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Abstract 

The numerical challenge associated with the time-dependent approach 
to the general problem of bi-dimensional quantum - tunneling is discussed 
and methods towards its application to concrete problems are developed. 
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1 Introduction 

The problem of the decay of metastable states is of major importance for the 
understanding of many physical, chemical or biological processes. A metastable 
state, or a quasi-stationary state, is defined as a state of local stability which de- 
cays with a finite lifetime towards a true stable minimum. When the temperature 
of the decaying system is low, quantum tunneling is the dominant decay process. 
An intuitive and precise approach to this phenomenon involves the numerical 
solution of the time-dependent Schrodinger equation (see [l], [2] ). 

The different methods that have been developed for solving numerically the 
TDSE consist of a discretization both in space and time. The mesh size Ax and 
the time step At have to be, respectively, much smaller than the spatial dimension 
and the time scale of the particular problem to be solved. Since the description of 
most practical problems involves at least two coordinates (spatial or generalized), 
we are often faced with a tremendous numerical task : computers with highest 
speed and largest memories are needed. In the experimentally accessible cases 
of relatively long - lived isomers (milliseconds or more), there is an additional 
difficulty : double or even quadruple precision is necessary to calculate extremely 
small increases Q p  of the tunneling probability during each time step At. It is 
therefore necessary to systematically investigate these difficulties of calculating 
on large grids, for long times, small decay rates, in order to develop methods to 
overcome them. 

In the next section the most relevant numerical schemes will be reviewed 
emphasizing their differences. 

In the third section the problem of artificial boundary conditions will be tack- 
led through two methods : the transparent boundary conditions and the ab- 
sorbing boundary conditions. They have been developed to reduce the reflections 
of the wave packet on the numerical boundaries with the aim of decreasing the 
size of the spatial grid used. 

In the fourth section the above mentioned formalisms are applied (and com- 
pared) to the proton emission from spherical ground - state nuclei. For illustra- 
tion, the experimentally observed decay of the lowest lying ( Qp = 0.829MeV) 
metastable p - state 2d512 in '''1 was chosen . 

Although the present work involves for simplicity the one - dimensional TDSE, 
it was done having in mind the immediate application of the information ex- 
tracted to the more practical two - dimensional case. 
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2 Numerical solutions of TDSE 

Let us consider the one dimensional TDSE , with a time - independent potential 
V ( x ) :  

where 
-ti2 a2 
2m ax2 

H=--  + V ( X ) .  

The formal solution of (1) can be expressed by: 

>@(t>. 
- iHAt  

$(t  + At) = exp( (3) 

Various schemes have been proposed to approximate the exponential function. 
The simplest one is the Euler scheme (EU) in which e x p ( 7 )  iHAt is expanded into 
a Taylor series and only the leading terms are kept. Thus, 

$(t + At) = (1 - i H A t / f i ) $ ( t )  + O ( ( H A t ) 2 ) .  (4) 

This scheme is an explicit scheme, that is, it does not need matrix inversion, 
but it has no practical utility, since it is unstable and not unitary. Therefore, oth- 
ers procedures should be used. Among the various schemes which were proposed, 
Crank-Nicholson (CN) , multi-step differencing (MSD) , split-operator method 
(SO) and Chebyshev method (CH) are the most relevant for our purposes. The 
main features of these methods will be described in the next subsections. 

2.1 Crank - Nicholson method 

In this scheme the exponential is approximated by the Cayley transform (i.e., a 
rational approximation by two polynomials of degree 1) ([3]): 

The spatial interval [%,in, x,,,] is divided in equidistant points with a mesh 
Ax  , resulting the grid x,in = xl, x2,. . . , x~ = xmaz. We denote by +; the 
solution at the time n and the point x j .  In calculating H1C)j” an approximation 
of the second derivative is needed. In the CN scheme, this is done by the finite 
difference formula: 

According to (5), we can write: 

(1 + iHAt/2h)?lg”+l = (1 - iHAt/Zf i )$y.  (7) 
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By using the approximation (6) and denoting 4 = V(xj) the following system 
results for determining the values $?+l: 

$~~~+(X-c I4 -2 )$~+ '+$"+ '  j-1 = -$~+1+(X+c14+2)$~-$j"_l , j  = 1 ,2 ,  * .  . , M 
(8) 

(9) 

where 
4imAx2 2mAx2 

The linear system (8) is tridiagonal and can be solved fast and accurately by 

This scheme is unconditionally stable, unitary (conserves the norm) and its 

, l u =  p * t ia t  
A =  

L U decomposition. 

accumulated error is proportional to At2. 

2.2 Multiple step differencing methods 

The multiple step differencing schemes are explicit methods, thus avoiding a 
linear system solution as is the case with CN method, which is implicit. However, 
they are only conditionally stable, which imposes restrictions on the time step. 
The simplest is the second order differencing scheme (MSD2), which is obtained 
by using the relation (3) for t + At and t - At and the expansion of the two 
exponentials in Taylor series, as follows: 

$(t + At) - $(t - At) = [exp(-iHAt/h) - exp(+iHAt/h)]$(t) = 

= -2iHAt/h$(t) + o ( ( H ~ l t ) ~ ) .  (10) 
To obtain this formula, the Taylor series are truncated after the first 3 terms. 

Thus, in MSD2 the solution at time n + 1 is obtained from solutions at times n 
and n - 1 by the relation: 

The scheme is conditionally stable. The stability condition is: 

(12) 
iti 

Emax 
a t  -, 

where E,,, is the eigenvalue with largest absolute value of the discrete Hamilto- 
nian operator. 

It should be noted also that the norm and energy are not rigorously conserved. 
In fact, relations of the following form can be deduced: 

< $(t - At),$(t) > = < $(t),$(t + At) > = constant 

< $(t - At)IHIQ(t) > = constant 
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which differ from the standard ones, like 

Because of this particular form of norm and energy conservation, during the 
propagation an error accumulates in the phase. To minimize the error in the 
phase, it is customary to choose a time step At smaller than the stability limit. 
So, At < m, where k is 5 - 10. 

High order differencing schemes can also be obtained. Thus, the 4-th or- 
der differencing scheme (MSD4) and the 6-th order differencing schemes have, 
respectively, the following formulae: 

li 
g m d  

1 2 

3 
?h(t + ant) = $(t - 2At) - 42HAt/h[--yqt) + ,($(t + At) + $(t - At>>]+ 

+O( ( H q 5 )  * (13) 

13 7 
10 10 

$(t  + 3At) = $(t  - 3At) - 6iHAt/h[-$(t) - -($(t + At) + $(t - At))+ 

+ g ( $ ( t  i- 2At) + $(t - 2At))l + O ( ( H A t ) 7 ) .  

The schemes MSD4 and MSD6 are more accurate with respect to At, but 
the conditions of stability are also more restrictive, requiring smaller time steps. 
There is a trade-off between the higher order accuracy and the condition of the 
stability. 

We have to note that unlike the CN scheme, which requires only the usual 
initial wave function (at t = 0), to start MSD schemes we need also auxiliary 
initial wave functions at t = At , 2At , . . . These can be prepared by using the 
Taylor expansion of the time evolution operator 

where Norder is the order of MSD. 
see ([61), ~ 7 1 ) .  

2.3 Split Operator method 

In this method, the exponential operator is approximated by ([6]), ([SI): 
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where K is the kinetic energy operator K = - - E A  (A is the Laplace operator). 
One step in propagation consists from an evaluation of the kinetic operator 

on a half of time step, a multiplication by exponential containing the potential 
and a new evaluation of the kinetic operator on a half time step. 

Thus, the solution at t + At is obtained by the relation: 

>w>. (17) 
-2KAt -iVAt -iKAt 

+(t + At) = exp( 2ti )exp( F, )exp( 26 

By taking into account the expression of K we can write: 

-iK ti2 iti 
-- - -i(--A)/ti = -A. 

ti 2m 2m 

In order to see how one step is effectively done, let us denote: D = &A and 

Then, eq.(17) can be written: 
u =  -cL. 

A 

We take separately the factor e x p ( y ) + ( t ) ,  which we shall denote by 4. 
AtD AtD $(t + At) = exp(-)l/i(t) = exp(-)F(-’)(F$(t)), 

2 

where F and F(-l) are the Fourier transform and its inverse. 
Then 

$(t + At) = 

00 

t ,  x’) exp(2niwx’)dx’] exp(-2~iwz)du. (21) 
= l m e x P ( -  rn 
The above Fourier transforms are approximated by discrete transforms. For 

doing this, we suppose that the function + either decays to zero for large 1x1 
values. In these conditions, the infinite interval (--00, +m) is reduced to a finite 
interval [-X, XI. This interval is divided in an uniform mesh: 

-x = 2 0  < 2 1  < * . . < 2M-1 = x 
with M = 2p. Let Ax be the step of the spatial mesh. We define also a set of 
discrete frequencies as follows: 

1 So, the frequency step is ALJ = 

6 



Let us denote by 4; the function 4 at the point xk and the moment t = nAt. 
We have: 

where 
M-1 2ni 

M 
W = exp(-), Rs = Wsr$;-l 

r=O 

Thus, 4; is obtained by a direct transformation (getting Rs),  a multiplication 
by the factor exp(- 

Now, the components $$ of $(t,, x) (t, = nAt) are obtained by a multiplica- 
tion of 4; with the factor exp(U(xk))At and a new application of the operator 
e x p ( y ) .  

Concluding, the SO method consists of a free particle propagation over a half 
- time increment, a phase change from the action of the potential applied over 
the whole time increment and an additional free particle propagation over a half 
- time increment. 

In order to speed up the calculation of the Fourier transforms, the Fast Fourier 
Transform is used ([9]). 

The SO method is efficient provided the wavefunction is of finite support, 
i.e., outside an interval [-X,X] it is negligible (like gaussian functions) or has a 
periodic behaviour. In such situations, the kinetic operator, involving a second 
spatial derivative, can be evaluated more acurately by using a Fourier Transform 
than by using finite difference. 

An interesting application of this method is the determination, by correlation 
and spectral techniques, of the energy levels and the corresponding eigenfunctions 
for the stationary states. (see [SI). 

Also, the method can be adapted to non-Cartesian coordinates, like spherical 
coordinates (see [lo]). 

) and an inverse transformation. AtzAT2Wq 

2.4 Chebyshev method 

In this method the exponential operator is approximated by a polynomial expan- 
sion (see [6], [ll]) : 

The Chebyshev scheme approaches this problem in analogy to the approxima- 
tion of a scalar function. Consider a scalar function F ( z )  in the interval [--1,1]. 
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In this case it is known that the Chebyshev polynomial approximations are op- 
timal, since the maximum error in the approximation is minimal compared to 
almost all possible polynomial approximations. 

In the approximation of the evolution operator, the complex Chebyshev poly- 
nomials a n ( X )  are used, replacing the scalar function by a function of an opera- 
tor. In making this change, one has to examine the domain of the operator and 
ad.just it to the range of definition of the Chebyshev polynomials. The range of 
definition of these polynomials is from -i to i. This means that the Hamiltonian 
operator has to be renormalized by dividing it by AEgr id  = Emax - Emin, where 
Emin = Vmin and Emax = V,,, + Kmax with Kmax = Ci g; where  AX^ is the 
grid spacing on the i’th coordinate. 

to 1 by shifting the Hamiltonian to 
Also, for maximum efficiency, the range of eigenvalues is positioned from -1 

Denoting Q = AEgr&/2h ,  the evolution of the wavefunction $ can be ap- 
proximated as 

Nb 

(26) $(t)  = e- (ilh)(*E,,,,/2+E,,,)t an ( -2Hnorm)$(0). 
0 

The first term on the right-hand side is a phase shift compensating the shift 
in the energy scale. The expansion coefficients become: 

with ao(a) = &(a). J ,  are the Bessel functions. 
The use of eq.26 requires the calculation of the operation of @n(-iHnorm) on 

$(0).  This is accompanied by the recursion relation of the Chebyshev polynomials 

with 4 n  = @n(-iHnorm)$(O)* 
The recurrence is started by 4 0  = $0 and 41 = -iHnorm$o. 

The hamiltonian H is obtained by 

Its coefficients are considered as elements Hj of a vector and the operator H 
applied to $ j  appear as a vector multiplication. 

The number of expansion terms needed to converge the sum in 26 is de- 
termined by the size of the time-energy phase space volume: Q = AEgridt/2K. 
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Examining the expansion coefficients as a function of n, one finds that when 
n becomes larger than a,  the Bessel functions &(a) decay exponentially. This 
means that in a practical implementation, the maximum order Nb can be chosen 
such that the accuracy is dominated by the accuracy of the computer. Practical 
tests shown that Nb should be 115 - 20 times greater than a. 

The Chebyshev scheme does not conserve norm or energy which can be used 
to estimate error. It is however very accurate when AEgrid is relatively small. In 
such cases, long time steps can be used, sometimes a single time step completes 
the calculation. 

Let us note that the MSD, split operator and Chebyshev methods allow 
straightforward extensions to several spatial dimensions. For more than two 
spatial dimensions, these methods should be used, since the Crank Nicholson 
scheme is not applicable. 

3 Artificial Boundary Conditions 

When the natural domain of the problem being solved is infinite, we are obliged 
to use only a finite portion in the numerical calculations. This approximation 
leads to reflections which affect the propagated wave function and to errors in 
the calculation of the physical quantities. One solution is to increase the spa- 
tial grid, but in many cases it is necessary to use very large intervals, which is 
costly in computer time and memory requirements. In order to eliminate or at 
least to reduce reflections special procedures were conceived, thus allowing the 
use of smaller spatial grids. By these procedures special boundary conditions 
are imposed. We shall present two kinds of such procedures, namely Transpar- 
ent Boundary Conditions (TBC) and Absorbing Boundary Conditions 
(ABC). They may be easily incorporated into the Crank-Nicholson scheme. 

3.1 Transparent Boundary Conditions 

The TBC algorithm is based on some suggestions contained in Hadley’s papers ([w (1131). 
Let us consider the integral 

and calculate $ related to the energy conservation. 
By simple manipulations, using TDSE eq.( 1) we obtain: 

where Fb represents the energy ”flux” leaving the right boundary and Fa that 
entering through the left boundary. Since the treatment of the two boundaries 
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is essentially identical, we will focus on the right boundary. We next make the 
important assumption that near this boundary $ = $0 exp(ik,x), where $10 
and kx are complex constants, and kx is (for the moment) unknown. With this 
assumption, Fb becomes 

Therefore, as long as the real part of k,  is positive, the contribution to the 
overall change in energy from this boundary will always be negative, Le., radiative 
energy can only flow out of the problem region. 

If we now consider the finite difference equivalent of (2) using a standard 
Crank-Nicholson scheme, it can be shown that the above energy balance relation- 
ship is preserved. Thus, assuming the same exponential dependence described 
above, we adjust the boundary value $b+l (which without TBC is assumed to 
be 0) prior to the start of the (n + 1)th propagation step so that 

This determines k,  and the boundary condition for the new propagation step 
is thus 

$M+1 n+l - - $M n+l exp(ik,Az). (5) 
However, prior to the application of (5), the real part of k,  must be restricted 

In practice, this is done as follows. Let us note 
to be positive to ensure only radiation outflow. 

01 = exp(ik,Az) = exp(i(kl + ik2)Az) =: exp(-k2Az) exp(ik1Az). 

We shall write: 

a = r + i s = p  exp(i0) = p  (cos@+isin0).  

p = exp(-k2Az) = (011 

6 =: arctan(s/r) = klAz. 

Thus, 

and 

We want to keep kl 2 0. As IC1 < 0 is equivalent to 6 < 0, we shall put in 

Then we shall take 01 = p exp(i0) with 0 eventually set to 0 and the relation 
such a case 8 = 0. 

between $M+:L and $M will be: 

An important feature of the above procedure is that k,  is allowed to change 
as the problem progresses, thus eliminating the need for a problem-dependent 
adjustable parameter. 
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3.2 Absorbing Boundary Conditions 

In this approach it is supposed that TDSE admits plane wave solutions of the 
form 

+ = e - i ( w t - k x ) .  

w is a function of wave number k through the dispersion relation. Equations 
having such solutions are called dispersive equations. The dispersion relation 
allows us to define the phase speed, c (k )  = y, of individual waves and the 
group velocity, C ( k )  = g, of wave packets. Energy, for instance, travels with 
group velocity. 

A fundamental requirement of an absorbing boundary condition is that the 
interior solution that is generated is close to the unique solution that is produced 
if the boundary conditions were placed at a large distance (say, infinity) from 
the interior region. For interior schemes involving traveling waves, the absorbing 
boundary condition must have the ability to absorb waves incident on it rather 
than reflecting them back into the interior of the domain. 

The idea is to construct an algebraic equation for k and w and then to use 
the correspondence between the x - t space and the k - w space to construct a 
differential equation on the boundaries which is transparent for the plane waves. 

7 ( 7 )  

By introducing the solution of form (7 )  into eq.(l) one obtains the relation 

h2k2 = 2m(f iw - v). (8) 
This relation can be solved for k and yields 

hk = i 2 / 2 r n ( f i w  - V )  (9) 
where the plus sign describes waves moving to the right boundary and the minus 
sign means waves moving to the left boundary. The left boundary has to be 
transparent for left-going waves and the right boundary must be transparent for 
right-going waves. Because we are involved with radial TDSE, we consider only 
the right boundary set to some finite x = R. 

To transform (9) back into the x - t space one needs an approximation for the 
square root which can be easily transformed into a differential equation at the 
boundary. Shibata ([14]) used a linear approximation of the square root function, 
while Kuska ([15]) used a rational function approximation. 

The authors of ([16]) developed a more general approach to produce absorbing 
boundary conditions, which includes as special cases the previous methods. We 
shall present the main ideas of this procedure. 

From eq. (8) results 

+ V ) .  
1 h2k2 

LJ = -(- 
f i  2m 

Then we can calculate the group velocity: 
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For a wave traveling to the right within the domain and impinging on the 
x = R boundary, the group velocity from (11) must be positive, since the energy 
of the waves propagates at group velocity. This implies that the energy associated 
with k is leaving the interior domain. A negative group velocity would mean that 
energy is entering the interior domain and hence is a reflected wave. 

Put in mathematical form, the symbol for the boundary condition has the 
following form at the x = R boundary: 

Between the x - t space and k - w space the following correspondence exists: 

a 
w <=> i-. 

dt  
a 

k <=> -i- 
dz ’ 

Thus from the condition (12) could be developed a differential boundary condition 
which is an exact absorbing boundary condition if satisfied on the boundary since 
all the group velocities on the boundary are positive (no spurious reflections off 
the boundary). But, this boundary condition cannot be realized in physical space 
by differential operators clue to the absolute value function, and thus we must 
use an approximation to obtain an explicit rational differential form which can 
be applied on the boundary. 

Since a single differential equation can absorb only waves of a certain group 
velocity, let us consider an approximation to (12) of the form 

on the boundary, where a is positive and real. Using the correspondence between 
k and the partial derivative in x, we obtain the following differential operator 
relation from (14): 

d ma 

ax Ti 
(2- + --),$ = 0. 

If this differential equation is satisfied on the boundary, then waves traveling 
to the right with group velocity a would be absorbed completely, leading to no 
reflections off the boundary from that component of the numerical solution for 
the wave. 

But in general waves are composed of more than one component with different 
group velocities. Therefore, a generalization of the operator in (15) is 

d ma!l 

dx h 
rIy=.l (i- + --) ?/!I = 0. 

where the group velocity values, al, are real. 
If ak # all k # E ,  then the effect of the differential equation, when applied 

to the boundary, would be to completely absorb p different group velocities, 
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each being absorbed to the first order. If ak = al, k # 1, then the effect of 
this differential equation, when applied to the boundary, would be to completely 
absorb the component of the computed wave solution with group velocity a1 to 
the 2nd order. If all the group velocities al are the same, then (16) is essentially 
a series expansion of (8) to the pth order about the point y. 

In the case p = 1 we deal just with eq.(15), which we write for point x = xj 

and moment t = t,: 
.a$? ma 
2- + -$n = 0. 
dx Iti 

The following approximations are used ([14]) : 

By introducing these alpproximations in (14) we obtain for j = M - 1: 

with a = --!.- + and p = + E. 
2Ax 4h 2Ax 4h 

Eq.(20) replaces the last equation in linear system (8) derived from the Crank 

For p > 1, boundaxy differential equations of higher orders are obtained. 
- Nicholson scheme. 

4 Applications 

We used the above methods to compute proton decay rates for the ground state 
of spherical '''1 ( Qp = 0.829 MeV ). 

The initial wavefunction, i.e. the metastable state, was provided by solving 
the radial stationary Schrodinger equation in a modified potential (usually taking 
a constant value starting from some distance Rmod beyond the top of the barrier) 
with boundary conditions appropriate to bound states [Qp < V(R,,d)]. 

The success of the time - dependent approach to the decay of low - lying 
metastable states by quantum tunneling depends crucially on the preparation of 
this initial wave packet. In particular, it has to be as pure as possible to avoid 
the background produced by high energy components. 

The most convenient numerical method to solve TDSE appeared to be Crank 
- Nicholson. The tridiagonal system solution at each time step is by far compen- 
sated by the step-size At required (much greater than for MSD2). For instance, 
for a mesh size of 1/4 a time step of 1/8 is sufficient for CN, while for MSD2 a 
time step of order 1/1000 is necessary to ensure stability. The units are 'fm' and 

sec'. 
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Moreover, artificial boundary conditions (TBC and ABC) can be easily incor- 
porated into CN, thus reducing the computational domain by a factor of 5. 

The TBC procedure proved to be more conveninent, since it adjusts itself the 
value of parameter k involved, while ABC requires additional input parameters 
(the coefficients ai). Actually we have taken all ai equal for p = 3, depending on 
the parameter ko whose optimal value has to be found by tests. 

The following physical quantities are calculated: 
a)- the norm of the wavefunction 
b)- the value of the energy during the propagation in time 
e)- the quantity p = Norm - Norm(int), where Norm is the norm on the whole 

interval and Norm(int) is the norm calculated between 0 and Rb, where Rb was 
chosen to be the last turning point. p represents the Tunneling Probability. 

d)- the decay rate given by the relation: 

Let us note that the CN method, conserving the norm and energy, is best 
suited for such calculations, while the others methods exhibit restrictive condi- 
tions to be applied. 

Some examples of decay rates calculation are presented in Figs.1 - 4. They 
correspond to the ground state of '''1 with 1 = 2, j = 5/2 and a nuclear potential 
of Woods - Saxon form . The eigenfunction corresponding to the energy E = 

0.829 MeV was taken as initial wavefunction. It has been produced by setting 
the potential from R m o d  = 50 fm to the constant value V(Rmod) and imposing 
bound state conditions at both ends of the spatial grid [O, 1281. 

Fig.1 shows the decay rate obtained with CN, using TBC with a multipli- 
cation factor of the grid equal to 5. Ax = 1/4, At = 1/16. It is seen how the 
decay rate converges to an asymptotic value. 

In Fig.2 the result obtained with the same parameters, but without TBC is 
given. One can see how the reflexions perturbed the evolution of the solution. 

In Fig.3 the calculation with MSD2 is presented. A step At = 1/1024 and a 
factor of 20 have been necessary, to obtain accurate values. 

In Fig.4 is shown an application of ABC procedure. We used the formula 
with p = 3. For the involved parameters we have taken the values: ka = 10 and 
a1 = a2 = a3 = % = 2.14. One sees that Absorbing Boundary Conditions are 
slightly less performant than Transparent Boundary Conditions in reducing the 
reflections on the numerical boundaries. 

We can conclude that the best results are obtained with Crank - Nicholson 
method coupled with Transparent Boundary Conditions and very narrow initial 
wave packets. 

The lessons learned from this study will be subsequently applied to the more 
interesting case of bi - dimensional tunneling for long - lived metastable states. 
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5 Figures Caption 

Fig. 1 - Ground - state decay rate of '''1 calculated by integrating TDSE on a grid 
of total length 5 x 128 fm using Transparent Boundary Conditions implemented 
in Crank - Nicholson numerical scheme. 

Fig. 2 - Same as in Fig. 1 but without implementing TBC 
Fig. 3 - Ground state decay rate of lo9I calculated by integrating TDSE using 

MSD2 numerical scheme. To reach similar accuracy as in Fig. 1, a 4 times larger 
grid and about 100 times smaller time step was necessary. 

Fig. 4 - Same as in Fig. 1, but using Absorbing Boundary Conditions of order 
p = 3. 
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