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Abstract 
We identify several simple but powerhl concepts, techniques, and results; and we use them to char- 

acterize the complexities of a number of basic problems II, that arise in the analysis and verification of of 
the following models M of communicating automata and discrete dynamical systems: 

systems of communicating automata including both finite and infinite cellular automata, tran- 
sition systems, discrete dynamical systems, and succinctly-specgedjnite automata. 

These concepts, techniques, and results are centered on the following: (i) reductions Of STATE-REACHABILITY 
problems, especially for very simple systems of communicating copies of a single simple finite automa- 
ton, (ii) reductions of generalized CNF satisfiability problems [Sc78], especially to very simple commu- 
nicating systems of copies of a few basic acyclic finite sequential machines, and (iii) reductions of the 
EMPTINESS and EMPTINESS-OF-INTERSECTION problems, for several kinds of regular set descriptors. 

For systems of communicating automata and transition systems, the problems studied include: all 
equivalence relations and simulation preorders in the Linear-time/ Branching-time hieranchies of equiv- 
alence relations and simulation preorders of [vG90, vG93], both without and with the hiding abstraction. 
For discrete dynamical systems, the problems studied include the INITIAL and BOUNDARY VALUE PROB- 
LEMS(denoted IVPs and BVPS, respectively), for nonlinear direrence equations over many different 
algebraic structures, e.g. all unitary rings, all finite unitary semirings, and all lattices. For succinctly- 
specified finite automata, the problems studied also include the several problems studied in [AY98], e.g. 
the EMPTINESS, EMPTINESS-OF-INTERSECTION, EQUIVALENCE and CONTAINMENT problems. 

The concepts, techniques, and results presented unz5 and significantly extend many of the known 
results in the literature, e.g. [W086, Gu89, BPT91, GM92, Ra92, HT94, SH+96, AY98, AKY99, RH93, 
SM73, Hu73, HRS76, HR781, for communicating automata including both finite and infinite cellular au- 
tomata and for finite automata specified by special kinds of context-free grammars, by regular operations 
augmented with squaring and intersection, and specified succinctly as in CAY98, AKY991. 

Moreover, our development of these concepts, techniques, and results shows how several ideas, tech- 
niques, and results, for the individual models M above can be extended to apply to all or to most of these 
models. As one example of this and paraphrasing [BPTBl] , we show: 

Most of these models M exhibit computationally-intractable sensitive dependence on initial 
conditions, for the same reason. These computationally-intractable sensitivities range from 
PSPACE-hard to undecidable. 
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ravi , d j r, res}@cs . albany . edu. Supported by a grant from Los Alamos National Laboratory and by NSF Grant CCR- 

'Part of the work was done while the authors were visiting the Basic and Applied Simulation Sciences Group (TSA-2) of the Los 
97-34936. 
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1 Introduction, motivation, and overview of results 
A number of researchers, e.g. CW086, Gu89, BPT91, GM92, Ra92, HT94, SH+96, AY98, AKY99, RH93, 
SM73, Hu73, HRS76, HR781, have studied separately the computational complexity of various problems, 
for finite networks of communicating automata, infinite cellular automata, both finite and infinite transition 
systems, discrete dynarnical systems, sequential digital circuits, regular sets specified by regular operations 
augmented with squaring and intersection, and succinctly-specified finite automata. Here in contrast, we 
study simultaneously these different models J I ~  with the following four goals guiding this study: 

1. We want to identify ideas, concepts, techniques, etc., that apply naturally to all or most of these models. 

2. Moreover when possible, we want to identify general techniques, etc., that apply to all or most of these 
models, when instances are specified succinctly, especially hierarchically [Ga82, BOW83, GW83, 
Le86, LW88, LW921, periodically/dynamically [KMW67, Or84, CM93, KO9 1, MH+98], and/or by 
parallel composition CHo84, GM92, Ra92, SH+96, AY981. 

3. We want to develop proof techniques, that extend naturally in the limit to apply to infinite cellular 
automata of [W086, Gu891, discrete dynamical systems over continuous algebraic structures such as 
the reals, and if possible continuous dynamical systems [Ro99]. Our reasons here are as follows: 
There has been extensive mathematical research on both infinite cellular automata and on continuous 
dynamical systems. We want to determine which concepts or techniques from this research can be 
ported so as to apply to finite networks of communicating finite automata, transitions systems, and 
finite discrete dynamical systems. 

4. We'want to identify ideas, concepts, techniques, etc., from the literature of one of these models, that 
can be extended (preferably mechanically) to apply to all or most of the other models. 

In this paper, we emphasize those concepts that can be used to characterize the complexities of the anal- 
ysis and verification of these models, as discussed in the Abstract above. Additionally following [BPT91], 
we emphasize concepts, techniques, etc., that can be used to characterize the computationally- tractable or 
computationally-intractable sensitivity to initial values of these models. 

The actual concepts, techniques, and general results identified and/or developed include the following: 

1. general efficient reductions of STATE-REACHABILITY problems to d l  equivalence relations and sim- 
ulation preorders between the COMPUTATIONAL-IDENTITY and the TRACE-EQUIVALENCE and 
TRACE-CONTAINMENT problems. These relations include all relations in the Linear-time/Branching- 
time hierarchies of [vG90, vG931; and thus, they include BISIMULATION-EQUIVALENCE, %NESTED- 
SIMULATION-EQUIVALENCE, READY-SIMULATION-EQUIVALENCE, SIMULATION-EQUIVALENCE, 
FAILURES-EQUIVALENCE, COMPLETED-TRACE- EQUIVALENCE, TRACE-EQUIVALENCE, etc.; 

2. results from [RH931 that the STATE-REACHABILITY problems are already DSPACE(n)- and EXSPACE- 
hard, respectively, for systems of linearly inter-connected and for hierarchically-specified systems of 
linearly inter-connected copies of one particularly simple deterministic finite automaton; 

41ntuitively, squaring means that a language R" can be represented by (DR)", where DR is a language descriptor specifying the 

51ntuitively, two systems are compututionally-identical if, given common input(s), they execute exactly the surne sequences of 
language R and Y is the binary numeral without leading zeros denoting the nonnegative integer n. 

computational actions and state transitions. 
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3. general efficient reductions of GENERALIZED CNF SATISFIABILITY PROBLEMS [Sc78], especially 
of the problem ExAcTLY~-EXSMONOTONESAT 6 ,  to the STATE-REACHABILITY problems for 
several kinds of communicating acyclic finite sequential machines; 

4. direct highly efficient translations of finite systems of linearly- interconnected copies of the above 
simple finite automaton into intuitively equivalent systems of nonlinear difference equations and into 
intuitively equivalent nonlinear difference equations, over any algebraic structure with monotone-logic 
expressibility7 
(These algebraic structures include all unitary rings, all finite unitary semi-rings, all lattices, and all 
fixed-precision discretizations of the integers, rationals, reals, complex numbers, etc.); and 

5 .  general efficient reductions of the EMPTINESS and EMPTINESS-OF- INTERSECTION problems, for 
several types of regular set descriptors as developed in [SM73, Hu73, HRS76, HR771 into a number 
of basic computational problems, for the succinctly-specified finite automata HSMs and CHSMs of 
[AY98, AKY991. 

Intuitively, these reductions are usually by local-replacement [GJ79]. Formally, these reductions can be 
shown (see [MH-f-98, HSMOO, HMSOl]) both (i) to be ultra-efficient in both sequential and parallel com- 
puting resources and (ii) to extend directly to efficient reductions when problem instances are specified suc- 
cinctly using the hierarchical and/or dynamic/periodic specifications referenced above. 

1.1 Models and problems considered 
The models M considered here include the following: 

' 1. finite cellular automata (FCA), finite graph automata (FGA), finite networks of finite-state machines 
communicating by explicit channels (CFSMs), and finite networks of sequential machines comuni-  
cating using parallel composition (CSM) [Ho84, Ra92, SH+96], 

I 2. systems of nonlinear difference equations with constant coefficients over any abstract algebraic struc- 
tures with monotone-logic Rxpressibility, 

3. 1- or 2-dimensional finite or infinite systems of communicating finite automata inter-connected linearly 
or in simple regular bounded-grid patterns, including 1- and 2-dimensional CA defined as in [Wo86, 
Gu891; and 

4. (n0n)deterministic finite and infinite state automata represented by hierarchically- or dynamically- 
/periodically-specified state-transition diagrams, possibly augmented withparallel composition CAY98, 
AKY991. 

Depending upon the model M ,  the problems II considered here include 
6That is the problem of determining if there is an assignment of truth-values to the variables of a 3CNF formula in which, all 

'An algebraic structure F has monotone-logic expressibility if there exist distinct elements a,b of F and functions fi,fi expressible 
clauses consist of exactly 3 non-negated literals, that satisfies exactly one literal per clause. 

by the operations of F such that 

1.f1 (a, a) = a and f1 (a, b) = f1 (b ,  a )  = f~ (b, b)  = b. 
2 . f i (a ,  a )  = f i ( a ,  b )  = f i ( b ,  a) = a and f i (b ,  b) = b. 

That is the functions fi,fi, when restricted to {a, a}, are isomorphic to or and and applied to (0 , l ) .  

2 



the STATE-REACHABILITY, FIXED-POINT-REACHABILITY, EQUIVALENCE, CONTAINMENT, 
EMPTINESS-OF-INTERSECTION, BISIMULATION EQUIVALENCE, WEAK-BISIMULATION EQUIV- 
ALENCE, INITIAL-VALUE and BOUNDARY-VALUE Problems (denoted by IVPS and BVPS), 
and all relations in the Linear-timehanching-time hierarchies of equivalence relations and pre- 
orders of [vG90, vG931. 

For the models of 1, 3, and 4, we consider instances specified standardly, hierarchically or dynami- 
callylperiodically (by the various specifications referenced above); and for the models M of 2, we consider 
both narrow and wide specifications of one or of two independent variables. 

2 Summary of particular results obtained and their significance 

The following particular results obtained here are direct corollaries of the general ideas, concepts, and general 
results outlined in Section 1 : 

1. the NSPACE(n)-hardness results, for problems for CSMs with or without hiding in [Ra92, SH+96] 
and the new results that each of these problems is EXSPACE-hard, for both hierarchically-specified 
networks of linearly-interconnected networks of finite automata communicating over explicit channels 
and hierarchically-specified CSMs with compatible succinct specification of action symbols; 

2. the new results that all equivalence relations and simulation preorders in the Linear-time/Branching- 
time hierarchy are coNDEXPTIME-hard, even for succinctly-specified acyclic 2-dimensional period- 
ically specified FCAs8, and all such equivalence relations and simulation preorders are PSPACE-hard, 
even for hierarchically- specified acyclic CSMs, with compatible succinct specification of action sym- 
bols 
(To our knowledge, these are the first such hardness results, for acyclic succinctly-specified 2-dimensional 
communicating finite automata or for acyclic hierarchically-specified CSMs.); 

3 .  the new results that various analysis questions are DSPACE(n)- and EXSPAC&hard, for narrow 
and for wide nonlinear difference equations with constant-coefficients, respectively on any algebraic 
structure with monotone-logic expressibility 
(These hard analysis questions include the IVPS and BVPS, as well as the discrete analogues of a 
number of the qualitative questions about the phase spaces of continuous dynamical systems studied 
in the literature of dynamical systems and chaos [Ro99].); 

4. the new results that, when extended to apply to the CHSMs of [AY98, AKY991, all equivalence R- 
lations and simulation preorders in the Linear-time/ Branching-time Hierarchies of EvG90, vG931 are 
EXSPACE-hard 
(Of these relations and preorders, only TRACE-EQUIVALENCE and TRACE-CONTAINMENT were con- 
sidered in [AY98].); 

5. a number of new results, for very simple classes of the HSMs and CHSMs of [AY98, AKY991 includ- 
ing the following: 

(a) the EMPTINESS-OF-INTERSECTION problem is already PSPACE-hard, for pairs of acyclic HSMs, 
'see [MH+98] for definition of 2-dimensional periodic specifications 
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(b) the E M P T I N E S S  problems are already PSPACE-hard, for CHSMs consisting of the parallel com- 
position of a pair of acyclic HSMs and for CHSMs consisting of the parallel composition of a 
finite number of deterministic finite automata, 

(c) the EQUIVALENCE and CONTAINMENT problems are already coNDEXPTIME-complete, for 
acyclic nondeterministic HSMs, 

(d) aZl equivalence relations in the Linear-time/Branching-time Hierarchy are PSPACE-hard for 
acyclic CHSMs, and 

(e) for all fixed acyclic HSMs &, testing TRACE-EQUIVALENCE to ikfo is polynomial time solv- 
able; but in contrast for all fixed acyclic CHSMs Mo, testing TRACE-EQUIVALENCE to A40 is 
PSPACE-hard 

(These appear to be the first hardness results, for acyclic HSMs and for acyclic CHSMs. All of 
these results follow directly from known results for regular set descriptors from [SM73, Hu73, HRS76, 
HR77, HR781.); 

6. for all integers k 2 1, when restricted to hierarchical specifications of depth 5 k, all of the problems 
of Item 2, for many of these models, become DSPACE(nlE)-hard and/or -complete 

(0  The EXSPACE-hardness results, for hierarchical specifications in [RH93, AY981 and those in 
this paper, require problems instances with unbounded& large depth. The depths of hierarchical 
specifications, that occur in practice, are usually bounded by fixed constants depending upon 
the application area. Consequently, the potential practical implications of these EXSPACE-hard 
results are questionable. In contrast, this last result provides the first complexity results, for 
hierarchically-specified problem instances of any Jixed depth of hierarchical specification. We 
can prove similar indexed complexity results, for problems for narrow difference equations with 
- < k independent variables, and for CHSMs with fixed bounds on the nunibers of applications 
of hierarchy and parallel composition in their specifications. All of these indexed families of 
complexity results are new.); and 

7. paraphrasing [BPT9 11, a family of general results showing computationally- intractable dependence 
on initial conditions, for all the models M above (except for the HSMs and CHSMs) ranging from 
DSPACE(n)-hard to undecidability inclusive 
(Moreover, both the same proof implies simultaneously all of these computationally-intractable de- 
pendence results, and we get indexed families of complexity results identical to those of the previous 
item.). 

All of the above results are, for problem instances without the hiding abstraction. We can also extend our 
results in [SH+96] to show several additional general complexity-theoretical implications, for instances with 
the hiding abstraction, for most of the models A4 above. These results include results exactly analogous to 
those of Items 1 and 6 above. 

2.1 Nuances of various models considered and additional implications 

Several issues involving details of model specifications turn out to play important roles in the development 
of the results outlined here. First, the notions offiniteness and infiniteness occur in essentially two different 
ways in the models considered here as follows: 
1. Finitenesslin~niteness can refer to the cardinality of the number of equations, automata, cells, or states 
in a discrete dynamical system, system of communicating automata, or nondeterministic automaton, even 
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when the individual variables of the equations can only take on values from a fixed finite collection of finite 
sets or the state sets of the individual automata are contained within a fixed finite collection of finite sets of 
states. For example, a 1-FCA has only a finite number of cells; but the classical cellufar automata (CAS of 
[W086, Gut391 have countably infinite numbers of cells. 
2. The domains of the algebraic structures in which computations are carried out or the sets of states of the 
individual automata can be either finite or infinite. 

Henceforth, we use the term FDDS to mean both a finite number of equations, state variables, cells, etc., 
and a finite set of finite algebraic structures or a finite set of finite sets of possible states. Second, there are 
several variant models of transitions systems that occur in the references cited above. For many references 
on process algebras, transition systems have no accepting states (or equivalently all states can be viewed 
as accepting.) Often these systems synchronize on ACTION symbols. We consider synchronization using 
both explicit channels and synchronization using ACTION symbols; and we consider succinct specifications 
of both types of distributed systems. For the latter type, we consider succinct specifications with natural 
mechanisms, for succinctly specifying ACTIONS. In contrast, the references [AY98, AKY99, A1001 discuss 
nondeterministic finite automata; and they implement both word acceptance and parallel composition using 
explicit final or accepting states. For these succinctly-specified finite automata, we present the following 
three types of results: 
3. Simple proofs showing how STATE-REACHABILITY problems for such systems are still reducible, using 
reductions by local-replacement to the various equivalence relations and simulation preorders of the Linear- 
Time/Branching-Time hierarchy. Again, these reductions are ultra-efficient in terms of both sequential and 
parallel complexity. 
4. Proofs of hardness for the STATE-REACHABILITY problem for such very simple such systems using 
ideas from [Hu73] on the use of intersection. 
5. Direct applications of efficient reductions by local-replacement of the EMPTINESS and EMPTINESS-OF- 
INTERSECTION into various problems for these machines. 

2.2 Sensitivity to initial conditions 

Additional important properties of the concepts, techniques, results, and proofs presented here include their 
generality and uniformity, e.g. they apply directly both to finite and infinite discrete dynamical systems DDSs 
and to the various kinds of communicating automata considered here. One very general result is that 

0 All the models M of DDSs or communicating automata except for the HSMs and the CHSMs of 
[AY98, AKY993 exhibit computationally- intractable sensitive dependence on initial conditions, when- 
ever 1. their STATE-EXECUTABILITY Problem is computationally- intractable, and 2. they are 
efficiently-closed under certain simple local-replacements. 

In the limit case of a countably infinite number of cells, this computationally- intractable sensitive depen- 
dence on initial conditions becomes undecidable sensitive dependence, without requiring such unnatural 
properties of problem instances as unbounded local memories, unbounded fan-in, fully-centralized control, or 
complicated inter-connections (as occur in the infinite limits of the systems of automata in [BPT91, Ra921). 
Moreover when sequential circuits or systems of communicating automata are hierarchically-specified as 
in [RH93, Ga82, BOW83, LW88, LW92, RH931, we get PSPACE-, DEXPTIME-, NDEXPTIME-, and 
EXSPACE-hard sensitive dependence on initial conditions, depending upon the actual kind of specification 
and whether individual automata are cyclic or are acyclic. 

'For us afinite algebraic structure consists of a nonempty finite domain D, together with a finite set of (possibly partial) finite- 
arity functions or relations on D. 
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Finally, the remainder of this extended abstract consists of the following: Section 3 selected preliminaries 
and definitions; Section 4 selected proof sketches; and the Appendix in which for the convenience of the 
reader, we recall the basic definitions from the literature of transition systems, parallel composition, the 
hiding abstraction, and several basic equivalence: relations and simulation pre-orders including bisimulation- 
equivalence and weak-bisimulation equivalence. 

3 Preliminaries 

The proofs of our hardness results involve only structurally very simple instances of discrete dynamical 
systems or of networks of inter-connected communicating finite automata. For this reason and to simplify 
and shorten the statements of the definitions used here, our definitions are not as general as they could 
be. Thus for example, we define only k,l-discrete and k,l-fnite discrete dynamical systems, rather than 
arbitrary discrete and finite discrete dynamical systems. Also we restrict our definition of difference equations 
to difference equations with constant coefficients only. However, no real loss of generality occurs, since 
the restricted instances of discrete dynarnical systems and nonlinear diference equations defined here are 
sufficiently general to include all instances actually needed in our hardness proofs and they obviously satisfy 
natural formulations of the corresponding more general definitions. 

Throughout this paper, P denotes an algebraic structure consisting of a nonempty domain D, together 
with a finite set of finite-arity operators on this domain. We say that an algebraic structure is non-degenerate 
if its domain has at least 2 elements. Throughout this paper all algebraic structures are assumed to be nom 
degenerate. Most of the algebraic structures considered have 2 binary operators called addition, denoted +, 
and multiplication , denoted +. We denote the identity of the operation + by 0. An algebraic structure with a 
multiplication operator is said to be unitary if it has a multiplicative identity, denoted here by 1. Definitions 
of the kinds of algebraic structures considered here, namely rings, semirings, and lattices, can be found in 
[MB67, Ei741. Unlike [MB67, Ei741, however, we do not assume that all rings or semirings are unitary. For 
us, a formula on an algebraic structure is a finite string built-up from operators symbols of the structure"o, 
variable symbols, and parentheses. Because of computational complexity considerations, we assume that 
all such variable symbols are of the forms zT, yr, etc., where the subscripts T are binary numerals withcmt 
leading zeros. 

We denote the sets of languages accepted by nondeterministic (deterministic) linearly space-boundd, 
polynomially space-bounded, exponentially time-bounded, and exponentially space-bounded multiple-tape 
Turing machines (abbreviated Tms) by NSPACE(n) DSPACE(n), PSPACE, NEXPTIME, DEXPTIME, 
and EXSPACE, respectively. We denote the set of languages that are the complements of languages arc- 
cepted by nondeterministic multiple-tape Tms by coNDEXPTIME. Finally, we abbreviate (deterministic) 
jinite automata by (d)fa, linearly-bounded automaton by Iba, context-free grammar by cfg, and pushdown 
automaton by pda. 

3.1 Particular models considered 

The following models M are considered here: 

1, discrete and finite discrete dynamical systems (DDSs and FDDSs), i.e. systems consisting of several 
and systems consisting of a single nonlinear difference equations, presented with designated initial 
values as needed, 

2. both finite and infinite cellular automata ( FCA and CA) [W086, CY88, CPY89, Gu891, 
"We assume the operators and operator symbols of the structure are in one-to-one correspondence. 
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3. finite graph automata (FGA) [Ma98, NR981, 

4. communicating sequential machines, hierarchical sequential machines, and communicating hierarchi- 
cal sequential machines (CSMs, HSMs, and CHSMs) as defined in [H084, VW86, GM92, Ra92, 
SH+96, AY98, AKY991, etc. 

Due to lack of space, here, we only formally define the following models: 

(a) structurally restricted versions of the DDSs and FDDSs, that are strict generalization of CAs and graph 
automata 

(b) the classes of narrow and of wide nonlinear difference equations, 

(c) the parallel compositions of transitions of transitions systems, denoted CSMs, of [Ho84, Ra92, SH+96], 
and 

(d) the HSMs and CHSMs of [AY98, AKY991. 

3.1.1 DDSs, FDDSs, and difference equations 

We define formally the k,l-restricted- and the k,l-fnite restricted- dynamical systems, where k and 1 are 
positive integers such that, for each variable xj(), 

1. the value vj (t + 1) of xj at time t + 1 2 1 is a function of the values of 5 IC different variables xi at time 
t ,  and 

2. the algebraic formulas on F giving the equations to compute the values vj(t + 1) have no more than 1 
occurrences of operator symbols of I?. 

Throughout for reasons of simplicity, we assume that the parameter(s) of discrete dynamical systems take 
values from N, the set of natural numbers. Also for reasons of simplicity, we only define one parameter 
difference equations, 

Definition 3.1 Let n 2 1 and F be an algebraic structure. Let XI(), . . . ,an() be distinct (parameterized) 
variable symbols. 

1. A k,l-(restricted) discrete dynamical system on F (denoted k,l-DDS@)) 3 consists of ajni te  se- 
quence of equations (eql, . . , , eq,), together with an n-tuple (c1,. , . , cn) of elements of D, where 
each equation eqj is of the form 

such that 1 5 k' 5 k,  1 5 j1 5 . . . 5 j k t  5 n, and fj is a formula on F with 5 iF occurrences of 
operator symbols of F. When the structure F is finite, we say that 3 is a k,l-(restricted)jnite discrete 
dynamical system on F) (denoted k,l-FDDSP)). 

2. The sequence specified by F, denoted o(T), is the countably infinite sequence of n-tuples of elements 
o f D  (a(O), . . . , a(s ) ,  I .  .), where 

a(0) = ( ~ 1 , .  . . , cn),  andfor s 2 0 and 1 5 j 5 n,  a(s + l)j = fj(o(s)jl,. . . ,o(s)jk,) .  

Here a(s + 1)j denotes the j t h  element of a ( s  + 1). 
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Definition 3.2 Let k 2 1. Here, { x i  1 i 2 0) is a set of distinct variable symbols. 1. A narrow 
(nonlinear) difference equation F with initial values (on F) consists of a single equation of the form 
xn := f ( x n - 1 ,  . . . ,Xn-k)  dejned in terms of the indicated variable symbols and operators of F,  together 
with a k-tuple wo, . . . , V k - 1  of values in D such that 

i the subscript ofsets - 1, . . ., -k ure written in unary, and 

ii each of the values vi where 0 5 i 5 k - 1 is separately specijed. 

2. Let m 2 1 such that k < Zm. A wide (nonlinear) difference equation F with initial values (on F) 
consists of a single equation of the form Xn := f ( X n - p + k , .  . . , Xn-2m-k) defined in terms of the indicated 
variable symbols and operators of F, together with a 2m + k-tuple V-k, . . . , ~ 2 m - 1  of values in D such that 

iii the subscripts ofsets -2m + k, . . . , -2m - IC are written in binary, and 

iv each of the values vi where -k 5 i 5 m - 1 are separately specijied and the remaining values of the vi 
where m 5 i 5 2m - 1 are specified by statements of the form ‘ffor m 5 i 5 2m - 1 vi = b”, where 
b is an element of D. (Again, the integer 2m - 1 is written in binary without leading zeros.) 

We define the sequence o (F)  d&ned by a difference equation with initial values 3 on an algebraic 
structure F in the obvious ways, directly analogous to the corresponding definitions given in Definition 3.1. 

A number of different models of communicating finite automata studied in the literature, restricted to 
linearly inter-connected automata or to automata inter-connected in simple bounded grid patterns, can be 
viewed directly as b,Z-FDDSs(F), for appropriately chosen algebraic structures F. For example, consider 1- 
or 2- dimensional FCAs can be so viewed, since all variable values at time (t + 1) depend only on variable 
values at time t. As a 2nd example, consider the variant of FCAs in which the states are updated in a 
specified sequential order. Such systems can also be modeled directly by sets of equations as above. This can 
be used to see that FDDSs model finite systems of communicating finite automata with both synchronous 
and sequential state update, Moreover by allowing infinite algebraic structures F, our definitions apply to 
arbitrary discrete dynamical systems in the sense of the mathematical literature on dynamical systems [Ro99]. 
Finally, the infinite systems of inter-connected automata considered here include both 1- and %dimensional 
CA as defined and studied in [W086, CPY89, CY88, Gu89, Du94, Su95, W0861. 

3.1.2 HSMs and CHSMs 

In order to define the classes of CSMs, HSMs, and CHSMs of [Ho84, Ra92, SH+96, AY98, AKY991, the 
reader should first recall the basic definitions of transition systems, of  the paralllel composition of transitions 
systems, and of various simulation equivalences and simulation pre-orders for transitions systems (also see 
the above references plus [vG90]). For the convenience of the reader, selections of these last definitions 
(including the definitions of transition systems and the parallel composition of  such systems) appear in the 
Appendix. The definitions below are essentially from Alur, Kannan and Yannakakis [AKY99]. 

Definition 3.3 Letting 11 denote the parallel composition operator of [Ho84]. A CSM is a jn i te  nonempty 
sequence oftransitions systems ( M I ,  . . . , M n )  denoting the transition system ((. . . ( M I  llM2) . . .) IJ M n ) .  

Definition 3.4 FormaZly, a communicating hierarchical state machine (CMSM) is one of the following 
three forms: 

“The actual wording of this definition was chosen for reasons of simplicity. More generally, we say a difference equation with 
initial values E is wide, if there exists integer c 2 1, such that E can be obtained, from a wide difference equation with initial values 
satisfying the definition above by replacing each variable xi and each initial value aj by c distinct variables xj, . . . , x: and initial 
values a j ,  . . . , a:, respectively. 
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1. Base Case: A F S M 7  = (S, A, D, s, f )  l 2  is a CHSM 

2. Concurrency: I f % ,  72, . . . are CHSMs then 5 1172 * . - 11% is also a CHSM where JI is aparallel 
composition operator as defined in the Appendix. 

3. Hierarchy: IfM i a set of CHSMs and 7 = (S ,  A, D ,  s, f) is a FSM with S as the state set and p is 
a labeling function ,u ; S 3 M that associates with each state in S a machine in M with appropriate 
mapping of incoming and outgoing edges, then (7, M ,  p )  is also a CHMS. 

A hierarchical state machine (HSM) is a CHSM having no occurrences of the parallel composition oper- 
atol: 

The semantics of a CHSM M are defined by mapping it to a finite sequential machine (FSM) [[MI] as 
follows: 

1. Base Case: If M is an FSM then [[MI] equals M .  

2. Concurrency: If M is a product of expressions A 4 1  11 Mz . 11 Mk: then [[MI] is automata defined 
by the parallel composition rule above. 

3. Hierarchy: IfM = (7, S, p )  is a CHSM with the top level FSM being 7 = (S, A, D, s, f ) ,  then 

(a) A state of [[MI] is of the form (q ,  w), where q E S and w is the state of FSM [k(q)]] associated 

(b) A symbol 0 belongs to the symbol set of [[MI], iff either a is in the actions set of 7 or it is in the 

(c) The initial of [[MI] is the initial state of [ [p(s)] ]  
(d) The final of [[MI] is the final state of [ [p ( f ) ] ]  

(e) [[MI] has two types of transitions: 

with q. 

action set of one [ [p (q )JJ ,  q E S. 

0 For a transition ( q , ~ ,  4’) of the top level FSM 7, there is a transition from the final state of 

0 For q f S if (w, 0, w’) is a transition of [ [p(q)J] ,  then ((9, w ) ~ ,  (q, tu’)) is a transition of 
[ [p(q) ] ]  to the initial state of [[p(q‘)]] 

[[MI1 

4 Selected proof sketches 

Most of the new results of this paper are for DDSs, networks of communicating automata, systems of nonlin- 
ear difference equations, etc., whose specifications can be much smaller than the specifications of the object 
as usually considered in the literature. The need for, and the consequent use of, such succinctly-specified 
DDSs, networks of communicating automata, etc., occurs naturally in the design, analysis, and verification 
of large to very large practical problems. This is because when humanly-designed, such large to very large 
objects are usually definedspecified in terms of regular combinations of smaller objects. Two well known 
kinds of such succinct spec@cations are the hierarchical and the dynamiclperiodic specifications. Several 
different variants of hierarchical and dynamiclperiodic specifications of graphs, circuits and automata have 
been considered over the last twenty years, e.g, [Le86, LW88, LW92, Ga82, GW83, BOW83, MH+97, RH93, 

‘‘Recall that S denotes the set of states D is the transition relation, A is the set of actions, s is the initial state and f is  the final 
state. 
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Or84, K091, CM93, MH+98, AY98, AKY99, A1001 and the many references therein. These specifications 
have been studied in the context of circuit design, analysis, and specification and in the context of the veri- 
fication of software systems and structured programs. The formalism of Alur et. al. [AY98, AKY99, A1001 
is one possible way to succinctly specify nondeterministic finite automata and can be viewed as a direct 
extension of the hierarchical specification of graphs proposed by Lenguaer et. al. [Le86, LW88, LW921. 
Also, the result obtained by Lengauer et. al. [LW92] can be used to obtain the result in [AY98] that STATE 
REACHABILITY for HSMs is P-complete. 

4.1 Overall techniques and their properties 

As stated in the introduction, our proofs rely on the following four general ideas and their properties. 

1. The proofs of DSPACE(n)- and NDSPACE(n)-hardness results, for STATE- REACHABILITY prob- 
lems, intuitively only require that a model M of communicating automata be able to specify a system 
of N linearly-connected copies of one particularfied deterministic and of one particularfied nonde- 
terministic finite automaton m by a specification of size O(N). This suffices because in [RH931 two of 
the authors have already shown that the STATE-REACHABILITY problem, for such linearly-connected 
systems of copies of m is DSPACE(n)- and NDSPACE(n)-complete. Two additional relevant details 
of the construction in [RH931 are: 

i For the STATE-REACHABILITY problem to be PSPACE-hard, for the model M ,  all that is neces- 
sary is that there exist ajixed rational number T > 0 such that the specification be of size O ( N T ) .  

ii The state s of the system of linearly-connected copies of m in [RH93], determining whose reach- 
ability is DSPACE(n)- or NDSPACE(n)-hard is a state of the right-must copy of m in the 
linearly-connected copies of m. This means that we can use very simple instances of Local- 
STATE-REACHABILITY problems as the sources of the efficient reductions used to prove our 
hardness results. 

2. The proofs of our EXSPACE-hardness results, for STATE-EXECUTABILITY problems, intuitively 
only require that a variant hierarchical specification S be able to specify a system of 2N linearly- 
connected copies of one particularfied deterministic finite automaton m by a specification of size 
O(N) .  This suffices because in [RH931 two of the authors have already shown that the STATE- 
EXECUTABILITY problem, for such linearly-connected systems of copies of the deterministic automa- 
ton m is EXSPACE- complete. The exact analogues of i and ii of the previous item hold here as 
well. 

3. The proofs of our coNDEXPTIME-hardness results for STATE-EXECUTABILITY problems, intu- 
itively only require that a variant periodic specification S be able to specify a system of 2N x 2M 
copies of a few basic acyclic finite automata connected together in a 2-dimensional grid-pattern by a 
specification of size O ( N  + M). This suffices because: 
iii.In [MH+98] we show that the problem EXACTLY1-EX3MONOTONESAT is already NDEXPTIME- 
complete, when instances are so specified. 
iv.1n [SH+96, Sh971, we showed how to reduce the problem EXACTLY~-EX~MONOTONESAT to 
the STATE-REACHABILITY problem for acyclic communicating automata by means of a reduction by 
local-replacem ent . 
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4. Most of the hardness proofs in this paper are by reductions by local- replacement. We can show both 
that these reductions can be carried out in deterministic O(n - logn) time on deterministic multi-tape 
Tms and that these reductions can be extended to efficient reductions, when instances are specified- 
succinctly as discussed above [MH+98, HSMOO, HMSOl]. 

Because of the simplicity of the instances used to prove these hardness results, it seems intuitively clear 
that analogues of the EXSPACE-and coNDEXPTIME-hardness results discussed in 1 and 2 hold generally, 
when systems of communicating automata are specified by any of the variant succinct specifications refer- 
enced above. In particular, these hardness results hold, for hierarchically-specified FCA and FGA. They also 
hold for hierarchically- and dynamically-/periodically-specified CSMs, provided we allow appropriately de- 
fined succinct specifications of ACTION symbols, e.g. distinct expansions of a module have distinct copies 
of those ACTION symbols specified to be local in the module. 

In the remainder of the paper, we provide select proof sketches that illustrate the above ideas. 

4.2 A general reduction of state-executability to simulation equivalence relations and pre- 
orders 

We recall the following definition from [HS76, SH+-961: 

Definition 4.1 Let p, u, r be binary relations on a nonempty set D. We sat that u is between p and r $for 
all x, y E D, xpy implies xuy and xuy implies xry. 

By direct inspection of the systems S 1 , S 2  in Figure 1, if the state labeled A is not reachable fkom the ini- 
tial state of SI, then S1 and 5’2 are CoMPUTATIONALLY-IDENTICAL, and otherwise, both the set of traces of 
SI is not a subset of the set of traces of S2 and the set of traces of S2 is not a subset of the set of traces of SI. 
Consequently, for all equivalence relations or simulation pre-orders u between COMPUTATIONAL-IDENTITY 
and TRACE- CONTAINMENT, SI u S2 if and only if the state A is not reachable from the initial state of 81. Re- 
calling the definitions of COMPUTATIONAL-IDENTITY and BISIMULATION-EQUIVALENCE given above and 
in the Appendix, respectively, every relation between bisimulation-equivalence and trace-equivalenceltrace- 
containment is also between COMPUTATIONAL-IDENTITY and truce- equivalence/trace-containment. Con- 
sequently since every equivalence relation or simulation pre-order of the Linear-time/Branching-time hierar- 
chy of [vG90] is between bisimulation-equivalence and trace-eguivalenceltrace-containment, the argument 
illustrated in Figure 1 implies that various STATE-REACHABILITY problems are efficiently reducible to each 
of the equivalence relations and simulation pre-orders of the Linear-time/ Branching-time hierarchy using 
intuitively reductions by very simple local replacement 13 .  

0 In particular this very simple but general meta-argument, together with the above discussion on the 
“four important properties of our hardness proofs”, yield directly the PSPACE- and EXSPACE-hardness of 
determining all equivalence relations and simulation pre-orders of the Linear-time/Branching-time hierarchy, 
for various of the models A4 above. 

4.3 Direct implications to DDSs 

We restrict our discussion to systems of simultaneous difference equations with constant coefficients on any 
algebraic structure with monotone-logic expressibility. First, we show that all unitary rings, all finite unitary 
semirings, and all lattices have monotone-logic expressibility. This gives some idea of the wide generality of 
our results. 
Case 1:Let F be a unitary ring; let D be the domain of F; and let fly f2, f3 be the fbnctions from D x D 

I3General discussion along these lines already appears in [HS76, Hu821. 
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Action 1 Action 2 

Figure 1 : Figure illustrating the reduction of state reachability problem to all relations between computational 
identity and trace equivalence and trace containment. SI and S2 are identical except for the inner boxes. Note 
that if the state A is not reachable from the initial state of S1 then S1 and S2 are computationally-identical; 
otherwise the sets of traces of 5'1 are not a subset of traces of S2 and conversely. We assume that actions 1 
and 2 do not occur anywhere else. 

to D or D to D defined by- f l (z ,y)  = z + y + -(x - y), f2(z,y) = x . y, and f3(z) = 1 - x. Let 
g1,92, 93 be the restrictions of fl, f2, f3, respectively, to ( 0 , l )  x (0,l) or to (0,1}. Then, the algebraic 
structure A = ((0, l}, g1,92,g3) is isomorphic to the 2-element Boolean algebra; and hence a fortiori, F has 
monotone-logic expressibility. 
Case 2:Let F be a lattice. Since we assume all algebraic structures are non-degenerate, there exist a, b in F 
such that a # b. Let Q = a A b and ,!3 = a V b. Under the operations V and A of F, a, are isomorphic to 0,l 
under or and and. 
Case 3:Let F be a finite unitary semiring. If 1 is invertible under +, then F is actually a unitary ring and 
Case 1 applies. Otherwise, there exists n 2 m 2 1 such that m * 1 = n * 1 # 0. (Here, m * 1, n * 1 equal 
the sum in F of m and n Is, respectively.) In which case, it can be shown that there exists m' 2 1 such that 
m' * 1 = m' * 1 . m' * 1 = m' * 1 + m' * 1 # 0. But this implies that F has a non-degenerate finite sub-lattice, 
the operations of which are definable in terms of the operations of F. Consequently, Case 2 applies. 
Additionally, the proof of Case 1 shows that all fixed-precision discretizations of the integers, rationals, reals, 
and complex numbers also have monotone-logic expressibility. 

Next, we show how to reduce the State-Reachability problem for linearly inter- connected systems of 
copies of a single dfa to the IVP for a system of simultaneous non-linear difference equations over F with 
monotone-logic expressibility. Let a,b f1, f2  be as in the definition of monotone- logic expressibility. Hence- 
forth we view a, b, f1, f2 as 0,1, or, and, respectively. Let the system M consist of n > 1 copies ofthep-state 
dfa mo. Each state of each cell ci (1 5 i 5 n) of the system M at time t 2 0 is represented by a 2lc-tuple of 
distinct Boolean-valued variables z: (t), y i  (t), . . . , $ (t), y t  ( t )  . Here, the k-tuple (2; ( t )  , xi2 ( t) ,  . , , , z$ ( t ) )  
is a binary code of the state of cell ci at time t 2 0 and for each 1 5 i 5 n, for each 1 5 j 5 k, and 
each t 2 0, z i ( t )  or y!(t) = b and <(t )andd( t )  = a. By this twinning of Boolean-valued variables, 
we can eliminate the need for the Boolean operator not in the Boolean equations defining the values of the 
variables x t ( t  + I), y j  (t + l), . . . , x t ( t  + l), y t  (t  + i) in terms of the values of that subset of the variables 
zi-l(t), ~ t - ~ ( t ) ,  . . . , z!+l(t),yt+, needed to compute their values. Given this, the remainder of the proof 
uses standard arguments. 

This reduction, together with the results in [RH93], immediately implies the PSPACE-hardness of the 
IVP, for such systems of difference equations on any algebraic structure with monotone-logic expressibility, 
when the system is specified non-succinctly, i.e. as usually assumed in the literature. Because all the cells 
in the sources of this reduction are the same and are linearly inter- connected, it is not hard to see that the 
systems of difference equations, that are the targets of this reduction, can be specified hierarchically so that 
a system of 0 (2N)  such equations can be specified by a hierarchical specification of size O ( N ) .  Given this 
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the results in [RH931 also imply that the IVP  is EXSPACE-hard, when systems of difference equations are 
hierarchically-specified. 

4.4 Selected applications of known hardness results for regular set descriptors to acyclic 
HSMs and CHSMs 

PSPACE-hardness proofs by the direct encoding of the computations of lbas M on fixed inputs x into strings 
consisting of concatenations of appropriate instantaneous-descriptions (ids) for M on the the‘ fixed inputs x 
are well-known and go back to [SM73, Hu73J. Let N = 1x1. The properties of such encodings include: 
(1)Each such id is of length N .  (2)The initial-id of M on 2, denoted Inito(x), is the length N string 
(qo7 2 1 )  . - . x ~ ,  where qo is the start-state of M and x = x1 2 ~ .  (3)Without-loss-of-generality, we 
may assume that-there exists a positive integer c such that if M accepts, then after 5 2CN steps M’s id is 
(at ,  0) - - 0, denoted by Fin(%), where is M’s unique accepting-state. Given these properties, let M be a 

fixed deterministic lba. Let z of length N 2 1 be an input to M. Then two cfgs G1,G2 can be constructed 
deterministically in polynomial time in N such that: 

L(G1) = Inito(x) - (wTeVw 1 w is an ID of M of length N}2cN and 

L(G2) = {wu I wuTeV are length N IDS of M and ureV results from w by a move of . Fin(x). 

By inspection, x E L(G1) rl L(G2) if and only if the lba M accepts x. Thus, the EMPTINESS-OF- 
INTERSECTION problem for pairs of such cfgs is PSPACE- hard. Noting that the languages L(Gl),L(G2) 
are both finite and that the lengths of all the substrings Init(e), w, u, and Fin(x) equal N ,  it is not hard 
to see that the grammars G1,G2 can be translated into equivalent deterministic PDA with bounded push- 
down stores and into equivalent acyclic HSMs. (Recall that the two languages L(Gl),L(G2) are finite.) 
These two acyclic HSMs are actually acyclic incompletely-specijied deterministic HSMs. Consequently by 
adding single trap-states, one for each HSM, the resulting HSMs are deterministic HSMs that acceptfinite 
languages. 

Immediate direct corollaries of the above argument and results from the literature on the complexity of 
problems, for regular set descriptors in [SM73, Hu73, HRS76, HR771, for acyclic HSMs,  acyclic CHSMs, 
and for CHSMs specified without use of the hierarchy constructor, are given in the following theorem. No 
results, for any of these very simple restricted HSMs or CHSMs, are claimed in [AY98, AKY991. 

Theorem 4.1 1. The EMPTINESS-OF-INTERSECTION problems a m  PSPACE-hard, for acyclic HSMs, 
for acyclic incompletely-specijied deterministic HSMs, and deterministic HSMs that accept finite 
languages. 

2. The EMPTINESS and STATE-REACHABILITY problems are PSPACE-hard for CHSMs, that are the 
parallel composition of two acyclic HSMs, are the parallel composition of two acyclic incompletely- 
specijed deterministic HSMs, or are the parallel composition of bwo deterministic HSMs that accept 
finite languages. 

3. The CONTAINMENT problem is PSPACE-hard, for pairs of deterministic HSMs, even when one of 
the HSMs is known to accept afinite set and the other a co-jnite set. 

4. For all regular sets Ro. the problems of determining if the language accepted by a deterministic H S M  
equals Ro or is contained in Ro are PSPACE- hard. 

5. The EQUIVALENCE and CONTAINMENT problems are coNDEXPTIME-hard, for acyclic HSMs.  
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6. The EMPTINESS and STATE-REACHABILITY problems are PSPACE-hard, for CHSMs, that are the 
parallel composition ofjnite sequences of dfa. (Thus, these problems are already PSPACE-hard, for 
CHSMs specified without any use of the hierarchy constructoK) 

ProoCThe claims of Items 1 and 2 follow directly from the argument above and the fact that, as defined 
by [AY98, AKY991, the language accepted by the parallel composition of two HSMs with identical tape 
alphabets equals the intersection of the languages accepted by the two HSMs. The claim of Item 3 follows 
directly the claim of Item 1 since 

L1 n L2 = 8 if and only if L1 C and the two HSMs of Item 1 are deterministic. 

The claim of Item 4 is implied directly by the following argument from [Hu73, HR771: For simplicity let c 
be a letter not appearing in any word in the language Ro. Let M be any HSM. Let LM = L ( M )  . { c }  U a. 
Then the following are equivalent: LM equals Ro; LM is contained in &; and L ( M )  = 0. Finally, a HSM 
recognizing the language LM can be constructed from the HSM M in deterministic polynomial time. 

The claim of Item 5 follows immediately from the coNEXPTIME-hardness of the EQUIVALENCE and 
CONTAINMENT problems for (U, -,2 )-regular expressions and for context-free grammars generating finite 
languages [SM73, HRS761. The claim of Item 6 follows directly from the results showed in [Hu73], 
that the problem of determining, given a finite sequence of deterministic finite automata ( M I , .  . . , Mn), 
if L(M1) n . . . n L(M,) = (L!J is PSPACE-complete. (Recall again, that as defined by [AY98, AKY99), the 
language accepted by the parallel composition of a sequence of CHSMs all with the same alphabet equals 
the intersection of all of the languages accepted by the CHSMs.) 
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5 Appendix:Transition Systems, Simulation Equivalences, and Simulation 
Pre-Orders 

Let Act be a set of actions containing a special action r called the internal action or unobservable action. 

Definition 5.1 A transition system 7 over Act is a triple (S ,  D ,  SI) where S is a set of states, D c S x 
Act x S is a set of transitions and s1 E S is the starting state. 7 is said to be finite if" both S and Act 
arejinite. e x t ( 7 )  = Act - {r}is  the set of external or visible actions. If0 is a sequence over Act then 6 
is the sequence over e x t ( 7 )  obtained by deleting all r actions from u. If ( P I ,  a,  p 2 )  is in D then we write 
p1 -% p2. Also if. is a sequence of actions such that there is a transition from state p l  to state p2 through 
some intermediate steps such that the sequence of actions is u, then we write p l  3 p2 and call this an 
extended step. Given 7 = (S ,  D,s l ) ,  let = {(p,a,p') I p E S , a  E Ad,p' E S, 3a E P a r * ,  and 
p p'} .  We call the extended transition relation of 7. l4 

Let = (S ,  D1, SI) and = (T,  D2, tl) be two transition systems. 

Definition 5.2 Let R C ( S  x T )  be a binary relation between S and T .  R is a simulation ifV(s, t )  E R 

Va  E Act, Vs' E S,  (5, a, s') E D1 =+ 3' E T ,  (t,  u, t') E D and (3') t') E R 

In other words, for every labeled path in 71 there is a corresponding labeled path in 72 with the same 
edge labels. We say R is a bisimulation if R and R-' are both simulations. Here by R-l ,  we simply 
mean inverting the pairs ( s , t )  E R to (t,  5). Two transition systems 5 and 5 are said to be bisimulation 
equivalent (denoted x -bsim Tz) iythere is a bisimulation relation R such that (s1, t l )  E R. 
are said to be simulation equivalent (denoted 71 5 s i m  5) irthere is a simulation relation R such that 

and 

( S 1 , t l )  E R. 

Definition 5.3 B C S x T is a weak bisimulation relation from 5 to 72 ifthe following conditions are 
sa tisjied: 

I .  ( S 1 , t l )  E B. 

2. V(r ,  s) E B and a E Act, if3y E r*ar* such that r & r' then 

3s'3p E r*ar* such that 
s ==+- s', (r', s') E B, and 
i j3p E r*ar* with s ==&- s' , then 3r'3y E r*ar* such that r 

P 
P r' and (r',  SI). 

Ifthere exists a weak bisimulation from 
by% -wbsim 5. 

to 72, we sat that they are weak bisimulation equivalent, denoted 

Definition 5.4 We say y is ajinite trace of a transition system 7 = (S ,  D ,  s) i f  there is ajni te  sequence 
u E Act* for which there is a state q E S such that s a q and y = 6. Let traces(7) denote the set of 
alljinite traces of a transition system 7. We dejne trace preorder and trace equivalence as follows. r f  
traces(5) & traces(z), then we say that (5, 5)  are in trace preorder and denote this by (3 Atrace 72). 
qtraces(7i) = traces(%), then we say that ( E ,  5)  are trace equivalent and denote this by ( E  -trace 5. 

I4A transition system as defined here can be viewed as a directed edge-labeled graph: the edge-labels corresponds to the actions 
that take the system from one state to another. As defined here, D need not be a (partial) function; thus the system 7 can be 
nondeterministic. 
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In the context of parallel composition, to be defined below, a transition system is formally represented 
as a 4-tuple, rather than as a 3-tuple as in Definition 5.1. In this context, a transition system (S, D, s )  over 
an action alphabet Act is represented as (S, s, A, -+), where A = Act - (7) and -+= D. Although the 
composition we define here is in the style of CSP [Ho84], the complexity bounds obtained also hold for 
other possible variants of parallel composition including composition of I / O  automata and composition in 
CCS [Mi99]. Formally, the parallel composition of two transition systems 5 and 72 ,denoted 7'i I( 72, is 
defined as follows. 

Finally, we define the hiding operation on transition systems. 

Definition 5.6 Let Z = (Ql  gi , A I ,  -+I)  be a transition system. Then 7 = hide a in 71 is the transition 
system (Q, go, A ,  4) where Q = Qi, A = AI - {a},  go = gi, and the transition relation -+ is defined b y  

rfa' # a, then g1 $1 42 implies g1 5 q2, and 
i f91  -?I 92 or 41 -% q2,  then 41 4 q2. 

Let A c Act with 1Al = n 2 1 and A = (a1 , . . . , an}. Then hideAin7 means hide el in(hide a2in 6.. 
in (hide a, in 'T)...)). 

19 


