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Abstract 

We propose an algebraic basis for symmetric Strang splitting for first and 
second order accurate schemes for hyperbolic systems in N dimensions. Ex­
amples are given for two and three dimensions. Optimal stability is shown for 
symmetric systems. Lack of strong stability is shown for a non-symmetric ex­
ample. Some numerical examples are presented for some Euler-like constant 
coefficient problems. 
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1. Introduction - One Dimension 

In his landmark paper [6] G. Strang introduced two splitting techniques 
designed to maintain second order accuracy for finite difference .methods for 
hyperbolic systems. The second of these has an advantage over the first in 
that it is symmetric with respect to interchange of dimension. In this note we 
shall develop symmetric splitting for both the first order Lax-Friedrichs type 
scheme, and for the second order Lax-Wendroff type, in N space dimensions, 
for hyperbolic conservation laws of the form 

N 
au _ L afj(u) 
at - j =1 ----a;;;-. 

Here, U = u(x,t), x = (Xl,··· ,XN), and fj(u) are vector valued func­
tions. 
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The difference schemes will be defined on uniform tensor product grids 
in terms of one-dimensional two point average and difference operators. In 
particular we define 

Qj == average over adjacent grid points in the j-th dimension 

and 

{3j == difference over adjacent grid points in the j-th dimension. 

The form of these operators in the more familiar grid index notation will be 
clear later. 

These operators all commute with each other. 
In these terms the familiar elementary one-dimensional finite difference 

operators are: Lax-Friedrichs (we suppress j here), 

and the two-step version of Lax-Wendroff, 

~(h I + ApI 0 SF, 

where the A = Aj are the mesh ratios, 

The one dimensional time advance in the case of Lax-Wendroff is 

",,,+1 _ ') Un 
u' - .. L , 

while in the case of Lax-Friedrichs it is 

SFUn 

n+1 S n+1 S S nU FU 2 = F 0 FU. 
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2. 	 N-dimensional Lax-Friedrichs 

We offer two versions of N-dimensional Lax-Friedrichs type schemes. The 
first is 

···0 (ap(N) + APt) (3P(NJiP(N)) ' (1) 

where P is the set of all permutations of {I ... N}. 
The second version is 

In either case, these operators map functions defined on the original grid 
to functions on the fully staggered grid at the half time step, or they map 
functions defined on the fully staggered grid to the original grid. So, as in 
one dimension, 

2.1. 	 Linear Equivalence 

The two versions are linearly equivalent, that is, if the functions fj are 
replaced by multiplication by constant matrices then the two expressions are 
algebraically equivalent. To prove this, consider 

1 
A = N! 2:)ap(l) + Bp(l)) (ap(2) + Bp(2)) ... (ap(N) + Bp(N)), 

pEP 

where the B's are linear operators that commute with the a's. Then A has 
the form 

N N 

A = II a, + Ck 2:)L Bli ... B'k II al). (2) 
1=1 1#1; 
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There are (~) ways to place the k factors containing k particular B's in the 
same order somewhere in an ordered product with the other factors, and 
there (N - k)! arrangements of the other factors each producing the same 
product of Q'S, so 

(Or, by symmetry, there must be N!jk! terms in the sum that are the product 
of k chosen B's in some order.) Next, collect all terms in (2) that have Bi 
as the leftmost factor, then all terms that have B2 as the leftmost, etc, to 
obtain 

which is the desired result. 

2.2. Example 

In [4] the authors developed a 2 and 3 dimensional Lax-Friedrichs scheme, 
following the idea proposed in [2] of using iterated Riemann solvers. The 
second scheme above is the extension to ~ dimensions of what is found in 
[4]. Consider three dimensions. In order to keep the notation consistent with 
:4], let the system of differential equations be 

8u 8g(u) 8h(u) 
at ax + 7iiJ + ---a;;-' 

vVith standard notation, first observe that the various products of Q'S are 
just the standard 2, 4 or 8 point averages. For example, 

1 
( QiQ 3U ) = -(Ui 1" k + Ui+11"k + Ui 1" k+l + Ui+l 1" k+l)4 1,) , '.' '.j 
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Thus, 

1 ( n8 	Ui,j,k + Ui+l,j,k + Ui,j,k+1 + Ui+1,j,k+l + 

Ui,j+1,k + Ui+l,j+l.k + Ui,j+l,k+l + Ui+1,j+l,k+1) 

+ ~1 (f(U:+l,j+~,k+~) - f(U;,j+~'k+~)) 
+ ~2 (g( V~+~,j+l,k+~) - g(v~+~,j,k+~) ) 
+ ),3 (h(U/+1 '+1 k+J) h(W*+1 "+1 k)) .2 !2'}2" '2'}." 

For u* we have 

+ ),2 (g(V**+l k+ 1 ) - g(v** k+ 1 ))4 2,)) 2 1,), 2 

3+ ),4 (h(W**+l k+l) - h(W**+l k))
~J 	 2' . IJ 2' 

and 

1 ),3

2 (Hi,j,k+1 + Ui,j,k) + 6(h(Ui,),k+d - h(Ui,j,k)) 


1 ),3 
W" ** 1 k 2(Ui,j+l,k + Ui,j,k) + 6 (h(Ui,J+1,k) - h(Ui,j,k)).

l'}+2' 

The functions v* and w* are similarly defined. 

2.3. Stability 

If we consider now linear hyperbolic systems, that is 

N 

'" A. au
L.. Jax 
j=l J 

Hyperbolicity means that every linear combination of the matrices Aj with 
real coefficients has only real eigenvalues. Strict hyperbolicity means that 
every linear combination of the matrices Aj with real coefficients has only 
real eigenvalues and is diagonalizable. \Ve are only able to establish a stability 
condition for symmetric hyperbolic systems 
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U sing the usual Fourier analysis, the symbol of the difference operator S 
is 

and 

]V 

II,§II ~ I1llcos Oj1 + iAj sin OjAJ. 
j=l 

A sufficient stability condition then is that 

If the Aj are symmetric then 

Thus, for symmetric systems we have shown that the N-dimensional version 
of Lax-Friedrichs described above is stable if 

maxAj (spectral radius of AJ ~ 1. 

In other words, in this case the scheme is optimally stable since the CFL 
limit is 1. This is also true if each Aj is unitarily similar to a real diagonal 
matrix. 

2.4. A counter-example 

Consider the linear system 

ap au ap
-+­

at ax ax 
au au 
at ax 

In this case the Lax-Friedrichs symbol is 

S cos 01 +iAA sin 0 
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where 

A (~ ~). 
Note that neither A nor!;' is diagonalizable, so that this is not a strictly 
hyperbolic system. 

Let us define 

z cosO + iAsinO, 0 < A S 1. 

Then, the n-th power of the Lax-Friedrichs symbol can be expressed as 

i n zn-l sin 0 ) !;'n ( o zn . 

The scheme is weakly stable, as guaranteed by the von Neumann condi­
tion (see [5]), but not strongly stable. To see this, set 

and choose the sequence On such that 

. 20
SIn n = 1-. 

n 

Then 

which is unbounded as n 00. 

3. N-dimensional 2nd Order Scheme 

In order to develop an N-dimensional symmetric scheme of Lax-vVendroff 
type, as in [3], we need only replace the factors in (1) by 

1+ A(3q 

where 

A 
q f(a + -(3f)

2 
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or 

s 

]]]. (4) 

3.1. Accuracy 

S, as defined in (4) provides a second-order accurate difference scheme for 
the hyperbolic system. vVe give the basics of the proof. First, we can drop all 
terms after the factor i since they are O(ilt)a. Next, the central averaging 
operators can be replaced by the identity, and the central differences can be 
replaced by derivatives. since the errors made are of order (ilX)2ilt. Now 
from 

we have 

Let 

We need to show that for any smooth function u, 

But 

h
fk (uk*+ ~t 8~k h(u

k*)) = fk(U ) + ~t f~(u) 8~k h(u) + O(ilt)2, 
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and 

fk( llk*) fk( 1l) + ~t f~(1l) L 
j# 

from which (5) follows. 

3.2. Example 
For example, in two dimensions the scheme is 

ll~J+l 1l7J· + Al (f(ll:+!) - f(ll*_!)) + A2 (g(V: ,+!) - g(v* ,_!)) ,
" I 2,J ' 2'] ',] 2 ',j 2 

where 

1 ( ** **) Al (f( ** )'2 lli+1,j + ll i ,j + 2 ll i+1,j 

and 

where 

2 
1 

(lli,j+l + lli,j) + '2
1 

A2 (g( lli,j+l g( lli,j)) . 

Similar expressions hold for v*. 
This agrees exactly with the 2D scheme in [3]. The 3D version obtained 

from (4) is not exactly the same as the one in [3]. 

3.3. Stability 
Just as for Lax-Friedrichs, we can now establish the stability of the multi­

dimensional scheme if the fj are symmetric matrices A j , for then for the 
symbol of (4) we have 

IISII IIIII + 2iAj sinOjAj(cosOj + iAsinOjAj)ll, 

where 

III + 2iA sinOA( cos 0 + iA sin OA)11 2 


sup ((I-4A2A2sin20+4A4A4sin40+4A2A2 ocos2O)u, 1l) 

lIul!=l 

= 1 + (4A2 sin4 0) sup ((A2 A4 - A2)1l, 1l). (6) 
Ilull=l 
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So we have stability if (4) holds, that is, the scheme is optimally stable. 
REMARK: A simpler but non-optimally stable scheme is the following 

extension of the Richtmyer two-step scheme to N dimensions. 

It is shown in [7] that the CFL limit for this scheme is 1/VN. 

4. Euler Equations 

We know that both 3D Lax-Friedrichs and the second order scheme are 
optimally stable for symmetric systems. Here we examine these features for 
the non-symmetric system of Euler equations. Our approach is based on 
numerical sampling of each scheme's amplification matrix, both as regards 
its eigenvalues and powers. 

We consider the 3D Euler equations in the form 

U t = f(U)x + g(U)y + h(U)z, 

where 
p 

pu 
pv 
pw 
E 

U= 

and 

pu pv pw 
pu2 + p puv puw 

f(U) = puv , g(U) = pv2 + p , h(U) = pvw 
puw pvw pw2 +p 

u (E + p) v (E + p) w (E + p) 

Here, p stands for fluid density, u, v, and ware components of velocity in 
each coordinate w = (u, v, w), E is a specific total energy defined by the 
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ideal gas equation of state + ~ P Ilw11 2 , p stands for pressure, and T 
is the gas adiabatic index. 

This system can be rewritten in a linearized form 

U t. = A U x + BUy + CUz , 

where A, B, and Care Jacobians of the flux functions, for example 

8£(U)
A 

8U 

o o 


(1-1')'11 (1 1') W 

v o 
o U 

1')/1,11 (l-1')uw 

and similarly for Band C. Note that the eigenvalues of this matrix are 1]" 

1], + c, and 1], c, where c = JT p/p is the fluid sound speed. 
We have constructed the symbol (amplification matrix) of the 3D Lax­

Friedrichs and the second order scheme. 
We only verify the von Neumann necessary stability condition, namely, 

that the maximum absolute value of the eigenvalues of the symbol is ::;: 1 for 
CFL::;: 1. If the maximal eigenvalue is greater than 1 the scheme is unstable. 
\Ve have chosen several values of interest for each quantity to be used in 
sampling. For each velocity component, we use all values from the following: 
0, 1, ±2, ±3, and ±4, for sound speed we used values from: 0.1, 1, 2, 2.5, 
5, and 10. It means that we sampled values for Mach number between 0 and 
40 J3 ~ 69.3. As for CFL, we used values 1/10, 1/4, 1/2, 1-1/10, 1 1/100, 
1 -10-5 , 1, 1+ 10-5, 1 + 1/100, 1 + 1/10, and 2. Fourier angles were chosen 
to cover all quarters and thirds of 7r in the whole 27r range, and monatomic 
gas constant ~I = 5/3 was used. 

The maximal eigenvalue for each scheme as a function of CFL is presented 
in Table 1. For computation of eigenvalues the LAPACK [1] package was 
used. 

This verifies, at least for a supposedly typical set of arguments of the sym­
bol, that Lax-Friedrichs and our second order scheme are optimally (weakly) 
stable even for non-symmetric systems. 

4.1. Zem Sound Speed 
Included in the results of Table 1 the smallest value of the sound speed 

is c .1. We consider here what happens if we include c O. 
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CFL Lax-Friedrichs 2nd order scheme 
1 1/10 1.0000000000 1.0000000000 
1 1/100 1.0000000000 1.0000000000 
1 10-5 1.0000000000 1.0000000000 
1 1.0000000000 1.0000000000 
1 + 10-5 1.0000100000 1.0001200054 
1 + 1/100 1.0100000000 1.1255130848 
1 + 1 1.2898723387 2.8632880000 

Table 1: Maximal of amplification matrix for 3D Lax-Friedrichs and the second 
order scheme for several CFL numbers. 

First, for the same sampling set, the schemes are optimally weakly stable. 
Second, for CFL=l, the maximum component of the n-th power of the 

symbol samples increases linearly with n. This was tested for powers n 
(2,4,· .. ,215 ). The maximum is taken over the hydrodynamic data samples 
and Fourier angles. 

Third, following section 2.4, for CFL< 1 and sin2 OJ = l/n, we again 
observe that the powers of the symbol are not bounded, Fig. 1. 
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