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A Comparison of Approximate Reasoning 

Results Using Information Uncertainty 


Gregory Chavez, Brian Key, David Zerkle, and Daniel Shevitz 

gregchavez@lanl.gov, Los Alamos National Laboratory, http://www.lanl.gov 

Abstract. Approximate Reasoning CAR) is a useful alternative for mod­
eling linguistic value.,> provided by subject matter experts; however, AR 
models can produce many competing results. Associated with each com­
peting AR result is a vector of linguistic values and a respective degree 
of membership in each value. A suitable means to compare and segregate 
AR results would be an invaluable tool to analysts and decisions mak­
ers. A viable method would be to quantify the information uncertainty 
present in each AR result then use the measured quantity comparatively. 
One issue of concern for measuring the infornlation uncertainty involved 
with fuzzy uncertainty is that previously proposed approaches focus on 
the information uncertainty involved within the entire set. This 
paper proposes extending measures of information uncertainty to AR 
rf'1'Iults, which involve only one degree of membership for f'.ach fullzy set 
included in the AR result. An approach to quantify the information un­
certainty in the AR result is presented. 

Key words: Information measure, uncertainty measure, information 
entropy, linguistic values, inference model, fuzzy logic 

Introduction 

An Approximate Reasoning (AR) model is a useful alternative to a probabilistic 
model when there is a need to draw conclusions from information that is 
tive. For certain systems, much of the information available is elicited from sulF­
ject matter expertR (8ME). One such example is the risk of attack on a particular 

by a pernicious adversary. In this example there are several avenues of 
attack, i.e. scenarios, and AR can be used to model the risk of attack asRociated 
with each scenario. The qualitative information available and provided by the 
8ME is compriRed of linguistic valueR which are well suited for an AR model but 
meager for other modeling approa("hes. Natural language tends to be interpreted 

differently by various individualR [13,8]. The linguistic values used 
5MB's are no different and have a tendency to be vague and irnpreciRc. There is 
an unccrtainty associated with natural language which is commonly called fuzzy 
uncertainty [12,13,8]. For example, an 8ME may indicate that the likelihood 
the adversary smuggles a device through a border crosRing is "high" or that it is 
"somewhat likely". The exact meaning of "high" or "somewhat likely" may be 
interpreted slightly differently by different individuals; however, thesc linguistic 

http:http://www.lanl.gov
mailto:gregchavez@lanl.gov
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values axe often the values the 5MB is most confident in and comfortable pro­
viding. Fuzzy uncertainty is different from random uncertainty, where random 
uncertainty arises due to chance and deals with specific and well defined values 
such as the number on the top face of a die that is thrown. Random uncertainty 
is referred to as an aleatoric uncertainty and fuzzy uncertainty is referred to 
as an epistemic uncertainty. Epistemic uncertainty may be reduced to aleatoric 
uncertainty where as, aleatoric uncertainty is non reducible uncertainty [10, 

Linguistic values such as "high", "medium", and "low" describe several states 
or conditions and are considered sets. The boundary that defines anyone of 
these sets is unclear or fuzzy and thus these sets axe called fuzzy .sets. Vague and 
imprecise uncertainty is represented marvelously using fuzzy sets. The degree 
of membership of a particulax state, i.e. element, provides an indication of the 
fuzzy set's ability to describe the elmnent. The degree of membership for all 
the elements in a fuzzy set arc defined by a membership function. A general 
overview of fuzzy sets and AR is provided in Section 2, an in depth discussion 
of fuzzy set theory and AR can be found in: [9,12,13,17-19]. An AR model 
uses the degree of membership of a elements in fuzzy sets to draw conclusions 
about a system such as risk of attack on a facility. The AR result is comprised 
of a vector of various fuzzy sets used to describe risk and a respective degree 
of membership in each fuzzy set. Each attack scenario thus has an associated 
vector of risk values. Decision makers arc interested in the confidence associated 
with each of the competing alternatives. The quantity of uncertainty present in 
the result is related to the confidence [3J. That is, the less uncertainty present 
in the resulthlg alternative the more confidence one can have in the result. By 
measuring the information uncertainty present in each resulting alternative, the 
possible alternatives can be ranked ordered and the most credible alternatives 
can be determined. 

The quantification of information uncertainty for random uncertainty was 
addressed by Shannon [14]. Klir [6] claboratns on Shannon's measure of infor­
mation uncertainty and identifies conflict as the basis for the information uncer­
tainty mell.sured by Shannon. The measure of information uncertainty proposed 
by Shannon works as follows: thf'xe exists a regular die with six faces aU of which 
axe equally to be thrown and there exists a six sided trick die with one side being 
twice as likely to be thrown than the rest. The regulax die has more information 
uncertainty than the trick die because all sides axe equally likely to occm in the 
regular die. The trick die is less uncertain because one side is twice as likely to 
be thrown than each of the remaining five; thus, one can have more confidence in 
the result. De Lllca and Termini [2] extended Shannon's measure of information 
uncertainty to fuzzy uncertainty in a fuzzy set while others also presented alter­
native measures, see Yager [15]' and Higashi and Klir [5]. Pal and Bezdek [11] 
provide a good summary of many of the approaches used to measure fuzzy un­
certainty. These apprOaChf'13 arc intended to quantify the information uncertainty 
contained in a fuzzy set using the membership function for all the clements in 
the set; however, an AR result only involves one degree of membership in each 
fuzzy set. Section 3 discusses the quantification of information uncertainty in 
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a fuzzy set and introduces a modified approach to quantify information uncer­
tainty in an AR result. This paper then concludes with a simple application of 
the proposed method in Section 4. 

2 Approximate Reasoning 

Often the only information available for modeling some systems is qualitative. 
For example, an 8MB may indicate that the occurrence of a particular result 
is "highly likely", "somewhat likely", or "negligible" and the resulting conse­
quences are "extremely costly", "moderately costly", or "insignificant". These 
expressions are called propositions and the kind of uncertainty associated with 
thp-se propositions is from vagueness, imprecision, and/or a lack of information 
regarding a particular clement of the system. This type of uncertainty is col­
lectively called fuzzy uncertainty. Fuzzy set theory provides a means for repre­
seIlting the type of uncertainty contained in these propositions. Propositions of 
this type are commonly referred to as fuzzy propositions and express subjective 
ideas that can be interpreted slightly differently by various individuals. Reason­
ing using fuzzy propositions is referred to as approximate reasoning [13,8]. This 
section briefly describes fuzzy set theory and the logical expressions or proposi­
tions known as fuzzy logic that form the basis for AR, the reader is referred to 

for an ill depth description of each. 

2.1 Fuzzy Set Theory 

A collection of objects having similar characteristics defines a universe of dis­
course, X. The individual clements in X are denoted as x, with the same nota­
tions used for Y and y, and Z and z. The elements can be gTouped into various 
sets, such as A., B, or C. The value of B, and Cmay represent something like 
"high" which are approximate values, that is, it is not precise or well defined. 
The elements of a fuzzy set can be mapped to a universe of membership values 
using a function theoretic form. If an element x is a member of the set A., then 
this mapping is given by Bq. (1). A typical mapping of A. is shown in Fig. 1. 

JtA(x) E [0,1]. (1) 

The complement of A. is defined as: 

(Xi) 1 - JtA(Xi)' (2) 

The mapping for the complement is also shown in Figure 1. 

2.2 Fuzzy Set Theory and AR 

Now suppose that an 8MB indicatf'-s that values A and B for clements Xi and 

Yj, respectively, infers a particular value F for Zk. The information provided is 
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)J 

A 

Fig. 1. Membership function for Aand complem(1ut of A (Courtesy of Ross 1995) 

considered a rule governing the outcome Zk and can be presented as follows: 

Rule 1 IF Xi is Aand Yj is 13 THEN Zk is E 

All the rules governing the particular outcome Zk involving values for Xi and 
Yj can be grouped together into a rule base, sec Table]. Now consider the sit­
uation when both Xi and Yj can be described by more than on value. In such a 
situation Xi and Yj have membership in each value that describes them and the 
extent of this membership is represented using the degree of membership. The 
values of Xi and Yj are used to identify the goveming rule and infer the value of 
Zk. The inferred value of Zk will have an associated degree of membership which 
results from the conjunction (1\), i.e. taking the minimum value, of the degree of 
membership for Xi and Yj in the values included in the goveming rule. Take for 
example the rule specified above with MA(Xi) 0.3 and M:S(Yj) 0.6. results in 
a muE(zk) = 0.3. Another applicable goveming rule may be: 

Rule 2 IF Xi is 13 and Yj is 13 THEN Zk is E 

with Il:s(Xi) 0.7 and 1l:S(Yj) 0.6, which results in JiE(Zk) = 0.7. Both Rule 

1 and Rule 2 result in the value it but there arc now two difrerent V'dJues for the 
degree of membership. That is, either Rule 1 or Rule 2 is applicable and the dis­
junction (V), i.e. taking the maximum value, of PE(Zk) = 0.3 and PE(Zk) = 0.7 
results in "E(Zk) = 0.7. The conjunction and disjunction operations are used 
when the logical and and or are encountered. In each of the rules the logical and 
is encountered and the conjunction operation is used to determine the resulting 
degree of membership. The logical or is encountered in the nxample because 
either Rule 1 or Rule 2 in result E. Additional logical operations can be found 
in 
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Table 1. Rule BllSe 

Rule Base Universe of DiscourseX 
A B C 

A F E G 
Universe of Discourse Y B F E E 

C E G G 
-~-- -- ­

Quantification of Information Uncertainty in 

Approximate Reasoning 


The quantification of information uncertainty is often referred to as a measure of 
entropy [7]. Claud E. Shannon introduced the concept of entropy as a measure 
of the average information content missing when the value of a random variable 
is unknown [14]. Klir proves that Shannon entropy measures conflict in a prob­
ability distribution [6J. Shannon's measure of conflict has the for III 

S(p) - L p(x) log2P(x), (3) 
"'EX 

Others have extended Shannon's entropy measure from random uncertainty 
to fuzzy uncertainty [2, llJ. De Luca and Termini's [2J measure for the entropy of 
a fuzzy set is similar to Shannon's but conceptually different. Shannon measures 
the conflict due to random uncertainty while De Luca measures the conflict due 
to the fuzzy uncertainty. The measure of conflict due to fuzzy uncertainty in a 
fuzzy set can be determined from the membership functions for the fuzzy set and 
its complement; as De Luca and Termini's proposed in the following equation [2J: 

n 

D(A) = LILA (Xi) log2 IJA (Xi) + JL'A (Xi) log2 JlA(Xi), 
i=1 

Pal and Bezdek [l1J present several previously proPOS(,fl alternative approaches 
to measure fuzzy uncertainty in a fuzzy set. 

Another type of entropy, known as nonspecificity, reflects the ambiguity in 
specifying t.he exact solution [l1J. Hartley [4J first propoHed measuring the lack 
of specificity which is simply related to the number of alternatives present. Klir 
[6] simply defines the Hartley measure of uncertainty as 

H(fE) log21EI, 

where IE is any function of the subset E. The nonspecificity of an AR result 
can be determined using Equation 5 and considering that IE instead represents 
vector consisting of values in the AR result . The Hartley measure has been ex­
tended to probability distribution functions and membership function which are 
not discussed here and the reader is referred to [6, 7J for an in depth discussion. 

As discussed in the previous section, AR uses the degree of membership for 
a linguistic values to predict the outcome of a system. The outcome resulting 



6 

4 

Chavez, Zerkle, Shevitz 

from the AR is expressed as a vector of linguistic values and a respective degree 
of membership. That is, only one membership value results for each linguistic 
value. The conflict due to fuzzy uncertainty as quantified from methods such as 
Dc Luca and Termini [2] and those summarized by Pal and Bezdek [11] rely on 
the degree of membership for all the elements in the fuzzy set. In an AR model 
the conflict is not among one fuzzy set but several, that there is conflict 
among all the fuzzy sets that have a degree of membership greater than O. We 
propose to quantify the conflict present in the AR results rather than the conflict 
in anyone particular fuzzy set. The approach presented is similar to De Luca's 
but conceptually different in that both approaches are concerned with fm-:zy 
uncertainty although the confiict is among competing fuzzy sets included in the 
AR result. A familiar similar to that used in Equation 4 is used to quantify the 
conflict in the AR result 

n 

C(R) = (x) log2 lilt + fL R(x) log2 liR 
i=l 

where R is the vector consisting of the degree of membership for each set 
in the AR result, and C is the conflict, R.,(x) are the degree of membership in 
the fuzzy set Ri' 

The nonspeeificity in an AR result can also be measured using Equation 5 
and the number of fuzzy sets with a non-zero degree of membership. Random 
uncertainLy may be present in available information elicited from an SME but 
it is at an epistemic level and captured in the linguistic values provided by the 
8MB. As a result the conflict due to random uncertainty is captured by 6. Both 
5 and 6 have units of bits of information from the use of the logarithm base 2; 
therefore, the values derived from Equations 5 and 6 are summed to obtain the 
bits of information uncertainty for each AR resnlt. 

Application of the Proposed Approach 

In each scenario, an adversary attempts to attack the United States (US) with a 
enriched uranium (HEU) weapon. The weapon originates from outside of 

the US and the adversary chooses to enter the US throngh a cargo vessel water 
venue. The water venue does not have detection devices, therefore the likelihood 
of detecting and interdicting the device is assumed to be extremely unlikely. The 
adversary is limited to either having no prior information regarding the defensive 
architecture or having limited information on the defensive architecture. The 
defensive architecture has an intelligence warning level that is either weak or 
not available and a characteristic threat response level that is either green or 
yellow. 

In Scenario 1, the adversary has no prior information regarding the defen­
sive architecture; therefore his choice of cargo vessel and the location of the 
water venue are less clear. Additionally, the economic consequences of a suc­
cessful attack are assumed to be high. In Scenario 2, the adversary has retained 
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some information regarding the defensive architecture and his choices are more 
clear. Since the adversary has more information it is assumed that the adversary 
would maximize his likelihood of success by choosing a venue that is assnmed 
to be monitored less frequently, but have lower consequences thaIl Scenario 1. 
Scenario 3 is similar to Scenario 2, except the defensive architecture has no 
prior intelligence regarding the adversarys choices, therefore it is assumed the 
adversary could choose and attack any type of venue ranging from low to high 
consequences. 

The rule base of Table 2 is used to infer likelihoods using the information as 
displayed in Figure 2, for scenario 1. The risk rule base of Table 3 is then used to 
infer risk from the final resu]t,ing likelihood and the consequence of the current 
scenario. 

Success Likelihood: Universe of Discourse 
[Nearly Certain, Likely, Somewhat Likely, Unlikely, Very Unlikely, Extremely Unlikely, Negligible) 

Near1y Cer1ain 

[1,0,0,0,0,0,0] Somewhat likely 

to likelyExit Ukellhood 
Somewhat likely[0,0.57,0.43,0,0,0.01, 

Branching Ukellhood 

[0,0.57,0.43,0,0,0,0], 

Somewhat likely 

to likely 

Resulting Likelihood 

Adversary Choice 
Likelihood 

[O,l,O,O,O,O,OJ, 

likely 

to Unlikely 

[O,O,O.57,0.43,O,O,OJ, 
Resulting 
Likelihood 2 

Non Detection 
Uke/lhood 

[l,O,O,O,o,o,oJ, 
Nearly Cer1ain 

to Unlikely 

(0,0,0.57,0.43,0,0,0], 

Non Interdiction 

Somewhat likely 

lResulting Ukelihood 3 

Uke/ihood 

Somewhat likely 

to Unlikely 

[O,O,0.57,0.43,O,O,OJ, 

Success Likelihood 

[l,O,O,O,O,O,OJ, 

Near1y Cer1ain 

Fig. 2. Likelihood Reasoning for Scenario 1 

4.1 Scenario 1, Sl 

Radiological/nuclear attack on a target in the contiguous United States, Threat 
device characteristics: Device Type - HE U, Shielding is - minimal, Adversary 
Characteristics: Adversary capability is nominal, Adversary Decision Process: 
no prior data, Defensive State: Intelligence 'Warning Level is: weak, Existing 
threat response level is: yellow, Device enters: As Planned Architecture, Ar­
chitecture 1: Through a Border, specifically a WateT' BOT'der: [The Exit 
Likelihood is: "Nearly Certain"], Using a Cargo Vessel with Detection and Inter­
diction Nodes: [The Branching Likelihood is: "Somewhat Likely" to "Likely"]' 
Crossing at WI: Radiological and Nuclear Instrumentated Port, Port area has a 

population [The Adversary Choice Likelihood is: "Likely" 1, Device is not 

http:0,0.57,0.43,0,0,0.01
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Risk: Universe of Discourse 

[Very High, High, Medium, Low, Very Low] 


Success Likelihood: Universe of Discourse 

[Nearly Certain, Likely, Somewhat Likely, Unlikely, Very Unlikely, Extremely Unlikely, Negligible] 


Somewhat Likely to Unlikely 

[0,0,0.57,0.43,0,0,0] 

Success Likelihood 
Resulting Risk 

[0,0,0.57,0,0]EcononUcConsequence 
Medium 

[0,1,0,0,0] 

High 

Economic Consequences: Universe of Discourse 
[Very High, High, Medium, Low, Very Low] 

Fig. 3. Risk Reasoning with Likelihoods and Consequences for Scenario 1 

,..-... 

Table 2. Likelihood Rule Base 


Initial Likelihood 


'0 
o 

:S.., o 

~ 
-l 

13 
'" c-
O> 

1£ 
Vl '" 

Negligible 
Extremely 
Unlikely 

Very 
Unlikely 

Unlikely 
Somewhat 

Likely 
Likely 

Nearly 
Certain 

Negligible Negligible Negligible Negligible Negligible Negligible Negligible Negligible 
Extremely 
Unlikely 

Negligible Negligible Negligible Negligible Negligible Negligible 
Extremely 
Unlikely 

Very 
Unlikely Negligible Negligible Negligible Negligible Negligible 

Extremely 
Unlikely 

Very 
Unlikely 

Unlikely Negligible Negligible Negligible Negligible 
Extremely 
Unlikely 

Very 
Unlikely 

Unlikely 

Somewhat 
Unlikely 

Negligible Negligible Negligible 
Extremely 
Unlikely 

Very 
Unlikely 

Unlikely 
Somewha 

t Likely 

Likely Negligible Negligible 
Extremely 
Unlikely 

Very 
Unlikely 

Unlikely 
Somewhat 

Likely Likely 

Nearly 
Certain 

Negligible 
Extremely 
Unlikely 

Very 
Unlikely 

Unlikely 
Somewhat 

Likely 
Likely 

Nearly 
Certain 
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Table 3. Risk Rule Base 

detected at WI. [The Non Detection Likelihood is: "Nearly Certain"], Device 
not interdicted at WL [The Non Interdiction Likelihood is: "Nearly Certain"], 
Device detonates at WL Economic Consequences are: "High"] 

4.2 Scenario 2, S2: 

Radiological/nuclear attack on a target in the contiguous United States. Threat 
device characteristics: Device Type - HEU, Shielding is minimal, Adversary 
Characteristics: Adversary capability nomina~ Adversary Decision Process: 
prior data, Defensive State: Intelligence Warning Level is: weak, Existing threat 
response level is: yellow, Device enters: As Planned Architecture. Architecture 
Layer 1: Through a Border, specifically a Water Border: [The Exit Likelihood 
is: "Nearly Certain"], Using a Cargo Vessel with Detection and Interdiction 
Nodes: [The Branching Likelihood is: "Nearly Certain" to "Likely"]' Crossing at 
WI: Radiological and Nuclear Non Instrumented Port, Port area has a medium 
to high population [The Adversary Choice Likelihood is: "Nearly Certain" to 

Device is not detected at WI. [The Non Detection Likelihood is: 
"Nearly Certain"], Device not interdicted at WI. [The Non Interdiction Like­
lihood is: "Nearly Certain"], Device detonates at WI. [The Economic Conse­
quences are: "Medium" to 

4.3 Scenario 3, S3: 

Radiological/Nuclear attack on a target in the contiguous United Statc..'l. Threat 
device characteristics: Device Type - HE U, Shielding is - minimal, Adversary 
Characteristics: Adversary capability -nominal, Adversary Decision Process: prior 

Defensive State: Intelligence Warning Level is: none, Existing threat re­
sponse level is: green, Device enters: As Planned Architecture. Architecture 
Layer 1: Through a Border, specifically a Water Border: [The Exit Likelihood is: 
"Nearly Certain"], Using a Cargo Vessel with Detection and Interdiction Nodes: 

Branching Likelihood is: Certain" to "Somewhat Likely"]' Cross-
at WI: A Radiological and N~tclear Non Instrumented Porol, Port are has a 
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81:(1,0,0,0,0,0,0], Non Inten:llctlon ResultingRUik 
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low to high population [The Adversary Choice Likelihood is: "Nearly CertaiIl" 
to"Somewhat Likely"], Device is not detected at WI. [The Detection Likeli­
hood is: "Nearly Certain"], Device not interdicted at WI. [The Non Interdiction 
Likelihood is: "Nearly Certain"], Device detonates at WI. [The Economic Con­
sequences are: "Low" to 

Risk: Universe of Discourse 

[Very High, High, Medium, Low, Very Low] 


Success Likelihood: Universe of Discourse 

[Nearly Certain, Likely, Somewhat Likely, Unlikely, Very Unlikely, Extremely Unlikely, Negligible] 


83:[1,0,0,0,0,0,oJ, 

52:[1,0,0,0,0,0,oJ, 

83:[0.7,0.2,0.1,0,0,0,01,
51:[1,0,0,0,0,0,01, 

82:(1,0,0,0,0,0,0], Likelihood _____..... 

83:[1,0,0,0,0,0,0), 51:[1,0,0,0,0,11,0), ~=~nces 52:[0,0.3,0,7,0.2,01,
82:[1,0,0,0,0,0,0], 

51:[0,1,0,0,0,0,OJ, 53:[0,0,2,0.6,0.2,0.11. 
53:[1,0,0,0,0,0,01, 

52:[0,0.3,01,0,0], 

53:[0,02.0.6,0.2,0], 

Economic Consequences: Universe of Discourse 
[Very High, High, Medium, Low, Very Low] 

Fig. 4. Risk Reasoning with Likelihoods and Consequences for Scenarios 1, 2, 3 

The quantification of information uncertainty for each scenario is determined 
applying Equations 5 and 6 to the rusk Results. Equation 6 i.., used to quantify 

information uncertainty in the AR results related to conflict and Equation 5 is 
used to quantify the information uncertainty associated with non specificity. The 
calculated values are provided in Table 4, There is only one fuzzy set in the 
resulting vector with a degTee of membership greater than zero; therefore, the 

value of risk is not in conflict with any other values for risk in the 
vector. The value for nonspecificity is 0 in scenario 1 and the conflict is lower 
than that of scenario 2 and 3. Scenario 2 has degree of membership in "high", 
"medium" , and "low" which results in conflict among these three resulting 
sets. There is less conflict in scenario 3 than 2 becalL'>6 the of membership 
in "medium" risk is substantially higher than the remaining three fuzzy sets for 
scenario 3. Scenario 2 is more specific than scenario 3 and thus has a lower value 
for the nonspecificity. 

http:53:[0,0,2,0.6,0.2,0.11
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Table 4. Information Uncertainty 

IScenario Risk IConflict (C)INonspecificity (H)II: C + HI 
Sl:[O, 0, 0.57, 0, 0] 0.985815 0.0 0.985815 
S2:[0, 0.3, 0.7, 0.2, 0] 2.883802 1.0 3.883802 
S3:[0, 0.2, 0.6, 0.2, 0.1] 2.484510 1.5849625 4.069472 

Conclusion 

A greater amount of confidence can be placed in the results with a lower value 
of uncertainty. Each result of an AR model contains a quantifiable measure of 
information uncertainty associated with the conflict and nonspecificity due to the 
fuzzy uncertainty. This paper proposes measuring the conflict and nonspecificity 
in each AR result and using these quantities to compare the AR results. For 
situations involving fuzzy uncertainty, earlier research in the area of conflict and 
nonspecificity have focused on measuring these quantities using the degree of 
membership for all the elements within the fuzzy set. The results of AR models 
involve only one degree of membership for each linguistic value and not the degree 
of membership for all the elements within the fuzzy set. The current research 
extends the quantification of information uncertainty to fuzzy uncertainty in AR. 
The quantification of information uncertainty in AR is a valuable contribution 
and the importance is evident in the comparison of the information uncertainty 
in competing AR results. The results of this study can be extend by relating a 
measure of confidence to the measure of information uncertainty. 
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