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ABSTRACT 
Summary: Accurate classification of HIV and the identification of 
recombinants, including precise breakpoint definitions, is of crucial 
importance for epidemiological monitoring and the design of poten­

tial drugs. Recently we developed jpHMM, a new method to detect 
recombinations in HIV-l genomes. jpHMM predicts phylogenetic re­
combination breakpoints in a query sequence and assigns to each 

segment of the sequence one of the major HIV-l subtypes. For the 
user the reliability of the predicted breakpoint positions and parental 

subtypes is most important. For this reason we extended the output 
of jpHMM to include the information on regions where the model is 

'uncertain' about the parental subtype and an interval estimate of 

the breakpoint. This information is determined using the posterior 

probabilities of the subtypes at each query sequence position. 
Availability: jpHMM is available online at http://jphmm.gobics.de. 

Contact: (anne, mario}@gobics .de 

Viruses of the so-called M(ajor) Group of HIV-I are mainly respon­
sible for the HIV pandemic. This clade has been divided into nine 
genetic subtypes, A - 0, F - H, J, K, and four sub-subtypes (AI, A2, 

FI, F2). Among these subtypes recombination is extremely com­
mon. Recombinants that have been epidemiologically successful are 

called circulating recombinant forms (CRF). Up to now 43 CRFs 
have been identified and the number is increasing. 

Recently we developed jpHMM , a jumping profile hidden 
Markov model to detect recombinations in HIV-I genomes (Schultz 

et al., 2006; Zhang el al., 2006).jpHMM aligns a query sequence to 

a pre-calculated multiple sequence alignment of pure-subtype HIV­
1 sequences, predicts phylogenetic recombination breakpOints and 

assigns to each segment of the sequence one of these subtypes. Each 
subtype in the alignment is modeled as a profile HMM (Eddy, 1998). 
In addition to the usual state transitions within these profile HMMs, 

transitions, called jumps, between the different profile HMMs are 
allowed. Thus the model can jump between states corresponding to 

the different subtypes. depending on which subtype is locally most 
similar to the database sequence. The recombination prediction for 
a query sequence is then defined by the most probable path through 
the jpHMM that generates the query sequence, the so-called Viterbi 

path. Since each state of the jpHMM only belongs to one profile 
HMM and each sequence position is generated by one state of the 

model, each position of the query sequence is assigned to exactly 
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one parental SUbtype. Positions of jumps between different subtypes 

define recombination breakpoints . 
jpHMM was evaluated on a large set of real and simulated HIV-l 

data (Schultz el al., 2006). A comparison of its prediction accuracy 

to competing methods such as Simplot (Lole el al., J 999) and RDP 
(Martin et al., 2005) showed that jpHMM is far more accurate than 
existing methods for phylogenetic breakpoint detection. 

Nevertheless it is very useful and important for the user to a get 

a hint about the reliability of the predicted recombination pallern in 

a particular region of the query sequence. For this reason we ex­

tended the output of jpHMM to include the information on regions 
where the model is 'uncertain' about the parental subtype and, as 

opposed to a point estimate, an interval estimate of the breakpoint, 

called ' breakpoint interval' here. For each query sequence position 
the so-called posterior probability for each subtype is calculated. 

This is the probability that the respective sequence position belongs 
to the considered SUbtype given that the whole sequence is generated 
by the model. These probabilities can be calculated using the well­

known Forward and Backward algorithms (Durbin et al., 1998). The 
posterior probabilities are used to define uncertainty regions in the 

recombination prediction and breakpoint intervals: If at a certain 

position of the query sequence the posterior probability of the pre­

dicted SUbtype is lower than a certain threshold t" this position is 
marked as uncertain (e.g. Fig. I, position 3434 ± 149). A break­

point interval is defined by an interval around a predicted breakpoint 
position where the posterior probabilities of the two successive pre­

dicted subtypes is lower than a certain threshold t2 but higher than 

the posterior probabilities of all other subtypes (e.g. Fig. I position 

5063 ± 41). 
This extension of jpHMM was evaluated on a large set of simu­

lated full-length inter-subtype recombinant sequences with known 
breakpoints. Each of the sequences is a recombination of two 'real­
world' parental sequences from two different HIV-I subtypes. As 

parental SUbtypes we chose every possible pair of the (sub-) sub­
types AI, A2, B, C, 0, FJ, F2, G and CRFOI, except AI-A2 , FI-F2 

and B-D . For each pair of subtypes we created two different artificial 
recombinants, e.g. AJ-B and B-A 1, so, in total 2 *33 = 66 artificial 
recombinants were evaluated. In a first test run we introduced break­

points at every lDOOth position, results for this data set are shown 
in Table I. Additionally we tested two more data sets where we in­

troduced segments of length SOOnt and 300m respectively at every 
ISOOth position. 

The accuracy of predicted breakpoint positions is usually measured 
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Figure I. Excerpt of the jpHMM web server output for an anificial recom­
binant sequence of subrype AI containing segments of length 300nt from 
subtype Bat every ISOOth position. Breakpoint intervals are shown by an in­
terfingering of the colors of the two predicted subtypes. uncenainty regions 
by an interfingering of grey color and the color of the predicted subtype. 

by the distance of the predicted to the correct breakpoint positions. 
This measure corresponds to testing whether an interval of fixed 
length around each predicted breakpoint contains the true break­
point. If. for example. the median of the distances of the predicted 
to the real breakpoint is 8. then 50% of all real breakpoints are lo­
cated within a breakpoi nt interval of length 16 around a predicted 
breakpoint (with the predicted breakpoint as center). 

To assess the accuracy of the breakpoint intervals defined by the 

posterior probabilities for a certain threshold t2. we compared the 

number of real breakpoints located within these breakpoint inter­

vals to the number of breakpoints found usi ng breakpoint intervals 

of fixed length . As fixed breakpoint interval length we chose the av­

erage length of the breakpoint intervals. rounded to the nearest even 

number. defined by the posterior probabilities for threshold t2 . In 

Table I the results are given for different thresholds t2. At the top 

of the table the result s are given for data set A with breakpoints at 

every I OOOth position. at the bottom the results for data set B. In the 

first column the threshold t2 is given (e.g. 0.95 in row 4 for data set 

A). The ave rage length of the breakpoint intervals defined by this 

threshold is given in the second column (e.g. 33.83). In column 4. 

the percentage of real breakpoints detected with these breakpoint in­

tervals is given. For example for a threshold of 0.9587.54% of the 

real breakpoints were located within one of the predicted breakpoint 

intervals. The percentage of breakpoints found using the average 

length of the breakpoint intervals defined by the posterior probabili­

ties for this threshold as fixed breakpoint interval length (e.g. 3:3.83. 

rounded to the nearest even number = 34) is given in column 5 (e.g. 

69.02%). The table shows that. especially for higher thresholds . 

the number of breakpoints found using the posterior probabilities 

is much higher than the number of breakpoints found using break­

point intervals of fixed length. For example for a threshold of 0.99 


only 5.4% of the real breakpoints were not detected using the pos­
tenor probabTtItles whereas . for breakif Iixed jenEthpOInt IOlerva s 0 


data set A 

threshold t2 
 BPI length % BP found using 

for Pposl 
 average minimax fixed BPI lengthPpost 

56.230.75 16.25 1 /269 50.67 
0 .85 22.52 1 /308 69.53 58.08 
0 .90 2731 1/329 76.94 65.49 
0.95 '67.54 33.83 1/35 1 69.02 

94.610.99 46.63 3/388 73.40 

0.9999 
 83.66 11/5'67 97 .14 80.64 

Table I. Comparison of the accuracy of breakpoint Intervals (BPI) defined 
by Ihe poslerior probabililies (Ppos') for Ihreshold 12 10 the accuracy of BPI 
of fixed lenglh . For each Ihreshold the highesl value is marked in red. Details 
are given in Ihe texl. 

we can observe a fivefold increase of this percentage (26.6%). 
(INSERT RESULTS FOR 300 and 500) 
The length of a predicted breakpoint interval depends on how clear 
the breakpoint position is. A large breakpoint interval is the conse­
quence of the uncertainty of the model to locate the exact breakpoint 
position between two SUbtypes. This means that the user can now see 
which breakpoint can be ocated relative precisely or which break­
points are approximate. Further she can be more confident in the 
SUbtype predicted at positions outside breakpoint intervals and un­
certainty regions. Using tl = t2 for all given thresholds t2 as 
threshold for the uncertainty regions for data set A 94.94 - 95.3% 
of those positions were predicted correctly. Due to the model ar­
chitecture 4.32% of all positions were not assigned to any subtype 
(these positions are located at both ends of the sequence) so the to­
tal percentage of positions not located within an uncertainty region 
or a breakpoint interval that were classified incorrectly is less than 
1%. For uncertainty regions no parental strain can confidently be 
determined. This helps to avoid drawing wrong conclusions based 
on doubtful. uninformative regions. such as the postulation of a new 
CRF. However. by examining the graph of the posterior probabilities 
the user can see which subtypes are closest related in these regions. 

The program is available online as a web interface at 
http://jphmm.gobics.de . The source code can also be 
downloaded from this web page. 

ACKNOWLEDGEMENT 

This work was funded in part by the DFG grants STA 100915-1 and 
STA 1009/4-1. 

REFERENCES 
Durbin, R. . Eddy. S. R. , Krogh, A., and Mitchison. G. (1998) Biological Sequence 

AJlOlysi.s: ProbabiliJlic Models ojProleillsand Nucleic Acid-f. Cambridge University 

Press. Cambndgc. UK. 
Eddy, S. R. (1998) Profile hidden MarKO\' moods. Bioi"jrmrtl1tics. 14. 755--763. 
Lotc, K. S.. el al. (1999) Full-length human immunoocticicncy virus type I genomes 

from subtyJX: C-infected serocon\'erters in India, with evidence of intcrsubtypc 
recombination. 1. Virology, 73,1 52-160. 

Martin. D. P., Williamson. C. and Posada, D. (2005) RDP2: recombination detection 
and anaJysis from sequence aJignmenlS. Bioi"jormatics. 2t. 260--262. 

Schul17.... A.-K., et al. (2C06) A Jumping Profile Hidden Markov Mood and Applications 
to Recombination SilCS in HlV and Hev Gcnomcs. DMC Bioilljonnatics, 7. 

Zhang. M .. el al. (2CXJ6) jpHMM at GOBles: a web server to delCCt recombinations in 
HIV -I. Nucleic Acid,. Res .. 34. 463-465. 

2 

http:http://jphmm.gobics.de
http:0.9587.54

