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The influence of Coulomb collisions on the dynamics of magnetic reconnection is examined using 
fully kinetic simulations with a Monte-Carlo treatment of the Fokker-Planck collision operator. 
This powerful first-principles approach offers a bridge between kinetic and fluid regimes, which may 
prove useful for understanding the applicability of various fluid models. In order to lay the necessary 
groundwork, the collision algorithm is first carefully bench marked for a homogeneous plasma against 
theoretical predictions for beam-plasma interactions and electrical resistivity. Next, the collisional 
decay of a current layer is examined as a function of guide field, allowing direct comparisons with 
transport theory for the parallel and perpendicular resistivity as well as the thermoelectric force. 
Finally, the transition between collisional and collision less reconnection is examined in neutral sheet 
geometry. For modest Lundquist numbers S < 1000, a distinct transition is observed when the 
thickness of the Sweet-Parker layers falls below the ion inertia length osp :5 d,. At higher Lundquist 
number, deviations from the Sweet-Parker scaling are observed due to the growth of plasmoids 
(secondary-islands) within the elongated resistive layer. In certain cases, this instability leads to 
the onset of fast reconnection sooner than expected from o sP ~ d, condition. After the transition to 
fast reconnection , elongated electron current layers are formed which are unstable to the formation 
of new plasmoids. The structure and time-dependence of the electron diffusion region in these 
semi-collisional regimes is profoundly different than reported in two-fluid simulations. 

PACS numbers: 52.35.Vd , 52.35.Py, 52.65.-y 

1. .INTRODUCTION 

Magnetic reconnection is thought to play an important 
role in a wide variety of applications, including planetary 
magnetospheres, the solar corona and laboratory experi­
ments. While in some of these applications the plasmas is 
highly collisionless, many laboratory experiments [1] are 
in a semi-collisional regime. Furthermore, it has been 
suggested that the transition between collisional and col­
lisionless reconnection may play an important role in reg­
ulating coronal heating in stars [2-4]. 

In sufficiently collisional plasmas, the magnetohydro­
dynamic (MHD) description should provide a reason­
ably accurate description of the reconnection dynamics. 
Within the MHD model, fast steady-state solutions of 
the Petschek-type are only possible when the resistivity 
is enhanced within the diffusion region [5-7] by postu­
lating some unknown kinetic process. For spatially uni­
form resistivity, the MHD model gives rise to the clas­
sic Sweet-Parker (SP) solution in which the reconnection 
rate scales as S-! /2 where S is the Lundquist number. 
In regimes relevant to the solar corona S "'" 108 - 1O!2, 
the implied reconnection rates are far too slow to ex­
plain observations. However, the physical relevance of 
the SP scaling is highly questionable for these param­
eter regimes, since the elongated layers are unstable to 
plasmoid (secondary-island) formation [5, 8, 9] at rather 
modest Lundquist numbers S "'" 2000. Recent linear the­

ory predicts that plasmoid formation within SP layers is 
increasingly violent at higher Lunduist number [10] and 
simulation suggest this process may lead to a much faster 
t ur bulent reconnect ion scenario [11]. 

When the thickness of the resistive layer approach the 
ion kinetic scale, additional physics beyond MHD is cru­
cially important. In neutral sheet geometry, two-fluid 
theory and simulations indicate an abrupt transition to 
fast reconnection [12-14] when the thickness of the SP 
current layer bsp falls below the ion inertial length di . 

This so-called Hall or' fast regime has attracted consider­
able attention since it offers a potential explanation for 
both the sudden onset of reconnect ion and the fast rates 
observed in nature. Within this regime, it has been re­
ported [15-18] that the steady-state reconnection rate is 
controlled by the ions and is insensitive to the electron 
physics. However, the precise role of electron physics re­
mains controversial even within two-fluid models [19]. 

In the collisionless limit, fully kinetic particle-in-cell 
(PIC) simulations offer a first-principles description of 
magnetic reconnection. Until recently, PIC simulations 
[20, 21] were thought to be roughly consistent with the 
two-fluid simulations. However, more recent large-scale 
PIC simulations have demonstrated that the structure 
of the reconnection layer is quite different [22, 23]. In 
particular, the electron diffusion region forms an elon­
gated current sheet with a complicated two-scale struc­
ture [23, 24] . These elongated electron layers are unsta­
ble to plasmoid formation leading to a time-dependent 
reconnection process in which electron physics appears 
to play an important role [22, 23, 25]. 

'Guest Scientist. Currently with D. E. Shaw Research,LLC, New These results have raised fundamental questions re­
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plicability of fluid models to describe the correct struc­
ture and time-dependent behavior. Typically, fluid the­
ory is better justified in collisional regimes where the gra­
dient scale lengths are large in comparison to the various 
kinetic scales. While a range of different two-fluid models 
have been proposed to describe magnetic reconnection, 
the parameter regimes where these models are valid has 
never been rigorously established. 

In order to address these issues, this work employs a 
Monte-Carlo approach [26] to directly solve the underly­
ing plasma kinetic equation, which forms the theoretical 
basis for all reduced fluid descriptions. Although compu­
tationally expensive, this well-developed technique de­
scribes a full Fokker-Planck collision operator and thus 
permits a first-principles study of the transition from 
collisional Sweet-Parker regimes into the faster kinetic 
regime. This approach allows direct comparison with re­
duced fluid models regarding the onset criteria as well as 
the structure and stability of the diffusion region . 

To our knowledge, this manuscript represents the first 
attempt to apply this technique to the problem of mag­
netic reconnection. Thus before proceeding, we first re­
view some essential background information necessary 
for understanding this method . Next, to ensure that 
the collision algorithm is properly implemented, a series 
of benchmarks are performed against theoretical predic­
tions from classical transport theory. These problems 
include the slowing down and diffusion of test particles, 
the electrical resistivity of a homogeneous unmagnetized 
plasma and the collisional decay of a current layer. This 
last problem permits detailed comparison with theoret­
ical predictions [27] for the collisional momentum ex­
change between ions and electrons. These benchmarks 
establish that Coulomb collisions are introduced in a 
well-controlled manner; thus allowing the initial resis­
tivity to be chosen as desired . Furthermore , the physi­
cal treatment of Coulomb collisions includes a range of 
complexities not typically considered within fluid simu­
lations. These effects include parallel and perpendicular 
resistivities that vary in space and time due to electron 
Ohmic heating and a significant contribution from the 
thermal force on the edge of the current layer . 

After establishing the necessary groundwork, this pa­
per examines the transition between collisional and col­
lisionless reconnection in neutral sheet geometry. In suf­
fiCiently collisional regimes, this fully kinetic approach 
recovers the Sweet-Parker solution from resistive MHD. 
Furthermore, in modest sized systems""' 100di a tran­
sition to faster reconnection is observed when (jap ::::; di , 

in agreement with two-fluid predictions [12-14]. How­
ever, in somewhat larger systems""' 200di , the resistive 
layers are unstable to the formation of magnetic islands 
and this leads to a transition somewhat sooner than ex­
pected from the (jsp ::::; di condition. After the transition, 
elongated electron current layers are always observed in 
these semi-collisional kinetic simulations. In compari­
son to the collisionless limit [20, 23], the thickness of the 
electron layer is somewhat broader,,", 30% near the x-

point while the electron outflow jets open sooner and are 
""' 50% wider near the location of maximum outflow. For 
most of the simulations performed, the elongated elec­
tron layers are unstable to plasmoid formation leading to 
a time-dependent reconnection process similar to recent 
collisionless results [22, 23, 25]. Both the structure and 
time-dependence of these results are dramatically differ­
ent than reported in two-fluid simulations, indicating a 
need to reconsider the physics required to correctly de­
scribe the electron layer. 

II. BACKGROUND AND METHODS 

For weakly correlated non-relativistic parameter 
regimes, the theoretical framework for most of plasma 
physics is based on the following kinetic equation 

Ofs +v. ofs +~ (E+ v x B). ofs = LC " (1)
ot ox ms C OV 

s' 

ss 

where fs(x, v , t) is the single particle distribution func­
tion for species sand Css' is an operator describing binary 
Coulomb collisions between species sand s'. For weakly 
coupled plasmas, this term is well approximated by the 
Fokker-Planck collision operator[28] 

2 
CSS' = _~ (is Ohs') + ~ 0 (fs o2gs' ) 

r s OVO! ' OVO! 2 ovO!ov/3 ovO!ov/3 


(2) 
where rs = 47re4 1n Aim;, each species has charge e and 
mass m s , there is an implied summation over Cartesian 
indices (a, 13), and 

1 + ms) J fs' (v') dv'hs'(v) (3)( m s , Iv -v'l ' 

gs' (v) = Jfs , (v')lv - v' ldv' . (4) 

It can be shown that Eq. (2) is equivalent to the col­
lision operator first derived by Landau [29]. In a 
classical plasma, the so-called Coulomb logarithm is 
given by InA ~ In (127rneA1) , where AD is the Debye 
length. Assuming the distribution functions are close 
to Maxwellian, the characteristic collision frequency be­
tween species sand s' is given by [30] 

16.j7f n s,e4 ln A 
V ss' = -3- -----'-2---2---,3:-/:::-2 ' (5) 

msms.• , (v ths + vths') 

where Vths = (2Ts l ms) 1/ 2 is the thermal velocity of 
species s with temperature Ts and m ss, = msms'; (ms + 
m s' ) is the reduced mass for the binary collision. This 
generalized expression is equivalent to the collision fre­
quencies defined in the classic Braginskii review [27]. 

Previous studies ofma.gnetic reconnection have focused 
on either the collisionless limit where the operator Css' in 
Eq. (1) is neglected entirely, or have employed a variety 
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of simplified moment descriptions. For sufficiently colli­
sional regimes, a multi-fluid description of the plasma 
can be rigorously derived [27] from Eq. (1) and with 
additional approximations these fluid equations can be 
further simplified to the resistive magnetohydrodynamic 
(MHD) model. In the present study, the full kinetic equa­
tion (1) is solved using the particle-in-cell code VPIC [31] 
which was recently modified to include Coulomb colli­
sions using the Takizuka-Abe particle-pairing algorithm 
[26]. For the regimes of interest, the electron collision 
frequency is small in comparison to the electron plasma 
frequency lIei « wpe , and thus the kinetic equation may 
be solved by an operator splitting technique in which the 
particles are advanced in time using the self-consistent 
fields in the same manner as in the collisionless limit [31]. 
In order to include the influence of weak collisions, peri­
odically the particles within each cell (rv1 Debye length) 
are randomly paired and scattered in velocity space to 
mimic the Coulomb cross-section[26]. The scattering an­
gle 8 for a collision between species s and Sf is chosen 
in the center of mass frame using the random variable 
( == tan(8/2), where ( is randomly selected from a Gaus­
sian distribution with zero mean (() = °and variance 

((2) = 211'e4n 
s In A 

m 2 ' IVs - Vs,13 ~tcol, (6) 
ss 

where ~tcol is the time step for the collision operation. 
This procedure is repeated for both inter-species and 
cross-species collisions. Since the collisions are treated 
pairwise, exact conservation of energy and momentum 
is guaranteed. "'Thile the basic time step for the explicit 
PIC particle advance ~tpic must resolve the Courant con­
dition and the plasma frequency wpe , it is usually pos­
sible to sub-cycle the collision operation provided that 
lIei~tcol « 1. In this limit, it can be rigorously demon­
strated that the Monte-Carlo procedure is equivalent to 
the full Fokker-Planck operator [26, 32]. In practice, 
good convergence is obtained with lIei~tcol ;S 0.03 which 
still permits fairly aggressive sub-cycling of the collision 
algorithm in weakly collisional lIei « wpe regimes. In 
highly collisional regimes, the particle-pairing algorithm 
is quite expensive and more efficient methods are avail­
able (see Ref. [33] and references therein). 

III. COLLISIONAL BENCHMARKS 

In the collisionless limit, the VPIC code has been 
benchmarked for reconnect ion studies by detailed com­
parisons with · the linear Vlasov theory and extensive 
cross-verification studies with other PIC codes. The 
particle-pairing collision algorithm within VPIC was re­
cently benchmarked for the problem of temperature re­
laxation between species [33]. In this section, new colli­
sional benchmarks are presented for a number of prob­
lems directly relevant to reconnection physics. 

A. Slowing Down and Diffusion of a Test Beam 

Many of the basic features of the collisional plasma 
transport coefficients are determined by the strong v- 4 

dependence on the relative velocity in the Coulomb cross 
section. In order to verify this physics, one of the simplest 
and most basic test problems is the slowing down and 
diffusion of an electron test beam propagating through a 
uniform background plasma. The initial distribution of 
the electron beam is cold 

111 = nb6(v - voex ) , (7) 

where nb is the beam density and Vo is the initial beam 
velocity. Three characteristic relaxation rates are typi­
cally [30] defined 

lis 
1 d 

Vo dt (v - vo) , (8) 

lIli 
1 d 2 

V2 dt ((VII - Vo) ) , (9) 
0 

lI1. 
1 d 2 

V2 dt (V1. ) , (10) 
0 

where lis is the slowing down rate of the beam, lIll and 
II1. are the velocity space diffusion rates parallel and per­
pendicular to the direction of the beam propagation and 
( ) refers to an average over the test particle distribution. 
Simple analytic expressions for these relaxation rates may 
be computed from Fokker-Planck theory [30] by neglect­
ing the interactions between the test particles. For a 
uniform Maxwellian background plasma with density no 
and temperature Ti = Te , the resulting expressions are 

liS 2fe I: ~s (1 + me) G(Vo / Vths) , (11)
Vo s msvths 

lIli ~e I: nsG(vo/Vths) , (12) 
o s 

lI1. 2fe '" ns [<I>(Vo/Vths) - G(Vo/Vths)] ( 13) v3 ~ 
o s 

where the sum s = i, e is over the background and 

<I> (x) 2 lX -e ~ d~e , 
11' . 0 

<I>(x) - x<I>f(X)
G(x) = 2x2 

In order to test the collision algorithm against the the­
oretical predictions (11)-(12) , a series of simulations were 
performed with a uniform hydrogen plasma with density 

1018 3no = cm- , temperature Te = Ti = 20 eV and 
In A = 10. In addition, a population of test electrons with 
the initial beam distribution (7) was included. The beam 
velocity was varied over the range Vo/Vthe = 0.2 -+ 3 with 
a beam density of nB = O.Olno· The simulation domain 
was (2 x 3 x 3) cells, with the cell size equal to the Debye 
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FIG. 1: Comparison of theory against simulation for the slow­
ing down rate (top), parallel diffusion rate (middle), and per­
pendicular diffusion rate (bottom) as a function of the initial 
electron beam speed vo. The continuous lines are the theo­
retical predictions in Eqns. (11)-(12) and the points represent 
the rate measured in the kinetic simulations. 

length_ The simulations used 10,000 particles per cell 
and the collision operator was applied every PIC time 
step. To more accurately compare the simulation results 
with the theoretical predictions, the collisions between 
the test particles in the electron beam were ignored. The 
collisions between test particles and the background, as 
well as the collisions within and between the background 
species were included_ The quantities (v -vo ), ((vll-vo)2) 
and (V}) were computed for the test particles at each 
simulation time step and the initial time evolution was 
fit to a linear function to extract the relaxation rates in 
Eqns. (8)-(10). As shown in Fig. 1, the simulation results 
are in excellent agreement with the theoretical predic­
tions for the relaxation rates in Eqns. (11)-(12)_ These 
results demonstrate that the collision algorithm is ac­
curately capturing the strong velocity space dependence 
over a broad range of parameters. 
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B. Electrical Resistivity in Homogeneous Plasma 

In order to interpret kinetic simulations of magnetic 
reconnection, it is important to verify that the collisional 
resistivity follows the expected theoretical form. In this 
section, the simplest case of a homogenous unmagnetized 
plasma is considered. For a given set of plasma parame­
ters, the resistivity is calculated by imposing an electric 
field between two parallel plates and measuring the re­
sulting saturation current. These benchmarks are per­
formed in small system (1 x 3 x 3 cells) with a cell size 
equal to the Debye length and 50,000 particles per cell. 
The boundary conditions are periodic in yand z for both 
particles and fields, while in the x-direction the electric 
field Ex is applied and the particle boundary condition 
is periodic. In order to obtain a clean saturation, the 
applied electric field must be small in comparison to the 
runaway [34] field EeT ;:::: (meTe)I /2vee/e where Vee is 
the electron-electron collision frequency from Eq. (5). In 
this parameter regime, the collision algorithm recovers 
the well-known Spitzer resistivity to an accuracy of ap­
proximately'" 3%. A typical example of the measured 
current as a function of time is illustrated in Fig. 2 for a 

10 18 3hydrogen plasma at T = 20 eV, density n = cm-
and applied electric field E / EeT = 0.1. The expected 
saturation current is given by Jo = E / 'r/sp where 'r/sp = 

0.51meved(e2n e ) is the Spitzer resistivity for hydrogen 
and Vei is evaluated with the actual electron tempera­
ture to account for the weak Ohmic heating in the simu­
lation. While the primary physics of electrical resistivity 
involves the momentum exchange due to electron-ion col­
lisions, the numerical coefficient 0.51 is determined by the 
relative importance of electron-electron collisions which 
control the shape of the distorted electron distribution 
within the applied electric field . The precise quantitative 
agreement in Fig. 2 demonstrates that the collisional op­
erator within VPIC is properly capturing this delicate in­
terplay. It should be noted that for applied electric fields 
comparable to the runaway limit E .::G E eT , no steady­
state solution is found. This feature of the collisional 
momentum exchange is important to properly describe 
semi-collisional regimes where the reconnection electric 
field can easily exceed the runaway limit. 

This example benchmark illustrates the level of accu­
racy that can be achieved with the particle pairing col­
lision algorithm. However, in order to apply the colli­
sion operator to large-scale reconnection problems, there 
are several additional subtleties that must be considered. 
First , while it is possible to use the realistic hydrogen 
mass ratio mdme = 1836 in small benchmarks, large­
scale reconnection simulations are only possible with a 
reduced mass ratio. In addition, the functional form of 
the resistive term is more complicated in a magnetized 
plasma and within current sheet geometry it is possible 
for other terms such as the thermoelectric force to playa 
role in the momentum balance. In the next section, these 
effects are systematically examined. 
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FIG. 2: Example resistivity benchmark showing current as a 
function of time between two parallel plates with an applied 
electric field. The parameters are for hydrogen at T = 20 eV, 

1018 3n = cm- and E / E cr = 0.1. The saturation current 
Jo = E / 'T/sp is in excellent agreement with Spitzer theory. 

C. Collisional Decay of a Current Layer 

1. Theoretical Background 

For reconnection physics, the so-called generalized 
Ohm's law plays a crucial role in determining how the 
frozen-flux condition is violated within the diffusion re­
gion. This relationship may be be rigorously derived from 
the first moment of Eq. (1) for the electrons 

(UedUe X neme dt + V . P e + ene E + C 
B) 

= R e , (14) 

where ne is the density, U e is the electron fluid veloc­
ity, P e is the pressure tensor and Reis the first velocity 
moment of the collision operator, corresponding to the 
collisional momentum exchange between electrons and 
ions. For sufficiently collisional plasmas with weak spa­
tial gradients, both R e and off-diagonal terms of Pecan 
be calculated from transport theory [27] . The resulting 
momentum exchange Re = Ru +RT is composed of two 
contributions: the friction force Ru due to the relative 
drift between ions and electron and the thermal force 
RT. In the limit where the electron cyclotron frequency 
is large ne == eB / ( mec) » IIei, the friction force is 

Ru = ene (1]IIJ II + 1]1. J d , (15) 

where J = ene(Ui - U e) is the current density, 1] is 
the resistivity, the subscripts II and 1.. are relative to 
the magnetic field direction (i.e. J II = (b· J )b and 
J 1. = b x (J x b) where b = B / B is the unit vector in the 
direction of the magnetic field). The perpendicular resis­
tivity is given by 1]1. = melled(e2ne) while the parallel 
resistivity for hydrogen 1]11 ;::::: 0.511]1. has the same coeffi­
cient as the unmagnetized limit discussed in the previous 
section. The thermal force in the strongly magnetized 
limit lIei « ne is given by [27] 

3nellei ( )RT = -0.71neVIITe - -r.-b x VTe , 16 
2He 

where the coefficient 0.71 is for hydrogen. Although the 
thermal electric force RT is typically neglected in fluid 
modeling of reconnection , the second term in Eq. (16) can 
be non-negligible in layers with significant temperature 
gradients, as demonstrated later in this section . 

As mentioned previously, large-scale reconnection sim­
ulations are only feasible at reduced mass ratio. Thus 
for consistency, in this section we employ the same ar­
tificial mass ratio mdme = 40 used in Sec. IV. As 
mentioned previously, the precise numerical coefficients 
in Eqns. (15)-(16) are determined by the relative im­
portance of electron-electron and electron-ion collisions. 
From Eq. (5), the relevant ratio is llei/llee = V2/(1 + 
me/mi) 1/2 provided that Ti = Te and the charge is the 
same for ions and electrons (i.e Z = 1). In comparison to 
a hydrogen plasma, this ratio is only 1.2% smaller for the 
artificial electron mass mdme = 40 used in this study, 
and thus the numerical coefficients should be essentially 
identical to the hydrogen values [27]. 

2. Initial Conditions and Normalizations 

In order to systematically compare these predictions 
from transport theory against the kinetic simulations, 
the collisional decay of a current layer is examined for 
a Harris sheet [35] with initial magnetic field 

B( z) =Botanh(±)X+ByY, (17) 

where Bo is the asymptotic field in the :.v-direction, 
By is a uniform guide field in the y-direction and A 
is the half-thickness of the current sheet. The ini­
tial density n = nosech2(z/ A) is provided by drifting 
Maxwellian distributions with spatially uniform drift ve­
locity Uys = 2cTo/(qsBoA) and uniform initial tempera­
ture To for both species. The resultin~ current density is 
purely in the y-direction Jy = Josech (Z/A) where Jo = 
cBo/(47rA). Thus the relative contribution between par­
allel and perpendicular current can be adjusted by chang­
ing the guide field B y. In order to examine the collisional 
decay of the layer while avoiding magnetic reconnection 
or plasma instabilities, w.e consider a narrow 2D simula­
tion domain Lx x Lz = 0.5di X 8di where di = C/Wpi is the 
ion inertial length and Wpi = J(47rnoe2)/mi' The initial 
sheet half-thickness is A = 2di and wpe/neo = 7 where 
Wpe = J(47rnoe2)/me and neo = eBo /(mec), These 
parameters correspond to an electron thermal speed of 
Vthe/C = 0.1 and the mass ratio is mdme = 40. The 
spatial grid is 32 x 512 with 4000 particles per cell for 
each species and PIC time step is Wpe 6.t pic = 0.069. The 
boundary conditions are periodic for both particles and 
fields in the x-direction, while on the z.. boundaries par­
ticles are reflected and the field boundary condition is 
conducting. 

For the purpose of this study, it is useful to hold the ini­
tial current sheet parameters fixed while independently 
prescribing the initial resistivity. This is accomplished 
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by introducing an overall prefactor in Eq. (6) in order 
to set lIei as desired, while the relative magnitude of the 
other collision frequencies follows from Eq. (5). Recall 
that the resistivity in a plasma is only a function of the 
electron temperature, which is spatially uniform for the 
initial Harris sheet. As the simulation proceeds, Ohmic 
heating ("l.]2) within the current layer increases the elec­
tron temperature, which causes the actual resistivity to 
vary in both space and time. To facilitate comparison 
with two-fluid simulations [13], we employ the same nor­
malization for the dimensionless resistivity 

2 w 0 (T )3/2 P' lIei ' 0
TJ1. --"l1. = - = "l1.o - (18)

47rnio neo Te 

w2. (T )3/20P' IIei ' 0 


TJII 47rnio "lll = 0.51 neo = "lilo Te 


where lI~i is the electron-ion collision frequency based on 
no the central reference density, TJ1.o and TJllo = 0.51TJ1.0 
are the initial uniform resistivities at temperature To and 
the local electron temperature is Te ~ Tr(Pe)/(3ne) . As 
discussed in the following section, this local electron tem­
perature is well-defined for the collisional SP regime. 

3. Collisional Time Scales and Heating 

The initial electron heating rate may be estimated by 
assuming that the Ohmic heating goes entirely into elec­
tron kinetic energy and neglecting all other terms 

"'T 2 J23u ._e ~ "lll J + "l1. 1.' (19)2ne at II 

Assuming the parallel term dominates in the central re­
gion and using Jo = cBo / (471')..) for a Harris sheet, the 
electron heating over an initial time interval T is roughly 

(d)2 ,b.Te ~ ~ )..' "lilo (Tnio ) , (20)
To 3 

where b.Te = Te-To. This expression for the Ohmic elec­
tron heating is valid over a short initial interval where the 
terms neglected in Eq. (19) are small. Over longer times, 
the layer expands and the ions come into thermal equilib­
rium with electrons on a time scale Teq (mdme)lI;/ .rv 

For SP reconnection, the transit time for plasma through 
the diffusion region TA = Lsp / VA is long in comparison 
to the thermal equilibration time 

TA (O.sp)2rv (21)
Teq di 

Electrons and ions both relax to a local Maxwellian on 
the self-collision time scales (ll~1 and IIii 1) which are a 
factor of m d me and (md me)1 / 2 faster than Teq. Thus 
in the SP regime osp > di , Eq. (21) implies that Ti ~ Te 

with both species close to local Maxwellian distributions. 
Over time scales longer than Teq, pressure balance 

d [B2
dz 871' + n(Ti + Te)] ~ 0 , 

across the resistive SP layer [3] constrains the central 
temperature to 

Te ~ Ti ~ no [(Bin ) 2 + nin] , (22) 
To To nc Bo no 

where nc is the central density and B in and nin are the 
upstream values of magnetic field and density. 

4. Comparison of Transport Theory with PIC Simulation 

In order to check the predictions from transport the­
ory, the various terms in the electron momentum equa­
tion (14) are directly computed in the simulations and 
time-averaged over a relatively short interval during the 
initial decay of the layer. Since the predictions from 
transport theory are valid [27] on a time scale T » lI~1 , 

it is necessary to wait a number of collision times to al­
low the electron distribution to develop. The terms on 
the left-hand-side of Eq. (14) are evaluated directly from 
the PIC simuiations while the collisional momentum ex­
change Re is estimated using the theoretical predictions 
in Eqns. (15)-(16). Although there are no temperature 
gradients in the initial Harris sheet, electron Ohmic heat­
ing gives rise to a \7Te x B contribution to the thermal 
force [see Eq. (16)]. In a Harris sheet , the magnitude of 
this term relative to the friction force is approximately 

e (23)I~ I ~ (!:) (b.r: ) ,rv 

where B. is the local magnetic field at the location of 
maximum temperature gradient and the initial heating 
b.Te/To is estimated from Eq. (20). 

For the benchmark comparisons, we first consider two 
simulations with strong guide field By = B o so the 
strongly magnetized ordering lIei « ne is well satis­
fied across the entire layer. The collision operator was 
sub-cycled such that lI~ib.tcol ~ 0.005, but the results 
were essentially indistinguishable for more aggressive 
sub-cycling up to lI~ib.t col ~ 0.02. In the first simula­
tion, the initial resistivity is TJ1.o = 0.03 and the time 
average is between tll~i = 5 -+ 6.6 (corresponding to 
tnio = 4.2 -+ 5.5). At the end of this interval, the pre­
dicted electron heating from Eq. (20) is b.Te/To ~ 0.056, 
is in good agreement with the observed value of 0.06 in 
the simulation. The temperature gradient is strongest 
near z/).. ~ 0.3 corresponding to Bo/B. ~ 1, which 
from Eq . (23) implies the maximum thermal force is only 
rv 4% of the friction force. In the second simulation, 
the initial resistivity is TJ1.o = 0.1 and time averaged is 
performed between tll~i = 4.3 -+ 7.7 (corresponding to 
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FIG. 3: Force balance in the y-direction across two collisional 
current sheets with strong guide field By = B o , mass ratio 
mdme = 40, current sheet thickness is A/d, = 2 and perpen­
dicular resistivities f/J_o = 0.03 (top) and f/J_o = 0.1 (bottom)_ 
The non-ideal electric field (red) is computed directly from 
the PIC simulations while the parallel (blue) and perpendic­
ular (green) resistive terms are computed from Eq. (15) using 
the current density and electron temperature within the sim­
ulation. Each term is normalized by noEy at z = O. The total 
resistive contribution (black) is in good agreement with the 
non-ideal electric field. 

mio = 1.1 --4 1.93). The expected heating from Eq. (20) 
is !:::..Te /To ~ 0.066 , is in good agreement with the ob­
served value of 0_063. Using Bo / B* ~ 1, this implies 
the thermal force is again small "-' 4% in comparison to 
the friction force. Direct evaluation of the thermal force 
using Eq. (16) also confirms these estimates, but the sta­
tistical fluctuations are comparable to the small off-set. 
Examining the other terms in the y-component of the 
momentum balance, both electron inertia and \l . P e are 
completely negligible for these ion-scale ,\ = 2d i layers. 
The dominant terms in the y-component of Eq . (14) are 
the inductive electric field Ey and the friction force, with 
a smaller contribution from UezBx due to the weak out­
ward expansion . In Fig. 3, these terms are averaged over 
the x-direction and shown across each layer. The friction 
force is evaluated from Eq. (15) using the resistivity in 
Eq. (18) and the actual moments (J, Te) for each sim­
ulation. At the center of the current sheet, the electric 
field is balanced entirely by the parallel resistivity 7]11J II 
since the current Jy is purely parallel. On the edge of the 
layer, the parallel and perpendicular resistive terms are 
comparable. The agreement between these kinetic sim­
ulations and transport theory is quite good, with maxi­
mum deviation of "-' 4% in the region z "-' di where the 

1.2 
By =·0.5Bo 
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FIG. 4: Force balance in the y-direction across three col­
lisional current sheets with guide field By / B o = 0.5 (top), 
B y/ B o = 0.2 (middle) and B y/ Bo = 0 (bottom). The non­
ideal electric field (red) is computed directly from the simu­
lations while the friction force Ru (green) and thermal force 
Rr (blue) are computed from Eq. (AI) and (A2) using the 
actual simulation conditions (J , B, Te, ne). The sum of these 
two terms (black) corresponds to the total collisional momen­
tum exchange estimated from transport theory. Each term is 
normalized by noEy at z = 0 and parameters are i)l.o = 0.1, 
mdme = 40, and >..jdi = 2. 

wea.k thermal force may play some role (not included) 
and where there are significant gradients in the ma.gnetic 
that are not included in the theory. 

Next we consider the limit of weak guide field, where 
the strongly magnetized ordering is violated within the 
central region of layer. The generalization of Eqns. (15)­
(16) to arbitrary ~ == De/Vei is significantly more compli­
cated [27] and is given in Appendix A. These generalized 
expressions are particularly important for neutral sheet 
geometry where 0 in the center of the layer, while ~ --4 

~ » 1 in the outer region. The strongly magnetized limit 
is accurately recovered when ~ ;c, 10. Thus in a neutral 
sheet , Eqns. (15)-(16) are appropriate in the outer region 
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defined by 

Iz l ,<: 0.5), sinh-l(20i/~o) (24) 

while the generalized expressions in Appendix A must 
be used in the inner region. In order to further ex­
amine the v-component of the momentum balance, we 
consider three additional simulations with guide field 
B y / Bo = 0.5, 0.2 and O. In each case, the initial per­
pendicular resistivity is i/~o = 0.1 and all the other sim­
ulations parameters are the same as described previously. 
In order to compare the kinetic simulations with theory, 
the generalized expressions for the collisional momentum 
exchange in Appendix A are employed. All terms on 
the left-hand-side of Eq. (14) are computed directly from 
the PIC simulation, while the friction and thermal forces 
are estimated from Eqns. (AI )-(A2) using the moments 
and fields within the simulation. The various terms are 
averaged in time over the interval tV~i = 5 ----> 10 (corre­
sponding to tf'lio = 1.25 ----> 2.5). At the end of this inter­
val, the observed electron heating in center of the layer 
is t::..Te/To = 0.092, 0.12 and 0.13 for these three cases. 
These observed values are somewhat larger than the sim­
ple estimate in Eq. (20) which gives t::..Te/To ~ 0.085 us­
ing the parallel resistivity i/llo' Since the ratio Bo/B* 
in Eq. (23) can be much larger for weak guide field, the 
thermal force is expected to be more significant. This 
is confirmed in Fig. 4 where the dominant terms in the 
y-force balance are illustrated for these three cases. Elec­
tron inertia and \l . P e are again completely negligible, 
and the non-ideal electric field is approximately balanced 
by the combination of friction and thermal forces. It is 
important to note that the thermal force arising from 
\lTe x B is always in the opposite direction as the fric­
tion force, and thus acts to maintain the current. The 
thermal force is zero at z ----> 0 where the temperature 
gradient vanishes, but can be as large as '" 30% of Ey in 
the edge region where the temperature gradient is large. 

The discrepancy between the kinetic simulation and 
transport theory is somewhat larger in Fig. 4 than for 
the strong guide field results in Fig. 3. In our view, 
this is probably due to limitations in the theory rather 
than a problem with the simulations. Since the collision 
algorithm conserves momentum exactly, the red line in 
Figs. 3-4 corresponds to the actual momentum exchange 
Re in the simulation. The theory may differ from the 
simulation results for a number of reasons. First , the 
estimated uncertainty in these expressions [27] is con­
siderably larger '" 10 - 20% in the regime Vei '" f'l e 

encountered at weak guide field. In addition, classical 
transport theory does not properly include effects aris­
ing from the inhomogeneity in the magnetic field, such 
as electron \lB drifts. In the neutral sheet limit , elec­
trons undergo a variety of complicated meandering elec­
tron orbits in the central region of the layer. Despite 
these uncertainties, the maximum deviation for the neu­
tral sheet limit is only'" 10% in Fig. 4. This level of 
uncertainty is not significant for interpreting the recon­
nection simulations. It should be noted, that recent lab-

TABLE I: Summary of simulation parameters: initial per­
pendicular resistivity i).lo, system size Lx, number of 
computational cells N x , initial Lundquist number So == 
47rVA Lsp /(7).loc2

) , critical resistivity i)e required for asp ~ d;, 
and electron heating T e/To needed to reach fie. The system 
size in the transverse direction is Lz = 50di (800 cells), the 
time step is .0.tSlee = 0.13 and there are 2000 computational 
particles per cell. 

i).lo Lx /di Nx So fie T e/To 

0 100 1600 <Xl 

200 3200 <Xl 

0.04. 100 1600 625 0.04 1 

200 3200 1250 0.02 1.58 

0.1 100 1600 250 004 1.84 

200 3200 500 0.02 2.92 

0.2 100 1600 125 0.04 2.92 

200 3200 250 0.02 4.64 

oratory experiments have measured both the parallel and 
perpendicular resistivity in a reconnecting current sheet 
[36, 37]' under the assumption that the thermal force is 
negligible. The reported results are within'" 30% of the 
theoretical predictions for the parallel and perpendicular 
resistivities. 

IV. RECONNECTION SIMULATIONS 

In this initial study, we consider the transition between 
collisional and collisionless reconnection within neutral 
sheet geometry. Two-fluid simulations and theory [12­
14] predict a transition from Sweet-Parker (SP) to fast 
reconnection when the half-thickness 6sp of the resistive 
layer falls below the ion inertial length di . Within the 
SP regime, the layer half-thickness is 6sp / Lsp ~ S-1/2 
where S == 47rVALsp/TJc2 is the Lundquist number , 
Lsp is the half-length the SP current layer and VA is 
the Alfven speed based on the upstream plasma con­
ditions. For periodic boundary conditions, fluid simu­
lations [13] indicate that half-length of the SP layer is 
roughly L sp ~ Lx/4, where Lx is the domain size in the 
x-direction. Taking this into account, the transition con­
dition 6sp ::; di may be re-expressed as 

A Adi 4di _ 
TJ ::; L ~ Lx = TJc , (25) 

where i/e is the critical value of the resistivity where the 
transition is expected to occur. 

In the present kinetic study, there are a number uncer­
tainties to keep in mind regarding this transition condi­
tion (25). Fluid models ofreconnection typically treat re­
sistivity as spatially uniform without regard to the orien­
tation of the magnetic field, while the thermal force is ne­
glected completely. In the collisional kinetic simulations, 
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significant variations in resistivity across the layer are un­
avoidable if the Coulomb collisions are treated physically, 
since Ohmic heating always leads to order unity varia­
tions in Te. In addition, the orientation of the magnetic 
field and the local magnetization parameter rle/Vei vary 
across the layer, introducing a factor of rv 2 uncertainty 
in which resistivity to employ in Eq. (25). In the previous 
section, it was demonstrated that the unmagnetized re­
sistivity Tisp = Till is recovered in the central region defined 
by Eq. (24), while Ti.L applies to the bulk of the current 
layer. Furthermore, it appears that the perpendicular re­
sistivity is setting the overall width of the resistive layer 
when the simulations are in a SP configuration. Thus we 
will employ the perpendicular coefficient when discussing 
the various simulations. The dimensionless parameter 
TJ.Lo characterizes the initial perpendicular resistivity ev­
erywhere, since the initial temperature To is uniform. As 
discussed in Sec. III C, Ohmic heating within the current 
layer causes the actual resistivity to vary in space and 
time according to Eq. (18). Based on these considera­
tions, SP reconnection is expected when TJ.L > TJc while a 
transition to fast reconnection is expected when electrons 
are heated to a critical temperature Tc such that TJ :S TJc. 

To examine this transition, we consider the Harris 
sheet initial condition with zero guide field By = 0 
and with equal temperature for both ions and electrons 
Te = Ti = To· The mass ratio is mdme = 40 and the 
initial current sheet thickness is A = di . In order to ac­
commodate the larger systems, it was necessary to choose 
wpe/rlce = 2 which implies Vthe/C ~ 0.35. A uniform non­
drifting background population is included with density 
nb = 0.3no and the same temperature. Holding these 
initial current sheet parameters fixed, the collisionality is 
systematically varied using the same approach and nor­
malizations described in Sec. III C. The range of initial 
collisionality and system size are summarized in Table I, 
along with the number of computational cells, the ini­
tial Lundquist number So, the critical value of resistiv­
ity TJc from Eq. (25) and the electron heating required 
to produce this resistivity. To initiate reconnection in a 
controlled manner, a magnetic perturbation of the form 

oB (Lx) [27r(X - 0.5L x)] . (7rZ)oBx -- - cos sm ­
2 Lz Lx Lz 

"' . [27r(X - 0.5Lx)] (7rZ)oBz uBsm Lx cos Lz ' 

is imposed with oB = 0.025Bo for all cases. The recon­
nection rate E R is calculated from 

1 / 81jJ) (26)ER = BV \ atA 

where 1jJ = max(Ay) - min(Ay) along Z = 0, Ay is the 
y-component of the vector potential, B and VA are eval­
uated at 10d i upstream of the dominant x-point and ( ) 
represents a time average over f::"trl io = ±3 in order to 
eliminate high frequency noise. 

In the collisional simulations, there is an initial period 
of rapid electron heating consistent with Eq. (20) which 
causes the initial Harris sheet to expand outwards. As 
the reconnections flow develop within the SP regime, the 
ions and electrons come into thermal equilibrium on a 
time scale Teqrlio l/TJ.L, after which the central tem­rv 

perature is largely determined by the pressure balance 
condition (22) across the layer. Assuming the upstream 
conditions do not change significantly during this initial 
phase, the maximum central temperature is limited by 
Te/To < (no + nb)/nc where nc is the time evolving cen­
tral density in the layer. In this study, typical values 
are in the range nc/no 0.5 - 0.8 during collisional SPrv 

reconnection which implies Te/To l.6 - 2.6.rv 

To examine the transition condition, the time evolution 
for the Lx = lOOd i simulations is illustrated in Fig. 5. As 
shown in the top panel, the reconnect ion rate for the most· 
collisional case TJ.Lo = 0.2 (black curves) remains slow 
throughout the simulation, while the rates at lower col­
lisionality are eventually comparable to the collisionless 
limit (red curves). This result is in good agreement with 
the predictions in Table I, since the electron temperature 
reaches a maximum of Te/To 2.2 for the TJ.Lo = 0.2 caserv 

as shown in the second panel, while the required transi­
tion temperature is Te/To 2.9. As a consequence, therv 

time evolving resistivity shown in the third panel, re­
mains above the critical value of TJc ~ 0.04. In addition, 
the current sheet half-thickness Omin remains somewhat 
larger than the local ion skin depth di * computed using 
the actual density within the layer, as illustrated in the 
bottom panel. In contrast, the reconnect ion rate for the 
case with initial resistivity TJ.Lo = 0.1 (blue curves) re­
mains in a slow regime until approximately trl io = 75, 
after which the rate increases to approximately the same 
range as the collisionless limit. As illustrated by the 
dashed line, the transition electron temperature and re­
sistivity are in good agreement with the expected values 
in Table 1. After the transition, the three simulations in 
the fast regime develop electron scale current layers with 
omin ~ (l.8 - 2.4)de*, where the electron skin depth d e * 
is based on actual layer density. 

From the above discussion, the TJ.Lo = 0.1 simulation 
is a clear example illustrating the transition between the 
collisional SP and kinetic regimes. To better illustrate 
the structure of the layer before and after this transi­
tion, the contours of the current density Jy are shown 
in left panels of Fig. 6. At early time trl io = 50, the 
current layer is elongated as expected for the SP regime, 
while at later time trlio = 120 the current sheet is much 
shorter resulting in a faster rate. The out-of-plane col­
lisional momentum exchange across each current sheet 
is illustrated on the right panels. The red curves are 
evaluated directly from the simulation by summing the 
left hand side of Eq. (14). Since the collision algorithm 
conserves momentum exactly, this should correspond to 
the true collisional momentum exchange Re within the 
simulation. The thermal force (blue) and friction force 
(green) are estimated using the generalized Braginskii 
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FIG. 5: Time evolution for the Lx = 100di simulations in Ta­
ble I showing the reconnection rate ER, the electron tempera­
ture Te in the center of the layer, the perpendicular resistivity 
TJl. implied by Eq. (18) and the minimum half-thickness 6rnin 
normalized to the ion inertial length d i • based on the time 
evolving central density. The vertical dashed line highlights 
the transi tion time for the TJl.o = 0.1 simulation . 

expressions in Appendix A, evaluated with the actual 
moments and fields within the kinetic simulation. For 
the SP regime in the top panel, the sum of these two 
terms (black) is good agreement near the center and in 
the outer region Izl > di , while the theoretical expres­
sion is '" 20% larger along the edge of the layer , where 
electron VB drifts are significant. This implies that the 
actual resistivity within the simulation follows the ba­
sic theoretical expectations (and uncertainties) discussed 
previously. When the reconnection layers are in a resis­
tive SP regime, the central resistivity is known to within 
an uncertainty of 5%, with somewhat larger uncer­rv 

tainties 20% in regions with large VB. In contrast, rv 

the lower right panel illustrates this same comparison for 

the fast regime in which the current layer has collapsed to 
the electron scale. In this limit, the discrepancy between 
transport theory and the collisional kinetic simulations is 
considerably larger 40%. However, some of the basic rv 

assumptions of transport theory are clearly violated in 
this regime, as discussed below. 

The structural transition shown in Fig. 6 is accom­
panied by fundamental changes in the mechanism re­
sponsible for breaking the frozen-in condition. To elu­
cidate these changes, the various terms in the out-of­
plane electron momentum equation are shown in Fig . 7 
for the same spatial regions highlighted by the white 
boxes in Fig. 6. For the SP configuration at early time 
tD io = 50, approximately 90% of the non-ideal elec­
tric field is balanced by collisional momentum exchange, 
while the divergence of the electron pressure tensor ac­
counts for 10% in the central region and the inertialrv 

term is completely negligible. At this time, the ratio of 
the reconnection electric field to the runaway limit is ap­
proximately Ey / E cr ~ 0.18 near the x-point. At later 
time w'io = 120 after the transition, this ratio is approx­
imately E y/ E C1· ~ 1.2. In this runaway regime shown in 
the lower panel of Fig. 7, collisional momentum exchange 
is increasingly ineffective and transport theory breaks 
down. The electron distribution in this layer has strong 
non-Maxwellian features, so using Te ~ Tr (Pe) /(3ne) to 
estimate the theoretical fJ J... in Eq. (18) is clearly ques­
tionable. Within the electron layer, nearly rv 60% of the 
non-ideal electric field is balanced by V . P e while the 
remaining portion is due to collisional momentum ex­
change Re. The fraction of the field supported by V . P e 
is clearly a strong function of Ey / E cr , and this functional 
relationship will be detailed in a future publication. Fi­
nally, it should be noted that immediately upstream of 
the electron layer, the inertial term is significant with 
sign opposite to V . P e. Likewise, electron inertia plays 
a role in the downstream region (not shown) but V . P e 

remains dominant . 
As illustrated in the top panel of Fig. 8, there is a weak 

B y / Bo rv 0.05 elongated quadrupole structure when the 
reconnection layer is still in the SP configuration. Pre­
sumably, this is due a weak decoupling of the electron 
and ion outflows. This feature is also consistent with the 
weak V· P e term present in the top panel of Fig. 7. How­
ever, as the intense electron scale layer forms (see bottom 
panel of Fig. 6) there is a factor of", 3 - 4 enhancement 
in the magnitude of the quadrupole field as illustrated in 
the bottom panel of Fig. 8. 

Many of the results illustrated in Figs. 6-8 are con­
sistent with expectations from two-fluid simulations [12­
14]. The existence of the scale separation in the inflow 
direction and the resulting quadrupole field are both well 
understood features of magnetic reconnection in collision­
less neutral sheet geometry. However, the physics respon­
sible for controlling the ultimate length of the electron 
and ion current layers remains controversial and poorly 
understood. In the collisionless limit, recent large-scale 
kinetic simulations have demonstrated that the electron 
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FIG. 6: Contours of current density Jy for the Lx = 100di simulation with initial resistivity r,.Lo = 0.1 for the two simulation 
times indicated. Black lines are the flux surfaces. At earlY time in the top panel, the reconnection layer is in a Sweet-Parker 
configuration. Due to Ohmic electron heating, the resistivity falls below the critical threshold (see Fig. 5), and the layer 
contracts dramatically as illustrated in the bottom panel. The right panels compare the out-of-plane collisional momentum 
exchange with transport theory as described in the text. Curves are normalized such that Re = 1 at the center of the layer. 
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FIG. 7: Electron momentum balance in the y-direction across 
the diffusion region at early time (top) when the layer is in the 
SP regime and later time (bottom) after the transition to the 
kinetic regime. The non-ideal electric field (red), electron in­
ertia (blue) and pressure tensor (green) are computed directly 
from the simulation. These results are for the Lx = 100 case 
with r,.Lo = 0.1 and correspond to the same regions high­
lighted in Fig. 6 with white boxes. The terms in Eq. (14) are 
normalized by the electric field Ey near the x-point. 
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FIG. 8: Structure of the quadrupole magnetic field Ey (nor­
malized to Eo) for the same two simulation times illustrated 
in Figs. 6-7. Black lines are flux surfaces. 

layer can form highly elongated current sheets [22-25] 
that are completely at odds with two-fluid simulations. 
While the electron layer shown in the bottom panel of 
Fig. 6 is relatively short immediately after the transi­
tion, the full length'" lOd i ;:::: 63de is still dramatically 
longer than reported in two-fluid simulations. Further­
more, over longer time scales the electron layer is ob­
served to elongate in the outward direction leading to 
secondary island formation in a manner very similar to 
previous collisionless simulations [22, 23, 25]. In order 
to illustrate the structure of the layer prior to the on­
set of secondary islands, Fig. 9 compares the electron 
flow velocity, quadrupole field and ion outflow between 
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FIG. 9: Comparison between a collision less simulation (left panels) at time tn;o = 100 and a collisional simulation T}l.o = 0.1 
in the fast regime at time tn;o = 160 (right panels). Shown are the electron outflow velocity Uex , the electron out-of-plane 
velocity Uey , the quadrupole B y/ Bo structure and the ion outflow U;x. The system size is Lx = 100 for both cases and the 
times were chosen to illustrate the structure just before the onset of plasmoid formation within the electron layer. Electron 
velocities are normalized to the initial thermal speed and the ion outflow is normalized by the upstream Alfven speed. 

this simulation (Lx = lOOdi and '111.0 = 0.1) and the 
corresponding collisionless run. In both cases, the sim­
ulation times were selected to correspond to the longest 
electron layer before the onset of plasmoids. In the colli­
sionless limit, the electron outflow jets remain highly col­
limated out to distance of '" 20di from the x-line, while 
in the semi-collisional simulation the jets begin to di­
verge sooner and are broadened by '" 50% due to the 
collisions. The thickness of the electron layer near the 
x-point is '" 30% broader and the peak flow is reduced 
by'" 50%. As a result, the magnitude of the quadrupole 
field shown in the third panel is also reduced by '" 50%. 
However, both the ion outflow (bottom panel) and the 
reconnection rate (see Fig. 5) are quite close. 

Over longer simulation times, both the collisionless and 
semi-collisional simulations form secondary magnetic is­
lands within the electron layer. The time evolution of 
the electron layer for this same case with initial resistiv­
ity '111.0 = 0.1 is illustrated in Fig. 10. The formation of 
a plasmoid at trlio ~ 180 is accompanied by an increase 
in the reconnection rate shown in the top panel of Fig. 5. 
Presumably, this is due to the shorter electron layer as 
shown in the last two panels of Fig. 10. This result im­
plies that the dynamics of the electron layer can influence 
the reconnection rate in manner similar to recent colli­
sionless simulations [22, 23, 25]. In this particular simu­

lation, only one plasmoid is formed and ejected from the 
electron layer. After this time, the system has saturated 
due to the periodic boundary conditions. In order to ex­
amine the influence of plasmoids over longer time scales, 
it will be necessary to employ open boundary conditions 
[22] or to use much larger system sizes. 

In order to examine the transition physics in some­
what larger systems, we next consider the Lx = 200di 

simulations in Table 1. For this system size, the criti­
cal resistivity TJe ~ 0.02 is below the initial resistivity for 
all three collisional cases in Table 1. The time evolution 
of the reconnection rate, electron temperature, resistiv­
ity and minimum layer thickness are given in Fig. 11. 
Again, there is a clear distinction in the reconnection 
rate for the most resistive simulation TJl.o = 0.2 in com­
parison to the other three runs. As indicated by the 
vertical dashed line, the simulation with initial resistiv­
ity TJl.o = 0.04 shows an abrupt transition to faster re­
connection when the electron temperature and resistivity 
approach the critical value. Despite this agreement with 
Eq. (25), closer inspection reveals the growth of 3 sec­
ondary islands (or plasmoids) within the SP layer during 
trl io ~ 40 - 70. This same basic scenario was also ob­
served in the simulation with initial resistivity TJl.o = 0.1. 
In this case, the transition to faster reconnection occurs 
when the resistivity TJl. ~ 0.035 is significantly above the 
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expected transition value. While the smaller Lx = 100d i 

simulation in Figs. 6-8 remains in a single x-line config­
uration throughout the transition, the longer SP layer 
in the Lx = 200di simulation is unstable to plasmoid 
formation as illustrated in Fig. 12. During the initial 
phase, the reconnection layer features the classic Sweet­
Parker structure. However, a magnetic island is observed 
to form near time tD io ~ 100 leading to the formation of 
two electron scale layers by tD io ~ 130, as illustrated in 
the bottom panel of Fig. 12. The measured layer thick­
ness Omin in the bottom panel of Fig. 11 corresponds 
to the minimum scale across the entire simulation do­
main in the x-direction. While at early time tD io < 70 
this measurement accurately reflects the thickness of the 
SP layer, at later times this corresponds to the thick­
ness of the current sheet between the magnetic islands. 
This feature in the evolution allows the onset to fast re­
connection to occur sooner than expected from the sim­
ple criteria O'P ~ di , which is based on the assumption 

FIG. 11: Time evolution for the L" = 200d i simulations in 
Table I shown the the reconnection rate ER, the electron tem­
perature Te in the center of the layer, the perpendicular resis­
tivity Ttl. implied by Eq. (18) and the minimum half-thickness 
I5ntin normalized to the local ion inertial length di * based on 
the time evolving central density. The vertical dashed lines 
highlight the transition conditions for the Ttl.o = 0.04 and 
Ttl.o = 0.1 simulations. 

that the Sweet-Parker solution is structurally stable. As 
mentioned previously, recent linear theory with resistive 
MHD has predicted that SP layers are unstable [10] to 
a tearing-like instability at high Lundquist number with 
a super-Alfvenic growth rate. However, the asymptotic 
theory assumes highly elongated layers and thus cannot 
predicted the critical Lunquist number corresponding to 
the onset of instability. The simulation shown in Fig. 12 
corresponds to a Lundquist number of S ~ 1400 at the 
time when magnetic islands begin to form. 

The two simulations in Table I with high initial resis­
tivity ij.lo = 0.2 remain well above the expected two-fluid 
transition condition and the resulting reconnection rates 
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FIG. 12: Time evolution of the current density Jy for the 
Lx = 200di simulation with initial resistivity ij.J.o = 0.1. The 
transition away from Sweet-Parker (top panel) involves the 
formation of magnetic islands in the resistive layer. The black 
lines are the magnetic flux surfaces and the current density is 
normalized to the initial peak value Jo . 

in Figs. 5 and 11 are a factor of 5-8 smaller than the 
other simulations in the fast regime. However, the cru­
cial point is not the precise numerical value of these rates 
but rather the scaling of the rate with system size and 
dissipation. Although in the top panel of Fig. 5 there 
may be a weak dependence on resistivity for the simula­
tions in the fast regime, the larger simulations in Fig. 11 
show very similar rates for the simulations in the fast 
regime. Furthermore, these rates are slightly larger than 
the corresponding smaller runs, indicating a weakly in­
creasing dependence on the system size. Although the 
variation in system size is only a factor of two, these ini­
tial scaling results are clearly favorable for explaining fast 
reconnection in large systems. 

Regarding the two most resistive simulations in this 
initial study, it is important to examine whether the ob­
served rates follow the expected SP scaling. Although 
this question is complicated by the time dependent na­
ture of the resistivity within the layer, Figs. 5 and 11 
demonstrate that the time evolution of the electron heat­
ing and resulting resistivity are actually quite close for 
the two T]l.o = 0.2 simulations. Thus the SP scaling 
implies the Lx = 200di simulations should be slower 
than the Lx = 100di case by a factor of..;2. In order 
to test this scaling prediction , the reconnection rate for 
these two cases are compared in Fig. 13. To facilitate 
the comparison, the Lx = 100di re.sult is also re-plotted 
with the 1/ ..;2 scaling factor (see dashed red line). At 
early time tD.io < 70, the rate in the larger case is in 
good agreement with the SP scaling, while at later time 

0.02 	 7 

~0.Ql 

50 	 100 150 200 
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FIG. 13: Comparison of the reconnection rate for the two 
most resistive (r,.J.o = 0.2) simulations in Table I with system 
size Lx = 100di (red) and Lx = 200d; (black). In order to 
test the Sweet-Parker scaling, the reconnect ion rate for the 
Lx = 100di simulation is rescaled by 1/V2 (dashed red). 

tD. io > 150 the rate in the larger run overtakes the smaller 
case. Closer inspection reveals this breakdown in the 
SP scaling is accompanied by the formation of a mag­
netic island within the layer in a manner very similar to 
Fig. 12. It should be emphasized that the minimum resis­
tivity T]l. ~ 0.05 in this simulation is considerably larger 
than the expected critical value T]c = 0.02 throughout 
the simulation (see Fig. 11). However , the formation of 
magnetic islands within the SP layer gives rise to cur­
rent enhancements near the new x-points. As a result , 
the scale of these current structures falls below an ion 
inertial length at tD.io ~ 120 as illustrated in the bottom 
panel of Fig. 11 . Thus the larger Lx = 200di simulation 
forms current structures that are significantly narrower 
than the Lx = 100di simulation (see Fig. 5) due to the 
secondary reconnection instability within the layer. Since 
the magnetic island forms at rather modest Lundquist 
number S ~ 850, this suggests that SP reconnect ion may 
be rather fragile in most real applications. 

V. SUMMARY 

The inclusion of a Fokker-Planck collision opera­
tor within fully kinetic simulations is a powerful first­
principles technique to examine many basic questions 
regarding the transition between collisional and colli­
sionless regimes. The initial efforts described in this 
manuscript have laid the necessary groundwork in order 
to confidently perform and interpret these simulations 
for basic studies of magnetic reconnection. In particular, 
it has been established that the collision algorithm is in 
excellent agreement with some of the most fundamental 
predictions from classical transport theory, including the 
slowing down and diffusion of a test beam and the Spitzer 
resistivity for an unmagentized plasma. 

For reconnection problems, it is essential to understand 
the detailed form of the collisional momentum exchange 
in a magnetized plasma. This was accomplished by exam­
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ining the collisional decay of a current layer for a range of 
guide fields. In the limit of strong guide field, the mea­
sured friction force is within 4% of transport theoryrv 

while the thermal electric force is negligibly small for the 
cases considered. For the neutral sheet limit, the thermal 
force is a substantial fraction rv 30% of the non-ideal elec­
tric field on the edge of the current layer. Furthermore, 
the thermal force 'VTe x B is always in the opposite di­
rection of the friction force and thus acts to maintain the 
current. In the neutral sheet limit, detailed comparisons 
with transport theory reveals some modest discrepancies. 
In the central region of the layer defined by De < Vei, the 
resistivity is within 5% of the unmagnetized Spizter rv 

coefficient, while in the strongly magnetized De » Vei 

outer region the resistivity increases by a factor of rv 2 
to recover the perpendicular result. In edge region of the 
layer, differences with transport theory are larger rv 10%, 
but the theory does not include the strong electron 'VB 
drifts or the complicated electron meandering motion. 

These benchmarks have established that Coulomb col­
lisions can be introduced within the fully kinetic simula­
tions in a controlled fashion so that the electrical resis­
tivity is well determined. It should be emphasized that a 
physical treatment of Coulomb collisions includes a range 
of complexities not normally treated within fluid simula­
tions ofreconnection. In particular, electron Ohmic heat­
ing in SP regimes is always of order unity and thus strong 
spatial and temporal variations in the resistivity are un­
avoidable. Furthermore, the electron heating across the 
current layer leads to a substantial thermoelectric contri­
bution to the collisional momentum exchange in the edge 
region of a neutral sheet. In strongly magnetized regions, 
the resistivity is a factor of rv 2 lower along magnetic field 
lines than across and in weakly magnetized regions the 
resistivity is a function of De!Vei. 

Although there are a range of reconnection problems 
that may benefit from this first-prinCiples approach, this 
initial study focused on the transition between collisional 
and collisionless reconnection in neutral sheet geometry. 
Despite the complications discussed above, the collisional 
kinetic simulations are in agreement with some key pre­
dictions from fluid theory. In particular, the classic SP 
solution is recovered for the two most resistive kinetic 
simulations in the present study. For the Lx = 100di 

simulation with TJ.lo = 0.2, the Ohmic heating within the 
layer never reaches the expected threshold value and the 
steady reconnection rate is consistent with compressible 
resistive MHD using the same parameters. 

For the Lx = 100di simulation with initial resistiv­
ity TJ.lo = 0.1, the electron Ohmic heating within the SP 
layer gives rise to a clear transition to faster reconnection 
when the thickness of the resistive layer falls below the 
ion inertial length bsp ;S d i . Associated with this tran­
sition are a number of distinct structural changes: (1) 
the thickness of the diffusion region current sheet col­
lapses to the electron scale, (2) the length of this electron 
sheet is much shorter than the SP layer and (3) the out­
of-plane quadrupole field is greatly enha.nced. Many of 

these features are consistent with previous expectations 
from two-fluid theory and simulations [12-14] . However, 
other aspects of the transition are problematic to describe 
with fluid theory. For example, after the transition to 
fast reconnection the reconnection electric field is above 
the runaway limit where transport theory clearly breaks 
down (i.e. 1)J in Ohm's law has no justification) and colli­
sionless processes must take over. In this regime, it is not 
clear how to correctly model the non-ideal electron terms 
within fluid theory. However, the first-principles kinetic 
approach in this study is valid for arbitrary collisional­
ity, and these initial simulations have demonstrated that 
the non-ideal electric field is balanced predominantly by 
'V . P e when the reconnection electric field exceeds the 
runaway limit Ey ;G Eer . The fraction of Ey balanced by 
'V. P e is clearly a strong function of Ey ! Een and this re­
lationship will be detailed in a future publication. Within 
fluid closures, the off-diagonal terms in 'V. P e corresponds 
to a viscosity, but it is presently unclear whether any 
existing theory is capable of accurately describing these 
terms within the weakly collisional electron-scale layers 
observed in the present simulations. 

In the collisionless limit, the basic 'V. P e mechanism for 
breaking the frozen-in condition has been discussed ex­
tensively [20, 38], but it was only recently demonstrated 
to play a central role in controlling the length of the 
electron layers [23]. This important issue brings us to 
a fundamental discrepancy between the kinetic simula­
tions and the fluid models. In the present study, the full 
length of electron layer after the transition rv 10di ::::: 63de 

is much longer then reported lOde in two-fluid andrv 

hybrid simulations [16]. Furthermore, as the collisional 
kinetic simulations proceed in the fast regime , the elec­
tron layer expands further in the outward direction and 
becomes unstable to the formation of secondary islands 
in a manner similar to recent collisionless kinetic simu­
lations [22, 23, 25]. These results indicate that the elec­
tron layer plays an important role in determining the 
time evolution of the reconnection rate . Furthermore, 
these results clearly demonstrate that the basic structure 
and dynamical evolution of the electron diffusion region 
is dramatically different than predicted by two-fluid and 
hybrid descriptions . Since Eq. (1) is the ultimate starting 
point for all reduced fluid descriptions, the computational 
approach in this manuscript has great potential to help 
resolve these fundamental issues. 

Regarding the transition between collisiona.l Sweet­
Parker dynamics and the faster kinetic regime, the 
smaller simulations in this study are in good agreement 
with the condition osp ;S di expected from two-fluid the­
ory [12-14]. However, it should be emphasized that this 
condition assumes that SP layers are structurally stable 
at high Lundqust number. The larger simulations in this 
initial study have already demonstrated that the SP cur­
rent layers are unstable to a secondary reconnection in­
stability at rather modest Lundquist numbers S rv 1000. 
In the Lx = 200 simulation with TJ.lo = 0.2, the growth 
of magnetic islands lead to significant departure from the 
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SP scaling, while in the less resistive case iJ.1o = 0.1 the 
magnetic islands lead to the onset of fast reconnect ion 
sooner than expected based on the osp ;::::: di condition. 
In even larger systems, it remains unclear whether the 
onset of two-fluid physics or the stability of the SP layer 
will dominate the basic transition to faster reconnection. 

Even within the context of resistive MHD, the stabil­
ity of SP layers and the influence on the reconnect ion 
rate remains an outstanding issue. The recent linear the­
ory on this problem [10] represents an important step 
forward, but these results cannot predict the influence 
on the rate nor reveal the critical Lundquist number be­
yond which SP solutions break down. In future studies 
with the collisional kinetic simulations, it is important 
to consider a wider range of system sizes and Lundquist 
numbers in order to examine what range of parameters 
the SP solution is valid and whether the transition away 
from this solution is governed by the onset of two-fluid 
physics or by the structure stability of the elongated SP 
current layers. Many of these basic questions can and 
should be addressed within the context of fluid and sim­
ulations. Differences may well occur due to the physical 
treatment of Coulomb collisions, and it is important to 
understand this as well. Finally, the formation of mag­
netic islands within an elongated SP layer may push the 
dynamics into the kinetic regime and the computational 
approach in this manuscript is uniquely capable of the 
describing this entire transition scenario. 

APPENDIX A: GENERAL FORM OF 

COLLISIONAL MOMENTUM EXCHANGE 


The expressions for the friction and thermal force given 
in Eqns. (15)-(16) are valid in the strongly magnetized 
limit Vei «De. For arbitrary magnetic field , these terms 
are considerably more complicated [27]. The general form 
of the friction force is 

au = ene (7] II J II + 7].1FIJ.1 + 7].1F2J x b) , (AI) 

where 7].1 = m e ved(e 2 n e ) and 7]11 ;::::: 0.517].1 are the same 
as defined previously, b = B/B is the unit vector in the 
direction of the magnetic field and 

6.42e + 1.84 
Fl(~) 1- ---=-,- ­

t. ' 
~ (1.7e + 0.78)

F2(~) t. 
~ De / Vei , 

t. ~4 + 14.7ge + 3.77 , 

where the above numerical coefficients are for a hydrogen 
plasma. In the limit ~ -+ 00, this expression reduces back 
to Eq. (15) , while in the unmagnetized limit ~ -+ 0, the 
functions limit to F2 = 0 and Fl = 0.51 and the standard 
unmagnetized result used in Sec. III B is recovered. For 
the Harris sheet benchmarks in Sec. III C, the last term 
in the generalized friction force (AI) is negligible in the 
y-direction, since the initial current is purely Jy and the 
narrow layer maintains the approximate 1D symmetry. 
In the limit of a neutral sheet, the current is entirely per­
pendicular and only the middle term contributes to force 
balance shown in Sec. III C. For the reconnection simu­
lations in Sec. IV, all three terms can become important 
in various regions. 

The generalized expression for the thermal force is 

RT = - ne (0.71 \7 II Te + 91 \7 .1Te + 92b x \7Te) , (A2) 

where 

5.1e + 2.68 
91 t. 

~ (l.5e + 3.05)
92 t. 

and the numerical coefficients are for hydrogen. This 
expression reduces back to Eq. (16) in the strongly mag­
netized limit ~ -+ 00 and also recovers the standard un­
magnetized limit ~ -+ O. In the Harris sheet benchmarks 
discussed in Sec. III C, the last term in Eq. (A2) is non­
negligible in the limit of weak guide field, while the first 
two terms do not contribute to the y-component of the 
force balance. 

In the large and small argument limits , the reported 
accuracy [27] of these transport coefficient is ,....., 2% , how­
ever in the intermediate regime Vei ,....., De the error is con­
siderably larger,....., 10 - 20%. Furthermore, these results 
do not include effects due to the field inhomogeneity in 
the current layer, such as the electron \7B drift . 
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