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ABSTRACT 

We apply the Implicitly Restarted Arnoldi Method (IRAM), a Krylov subspace iterative method, to the 
calculation of k-eigenvalues for criticality problems. We show that the method can be implemented 
with only modest changes to existing power iteration schemes in an SN transport code. Numerical 
results on three dimensional unstructured tetrahedral meshes are shown. Although we only compare the 
IRAM to unaccelerated power iteration, the results indicate that the IRAM is a potentially efficient and 
powerful technique, especially for problems with dominance ratios approaching unity. 

Key Words: criticality eigenvalues, Implicitly Restarted Arnoldi Method (IRAM), deterministic 
transport methods 

1 INTRODUCTION 

The dominant k-eigenvalue(s) and corresponding eigenfunction(s) for criticality problems are often 
computed with classical iterative methods such as the power iteration method. Convergence of the power 
iteration is determined by the dominance ratio, or the ratio of the second largest eigenvalue to the 
maximum eigenvalue [ 13. Problems of practical interest often have dominance ratios large enough to make 
calculations of the maximum k-eigenvalue difficult or intractable. Acceleration techniques may improve 
convergence, but they are often are not effective enough for the most difficult problems. This is because 
they rely on parameters which can not always be robustly estimated. Our purpose is to illustrate the use of 
an efficient Krylov subspace iterative method whose convergence is not limited by high dominance ratios 
for the calculation of the dominant eigenvalues for deterministic S N  transport methods. This method is the 
Implicitly Restarted Arnoldi Method (IRAM) [2]. The IRAM is designed to be a robust and stable 
algorithm and only requires the dimension of the Krylov subspace (the number of working vectors). 

A paper describing the application of the IRAM to k-eigenvalue calculations based on two-group diffusion 
theory has appeared recently [3]. Other alternatives to simple power iteration, most often for diffusion 
models, have been investigated in the past. For example, a good deal of work appears in the Russian 
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literature indicating that approaches such as inverse and shifted inverse iteration have been applied to 
eigenvalue computations [4]. Subspace iteration (which is similar in spirit to Krylov subspace methods) 
and variational acceleration of that method, has been recently investigated in the context of a diffusion 
model [5]. Another example is found in a recent paper describing inverse iteration for k-eigenvalue 
calculations in one dimensional transport problems [6]. 

We describe how the IRAM can be easily implemented in an existing deterministic transport code using the 
freely available ARPACK software [7]. Because the IRAM solver is “wrapped” the power iteration, the 
existing implementation does not need to be significantly altered. The eigenvectors corresponding to 
several of the largest eigenvalues can also be calculated efficiently with no further modification and only a 
little extra computation. 

Our implementation is in the AttilaV2 transport code [8], a linear discontinuous finite element spatial 
discretization of the S N  equations on unstructured meshes, described in Sec. 2.1. This is followed by a 
discussion of the solution methods we consider for the k-eigenvalue problem. This includes power 
iteration, discussed in Sec. 2.2, followed by qualitative introduction to the IRAM in Sec. 2.3. Numerical 
experiments are presented in Sec. 3 that illustrate significant improvements in efficiency due to the high 
rate of convergence of the IRAM. The first set of numerical results are presented in Sec. 3.1. Unaccelerated 
power iteration is compared to the IRAM for problems specifically constructed to have increasingly high 
dominance ratios. The next set of results, shown in Sec. 3.2, are intended to demonstrate the performance 
of the IRAM on a more realistic reactor problem. The first part in Sec. 3.2.1 the energy upscatter portion of 
scattering matrix set to zero. Then in Sec.3.2.2 we examine the decreased efficiency that arises from 
applying the IRAM - as currently implemented - to problems with upscatter (note that upscatter was not 
considered in [3] or [5]). 

’ 

2 SOLUTION OF THE DISCRETE ORDINATES k-EIGENVALUE PROBLEM 

2.1 Discretized S N  Eigenvalue Problem on Tetrahedral Meshes 

We use standard notation [l]. Given an angular quadrature set with N specified nodes and weights 
{a,, w,} and anisotropic scattering of Legendre order L, the steady-state S N  transport equation for 
energy group g = 1, . . . , G in a three-dimensional domain T E V with boundary r b  E W ,  is 

G L  1 G 

for m = 1, . . . , N .  Here, &(a) are the normalized spherical harmonics functions and the scalar flux 
moments are given by 

N 

4 t g ( T >  = wmkin(fim)$g,m(T)* 
m=l 

This is an eigenproblem for the eigenvalue k. 

The linear DFEM discretization on tetrahedra is derived with a Galerkin variational formulation. For a 
given energy group 9, the angular flux is expanded in a set of four linear basis functions Lj on a 
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tetrahedron Ts (cell index s): 
4 

$g,m,s(r> = +g,m,j,sLj(r>. (2) 
j=1 

The weak form of the transport equation is then constructed for each of the functions Li,  i = 1, . . . ,4 on 
cell Ts for angle m: 

This gives four equations for the four unknowns $m,j,s on every cell s for every angle S2m. Cross sections 
and other parameters are constant in a cell. The fluxes on the cell interfaces, are defined to make the 
approximation discontinuous as follows. For a face j on a cell s whose outward normal is f i j ,  

where I is the cell that shares face j with cell s. The subscript i(j) denotes three vertices a on a face j of a 
given cell. We will consider either vacuum boundary conditions, r(fim) = 0, or specular reflection 
boundary conditions, where the reflected image of S2my f i m t ,  is is defined by f imt  = f i m  - 2 f i ( f im . f i ) .  
This determines an m‘ for f im and f i  = f i j  such that we can set r(fim) = $g,mt,i(j),s. Reflective boundary 
faces are aligned parallel to the x, y or z coordinate axes such that the quadrature sets we use contain 
reflected pairs f im and fimt that satisfy the definition of specular reflection. 

The integrals in (3) are evaluated, either analytically or by quadrature approximation, for every cell in the 
mesh. Note that we use a fully lumped version of (3). Describing it goes beyond the scope of this work, but 
suffice it to say that this lumping preserves the diffusion limit in thick, diffusive regimes (see [9]). 

2.2 Power Iteration 

We write the discretized S N  equations (3) in operator notation as 

(4) 
1 
IC 

L$ = MSD$ + -MFD$, 

where detailed meanings of the operators can be deduced by comparing (4) with (3). Briefly, L is the 
streaming-plus-removal operator and F is the fission operator. The operators M and D represent the 
“moment-to-discrete” and “discrete-to-moment” operators, respectively, in the nomenclature of [ 101. They 
convert a vector of scalar flux moments to angular fluxes and vice versa. No assumption is made that M is 
the inverse D or vice versa. The scattering operator S is (block) lower triangular if no upscatter is present 
and is an nonsymmetric operator. 
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Rearranging (4), applying D to both sides, and introducing iteration index e, we have 

where A is defined in operator notation as A = DH-IF,  with H = L - MSD. The.vector 4 
represents all the scalar flux moments needed to construct the scattering source in (1). 

The largest eigenvalue IC is computed by iterating (5) until the expression 

I I 4e+1 I I ke+i = ke- Il+ell ’ 

converges to within some tolerance, where 11q511 represents some discrete norm of 4 over all cells in the 
problem. Often, the norm used is just the fission rate in the problem. Instead of (6), we use the Rayleigh 
quotient, given by 

to update the eigenvalue estimate. Here, (., e )  is a discrete inner product over all cells. We have observed 
that using the Rayleigh quotient for the eigenvalue estimate can usually improve the efficiency of the power 
iteration method by providing a better estimate of the eigenvalue earlier in the iterative process [ 111. 

Power iteration converges to the largest eigenvalue in magnitude, kl (the dominant eigenvalue), where the 
convergence rate is determined by the dominance ratio 6 = I k2 I / I kl 1 where I k2 I 5 I kl 1 is the next largest 
eigenvalue in magnitude [l l] .  The closer this ratio is to 1.0 the slower the convergence. Power iteration 
converges except when the eigenvalue with largest magnitude is complex and the (nonsymmetric) operator 
and initial guess 4; are real. For monoenergetic problems, the k-eigenvalue is real in the S N  
approximation, even for anisotropic scattering [ 121 We do not that this is also true in the multigroup 
approximation. We therefore can not state definitively that power iteration will always converge, although 
experience indicates that the maximum eigenvalue is in fact real, in which case power iteration will 
converge. Nonetheless, a rigorous justification that the dominant eigenvalue is real for the multigroup S N  
equations would be interesting. 

Power iteration works with a single vector. Convergence can be improved by using more than one vector, in 
order to make use of information from previous iterations. Classical iterative acceleration techniques, such 
as Chebyshev iteration or successive over-relaxation (SOR), are sometimes used to accelerate k-eigenvalue 
power iterations. Such methods use a linear combination of a small number of previous iterates to update 
the scalar flux [13,14]. Under certain circumstances it is possible to use knowledge of the spectrum of the 
operator to find the optimal linear combination that maximizes convergence. In practice, however, the 
spectrum is not known in advance and estimates of the spectrum are made to compute the necessary 
parameters. This results in a less-than-optimal method. Nonsymmetry complicates matters because the 
spectrum could extend into the complex plane, making robust estimation of the acceleration parameters 
significantly more difficult [15-171. This aspect is often ignored in implementations and acceleration 
methods are typically based on the assumption that the operator is symmetric and positive definite. This 
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creates the potential for degrading or destroying the effectiveness of the acceleration. The heuristics, 
approximations, and code logic needed to make adaptive estimates of the required parameters can also 
make these acceleration algorithms less than robust and make it difficult to predict if or when a given 
acceleration method will be successful. While a particular approach may work well in some problems, it 
may work poorly in others and may even cause the iteration to diverge in others [14]. 

2.3 The Implicitly Restarted Arnoldi Method 

We now briefly describe the Implicitly Restarted Arnoldi method, or IRAM. Examination of (5) shows that 
power iteration computes the maximum eigenvalue in magnitude of the standard eigenvalue problem 

A$ = k$. (9) 

Our approach is to compute the largest few eigenvalues of this standard eigenvalue problem using the 
IRAM implementation found in the ARPACK software package [7]. The ARPACK implementation is best 
suited for applications whose matrices are either sparse or not explicitly available. Only the “action” of a 
matrix on a vector, supplied by the solver, is calculated at every IRAM iteration. A reverse communication 
mechanism frees the user from any particular data structure formats. This simplified our implementation of 
the method because the IRAM solver can simply be “wrapped” around the existing power iteration in our 
transport code. The desired number s of eigenvalues and corresponding eigenvectors, the dimension of the 
Krylov subspace and the iterative convergence criterion is supplied to the ARF’ACK software. 

The IRAM is a Krylov subspace iterative method. The Krylov subspace of dimension m 
IC,(A, $0) = span{$o, A$o,. . . Am-l$o} is constructed from the same vector sequence generated by 
power iteration applied to an initial starting vector $0. An approximate eigenvector-eigenvalue pair, or 
eigenpair, is found by projecting a vector x E IC,(A, $0) onto the Krylov subspace using the Galerkin 
orthogonality condition (w, Ax - Ax)  = 0 for all w E &(A, $0). The approximate eigenpair ( x ,  A) is 
termed a “Ritz pair”. If the component of the actual eigenvector that is orthogonal to the subspace is small, 
then the Ritz pair will be a good approximation to the eigenpair of a nearby problem. 

Ritz pairs that satisfy the Galerkin orthogonality condition are computed efficiently using the Arnoldi 
method, which computes an orthogonal basis-the Arnoldi basis-for IC, (A,  $0). At the same time, an 
(upper Hessenberg) (m x m) projection of A on the Krylov subspace is computed. The Ritz pairs are then 
easily found by the QR algorithm [ 181 of this matrix. An estimate of the (backward) error in the 
approximation, or Ritz estimate, is also available through the Arnoldi method. Typically, the quality of the 
approximation improves as the dimension m of the subspace increases. In exact arithmetic, they are equal 
after n iterations, where n is the order of A. 

The cost of maintaining orthogonality of the Arnoldi basis increases with the dimension of the Krylov 
subspace. The computations could become intractable if the size of the subspace needed for a good 
approximation to the eigenpair is too large. One way to address this is to fix the computational and storage 
requirements by restarting the Arnoldi method. 

Suppose that we are able to compute m steps of the Arnoldi method where m is chosen so that the cost of 
maintaining the orthogonality among the Arnoldi vectors (to machine precision) is small. Because we are 
interested in the s dominant eigenvalues of A, consider constructing another set of Arnoldi vectors for 
IC,(A, $0) such that the first s Arnoldi vectors of this new space span the same space as the Ritz vectors 
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that correspond to the s dominant Ritz values of the original space IC,(A, $0). This is how the Arnoldi 
method is restarted, continuing until the s dominant eigenvalues emerge to the specified tolerance. Implicit 
restarting [2,19] is an efficient and numerically stable way to restart the Arnoldi method or, equivalently, to 
compute $0, the new initial vector. The restart is called implicit because of the connection with the 
implicitly shifted QR algorithm. See [7] for further details on an efficient implementation of implicit 
restarting. In particular, implicitly restarting an Arnoldi method is equivalent to an accelerated subspace 
iteration [20] (see [3] for a performance comparison of subspace iteration and the IRAM on a two-group 
diffusion problem). 

In contrast to power iteration, which converges to the dominant eigenvalue IC1 with convergence rate 
I IC2 I / I IC1 1, the IRAM converges at the rate 

(10) 
mmj=r+ 1,. . . ,n I P ( ICj ) I 

minj=l, ..., T IP(ICj)l 

after every restart, where n again is the order of A, T is the number of Arnoldi vectors remaining after an 
implicit restart and P ( z )  = (z - q) e .  (z - z,). The zeros of the polynomial P(z) ,  zi, i = 1,. . . , T ,  and 
T ,  are selected so that (10) is as small as possible. Optimal choices do not, in general, exist and would 
require knowledge of the eigenvalues that we are attempting to approximate. If T = 1 and z1 = 0, the 
power iteration convergence rate is recovered. If T > 1, and xi = 0 for i = 1 . . . , T ,  the convergence rate of 
subspace iteration is recovered. For both of these cases, T is chosen slightly larger than s (the desired 
number of eigenvalues), which is a well-known strategy in subspace iteration. The default choice in 
AWACK is to choose the roots of P ( z )  as the unwanted eigenvalues of the upper Hessenberg matrix 
computed during the Arnoldi method. These are the m - T eigenvalues smallest in magnitude. This makes 
an excellent choice in practice and produces a convergence rate smaller than I IC2 I/ IlclI. Moreover, this 
choice of P(x )  is mathematically equivalent to computing a new Krylov space with a starting vector that is 
a linear combination of the T dominant Ritz vectors. The value of T is chosen slightly larger than s in 
practice, which tends to decrease the ratio (10). See [7,20] for more details on the IRAM. 

Finally, note that power iteration can actually be viewed as a Krylov method with a subspace of dimension 
one. Similarly, classical techniques used to accelerate power iteration can be viewed as a Krylov method of 
a small dimension that is equal to the number of working vectors [21]. The parameters for computing the 
appropriate linear combination of these vectors have to be estimated or approximated in practice, meaning 
that the methods are non-optimal and possibly limiting their effectiveness. In contrast, the JRAM 
automatically and efficiently selects the Ritz pair(s) without any a-priori information or parameter 
estimation. 

2.4 Special Considerations 

Consider the operator H = L - M S D ,  ignoring any spatial dependence and focusing only on the energy 
dependence of this operator for the moment. The operators L, M and D are block diagonal where each 
block corresponds to the transport equation for a particular energy group. If the scattering in a problem 
consists of downscatter only, then the operator S is block lower triangular and the entire operator can be 
inverted by block forward substitution from high energy to low energy in sequence, with each diagonal 
block approximately inverted with an inner iteration. If upscatter is present, then the operator S is no 
longer block lower triangular. In that case, the operator H that is not lower triangular must be inverted 
iteratively. With power iteration, this inversion is actually "embedded" in the power iterations, because the 
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power iteration method works o with a single vector of scalar flux moments. Another important aspect of 
power iteration that further improves its efficiency is that the scalar flux moments from the most recent 
outer iteration can be used as an initial guess for the next set of inner iteration(s). This is why the 
eigenvalue problem is implemented as shown in (5). Scaling the eigenvalue problem with the most recent 
eigenvalue estimate Ice not only prevents overflow or underflow but it also enables us to use the solution 
from the previous iteration as an initial guess for computing H - l .  This significantly reduces the overall 
computational expense. 

However, if there is upscatter in the problem, then the action of W-' has to be computed iteratively at 
every IRAM iteration, because ARPACK supplies the Arnoldi basis vectors and not the Krylov basis 
vectors. This obviously has a strong impact on the overall efficiency of the IRAM calculations. We can 
compute this either with a Krylov method or with the block Gauss-Seidel iteration that is part of the power 
iteration coding. One possibility to improve efficiency would be to precondition a Krylov iterative method 
or accelerate the block Gauss-Seidel iteration with the upscatter acceleration method of [22]. While good 
initial guesses are not available for subsequent inner iterations in the IRAM iterations, we can instead relax 
the inner iteration convergence tolerance during the course of the IRAM iterations to improve efficiency. 
The authors of [23,24] and [25] first observed that this is possible for Krylov subspace iterative methods 
for the solution of linear systems as well 'as eigenproblems. The theoretical justification underlying their 
observations was recently analyzed [26]. In our implementation we set the convergence tolerance for the 
next level of iteration (within-group inner iterations, or upscatter iteration) to be inversely proportional to 
the ARPACK residual. Inner (within-group) iterations are accelerated, in the case of source iteration, or 
preconditioned, in the case of a inner Krylov iteration, with a diffusion synthetic acceleration method [27 

3 NUMERICAL RESULTS 

In this section we compare the IRAM to the power iteration method already implemented in the 
three-dimensional, tetrahedral mesh, transport code AttilaV2. We will present actual measurements of the 
computational cost for representative problems. We use CGS units and a triangular S4 
Chebyshev-Legendre quadrature for all the results reported here. Calculations are started with random 
initial vectors. In cases where power iteration is used to initialize the IRAM, the power iteration method is 
initialized with a random vector and the starting vector for the IRAM is initialized with the result of a few 
power iterations. Because of the unpredictable nature of the classical acceleration methods for general 
problems, we only consider unaccelerated power iteration for comparison. 

ARPACK uses the backward error 11 Az - 8x11 5 181E to determine convergence to a specified tolerance E ,  

where z and 8 are the current Ritz pair. However, rather than calculate the residual explicitly, ARPACK 
uses the Ritz estimate, an indirect measure of the error in the associated eigenpair, that is readily available 
through the Arnoldi method [7]. So that the comparison of the computational expense between power 
iteration and the IRAM is as fair as possible, we use /I@+'  - q5!1/ 5 E to determine power iteration 
convergence. All norms are measured in the 2-norm, ( e ,  -)'/2, again taking the scalar product over the 
entire vector of all scalar flux moments on the mesh. 

The power iteration results are computed using DSA-accelerated source iteration, and solutions from the 
most recent outer iteration are used for the initial guess, for the inner within-group iterations. The 
M A C K  results are computed using a preconditioned Krylov method for the inner iterations, using the 
source vector (the uncollided flux) as the initial guess. The partially consistent simplified WLA DSA 
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method [28,29] for acceleratiodpreconditioning is used for both methods. The convergence criteria for the 
inners, outers, upscatter iterations (if necessary) and the DSA conjugate gradient (CG) iterations, for the 
two methods are listed in Table I. The quantities IITOuteTII, (I~inner 11 and IIrup,pscatII are the norms of the 
residuals in the outer, inner, and upscatter iterations, for the most recent iteration at whatever their 
respective levels. For the IRAM, the quantity llr0ll denotes llrupscatII in the case of upscatter and IITouter 11 
otherwise. The power iteration initialization for AWACK uses 
10-1 llrinner 11 for the DSA iterations. 

for the inner iterations and 

Table I. Convergence tolerance for the different levels of iteration. 

3.1 Cylindrical Mesh Problem 

The first set of results is for a series of problems with dominance ratios approaching one. The problems are 
constructed by altering the symmetry of a cylindrical mesh, illustrated in Fig. 1. The cylinder is 3.5 cm in 

Figure 1. The cylindrical mesh problem. Note the thin disks in the left half of the mesh that are used to alter 
the symmetry of the problem. 

radius and 9 cm long. It consists of a 5 cm layer of BIO absorber sandwiched between 1 cm thick water 
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Material 

layers and 1 cm layers of highly enriched uranium (HEU). Vacuum boundary conditions are used on all the 
faces and there 13,500 cells in the mesh. Five 0.1 cm thick regions at the left of the central absorbing 
region can be seen in Fig. 1. The configuration is symmetric if all five regions are filled with water. The 
dominance ratio of this symmetric configuration is very close to one, a situation in which power iteration 
can be expected to converge very slowly. By successively substituting boron for water in the thin regions 
starting with the region nearest the absorber region we destroy the symmetry and reduce the dominance 
ratio in the problem. While the actual value of the eigenvalue does not change significantly with the 
departure from symmetry, the dominance ratio and fundamental eigenvector do. 

Density ID Mass Fraction 

Five energy group cross sections and fission data were collapsed from the Hansen and Roach sixteen group 
cross section data sets [30,31]. The energy groups are collapsed from library groups 1-2,3-4,5-8,9-12, 
and 13-16. The material composition data are shown in Table II. 

Table 11. Cross section data for the cylindrical mesh problem. ID is the isotope identifier in the Hansen and 
Roach library. Density is in g/cm3. 

u252el 0.95 
0.05 11 19*0 I u282el I 

hDE 0.667 
Water 11 1 o I 0.333 

Boron 11 10.0 1 b10 I 1.0 

Results for this sequence of problems are shown in Fig 2, and in Tables 111 and IV. The inner, within-group 
iterations for these.problems were computed using restarted, flexible-GMRES, FGMRES( 10). The 
computational expense of the methods is measured in floating point operation (FLOP) counts computed on 
a single dedicated 250 MHz SGI Origin 2000 CPU. Figure 2 illustrates the one to two orders of magnitude 
savings in computational cost with the IRAM relative to unaccelerated power iteration. The different 
curves in the figure are for several combinations of the number of eigenvalues sought, nev = 0 or 1, the 
maximum dimension of the Krylov subspace, ncv = 5 or 10, and the number of power iterations taken in 
initializing the IRAM iterations, ini t = 0 or 5. These values were chosen for illustration only. The figure 
shows that the resulting computational expense is not very sensitive to either nev or ncv while the 
initialization with a few power iterations is certainly worth the cost. For efficiency, the initialization steps 
involved a single inner iteration for each group for each power iteration and this was enough, apparently, to 
achieve a good initial guess. 

In Tables III and IV we list the number of outer and total number of inner iterations, respectively, for the 
IRAM and the the power iteration. We found that the majority of the computations are devoted to the 
within-group inner iterations, taking around 95-99% of the total effort. This makes it is possible to 
accurately gauge the relative performance of the two methods by simply comparing inner iteration counts. 
The inner iteration counts demonstrate that computational expense depends more on the size of the Krylov 
subspace than on dominance ratio. The outer iteration counts show that the convergence of the IRAM is 
only mildly sensitive to the dominance ratio and that asking for a second eigenvector does not significantly 
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Figure 2. Relative computational expense of W A C K  compared to power iteration. 

increase the number of outer or inner iterations. Finally, the reduction in the number of outer iterations 
achieved by initializing the IRAM with power iteration results in the lowest overall amount of 
computational work, measured by the number of inner iterations. 

Keep in mind that it is the eigenvector and not the eigenvalue that we used to determine convergence of 
both the power iteration algorithm and the IRAM. The last line of entries in Table III shows the number of 
outer power iterations needed to converge the eigenvalue to an absolute error of This shows that the 
eigenvalue converges much more quickly than does the eigenvector. In the case of a symmetric operator, 
for instance, it is well known that convergence is quadratic in the dominance ratio for the eigenvalue and 
linear for the eigenvector [32]. 

3.2 MOX Fuel Assembly Problem 

The second numerical example is for a three dimensional MOX fuel assembly benchmark problem (C5G7 
MOX) developed by the Expert Group on 3-D Radiation Transport Benchmarks. The interested reader can 
consult Appendix C in [33] for detailed specifications of this problem. Briefly, however, the problem 
consists of four 17 x 17 pin (with cladding) fuel assemblies containing U02 and 4.3% MOX, 7.0% MOX 
and 8.7% MOX fuels in various configurations, surrounded by moderator (water). Guide tubes and fission 
chambers are also present in the assemblies. The overall dimensions are 64.26cm x 64.26cm x 214.20cm 
in the 2, y, and z dimensions. Reflective boundary conditions are specified on the x = 0, y = 0, and z = 0 
faces. Vacuum boundary conditions are specified on the other three faces. The tetrahedral grid constructed 
for this problem consists of 954,527 cells with 169,745 vertices. Seven group, transport-corrected, 
isotropic scattering cross section data are given. The problem consists of nearly 28 million degrees of 
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Method 

Table III. Number of outer iterations for the cylindrical mesh problem. 

Dominance Ratio, S 

Method 

1 10 0 20 

nev 

1 5 5 14 

2 10 0 18 

2 10 5 18 

2 5 0 20 

2 5 5 14 

Power Iteration 468 

ncv i n i t  0.970 0.977 

k only 229 

0.984 

458 

389 

438 

327 

422 

Domina] 

TiqTiiG 

0.990 0.996 0.999 

457 447 447 

389 385 390 

428 472 463 

332 322 372 

544 550 549 

20 

1 

2 

15 

5 5 327 327 

10 0 424 424 

20 

20 

15 

20 

:e Ratio, 6 

0.990 0.996 0.999 

20 20 20 

15 I 15 I 15 

20 I 23 I 23 

14 14 17 

25 26 26 

14 14 17 

1,329 3,170 8,824 

586 1,206 1,739 

Table IV. Total inner iterations for the cylindrical mesh problem. 

440 I 438 1 436 I 443 
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1 

1 

1 

1 

2 

2 

2 

2 

freedom, a substantial size for a serial implementation. This problem is intended to show the relative merits 
of the two methods for large, realistic transport problems. The inner, within-group iterations were 
computed using BiCGStab. 

10 0 25 1,109 

10 5 25 1,050 

5 0 38 1,404 

5 5 32 1,132 

10 0 34 1,396 

10 5 33 1,303 

5 0 44 1,578 

5 5 38 1,299 

3.2.1 MOX Fuel Assembly Problem without Upscatter 

In the first set of results, the upscatter portion of the scattering matrix is set to zero. The dominance ratio 
for this problem was approximately 0.985 so that the power iteration method converged slowly, taking 
6,144 inner iterations over the course of 860 outer iterations. We saw in the first set of results that the total 
number of inner iterations gives a very good idea of the relative performance of the methods. Thus the total 
number of outer and inner iterations for the two methods are shown in Table V. The power iteration 
calculation took about 150 hours of wall clock time on a dedicated 1000 MHz 64-bit Compaq Alpha 
EV6.8CB (21264C) CPU with an internal Alpha FPU and 8 GB RAM. For comparison, the ARPACK 
calculations ran from about 23 to 34 hours of wall clock time. 

Table V. Iteration counts for the three dimensional MOX fuel assembly benchmark problem without upscat- 
ter. 

As in the previous set of results, we see that initializing the IRAM with power iteration (one inner iteration 
per power iteration initialization step for each group) can make a difference. We found that taking more 
than five initialization iterations for the IRAM did not change the number of outer iterations and had only a 
small affect on the number of inner iterations for this problem. Overall, the IRAM is roughly five times 
faster than power iteration for this problem. Accelerating the power iteration method with a Chebyshev, 
SOR or some other acceleration technique, could conceivably affect this conclusion. Note that we tried 
simple SOR acceleration on this problem but could not find a robust sequence of relaxation parameters that 
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would accelerate convergence without causing the iteration to diverge. Once again, convergence of the 
eigenvalue was much faster than the eigenvector for power iteration. 

Iterations 

3.2.2 MOX Fuel Assembly Problem without Upscatter 

nev 

The next set of results gives some indication as to how the IRAM performance compares to power iteration 
for a large problem with upscatter, shown in Table VI. The dominance ratio for this problem is very close 
to the same problem without upscatter, about 0.987. The inner iterations for M A C K  were computed 
using the BiCGStab Krylov subspace iterative method preconditioned with DSA. The iterative convergence 
tolerance for the upscatter iterations is inversely proportional to the IRAM residual and the inner iteration 
tolerance for the inners at each outer is proportional to the upscatter iteration residual for the Gauss-Seidel 
iteration or inversely proportional for GMRFS iterations. For comparison with the previous results, the 

ncv init Outer Inner Upscatter 

141ble VI. Iteration counts for the three dimensional MOX fuel assembly benchmark problem with upscatter. 

IC only 11 456 [ 3,321 I 
a Gauss-Seidel Upscatter 

GMRES Upscatter 

wall clock times for the ARPACK iterations ranged from about 143 to about 157 hours while the power 
iteration required about 203 hours. Again, this is on a dedicated CPU. 

We can make some general observations of a qualitative nature regarding the choice of nev, ncv and 
ini t. Convergence of the IRAM is more sensitive to number of eigenvalues requested, nev, than it is to 
the maximum Krylov subspace dimension, ncv. We also find that overall computational cost is more 
sensitive to a good initial starting vector than is the convergence of the outer iteration because of the 
reduction in the outer iteration count. 

4 CONCLUSIONS 

We found the Implicitly Restarted Arnoldi Method, as available in the software package ARPACK, to be 
easy to implement using the inner and outer iteration coding and other available computational machinery 
in our existing discrete ordinates transport code. Our numerical experiments, although certainly not 
exhaustive, show that the method is robust and efficient for several difficult representative problems, when 
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compared to the power iteration method that had already been implemented. We did not encounter any 
difficulties with convergence of the method. 

The AWACK implementation of IRAM has been extended to parallel platforms [34] so the method can be 
just as easily implemented in existing parallel transport codes as it can in serial codes. The results and 
performance reported here, and hence our conclusions, could be different on parallel platforms, although 
we do not have any reason at this time to expect that the performance will be any better or worse in parallel. 

The IRAM is of course not limited to the discretized transport equation used in the numerical results we 
presented. We believe that the IRAM could perform just as well, relative to power iteration, for other types 
of angular and spatial discretizations. Improvements in efficiency could be obtained if the IRAM were 
implemented directly into the transport source code in an “in-line” fashion and optimized to use the 
existing data structures and storage that has already been allocated. Perhaps existing acceleration methods 
for multigroup fission problems, like Chebyshev or coarse-mesh rebalance, could be used to further 
improve the overall efficiency of the IRAM-based IC-eigenvalue calculations. Other types of iterative 
eigenvalue methods, such as shifted-inverse iteration, might also be combined with the IRAM to improve 
overall efficiency. We have shown one example already, having used power iteration to initialize the IRAM 
and speed up convergence. 

A significant drawback of the method as it is currently implemented is the inability to efficiently treat 
problems with energy upscatter. We hope to address this in the future. 
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