perorinpl 1ol L2 error inp

107 e

5 -

i =3

H 5

w0 10°

" .
107 a 10
e et I ‘
10 1h W ' " 10°

Figure 4: Graphs (left is for » that is a scalar and right is for v that is a tensor) of the mesh-
dependent L? and H* norms of errors. The velocity graphs are marked by diamonds and squares
{blue lines) and the pressure graphs are marked by circles (red lines).

5.3 Polygonal meshes and tensor coefficients

Let us consider the previous example but replace the constant viscosity » by a symmetric fourth-
order tensor v satisfying (2). Let & = D(u). Using the reduced Voigt notation, the symmetric
tensor is defined by six independent components:

Tzx Y11 iz Vi3 Epx p
Oyy | = | V12 V22 Va3 Eyy | — | P
Oy M3 Vi3 Va3 Ery 0

This problem is an intermediate step towards the displacement formulation of a linear elasticity
problem. Therefore, we set 141 = vag = A + 24, v = A and vyy = 4u, all other coefficients are
then equal to zero. The anisotropic tensor is obtained by setting A = 10 and p = 1.

The right picture in Fig. 4 shows the second-order convergence rate for the discrete H'
norm of the velocity error. Again, slight superconvergence is observed for the other two errors.
Comparing the two pictures in Fig. 4, we see that the effect of the tensor anisotropy is mild. All
errors are roughly twice bigger than that for the scalar coefficient v.
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5.4 Locally refined meshes

Let € be again the unit square and v = 2. We consider the Dirichlet boundary value problem
with the point force F = (§(0.5, 0.5), 0)T in the middle of Q. The exact solution is

29?2
1+log(z? 4+ 2 + ——— _
1 z2 + o2 _ 1z
U(I,y) - 8_7T _21;y v s p(l':y) - z2 + yz' (63)
x? 4 y?

We study convergence of the method on a sequence of locally refined meshes. The sequence
starts with the uniform square 16 x 16 mesh. The singular point force is approximated by a
piecewise constant function with unit integral. On each mesh in the sequence, this function
equals to zero almost everywhere except in four square cells in the middle of the domain. The
mesh refinement is based on a simple error indicator — sum of pressure jumps across mesh edges.
The error threshold for mesh refinement is the average value of this indicator.

.H......,..
T FHHH

EEsER

+._.-
:
i

Figure 5: Left picture shows the locally refined mesh after 3 adaptive iterations. Right picture
shows streamlines of the discrete solution on the most refined mesh.

Figure 5 indicates strong refinement in the domain center where the solution is singular.
Since p is not in L%(f2), we do not have convergence for the discrete L2 norm of the pressure
error, see Table 1. For the same reason, the discrete H! norm of the velocity error does not
converge to zero. However, convergence rate for the discrete L2 norm of the velocity error is 1.7.
The linear regression method has been used to estimate the error reduction rate with respect to

the effective mesh size h.sp = 1/ /N (Q27).
N@") | |ue= - Ullix | 1T = Ulll« | [IP°® = Pl

256 4.47e-2 6.04e-1 2.47e-1
472 2.56e-2 7.04e-1 2.48e-1
928 1.46e-2 8.06e-1 2.47e-1
1924 8.06e-3 9.01e-1 2.47e-1

3868 4.45e-3 1.02e-2 247e-1

Table 1: Convergence on a sequence of locally refined meshes.
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6 Conclusion

We have developed a mimetic finite difference (MFD) method for the Stokes problem. Contrary
to a finite element method, the MFD method uses only the surface representation of discrete
unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is
required, practical implementation of the MFD method is simple for polygonal meshes that may
include degenerate and non-convex elements. The method is constructed for tensor coefficients,
which will allow to apply it to a linear elasticity problem. The numerical experiments show the
second-order convergence for the velocity variable and the first-order for the pressure in mesh
dependent L? norms.
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A Appendix
Lemma 4. For all Vg € Xp
éggg Ve + Ti-s cl| < ClIVell.e- (64)
Proof. We start observing that ¢, and ¢, span the space of the constant vector fields on E.

Therefore, as in the proof of the previous lemma, a simple one dimensional scaling argument on
the boundary gives

N(E)

. : d . )
L ([VE + ey + esallEior) < C ) leil / (Gve()?ds=CllVellz . (65)
o i=1 e
From the definition of the degrees of freedom of Xg we now have

Vel < ClIvEllr=(0E),

which combined with (65) gives

min ”VE + e Ty + Cng]f < minRHvE + Cl¢1 + C;3¢3|[Lm(og-) < Cli]VEmE . (66)

cpe3€R enese
The result finally follows from (66) and by definition

min [{Vg + Ti-3¢f] < ng%lllvs +ellle=Cll|Vellve . O

ceR3

Lemma 5. It exists a positive constant Cg, depending only on the tensor v and the geometric
constants in Section 4.1.2, such that

Ap(ve,vE)=VEApVe < CellVell’s YVe € Xk .
Proof. Using (47) and the relations (26), (27) it follows

RIVe =RLIT, _su+RET, pu=Alu. (67)
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First due to (29) and Lemma 2, then using {67), we obtain
lull? < ClE|"'w" Afu=CIE|"'u"REVE . (68)

A Cauchy-Schwartz inequality applied to (68), using also that the first three components of
RZLVE are null, gives
llul? < CIEI™ ||ullIREVE (69)

which immediately implies ’
llull. < CIE]"IREVEll - (70)

Due to the assumptions in Section 4.1.2 and definition {22), it is easy to check that
IREWE|| < CIEIY|WE|| YW € Xp. (71)

Properties (29) and (26) imply that RET; = 0 for j = 1,2, 3. Therefore, applying also (71) and
afterwards Lemma 4, it follows

IREVE] = min |RE(Ve + Ti_s0)|| < CIE|"? min ||Vp + T1_s¢|
cERS LS (72)
< CIE["*||Vil|n5 -
The bounds (70) and (72) give
Vel > BelEM|lull. (73)

where g is a |E|-uniformly positive constant.
Let ¢; and ¢g be two reals, such that 0 < ¢; + ¢ = 1 (exact definition will follow in (76)).
We now write, using (73), (47) and a triangle inequality,

IVell.e = calllVElls £ + c2lllVEllls £
> a1 BelEIM? |Julls + el T1-su + Tr-p2||v5 - (74)
> a1Bsl B liull. — col| Tr-ettllls.& + c2ll Tr-prll. i

From bound (49) and (74) we infer
I]]VEHI*,E > ((3153}2‘ - ‘320*}15’11;2“@“* + 62]11T7—~93}.1[l*,5 (75}

where by C. we labeled the square root of the constant in (49). Making the choice

_1+C, _ Be
Cl_l-{—/ﬁ‘g—i-C* and 62_1+[13+C*’ (76)
the bound (753) gives
IVEllle£ = &I EIM?|ulls + IT7-p2)l £), (77)

where o, = ﬂ“ﬁ%ﬁ is a |E|-uniform positive constant. First, due to (30), then using the
orthogonality relation (28) and finally applying Lemma 4, we get

B2 ]| = |[Tr-pll = min [ 'Pr-pu + Tr-acl < Cl|Tr-peil,s (78)
The result follows, combining (77), (78} and the equivalence {46). 0
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Proof of Theorem 2. Let E be a generic element of Q. We call MZ ¢ H'(E) the space of
continuous piecewise quadratic 2-component vector functions on the local submesh S| g. Given
any V € X", we define RgV € M% as the solution of the standard problem

/VREV-VWE=0 Ywg € M% N H(E)
E (79)

REVZ Ve on &F

where we recall that vg = v|g is known explicitly and is piecewise quadratic on 8F, as shown

in Section 3.2. Note that the second condition fully determines RgV on the boundary of E.

Therefore a well known result on discrete harmonic functions, see for instance [32], gives
[REV|mg) < CIVElm1/20E) »

which recalling (41) and using a standard scaling yields

[REVIgue) < ClIVElle (80)

where as usual Vg is the vector representation of vg.
Let now R,V be the global piecewise quadratic vector function on the triangular submesh
Sy, such that R,V ]z = RgV. Recalling the definition of the degrees of freedom of X*, it is easy
to check that
IVI1Z, < ClIRAV[|Fmq) -

Combining a classical result, see for instance [7}, with the above bound gives
VI < Cln @2+ 1/0) 2RVt ) - (81)

Due to our assumption meas(T'1) > 0 we can apply the Korn’s inequality, see [15], which using
(81) yields
IVIE < Cln(2+ I/WIID(RV)|Z 20, - (82)

Following the notation already introduced in (19), we indicate with q&f the vector function
on F which spans the rotations around the barycenter, while we indicate with TF its vector
representation in Xg. Note that, since qbf is linear on E and the operator Rg “preserves linear
functions” by definition, RETE = qbf . We then have

ID(RAV)IIZay = ) ID(ReV)I[Tasy = D min|ID(ReV +cf)lffse)
Eey EeQy

<cy min|[V(ReV + ebf)|[3ax) (83)

Eey,

_ . Expi2
=cy I{;rgé}]]VRE(V+CT2 Miaee
Eely,

Using bound (80) and definition (42) it follows

min [[VRp(V + TE) aig < Cmin IV + <TF I = CUVIE 5 (54
The result follows combining (82), (83}, (84) with Proposition 3. O
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