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ABSTRACT 
Metarnodels approximate complex multivariate data sets 

from simulations and experiments. These data sets often are not 
based on an explicitly defined function. The resulting 
metalnodel represents a complex system’s behavior for 
subsequent analysis or optimization. Often an exhaustive data 
search to obtain the data for the metalnodel is impossible, so an 
intelligent sampling strategy is necessary. While inultiple 
approaches have been advocated, the majority of these 
approaches were developed in support of a particular class of 
inetamodel, known as a Kriging. A more generic, 
cotninonsense approach to this problem allows sequential 
sampling techniques to be applied to other types of 
metamodeis. This research compares recent search techniques 
for Kriging inetamodels with a generic, inulti-criteria approach 
combined with a new type of B-spline metamodel. This B- 
spline inetamodel is competitive with prior results obtained 
with a Kriging metamodel. Furthermore, the results of this 
research highlight several important features necessary for 
these techniques to be extended to more complex domains. 

INTRODUCTION 
Collecting data for use in defining a metamodel is a 

daunting task. High dimensionalities, expensive computational 
simulations, finite experimental trials, and limited resources 
with which to define a metamodel are only some of the major 
issues to be overcome. While an exhaustive sampling strategy 
might be attractive from a modeling standpoint, exhaustive 
sampling is generally infeasible for most applications. Instead, 
an intelligent method of sampling data is needed. 

While classical design of experiments techniques ofFer 
methods by which to systematically sample the unknown space 
[Montgomery, 1997, Wu, 20001, these approaches do not 
efficiently search with respect to particular goals that may be 
important in the model. For example, it may be the goal of the 
inetamodel to characterize the performance of a system (such as 
the limit of stable operation), instead of optimizing 
performance. Characterization of the system depends on the 
overall accuracy of the inetamodel. 

Existing techniques can be classified as either global 
search techniques, which explore unsainpled regions or  the 
unknown space, or local search techniques, which explore 
“interesting” regions previously sampled in greater detail. 
Sequential sampling techniques (SST) attempt to balance these 
competing goals. 

Sasena’s work [2002a, 2002bl pursued a search strategy 
that \vas initially global, and then explored local optima until 
convergence, when the search would revert to a global search. 
This paper uses a multi-objective combination of global and 
local criteria, and provides mechanisms by which to examine 
other local phenomena of interest in  addition to regions 
surrounding optima. Periodic restarts were also considered as a 
complimentary modification. Furthermore, this approach is 
developed for use with alternative metamodel forms. 
Preliminary results indicate that the performance of this 
technique is at least as good as that achieved with prior 
techniques aimed at Kriging inetamodels. 

The remainder of this paper will briefly review 
mc:tamodeling and an existing metatnodeling technique, 
Kriging, as well as a B-Spline technique proposed by the 
authors. The issues associated with data acquisition for large 
and sinall data sets are also considered, along with potential 
criteria for sequeritial sanipling techniques. Potential variations 
for the multi-criteria objective function are considered, prior to 
comparing the rcsults of inultiple trials obtained From the 
approach developed in this paper with B-spline models to prior 
results obtained for Icriging models. On the basis of the trials, it 
was concluded that the multi-criteria optimization problem is 
competitive with prior techniques, but that further work is 
necessary to extend the capabilities of this approach. 

1. METAMODELING 
l~undamentally, a inetamodel is a model of a model. 

Metatnodels are commonly employed to produce accurate but 
coinputationally efficient representations of an actual system, 
using data derived from inultiple experimental and simulation 
data sources [Shyy, 20011 as shown in Figure 1 .  The goal of the 
inetamodel is to replace thcse “expensive ” simulations, direct 
measurements and cxperiincnts with it single “eflcient ” model. 
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Figure 1 .  System, Model and Metamodel Relationships. 
Metainodels are cominonly used to facilitate optiinization 

of a design. For instance, in order to optimize the design of a 
gas turbine engine, it is necessary to combine expensive 
computational models of fluid flow, with relatively inexpensive 
thermodynamic cycle calculations, and experimentally obtained 
aerodynamic models of the engine nacelle. Each iteration of the 
optimization process requires a new set of computational and 
experimental data. The time required to obtain this information 
is prohibitive and costly. Alternatively, a smaller data set 
obtained from these sources can be used to create a metamodel, 
which can be used to find an optimal solution in less time and 
at a reduced cost. As a design tool, improved metainodels can 
be used to map and search the design space for better designs. 

Many types of metamodel formulations have been offered. 
Fundamentally, these types can be classified as geoinetric 
(including polynomial and spline based techniques), as 
stochastic (including Kriging and Radial Basis Function 
techniques), or as heuristic metamodels (including neural 
network models). This research focuses on comparing Kriging 
and a variant of spline based metamodels derived from the B- 
spline basis function (BSMs) developed by the authors and 
previously compared with another geometric metaniodel, called 
Response Surface Models (RSMs). [Turner, 20021 In this work 
BSMs were shown to be more promising than RSMs in 
nonlinear problems. 

Several surveys of metamodeling approaches have been 
conducted. [Barton, 1994 and 1998 and Simpson, 20011 I n  
addition to Turner [2002], several papers have attempted to 
compare different metamodeling techniques for a variety of 
criteria including Sasena [ 19981, I-lussain [2002], and Waiig 
11 9991 who surveyed inetamodels with respect to their 
suitability for mechanical engineering applications. 

Despite these many studies, few definitive conclusions 
have been drawn. RSMs, as introduced in most Design of 
Experiments (DOE) texts, [Montgomery, 1997, and Wu, 20001 
are perfectly suitable for problems with few variables, and well 
behaved, near quadratic responses. Smoothing cubic splines 
(often referred to as smoothing splines) are an improvement 
over RSMs. but only at an increased computational cost. 

Smoothing splines are distinct from S-spline models (RSMs), 
offer a promising geometric method and are used in this work. 

The most popular stochastic or heuristic technique is 
currently ICriging. A competing technique, Radial Basis 
Functions (RBFs) are closely related mathematically to 
Kriging, but arc somewhat inore limited in their capabilities 
and therefore, ICriging models are currently more practical and 
because of their origins, have a number of SST methods 
developed spccifically for this inetamodel type. Neural 
Networks also have promise, but have seen limited applications 
in metatnodeling. ‘Thus, Kriging was selected as an appropriate 
techtiique for comparison with BSMs. 

1.1.  B-SPLINE METAMODELS 
The main distinction between liSMs and BSMs is that 

RSMs are defined with polynomials, while BSMs are defined 
using parametric variables in a parametric space. A parametric 
space allows locally valid polynomials to be seamlessly 
blended together into a continuous function to form a BSM. 
The BSMs developed for this work are based on Non Uniform 
Rational B-Splines (NURBS), delinetl in 1-D by Equation 1. 

where ( B )  is a vector defining the location of the M( control 
points in R”” space, PV defines the weight o f a  particular control 
point, and NIk(zI) is the B-spline basis function in terms of the 
parameter u, as defined by ilquations 2 and 3 [Rogers, 19901. 

I \ 

1 
0 otherwise 

if xi 2 z i  < x,,, 
N, , ,  (2,) = 

where {x) is the knot vector, a sequence of parameter values 
defining the region of control point influence within the 
NIJRBS. Equations 2 and 3 are subject to the conditions given 
by Equation 4 [Rogers, 19901. 

(4) 

Nigher order objects, such as surfaces, are produced with a 
tensor product. [Cohen, 200 11 Control points, associated 
weights, and one or morc paramcters and knot vectors lends 
additional flexibility to NURHS, producing a highly flexible 
curve definition [Gopi, 19971. 

The BSMs used here have all weights set to I ,  the typical 
method of weight calculation [Piegl, 1997a, Rogers 19901, and 
usc maximum error reduction spline-fitting techniques 
developed by Legault [20001 and ‘Turner [2000]. ‘This approach 
to fitting BSMs to data is distinctly difrerent from traditional 
BSM metalnodel approachcs that match control points to data 
points in a one-to-one relationship [Simpson, 2001 1. 
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1.2. KRlCING METAMODELS 
A South African Geologist, D.G. Krige, originally 

developed Kriging in the late 1950s and early 1960s. [Isaaks, 
19891 Krige’s original techniques were further developed 
during the 1970s, and by the late 1980s engineers interested in 
improving upon response surface models began to adapt his 
techniques. [Sasena, 1998 and Sasena, 2002bl 

A Kriging inetamodel superimposes a stochastic process 
model, upon a Response Surface Model with a Spatial 
Correlation Function (SCF), R(zr, ,Y), defining the influence of 21 

on x. with Equation 5 in terms of the covariance of the two 
points. Different choices for the functional form of the SCF can 
lead to different data ‘‘jh ” of various qualities. Fortunately, 
many good choices seem to exist. Geostatistics tends to favor 
SCF’s similar to that shown in Equation 5. 

GI +Cl J 3 = 0  
[ -J”,’”.I) ( 5 )  1 J R . 0  

R(u, x) = 

where Co is referred to as the “migget” effect (you either have a 
mineral or you don’t), CI + Co defines the “sill” or a value at 
large distances from a sample point, and a defines a range of 
influence of the data. [Isaaks, 19891 In contrast, engineering 
metamodels (called Design and Analysis of Computer 
Experiments, DACE, Models) commonly employ a SCF similar 
to Equation 6. [Sasena, 2002a, and Sasena, 2002bl 

where Bdefines the range of influence of the data (Or 0), and p 
defines the smoothness of the model (0 < p < 2) where 
increasing values of p lead to a smoother model. Both models 
interpolate given data points. [Sasena, 2002bl 

The key difference between Icriging models used in 
Geostatistics and DACE inetamodels is in the determination of 
the SCF parameters. Geostatistics utilizes a wealth of 
experimental data fiom centuries of geological exploration to 
provide experimentally valid parameters for C,, CI ,  and a from 
Equation 6. Kriging models used for engineering metaniodels 
tend to lack this wealth of data, and therefore resort to an 
optimization approach where a maximum likelihood estimation 
(MLE) is maximized by finding optimal values of p and 0. 
[Sasena, 2002bl For large data sets, this is cumbersome and due 
to the nonlinearity of the problem, an optimal solution is not 
guaranteed. [Sasena, 2002b1 

For interpolation, the Gaussian process modeled in Kriging 
is incredibly robust. It can represent virtually all the variations 
that might be represented with linear or quadratic response 
surface models. Since these models provide little benefit to the 
Kriging model, it is common to assume an “ordinury” Kriging 
model where the underlying polynomial RSM is simply a 
constant offset term. [Isaaks, 1989 and Sasena, 2002bl 

In addition, Kriging allows for the estimation of the 
variance throughout the modeled space, through Equation 7. 

2 ( x )  = a:(1- (7) 
where {rJ represents the affect of each of the n data points on 
the point of interest, x, and [R] is the SCF “distance” between 
each data point, and 4- is the variance of the data set. [Sasena, 
2002bl This measure is small near data points, and large far 

away from the data points. Thus the model tends to deviate 
fiotn the underlying polynomial near data points, but follow a 
polynomial trcnd further away. The resulting ICriging model for 
the rcsponse 9 at an unknown point x, denoted j ( x ) ,  is defined 
with Equations 8 and 9, 

cw>> 
where [A) is a vector representing the power series basis of the 
underlying polynomial at the point x, {y) is a vector of 
corresponding data outputs to the input data locations {x), and 
(Fy is a matrix represcnting the power series basis for the 
polynomial at the corresponding data points in (XI. 

2. METAMODEL DATA ACQUISITION 
Metamodel data is gencrally available i n  one of two forms. 

There is either an excess of data, possibly derived from 
exhaustive search techniques, or there is a lack of data with 
corresponding limitations upon how much data can be acquired. 
Thcre does not seem to be any well-defined middle ground 
wherc just the right amount of data exists. Therefore, we will 
examine the ramifications of these two conditions. 

2.1. LARC E DATA SETS 
The problem of having too much data is a much simpler 

problem to deal with than not having enough data. This 
problem generally requires some sort of filtering or smoothing 
so that the resulting modcl does not interpolate each data point, 
but instead approximates most data points. This can be 
achieved with both BSMs and Kriging models. 

I3SMs approximate data because of the maximum error 
reduction method used to fit the model. If a data point is well 
represented by the current model, its error will be low, and it 
will not be a likely candidate for further fitting of the model, 
unless the local behavior of the model changes significantly. 
This phenomenon often occurs in early stages of model fitting. 

Kriging approaches the probleni through the introduction 
of a nugget parameter, 17. This paraincter modifies the SCF 
used in the Kriging model as shown in Equation I O .  

R(u,x) = (1 - ~~)g“”‘-’l’’ (10) 

where 17 IS less than I ,  but greater than or equal to zero. 
Typically, 7 IS very small, on the order of le-5, arid is also 
determ ined via optimization. [ Sasena, 2002bl 

2.2. SMALL, DATA SETS 
A lack of data is a much more common situation. 

Obtaining sufficient data for i2 inetamodel is the goal of 
sequential sampling techniques. A variety of strategies have 
been experimented with to intelligently sample unknown 
regions ofthe modeled space. 

Most of these approaches have used a variety of criteria 
that determine the best point to sample. Sasena [2002a and 
2002bl and Jin [ZOO21 include surveys of these criteria. These 
criteria can be classified as either global or local criteria, based 
on their search scope. Table 1 is a summary of the criteria 
reviewed in these surveys, with the search scope of each criteria 
defined as appropriate. 
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Sasena [2002a, 2002bl found that the most consistently 
well performing technique was the switching criterion (Switch 
in Table 1). For specific problems, other criteria might 
outperform this switching criterion, but only the switching 
criterion was consistently amongst the best. Fundamentally, this 
criterion searches globally, and then focuses on a local 
optimum until the optimum is well modeled before beginning a 
search for a new optimum. 

This method is akin to the cooling schedule, established in  
the stochastic optimization method known as Simulated 
Annealing [Kirkpatrick, 19831 that initially searches globally 
before becoming a local search. However, its local search is 
focused only on the best-identified local optima. Finding an 
optitnuin is not always the focus of metamodeling, and there 
could be other areas of interest, such as regions where the curve 
changes rapidly, or regions where a discontinuity has been 
detected. However, this fundamental idea of the cooling 
schedule can be adapted to provide a more general approach. 

3. THEORETICAL APPROACH 
Working under the idea that simple criteria are the best, 

several criteria were developed for use in this research to search 
globally for new points to add, and locally for points near 
features of interest. Different approaches were considered to 
solve the resulting inidticriteria optimization problem. These 
approaches included conducting a direct optimization on 
different functional combinations of these criteria, with weights 
determined by a cooling schedule, and employing an alternating 

criteria cooling schedule. A method was developed and applied 
to a set of test functions for evaluation. 

3.1. CRITERIA 
Three criteria were developed for this research. One 

criterion is for a global search, based on Equation 8, while thc 
remaining two criteria focused on different aspects of a local 
search. AI( three criteria tire defined so that a minimization 
optimization problem is formed. 

‘The first criterion, referred to as a variance criterion, v, 
perfhrins a global search. Derived from Equation 7, this 
criterion represents thc difference between the variance for the 
entire data set and the variance at the point. ‘The resulting 
criterion is large near data points, and sinall far away from data 
points. The form of the criterion is shown in Equation I 1 .  

1’ = cr; (Iy, }’ [R] I (I”,  }) (1 1)  
The local criteria were based upon the current iteration of 

the inetamodel. One criterion, referred to as the optimality 
criterion, b,  located the current predicted optima, while the 
second criterion, referred to as the :;lope criterion, s, searched 
for regions of rapid change in the model (defined by large 
slopes). These criteria are shown in Equations 12 and 13 
respectively. 

0 = M(X) (12) 
(13) #S = I - ( /d (X) )Z  

where nicy) represents the norm of the current model of the 
unknown fiinction and 177 ’CY) is its derivative. 
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All three criteria were normalized to run between 0 and 1, 
to’ eliminate scaling issues in their use. Furthermore, all criteria 
were defined consistent with a minimization objective function 
(Le. small values are preferable). 

The slope and optiinality criteria will draniatically change 
as points are added, and are unlikely to be particularly accurate 
during early sampling iterations. This suggests that the variance 
criterion should be the initial focus of any search. 

I I 
I I 
I I 
I I 

: XI  I Xh 

3.2. OPTIMIZATION 
Several optimization strategies were considered. 

Fundamentally, these strategies included direct optimization 
with a cooling schedule, and alternating criteria strategies. Each 
type of formulation will be discussed independently. 

3.2.1. DIRECT OPTIMIZATION APPROACHES 
Direct optimization attempted to use optimization 

techniques to determine the optimum location for each sample. 
This forinulation is shown in Equation 14. 

min f ( x ) = m ( x ) + ~ ( x ) + @ ( x )  (14) 
s.t. g l :  

g2: 

S, - -x I 0 (Provides a lower bound on x) 
x - x,, 5 0 (Provides an upper bound of x) 

where v(x) is the variance criterion, s(x) is the slope criterion, 
and b(x) is the optiinality criterion. a, p, are the weights 
corresponding to these criteria. 

This form requires a technique to determine the weights of 
the individual criteria for each optimization run. A cooling 
schedule approach was adopted in this research. 

A multiplicative form of the objective function defined in 
Equation 14 was also considered, but ultimately discarded due 
to the fact that a multiplicative formulation eliminated the 
advantages of the multi-criteria optimization approach. 

3.2.2. COOLING SCHEDULES 
By using a cooling schedule, as opposed to optimizing the 

acquisition of data points through a single criterion, we were 
able to obtain results where we sampled a point that was the 
best compromise of our goals. Thus, we generally did not 
sample the “optimal” point for any single criterion, This is 
entirely acceptable from our point of view due to our imperfect 
knowledge of the criteria to begin with. The resulting cooling 
schedule was developed from the basis functions used to define 
a quadratic Bezier curve. The resulting weights are shown in 
Figure 2. Equations 15, 16, and 17 define the criteria used. 

Vwim~c CoclXicienl - 
Slope Coeacitnt - 

.,..“.,,., <>,Ptitkal1ty CosNiaeot 

Figure 2. Criteria Cooling Schedule, for C=1.5 and t,,,,,.,. = 9. 

where C is a positive weighting factor on the influence of p, 
relative to a and y, t is thc current sample number (starting at 
t = l ) ,  and I,,,,,, is the limit on the samples of iterations we can 
afford. For C [ 1,  the associated slope criterion never becomes 
dominant. Experimentation with various values of C suggests 
that values between 1.25 and I .5 yielded reasonable results. C 
should have a value greater than 2. 

3.2.3. ALTERNATING CRITERIA 
Sasena’s approach with alternating criteria is effectively an 

“either-or” cooling schedule. The cooling schedule conducts a 
single (global) criteria search for a predetermined number of 
iterations, followed by a sccond single (local) criterion search 
until the local search has defined the local optimum, The search 
tlicn reverts to a global search for a predetermined number of 
iterations. An appropriate alternating strategy with three or 
more criteria is not readily apparent (as it is with two criteria), 
which led LIS to the idea of periodically resetting the cooling 
schedule. This is not an unusual idea for problems i n  the 
domain of simulated anncaling, where the cooling schedulc 
may be occasionally reset to assist the algorithm in overcoming 
local optima. Trial H5 uses this approach. 

3.3. APPLIED METHODOLOGY 
The methodology adoptcd lor this project is based on thc 

discussions in the previous two sections. MathCAD”’ is used 
to dcfine a multi-criteria optimization problem formulated to 
locatc the optimum of an additive objective function. The 
coefficients on the criteria were based upon a cooling schedule 
defined at the beginning of the problem, with the capability to 
reset after a fixed number of iterations. It was assumed that the 
function would be initially sampled at two locations, serving as 
upper and lower bounds for the search. Subsequent samples 
would be taken within these bounds. The fundamental problem 
is defined in Figure 3,  



direct knowledge of the function. As far as the algorithm was 
aware, ilew data points were added as new points of interest 
were identified. 

As a result of the spline fitting algorithm, the initial BSM 
is a line between the endpoints of the model, which becomes a 
parabola through the three points known after a single 
additional sample was taken at t=l.  In successive iterations the 
BSM remains locally quadratic, while continuing to fit 
additional data points. With each iteration, a calculation of the 
deviation of the new data from previously predicted data could 
be made and used to determine if the point should be used to 
further refine the model based on a user-defined threshold. Due 
to limitations in MathCAD'", this threshold approach was not 
used and so all new data points were incorporated into 
subsequent BSM iterations. 

At the end of each iteration, a calculation of the correlation 
of the models with the real function was made using Pearson's 
Correlation Coefficient defined in Crow [ 19601. 

3.4. TRIAL PROBLEMS 
Five trial problems were used in this research, based on 

four functions. Function I was obtained from Sasena [2002a, 
2002bl and served as the basis for his initial trials, In this trial, 
Sasena's current technique will be compared with the results of 
the proposed technique. This function is defined in Equation 19 
and shown in Figure 4. 

I - Actuall*iuw 
% '> SRtr,$tlefrd Pv'nls 

Figure 4. Trial Function # l  [Sasena, 2002a and 2002bl. 

f ( x )  = IO-sin(x)-e $00 (18) 

This function is an excellent test of the metamodels, with 
two distinct, but very similar local optima. Accurately 
modeling these optima is very important if the inetamodel is to 
be later used for optimization. 

Trials 2 through 5, compare the performance of Kriging 
models and BSMs using the proposed sequential sampling 
technique introduced in  Section 3. Trial Function 2 is based on 
Equation 19 with a discontinuous step input to the exponential 
term added at x = 6. The resulting function is therefore inore 
challenging to fit and is shown in Figure 5. 

J (x) = 10 - sin(w) - ~f x i 6, e$[)0,0 1 ( (19)  

Trial Function 3 is a simple step input, which represents a 
considerable challenge in accurately fitting the function due to 
the discontinuity at x = 6 as defined in Equation 20. 

Trial Functions 4 and 5 are defined with an identical 
function representing the Jacobian Condition Number of a 3 
Degree of Freedom planar robotic manipulator derived in 
Turner [2002] as a test problem for comparing metatnodel 
performance. Notably, this is a data set from a real problem, 
and is a data set representing a function that does not have a 
known closed form algebraic solution. The data is obtained 
from an exhaustivc search o f x  as shown in Figure 6. 

% 

Aatud Curr.a - 
I ' ~5Lhpkrlk'0~:5 

Figure 6. Trial Functions #4 and #5 [Turner, 20021. 

The difference between the lasi two trials is the periodic 
reset feature added to the cooling schedule in Trial #5. 
Otherwise, they are based upon the same data set. 

4. MODEL COMPARISONS 
The resulting inetainodels were cvaluated during the 

sequential sainpling process by examining the correlation 
coefficient between the model and the actual function. 'The goal 
was to obtain correlation coefficicnts in cxcess of 98% with a 
minimum number of data points. In addition, the accuracy of 
the inetamodel with respect to the optimum was compared to 
the actual optiinurn found fi-om the original function. 

4.1. TRIAL 1: SMOOTH FUNCTIONS 
Trial # I  used the smooth function from Sasena [2002a and 

2002bl to compare the switching criterion for a Kriging 
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inetainodgl to the multi-criteria cooling schedule approach with 
BSM mitamodels. The resulting metainodels for 6 data points 
are shown i n  Figure 7. 

I 

J 

Figure 7. Resulting inetamodels for Trial # I ,  each with 6 
data points. The Kriging model IS on the top, and the BSM 
model is on the bottom. The actual curve is shown with a 
dashed line. 

With 6 data points, optimized as per the above discussion 
the BSM metamodel achieves more than a 99% correlation to 
the actual function while the Kriging metamodel achieves a 
correlation of 88%. With 10 optimized points, both models 
achieve correlations greater than 99%. Both models also predict 
optima within 2% of the actual optimal value of x4 = 7.85. 

4.2. TRIAL 2: DISCONTINUOUS FUNCTIONS 
Trial #2 introduces a discontinuity into the function used in 

Trial # 1  at x = 6. Accurately modeling a discontinuity is an 
important property for a metamodel, and a substantial 
challenge. In  this trial, both the Kriging and BSM inetamodels 
utilized the same sequential sampling process. The results are 
shown i n  Figure 8 for 6 data points, and Figure 9 for 7 data 
points. 

This trial dramatically demonstrates the affect of the slope 
criterion upon the system. The point added in these iterations is 
immediately above and to the left of the discontinuity, which 
attracts the slope criterion. The mixing of the variance criterion 
with the optimality criterion reduces the chance that the 
function will be sampled directly on the step, but also allows 
the function to "zero-in'' on the discontinuity from both sides. 

7 
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Figure 8. Resulting me tamodt r fo r  Trial #2. each with 6 - dais points. The Kriging model is on the top, and the BSM 
model is on the bottom. 'The actual curve is shown with a 

> Sa.,>~rlli+ur 5 

USE6 Mode! - 
Figure 9. Resulting metamodecfor Trial #2, each with 7 
data points. The Kriging model is on the top, and the BSM 
model is on the bottom. 'The actual curve is shown with a 
dashed line. 
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In bvth cases (with 6 and 7 data points) the BSM fits the 
adtual d h a  to more than a 98% correlation (slightly better with 
7 data points than 6), while the Kriging model lags behind. 
While with 6 data points, the Kriging Model explains the 
behavior of 97% of the data, the addition of another data point 
dramatically changes the behavior of the model, as can be seen 
by comparing Figures 8 and 9. This illustrates a key difference 
between the local changes that occiir in a BSM due to the 
addition of new data, and the more global changes than may 
affect a Kriging model in response to new data. Finally, while 
both models predict the optimum within 10% of the actual 
value with 6 data points, the BSM is accurate to within 4%. 

4.3. 
Even more challenging than the previous function is a true 

step function. In this case, no one optimal solution exists, since 
the function is a single value until x = 6, Once again, both the 
BSM and Kriging models were fit with the same sequential 
sampling criteria. The resulting models for 10 data points are 
shown in Figure 10. 

TRlAL 3: THE STEP FUNCTION 
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Figure 10. Resulting inetamodels for Trial #3, each with 10 
data points. The Icriging model is on the top, and the BSM 
model is on the bottom. The actual curve is shown with a 
dashed line. 

While the 'final BSM achieves R correlation of almost 98%, 
the Icriging model never achieves more than 95% correlation to 
the actual function and achieves only a 79% correlation with 10 
data points included. 

The BSM model also does a much better job of 
representing the lower region of the step function, where the 
optimum is located. Based on the criteria used, it nialtes a great 

deal of sense that tlie upper region of the step fiinction, which is 
clearly not near the optimum, is poorly represented by the 
BSM. This is the result of the optimality criterion in the 
optimization. I n  this problem, the optimality criterion draws the 
sampling method to sample the regioii of the curve where x < 6 
more extensively. Because no unique optimum exists, 
comparisons of the accuracy by which each model located an 
optimum are not meaningful in this case. It should be noted 
however, that the BSM represents the value of the optimum 
much more closely than the Kriging model does. 

4.4. TRIAL 4: JACOBIAN CONDITION NUMBER 
The function uscd in thc final two trials was derived from 

real data for the Jacobian Condition Number, which measures 
the proximity of a robotic manipulator configuration to a 
singularity point. This data has no known closed form 
cxpression, making this an exceptional test of the capabilities of 
a metamodel. The results are shown in Figure 1 1. 
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Figure 11. Resulting inetamodels for Trial N4, each with 20 
data points. The Kriging model is on the top, and the BSM 
model is on the bottom. The actual curve is shown with a 
dashed line. 

Both inetamodels achieve ratcs of correlation in excess of 
the goal of 98%. The BSM actually achieves better than 99% 
correlation. Both metamodels also correctly identify the global 
minimum located near x ~ 75. Notably, the Kriging model 
exhibits a little more variation between data points than the 
BSM model, and neither model did a particularly good job of 
sampling the second local minimum near x = 165. Due to tlie 
range of the data, the number of allowed data points was 
increased to 20 for this trial. 
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4.5,. TRIAL 5: JACOBIAN CONDITION NUMBER 
Because of the difficulty of identifying both optima in the 

previous trial, a cooling schedule restart was considered. In this 
trial, 13 points were collected during the initial application of' 
the cooling schedule, which was then reset and an additional 13 
points were collected for a total of 26 data points. The results 
prior to resetting the cooling schedule are shown in Figure 12, 
and for the entire process in Figure 13. 
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Figure 12. Resulting inetamodels for Trial #5, each with 13 
data points. The Kriging model is on the top, and the BSM 
model is on the bottoin: The actual curve is shown with a 
dashed line. 

Notably, altering the duration of the cooling schedule 
changes the points selected by the sequential sampling 
technique. These changes are due to the different criteria 
weights obtained from the cooling schedule. As a result, the 
metamodel appear different between reseting and nonreseting 
cooling schedules, even for the same number of data points. 

After 13 data points have been collected, correlation for the 
BSM is at 86%, while the Kriging model correlates only 60% 
of the variation due to the actual function. Resetting the cooling 
schedule dramatically improves the correlation of both models, 
both of which eventually surpass the 99% correlation mark. In 
addition, the second local minilnuin was better identified and 
the initial global optimum is better defined than in Trial #4. 

inetainodeling tcchnique. Several conclusions can be drawn 
from these results. First, the multi-criteria solution to this 
optimization problem improves upon the prior work by Sasena 
[2002a, 2002bl. Second, in many cases, particularly for 
notilinear liinctions, I3SMs matched if not outperformed 
Mriging models in fitting the unknown functions with this 
method. However, the level of improvement was often 
statislically minor 
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Figure 13. Resulting metamodfmor Trial #5, each with 26 
data points. The Kriging model is on the top, and the BSM 
model is on the bottom. 'The actual curve is shown with a 
dashed line. 

Additional work on this technique is needed, including the 
extension of this work to higher dimensional probl&s, 
sticcessfully done by Sasena [2002a, 2002bI but not attempted 
here. For this approach to be successful in large numbers of 
variables a robust optimization approach for multimodal 
functions i s  necessary. As can be secti in Figure 14, the 
resulting objective function (shown with the dotted line at the 
top of Figure 14 which is a linear combination of the three lines 
at the bottom) can be very difficult to optimize. With one 
variable, it was possible to intelligcntly sclect starting points for 
multistart algorithms to lind the true optima. For N variables, 
this is much more difficult. This challenge is not 
insurmountable, but simply highlights the need for robust 
optimization approaches. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a new, multicriteria 

optimization technique to sequentially sample an unknown 
space. This technique was compared to the results of current 
sequential sampling techniques. This technique was evaluated 
using BSM metamodeling techniques, and a Krigiiig 
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Figure 14. An example of the criteria used in this research, 
where the variance criterion dominates the objective function 
(Dotted Line at the Top). 

Second, for BSMs to compete with established 
metamodeling techniques, further work is necessary to improve 
the performance of the fitting algorithm in order to deal with 
near singular matrix inversion problems. These issues in our 
implementation are being resolved with the development of a 
dedicated algorithm for this application. 

Finally, additional criteria (Le. curvature) should be 
developed and applied to allow for the exploration of other 
features of potential interest to the metamodel. The optimality, 
slope and variance criteria provide a solid basis for defining an 
accurate metamodel, but may not be adequate for other 
applications. A wider range of criteria capabilities is very 
desirable. 
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